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Abstract 

The microstructure of high-temperature metals such as Ti, Ni, and Cr can be modified using 

ceramic nanoparticles to form metal matrix nanocomposites (MMNCs). Such materials are 

generally prepared via powder metallurgy routes. In this study, 25 wt. % SiCnp and Al2O3np were 

separately ball-milled as a reinforcement of Ti, Cr, and Ni matrices to investigate their effects on 

the phase formation and morphology of the MMNCs. The XRD, SEM, and FESEM results 

indicated that the alumina-metal system could not be thermodynamically stable in a high-energy 

ball mill, while the SiC reinforcement could be retained and milled with the metals even after 24 

hours. It was further observed that the distribution of nanoparticles was not affected by the type 

of metal, ceramic, and milling time. Finally, it was determined that the nanoparticles 

significantly reduced the average particle size of composite powders.  
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1. Introduction 

Although metal matrix composites (MMCs) have regularly been produced and utilised in 

industry for a long time, there remains a strong focus on enhancing their properties and 

developing an understanding of the causative influences on properties (Boostani, Yazdani, et al. 

2015; Boostani, Tahamtan, et al. 2015; Boostani, Mousavian, et al. 2015; Mousavian et al. 2016). 

It is well know that MMCs can provide economic benefits from increased specific strength 

components (Allison and Cole 1993; Miracle 2005; de Oliveira et al. 2015). The matrix phase in 

the composites in this case is a flexible metal, which is mainly chosen from super alloys, 

aluminum, magnesium, titanium, and copper alloys (Valibeygloo, Khosroshahi, and Mousavian 

2013; Mojtaba et al. 2012; Mousavian et al. 2016; Ibrahim, Mohamed, and Lavernia 1991; 

Boostani et al. 2016; Bernoosi, Azari Khosroshahi, and Taherzadeh Mousavian 2014). High 

operation temperatures, strengths, wear resistance, and a greater resistance to corrosion are 

advantages of MMCs. Such materials are used in many applications in automotive, aerospace, 

and electrical industries (Kaczmar, Pietrzak, and Włosiński 2000). Generally, the production 

methods of MMCs can be classified into three categories; casting, powder metallurgy and 

mechanical alloying methods, each of which have their own merits and demerits (He, Han, and 

Jackson 2008). 

Nowadays mechanical alloying has become as the most common method for manufacturing 

MMCs. In particular, for metals that have high melting temperatures, liquid-state methods are 

not economical. An additional advantage of mechanical alloying is the relative ease of this 

production process (Rosas et al. 2005; Suryanarayana and Al-Aqeeli 2013). This process is used 

to produce and mix both the metal and ceramic powders in the solid-state form (Suryanarayana, 

Ivanov, and Boldyrev 2001). Cold welding and fracturing are the two major phenomena in the 
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mechanical alloying process. The alloying procedure continues until the rate of welding and 

fracturing becomes balanced (Mosleh, Ehteshamzadeh, and Mousavian 2014; Mousavian et al. 

2014; Zebarjad and Sajjadi 2006; Khakbiz and Akhlaghi 2009; Rivera et al. 2012; Nekouee et al. 

2015; Forouzan et al. 2015; Mousavian et al. 2011; Mousavian, Sharafi, and Shariat 2011). 

Recently, the introduction of nanoparticles in the matrix has been reported as a method for 

modification of microstructure and properties of MMCs (Casati and Vedani 2014). However, one 

of the negative characteristics of nanoparticles is the high tendency of their agglomeration and 

cluster formation. Uncontrolled agglomeration, which occurs through van der Waals forces, is a 

common phenomenon that increases the inhomogeneity of composite structures (Mahboob, 

Sajjadi, and Zebarjad 2011; Pramanik and Littlefair 2013; Mohanty et al. 2014). One method to 

overcome this obstacle is ball milling. This method has proved its proficiency in distributing the 

nanoparticles into the metal matrix in an efficient way (Gajović et al. 2001; Suryanarayana 

2001). This process takes place in a sealed container by frequent collisions between rigid balls, 

which generate a high pressure, and the powders between the balls, which are ground into finer 

powders due to the cascading effect of these collisions (Ozdemir et al. 2008; Zhou et al. 2015). 

By using ball milling, Mobasherpour et al. (Mobasherpour, Tofigh, and Ebrahimi 2013) studied 

the effect of the amount of entrained nano-size Al2O3 reinforcement on the mechanical behavior 

of aluminum alloy composites. Their results revealed the uniform distribution of the 

nanoparticles in the matrix system. Another recent research which studied the effect of milling 

time on the nanoparticles dispersion, found that the uniformity of the as-milled powders was 

enhanced with increased milling time (Zawrah et al. 2013). 

The purpose of this study was to investigate the effects of the milling time and matrix type on the 

distribution of the SiCnp and Al2O3np in the matrix phase, as well as the phase morphology and 
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changes of the as-milled reinforced powders. The pure metal powders were milled under similar 

conditions and characterised in order to have a baseline for comparison to the morphology of 

composite powders.  

2. Material and methods 

Titanium, nickel, and chromium powders were used in the present study as the metal matrices. 

As reinforcement, Al2O3 and SiC nanoparticles were separately used. The characteristics of the 

examined powders are presented in Table 1. The morphologies of the Ti, Cr, Ni, and as-received 

Al2O3 (all from Shanghai Dinghan, China) and SiC (from US Research Nanomaterials, USA) 

nano powders are also shown in Fig. 1. As can be seen, both of the nanoparticles were in 

agglomerated form before ball milling with an almost spherical shape, while the titanium 

powders had sharp edges like ceramic materials, Ni had a fine chain-like morphology, and the Cr 

particles had an irregular coarse shape. 

Table 1. Characteristics of the starting powders. 

Powder Average particle size 
Purity 

(%) 
Crystalline structure 

Ti <50 µm >99 HCP 

Ni <5 µm >99 FCC 

Cr >150 µm >99 BCC 

Al2O3 40 nm 99.0 α (hexagonal) 

SiC <40 nm 99.0 β (cubic) 
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Figure. 1. The morphology of starting powders: (a) titanium, (b) nickel, (c) 

chromium, (d) Al2O3np, and (e) SiCnp. 

In order to compare the effects of the nanoparticles on the resultant morphology of metals, the 

ball-milling process was applied with 20g of pure metals for 2, 6, and 24 hours. For this purpose, 
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25 wt. % Al2O3 and 25 wt. % SiC powders were separately added to the metals and blended for 

the pre-determined set times. The milling process for all the prepared powders was performed at 

a constant milling speed of 250 rpm under argon atmosphere (with purity of 99.99%) with a 

Sepahan 84D planetary ball mill. The ball to powder weight ratio of 5:1 and the hardened steel 

balls with different diameters (5, 10, and 20 mm) were used. Stearic acid at 1.5 wt. % was used 

as a process control agent (PCA) to decrease the agglomeration (Ramezani and Neitzert 2012). A 

two-hour milling followed by a 30 min stop cycle was applied to prevent excessive temperature 

increase in the milled powders.  

The phase composition of the samples after ball milling was characterized using X-ray 

diffraction (XRD, Bruker’s D8 advance system, Germany) with Cu Kα (λ=0.15405 nm) radiation 

source. Microstructural characterizations were performed using two kinds of scanning electron 

microscopes (SEM, Cam Scan MV2300 and SEM, Philips XL 30), and a field emission scanning 

electron microscopy (FESEM-Mira Tescan). The distribution and average powder particle sizes 

were estimated from the SEM and FESEM images by ImageJ software (version 1.47).  

3. Results and discussion 

The main purpose of this study was to determine and understand the microstructure evolution of 

ball-milled titanium, nickel, and chromium matrix composites reinforced with nano-alumina and 

nano-SiC particles. In order to illustrate the effect of the nanoparticle presence, the 

morphological changes of the pure metals during ball milling were also investigated. The effect 

of ball milling on the titanium powders, after 2 and 6 hours is shown in Figs. 2(a) and (b), 

respectively. It can be observed that particles were fragmented into finer particles after 2 hours 

but by persistent milling up to 6 hours the particles were flatten and their average particle size 
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appears to be increased. Figure 3 shows considerable changes in morphology of the Ti powders 

after 24 hours milling. After this period, many of the flattened powders welded to each other, 

fragmented particles were entrapped between these layers, and some separated fine particles 

were also revealed.  

 

Figure. 2. SEM micrographs of Ti powders milled for (a) 2h and (b) 6h. 

 

Figure. 3. SEM micrographs of Ti powders after 24 hours milling. 
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The ball milled nickel powders after 2 and 6 hours are shown in Figures 4(a) and (b). They 

exposed severe cold welding after 2 hours milling, leading to a considerable particle size 

increment. By increasing the milling time up to 6 hours, the particles were broken down into 

finer fragments, in contrast with Ti powders, in which the mean particles size tended to increase 

with milling time. Flattened powders, with entrained fine fragmented particles due to cold 

working with an increased average particle size were formed after 24 hours for the Ni powders, 

see Figure 5. The Ni powder matrix showed considerabley more reduction in average particle 

size after 6 hours in comparison with the Ti powder matrix. This can be attributed to the higher 

potential of the FCC based Ni structure to work harden, and therefore fracture more, compared to 

the hexagonal based Ti crystal structure (Nes 1997). The work-hardeing exponent of FCC metals 

is considerably higher than those of BCC and HCP metals, meaing that they have required 

potential for receiving a high value of dislocation density for hardening. Work-hardeing makes a 

metal to become less ductile and more brittle. Therefore, a higher value of particle fracturing will 

occur during plastic deformation (Nes 1997).  
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Figure. 4. SEM micrographs of Ni powders milled for (a) 2h and (b) 6h. 

 

 

Figure. 5. SEM micrographs of Ni powders after 24 hours milling. 

The coarse irregular particles of as-received chromium (with BCC atomic structure) formed finer 

particles after 2 and 6 hours of milling (Figure 6), and simultaneously a flake-like morphology 

was obtained. Figure 7 presents the microstructure of the 24-hour milled Cr powders. The 

embedded fine fragments between the cold welded layers can be seen as well as the tendency of 
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the layers to agglomerate, leading to a decrease in the surface energy of the powders. Comparing 

figures 6 and 7, it can be seen that the average particle size had no significant variation between 

2 hours and 24 hours of milling period. 

 

Figure. 6. SEM micrographs of Cr powders milled for (a) 2h and (b) 6h. 

 

 

Figure. 7. SEM micrographs of Cr powders after 24 hours milling.  
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The chemical composition of composite powders milled for 6 and 12 hours were recorded via 

XRD. Figure 8(a) shows the Ti-Al2O3 powder XRD resulrs after milling for 6 and 12 hours. The 

strong peaks of titanium as well as less pronounced peaks of Al2O3np were detected after 6 hours. 

Reaction between the alumina and Ti can also be seen to have occurred as the corresponding 

peaks of TiO can be seen for 12 hours ball-milled powders. This indicates that Ti is not 

thermodynamically stable with alumina during intensive milling. It can be observed that the 

relevant peaks, which were shown in Fig. 8a after 12h, have a very low intensity and a higher 

width, and considerable background, showing the low crystallite sizes of the produced products 

after reaction (Mousavian, Sharafi, and Shariat 2011). Figure 8(b) shows the XRD analysis of 

Ni-Al2O3 milled for 6 and 12 hours, in which just the peaks of nickel and alumina were recorded. 

The XRD analysis of the Cr-Al2O3 powder is shown in Figure 8(c), in which there is no evidence 

for alumina peaks. It is not clear that why alumina peaks were hidden for this sample.  
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Figure. 8. XRD patterns of the milled powders after 6 and 12 hours for (a) Ti-Al2O3, (b) 

Ni-Al2O3, and (c) Cr-Al2O3 mixtures. 

Based on the XRD results, FESEM further imaging was performed of the powders milled for 2 

and 6 hours. Figures 9 to 11 show the FESEM images of the Ti, Ni and Cr metal matrices, 

respectively, reinforced with Al2O3np. The FESEM images are presented for the composites 

milled for 2 hours (Figures 9(a), 10(a) and 11(a) (low magnification), 9(b), 10(b) and 11(b) (high 

magnification)), and 6 hours (Figures 9(c), 10(c), and 11(c) (low magnification), 9(d), 10(d), and 

11(d) (high magnification)). Some important points can be drawn from the powder FESEM 

images before and after milling. First, by comparing of Figure 2 with Figures 9(a) and (c); Figure 
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4 with Figures 10(a) and (c); and Figure 6 with Figures 11(a) and (c); it is revealed that the 

presence of the nanoparticles significantly changed the morphology and particle size of metal 

powder particles. A much-reduced metal particle size was obtained for the composite powders 

compared with the pure metals after milling. It should be noted that the particles size of Ti 

composite had no considerable difference with the pure Ti powders until 2 hours of milling. It 

has been indicated in previous work, that nano ceramic particles highly affect the work 

hardening rate of metallic powders, in particular for FCC and BCC metals that have a higher 

potential for work-hardening (Meyers, Mishra, and Benson 2006). 

Secondly, as shown in Figures 9(b), 10(b), and 11(b), disagglomeration of the nanoparticles 

occurred from the initial stages of the milling process, which is in contrast with some previously 

published results (Salahi and Rajabi 2016). It can be observed that a uniform distribution of 

nanoparticles on the outer surface of powders was mostly achieved after just 2 hours of milling 

(Figures 9(a,b), 10(a,b), and 11(a,b)). The presence of agglomerated nanoparticles for both 2 and 

6 hours milled powders highlights the fact that increasing the milling time had no positive effect 

on improving the nanoparticle distribution, when 25 wt. % nano-reinforcement is used. 

Thirdly, the nickel-based nanocomposite powders were much finer than Ti and Cr based 

composite powders, while the pure metal powders of Ti seems to contain smaller particle size 

after milling, indicating the effect of nanoparticles on the acceleration of work hardening for 

nickel powders. It is reported in the literature that the work hardening exponent of FCC metals is 

higher than for BCC, both of which are higher than HCP metals (Meyers and Chawla 2009). 

Nickel is therefore the most microstructurally effected metal by presence of the nanoparticles. 



14 
 

 

Figure. 9. FESEM images of Ti-Al2O3 powders milled for (a, b) 2h and (c, d) 6h, (a, c) low 

magnification, and (b, d) high magnification.  
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Figure. 10. FESEM images of Ni-Al2O3 powders milled for (a, b) 2h and (c, d) 6h, (a, c) low 

magnification, and (b, d) high magnification.  

 



16 
 

 

Figure. 11. FESEM images of Cr-Al2O3 powders milled for (a, b) 2h and (c, d) 6h, (a, c) 

low magnification, and (b, d) high magnification.  

In this study, SiC nanoparticles were also used as reinforcement to show the effect of 

nanoparticle type on the microstructure and morphology of composite powders. XRD analysis of 

24-hour milled Ti, Ni, and Cr based nanocomposites reinforced with SiC is shown in Figures 

12(a-c), respectively. It can be seen there is no evidence of reaction between matrices and SiC. 
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This shows that ball milling of SiCnp with these metals might not lead to a detrimental reaction 

during composite manufacturing at least until up to a 24h period of milling.  
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Figure. 12. XRD analysis of the milled powders after 24 hours for (a) Ti-SiC, (b) Ni-SiC 

and (a) Cr-SiC. 

Based on the XRD analysis, FESEM further imaging was completed for the 24-hour milled 

powders. No significant microstructural difference is observed in Figure 13 when compared with 

those shown in Figures 9, 10, and 11. Therefore, by changing the mechanical properties of 

ceramic nanoparticles, no change might be observed in the case of distribution of nanoparticles 

and/or morphology and average particle size of composite powders, when 25 wt. % nanoparticles 

are used. Irrespective of refinement of composite powders in the presence of reinforcing SiC 

phase, some agglomerated ceramic particles with a metallic link (as shown in the schematic of 

Figures 13(a), (b), and (c)) were again observed. Very little differenece was observed between 

the distribution of nanoparticles between the samples.  
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Figure. 13. FESEM images of the milled powders after 24 hours for (a) Ti-SiC, (b) Ni-SiC 

and (a) Cr-SiC. 

Figure 14 presents a summary of the various microstructures and morphologies obtained in this 

study. It can be observed that by increasing the milling time, various composite powders with 

different particle sizes were obtained, containing single and agglomerated ceramic nanoparticles 

inside and outside of the metal powder particles as well as some fragmented metallic powders.   
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Figure. 14. The schematic of the obtained MMNCs morphologies after ball-milling process 

by increasing the milling time.  

Finally, in order to clarify the effect of metallic type, ceramic type, and milling time on the value 

of average particles size and their distribution, image analysis was used. Figures 15, 16, and 17 

show the image analysis results. It can be seen that no work hardening and fragmentation 

occurred for titanium and almost none for the chromium particles by increasing the milling time, 

while the nickel powders were exposed to severe refinement between 2 and 6 hours ball milling. 

Although, ceramic nanoparticles caused a severe reduction in the average particle size of all the 

matrices, however, nickel matrix experienced the highest particle size reduction, in particular 

after 6 hours milling with alumina nanoparticles present.   
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Figure. 15. Image analysis of titanium powders as well as their composites.  

 

 

Figure. 16. Image analysis of nickel powders as well as their composites. 
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Figure. 17. Image analysis of chromium powders as well as their composites. 

4. Conclusion 

The effect of metallic matrix, ceramic nanoparticle, and milling time were evaluated on the 

microstructure and morphology of metal matrix nanocomposites. From the experimental results, 

the followings could be drawn: 

1. Depending on the atomic structure of metal matrices, various morphologies and 

microstructures were obtained. The type of metals is also important for the effect of 

nanoparticles on the microstructure of composite powders.  

2. Nickel powders with the FCC structure experienced the highest particle size reduction 

compared with the other metals.  

3. The type of ceramic nanoparticles did not considerably effective the morphology of composite 

powders and distribution of nanoparticles.  

4. By increasing the milling time, no improved distribution of nanoparticles was obtained.  
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