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Abstract 

The Digital Twin (DT) is one of the main concepts associated to the Industry 4.0 wave. This term is more and more used in 
industry and research initiatives; however, the scientific literature does not provide a unique definition of this concept. The paper 
aims at analyzing the definitions of the DT concept in scientific literature, retracing it from the initial conceptualization in the 
aerospace field, to the most recent interpretations in the manufacturing domain and more specifically in Industry 4.0 and smart 
manufacturing research. DT provides virtual representations of systems along their lifecycle. Optimizations and decisions making 
would then rely on the same data that are updated in real-time with the physical system, through synchronization enabled by 
sensors. The paper also proposes the definition of DT for Industry 4.0 manufacturing, elaborated by the European H2020 project 
MAYA, as a contribution to the research discussion about DT concept.  
 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

In the recent years, the traditional manufacturing industry is challenged worldwide with the amazing growth and 
advancements in digital technologies that allow easy integration of interconnected intelligent components inside the 
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shopfloor, that is at the basis of the so-called Industry 4.0 and that is made possible by the widespread adoption of 
information and communication technologies by manufacturing companies. Industry 4.0 has been recognized at 
international level as one of the strategical responses of the manufacturing companies to the economic crisis, to the 
tendency to delocalize production and to the increased market complexity [1]. The technological basis of Industry 
4.0 roots back in the Internet of Things (IoT) [2],which proposed to embed electronics, software, sensors, and 
network connectivity into devices (i.e. "things"), in order to allow the collection and exchange of data through the 
internet [3]. As such, IoT can be exploited at industrial level: devices can be sensed and controlled remotely across 
network infrastructures, allowing a more direct integration between the physical world and virtual systems, and 
resulting in higher efficiency, accuracy and economic benefits. Although it is a recent trend, Industry 4.0 has been 
widely discussed and its key technologies have been identified [4], among which Cyber-Physical Systems (CPS) 
have been proposed as smart embedded and networked systems within production systems [1,5]. They operate at 
virtual and physical levels interacting with and controlling physical devices, sensing and acting on the real world 
[6]. According to scientific literature, in order to fully exploit the potentials of CPS and IoT, proper data models 
should be employed, such as ontologies [7,8], which are explicit, semantic and formal conceptualizations of 
concepts in a domain [9]. They are the core semantic technology providing intelligence embedded in the smart CPS 
[10] and could help the integration and sharing of big amounts of sensed data [11,12]. Through the use of Big Data 
analytics, it is possible to access sensed data, through smart analytics tools, for a rapid decision making and 
improved productivity [13,14].  

With the use of these technologies, Industry 4.0 opens the way to real-time monitoring and synchronization of 
the real world activities to the virtual space thanks to the physical-virtual connection and the networking of CPS 
elements [1]. The Digital Twin (DT) is meant as the virtual and computerized counterpart of a physical system that 
can be used to simulate it for various purposes, exploiting a real-time synchronization of the sensed data coming 
from the field; such a synchronization is possible thanks to the enabling technologies of Industry 4.0 and, as such, 
the DT is deeply linked with it. The DT was first born in the aerospace field and only recently has been adopted also 
in manufacturing contexts: such a term is used in industrial environments and in governmental research initiatives; 
however, scientific literature that describes the contextualisation of the concept in the manufacturing domain is still 
at its infancy. A review of the contributions on this would be highly beneficial, in order to pave the way and clarify 
the conceptual foundations for future research works on the topic.  

In this sense, the objective of the paper is to contribute to offer a deeper understanding of the proposed 
definitions of DT in scientific literature and to help in the identification of the role of the DT for manufacturing in 
the Industry 4.0 era. The paper is structured as follows: Section 2 deals with the research objectives and 
methodology; Section 3 presents the literature analysis of the Digital Twin concept and applications; Section 4 
shapes the new role of the DT for Industry 4.0 manufacturing; finally, Section 5 proposes some concluding remarks. 

2. Research Statement 

According to the research motivations outlined in the Introduction, the paper aims at contributing to the shaping 
of the DT definition in scientific literature. This is in the direction of clarifying and extrapolating a unique definition 
and relevance of DT for the manufacturing sector, starting from different instances of research works in various 
sectors and contexts. To this aim, the paper answers the following Research Questions: “What is the definition of 
Digital Twin in scientific literature?” and “What is its role within Industry 4.0?”. 

The used methodology is a thorough literature review on the concept. In particular, the authors have searched on 
the Scopus Database all publications released in the five years between 2012 and 2016, that had the term “Digital 
Twin” in the title, abstract or in the keywords. The type of publications (Journal articles, conference papers and 
others) was not a filtering criteria, the only considered language was English. The reason for excluding publications 
before 2012 was that the main focus of the current study was the DT in relation to the Industry 4.0 that was first 
defined at Hannover Messe, Germany, in 2011 [15], therefore no relevant publications are to be found prior to the 
year 2012 with respect to these topics. 
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3. Literature analysis 

3.1. The Digital Twin concept  

The first definition of the DT was forged by the NASA as “an integrated multi-physics, multi-scale, probabilistic 
simulation of a vehicle or system that uses the best available physical models, sensor updates, fleet history, etc., to 
mirror the life of its flying twin. It is ultra-realistic and may consider one or more important and interdependent 
vehicle systems”: this definition first appeared in the draft and after in the final release of the NASA Modeling, 
Simulation, Information Technology & Processing Roadmap in 2010 [16,17]. From that moment on, aerospace 
researchers started referring to the said NASA roadmap as the seminal work to define the DT (as an example [18]). 
As it is evident, the main scope of the original definition of the DT was to mirror the life of air vehicles with a series 
of integrated sub-models that reflected different aspects and vehicle systems, by considering stochasticity, historical 
data and sensor data, including in this way interactions of the vehicle with the real world. Only in subsequent 
research works, published in the same year, other aspects emerged such as the life-cycle view [19], the check on 
mission requirements [19,20] and the use of the DT for prognostics and diagnostics activities [21], that then 
remained as core characteristics of the concept in future works. In 2015 with the work by Rios and colleagues [22], 
the definition of DT comprised a generic “Product”, opening the way to the use of such a concept in other fields 
rather than only air vehicles, even though their work was still inserted in research about aircraft structures. Initial 
works in other sectors appeared even before. In fact, alongside the research in the aerospace field, in 2013 the first 
works reporting research on DT in manufacturing sector appeared. In particular, Lee and colleagues considered it to 
be the virtual counterpart of production resources, and not only of the product, setting the basis for a debate about 
the role of the DT in advanced manufacturing environments, such as the envisioned Industry 4.0 with its core 
technologies, big data analytics and cloud platforms [23]. This debate continues still today, and this work is inserted 
in such a stream. 

To have a complete view of the definitions of the DT appeared in literature, please refer to table1.  

Table 1. Definitions of Digital Twin in literature 

No. Ref Year Definition of Digital Twin 

1 [16–
18] 

2010 
and 

2012 

An integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses the best available 
physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin. The digital twin is ultra-realistic and 

may consider one or more important and interdependent vehicle systems. 

2 [19] 2012 A cradle-to-grave model of an aircraft structure’s ability to meet mission requirements, including submodels of the 
electronics, the flight controls, the propulsion system, and other subsystems 

3 [20] 2012 Ultra-realistic, cradle-to-grave computer model of an aircraft structure that is used to assess the aircraft’s ability to meet 
mission requirements 

4 [23] 2013 Coupled model of the real machine that operates in the cloud platform and simulates the health condition with an 
integrated knowledge from both data driven analytical algorithms as well as other available physical knowledge 

5 [21] 2013 Ultra-high fidelity physical models of the materials and structures that control the life of a vehicle 

6 [24] 2013 Structural model which will include quantitative data of material level characteristics with high sensitivity 

7 [25] 2015 Very realistic models of the process current state and its behavior in interaction with the environment in the real world 

8 [22] 2015 Product digital counterpart of a physical product 

9 [26] 2015 Ultra-realistic multi-physical computational models associated with each unique aircraft and combined with known flight 
histories 

10 [27] 2015 High- fidelity structural model that incorporates fatigue damage and presents a fairly complete digital counterpart of the 
actual structural system of interest 

11 [28] 2016 Virtual substitutes of real world objects consisting of virtual representations and communication capabilities making up 
smart objects acting as intelligent nodes inside the internet of things and services 

12 [29] 2016 Digital representation of a real world object with focus on the object itself 

13 [30] 2016 The simulation of the physical object itself to predict future states of the system 
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14 [31] 2016 Virtual representation of a real product in the context of Cyber-Physical Systems 

15 [32] 2016 
An integrated multi-physics, multi-scale, probabilistic simulation of an as-built system, enabled by Digital Thread, that 

uses the best available models, sensor information, and input data to mirror and predict activities/performance over the life 
of its corresponding physical twin 

16 [33] 2016 
A unified system model that can coordinate architecture, mechanical, electrical, software, verification, and other discipline-

specific models across the system lifecycle, federating models in multiple vendor tools and configuration-controlled 
repositories 

 
Research on the DT in manufacturing is an evolution of the already ongoing research stream about Virtual 

Factories (VF). These are defined as the digitalization of the plant integrated with the real system coming in help to 
the production during all the lifecycle of each asset [34]. In fact, information generated at design phase of a 
production system is not exploited during the operational phases, even though they could be highly valuable. This 
information can be used for easier performances’ evaluation and management decisions during production 
operations. Already, works on the VF underlined the importance assumed by a proper semantic meta data model to 
support the necessary information structuring [35]. This was also in line with a rich manufacturing research stream 
dealing with the role and benefits of ontologies for production systems [36–38]. The semantic Virtual Factory Data 
Model (VFDM) has been developed [35], which establishes a coherent and extensible standard for the common 
representation of the factory entities, such as buildings, processes, products and resources, giving in this way a 
holistic view of the production environment [34]. The DT goes beyond the VF to include a real time synchronization 
with the physical system, thanks to which the user or the autonomous system can take the right decision about the 
actual and the future production, based on a wide range of available information. Also the DT must therefore be 
supported by a proper data model structuring information about the system operations, its history, its behaviour and 
its current state.  

3.2. The Digital Twin history  

As emerges from Table 1, despite the DT concept is recent, it has been used for different sectors and it has been 
linked to various aspects. A deeper investigation was deemed necessary. The authors chose to adopt a systematic 
search approach as described in the Section 2, “Research Statement”. It emerged that the English language 
publications released from 2012 to 2016 listed on the Scopus Database are in total 26, and are presented in the Table 
2.  

From a temporal point of view, Table 2 shows that there has been an increasing interest in the DT: in fact, all 
references from 2012 and 2013 come from the same conference (respectively from the 53rd and 54th editions of the 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference), suggesting that initially 
the research communities working on it were few. In 2014 there is only one paper on Scopus, while in 2015 and in 
2016 the number of publications – along with the number of application fields - are increasing, respectively 5 and 
12.  
Publications were mainly conference papers (20), with a low number of Journal articles (5) and 1 Book Chapter. 
This is in line with the expectation that scientific literature on DT is very recent. 

Most recent publications go beyond the boundaries of the aerospace field to reach the smart manufacturing 
environments, in particular related to the Industry 4.0. New technologies, such as the CPS, open the way to new 
uses, beyond the diagnostics and prognostics purposes, and meanings of the DT for the production systems domain. 
From Table 2, different possible uses emerge that have been categorized as follows:  

1. The initial intended use in literature is to support health analyses for an improved maintenance activity and 
planning; in particular, the DT has been proposed to:  

a. Monitor anomalies, fatigue, crack paths in the physical twin [18,19,21,27,31,39,40]; 
b. Monitor geometric and plastic deformation on the material of the physical twin [41]; 
c. Model reliability of the physical system [20].  

2. A second use with a wider scope is to digitally mirroring the life of the physical entity: 
a. To study the long term behaviour of the system and predict its performances by keeping into 

account the different synergistic effects of environmental conditions [24,26,40,42]; 
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b. To provide information continuity along the different phases of the lifecycle [25,43]; 
c. For the Virtual Commissioning of the system [28,44]; 
d. To manage the lifecycle of the Internet of Things devices [29]. 

3. DT have been proposed to support decision making through engineering and statistical analyses [32,45]: 
a. Optimization of system behaviour during design phase [30,33,43,46,47]; 
b. Optimization of product lifecycle, knowing the past and present states, it is possible to predict and 

optimize the future performances [22,45]. 
Many of the mentioned uses were targeted at improving maintenance activities, such as condition-based 

maintenance, diagnostics and prognostics activities. This was not only related to the use number one (health 
analyses), but also the other uses [24,26,32,40,42,45]. From this the clear vocation of the DT in its first meaning 
emerges as an instrument to support better prediction of failures during the system lifecycle (in particular air 
vehicles in the aerospace field) based on field data coming from sensors [16–18,27,31,32]. 

Another aspect that appeared since the very first interpretations of the DT concept was the intimate connection to 
simulation, that is seen in two different ways: 

I. For most of the authors, the DT is a model that represents the system that different types of simulations 
can be based upon [19–21,25,27,28,31,33,39,44–48], 

II. Others consider the DT as the simulation of the system itself [16–18,24,30,32]. 
Although the simulation seems to be a key aspect related to the DT concept, there are authors who do not 

mention it [22,26,29,40–43,49]. Irrespective of the connection between the two concepts, the authors mention 
different purposes and characteristics of the simulations and the DT. In the aerospace, the most mentioned 
simulations replicate the continuous time history of flights (with historical data, maintenance history information), 
generating enormous databases of simulations to understand what the aircraft has experienced and to forecast future 
maintenance needs and interventions, with the use of Finite Element Methods (FEM), Computational Fluid 
Dynamics (CFD), Montecarlo and Computer-Aided Engineering (CAE) applications-based simulations [19–
21,27,33,46,48]. Some authors highlight the fact that these simulations should be connected with on-board devices 
and sensors to have a continuous synchronization with the field condition [21]. In the robotics field, the simulations 
are mainly performed for the Virtual Commissioning to optimize the control algorithms for robots during 
development phase [28,44]. In manufacturing, the main objective of simulations are to represent the complex 
behaviour of the system, also considering the possible sconsequences of external factors, human interactions and 
design constraints [25,30,47].  

Also, different simulation tools have been proposed, as it is shown in Table 2. 

Table 2. Results of the systematic research on Scopus 
No Ref Year Type Field Use Diagnostics Prognostics Simulation Simulation Software 

1 [49] 2012 C AS Not available Not available Not Available Not available 

2 [19] 2012 C AS 
As virtual health sensor, it 

forecasts maintenance 
needs. 

Prediction of cracking FEM & Montecarlo 
Simulations  

DDSim (Damage and 
Durability Simulator) 

3 [45] 2012 C AS 

Prediction confidence; 
decision-making in 

condition-based 
maintenance 

Life prediction including 
failure 

Numerical simulation 
(accumulation models 

for damage and life 
prediction) 

Not available 

4 [18] 2012 C AS Monitor manufacturing 
anomalies  

DT for Health 
management and 

maintenance history 
DT are simulations  Not Available 

5 [20] 2012 C AS Model reliability 
DT integrated in 
Condition-based 

maintenance systems 

FEM and CFD 
simulations 

Rockstar Sim. Suite, Stick-
to-Stress Real Time 

Dynamic Flight Simulator 
(S2S DFS) 

6 [41] 2013 C AS Analyze plastic 
deformation behavior 

Fatigue crack growth 
prediction No No 
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7 [21] 2013 C AS Digital mirror of life of 
physical twin 

Predictions of early 
warnings of microcracks 

Simulation integrated 
with on-board health 
management system 

Not available 

8 [24] 2013 C AS 

Investigate long term 
behaviour of structure 

under multiple 
environmental conditions 

Prognosis of structural 
composites and their 

synergistic response in a 
multi-physical 
environment 

DT are simulations Not available 

9 [39] 2014 J AS Monitor crack paths by 
filling information gaps Prediction of crack path Production-level 

simulation Not available 

10 [25] 2015 C M Information continuity 
along product lifecycle  Not available  Complex behavior of 

production  Not available 

11 [22] 2015 C AS 
Simulating, predicting, 
optimizing the product 

lifecycle 

Maintenance services, 
especially related to usage 

predictions 
No No 

12 [26] 2015 C AS Monitor and predict 
performances 

Damage and cracks 
detection and monitoring No No 

13 [48] 2015 J AS Not available Diagnostics and 
prognostics of aircrafts  

FEM & Montecarlo 
Simulations Not available 

14 [27] 2015 J AS Fatigue-damage prediction FEM simulation Not available 

15 [28] 2016 C R Virtual Commissioning No Simulations at system 
level during design Matlab -Simulink 

16 [29] 2016 C I IoT lifecycle management No No No 

17 [30] 2016 C M Optimize system behavior 
at design  No DT are simulations Not available 

18 [31] 2016 C M Monitor the physical 
entity No Data exchange 

simulation Not available 

19 [32] 2016 C AS Engineering analyses and 
decision making  

Prognosis of crack 
propagation  

Manned flight 
simulators Not available 

20 [42] 2016 BC AS Defining system behavior  No Not Available Not available 

21 [46] 2016 J AS Support design Not available Aircraft mock-up  Dassault Systemès V6 

22 [47] 2016 C M Layout optimization No HMI interactions Not available 

23 [43] 2016 J M Data Manag. in lifecycle No No No 

24 [33] 2016 C AS Systems engineering & 
mechanical design integr. No CAE-based simulations Mathematica and 

Matlab/Simulink 

25 [44] 2016 C R Virtual Commissioning No 
To implement and 

optimize the algorithm 
for control of robots 

VEROSIM (Virtual 
Environment and Robotic 

Simulation) 

26 [40] 2016 C AS Detecting failures; 
definition of performance Product failures detection  No No 

Type: C = Conference, J = Journal, BC = Book Chapter; Field: AS = Aeronautics and Space, R = Robotics, M= Manufacturing, I = Informatics 

3.3. Digital Twin in the industrial engineering 

This section is devoted to a more detailed analysis of a subset of the papers presented in Table 2, namely those 
applying the DT concept to the industrial engineering: thus comprising all the papers in the manufacturing and 
robotics sectors. Also the informatics paper was considered in this analysis because the application domain was the 
industrial IoT. The schematic results of this analysis are presented in Table 3, where the papers are confronted with 
the main aspects emerged from the previous literature on DT. 
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Table 3. Analysis of the papers about Digital Twin in industrial engineering  
No Ref Field Industry 4.0 Big data Lifecycle CPS Semantic Data Model  

11 [25] M Industry 4.0, IoT Yes Production system lifecycle Yes Meta-information and semantics  

16 [28] R Industry 4.0 No Complex technical systems lifecycle No No  

17 [29] I Industrial IoT No IoT lifecycle No No  

18 [30] M Smart CPS No Production system lifecycle Yes No  

19 [31] M Industry 4.0, IoT Yes Product lifecycle Yes AutomationML model for Data Exchange  

23 [47] M No No No No Database with CAD models   

24 [43] M Smart Products Yes Product lifecycle Yes Semantic Data Management   

26 [44] R No No No No No  

 
1) The important connection between the DT concept and the Industry 4.0, mentioned in Section 1, is confirmed 

also by the considered papers: in fact, only two papers do not mention it [44,47], all the others name the Industry 
4.0 [25,28,31] or one of the connected concepts (IoT [29], Smart CPS [30], Smart Product [43]).  

2) The Big Data topic is not strongly recognized by the authors as a key aspect of the DT modeling. In fact, only 
Rosen recognizes that the DT model requires a huge digital data storage [25] and Schroeder carries on this 
argumentation stating that Big Data management and analytics become an issue in a DT context [31]. 
Abramovici mentions Big Data as an analysis method to elaborate data for DT-based optimizations [43].  

3) The lifecycle perspective is also not shared by all authors. Some authors see the DT employed in the lifecycle of 
the production system [25,30] or of the product [31,43]. Others do not adhere to the product-production system 
dichotomy, by considering technical system lifecycle as focus: the system is both a product (during design 
phase) and a production system equipment (during operations) [28,29]. The idea is that design, service and 
recycling/disposal phases would benefit from information generated during operations [29], stored in a unique 
data source [43], thus reducing effort in decision making, and in collecting data to perform simulations [28]. 

4) Despite the fact that the first conceptualizations of the DT did not deal with advanced manufacturing, it can be 
stated that the connection with the CPS is getting stronger. In fact, the papers in the manufacturing field mention 
the use of the DT to simulate a CPS system or product (Smart products “are cyber-physical products/systems 
(CPS) which use and integrate internet-based services to perform a required functionality” [43]) [25,30,31]. 

5) Some authors stress the importance of having a proper data model to support the named information collection 
and continuity during all lifecycle phases. Generally, semantic meta-data models are proposed also along product 
lifecycle, where semantic data management covers product lifecycle data both from the virtual and real lifecycles 
and their related information flow [25,43]. Schroeder sees the DT as composed of different models and data, 
which are aggregated in an AutomationML model for data exchange [31]. Arisoy mentions that the DT runs on a 
database with Computer-Aided Design (CAD) models to decide grasping point locations [47]. 

4. Shaping the new role of Digital Twins for Industry 4.0 industrial engineering 

Within the European H2020 project MAYA, the research on DT of CPS-based factories has received a new 
impulse. MAYA proposes multi-disciplinary integrated simulation and forecasting tools, empowered by digital 
continuity and continuous real-world synchronization, towards reduced time to production and optimization. MAYA 
project aims at developing a plant DT supporting activities in all factory lifecycle phases: from the design, through 
the optimization of the operational life, to the dismissal phase. The central concept of the MAYA innovations is the 
combination of the virtual and physical dimensions with the simulation domain. The key to empower the DT 
representation and simulation of the actual factory lifecycle is a semantic meta-data model, describing exhaustively 
the CPS features. This is done through the Centralized Support Infrastructure, a platform that supports: 
• The semantic meta data model, that structures information to ensure the digital continuity of data generated at all 

lifecycle phases of the production system; 
• The simulation framework, that connects different simulation methodologies and tools for a multi-disciplinary 

replica of the physical system; 
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• The communication layer, that ensures the seamless connection of physical CPS to the digital world, to achieve 
real-time synchronization and update with the huge amount of field data.  
 In this sense, MAYA covers all aspects related to the DT that appeared in a stronger or feebler connection in the 

analysed literature, in a unique framework: lifecycle perspective, information continuity through semantic meta data 
model, Big Data and real time synchronization with the field. Thanks to the research works performed within 
MAYA project, it is possible to identify the main characteristics that the DT for Industry 4.0 manufacturing systems. 
The DT consists of a virtual representation of a production system that is able to run on different simulation 
disciplines that is characterized by the synchronization between the virtual and real system, thanks to sensed data 
and connected smart devices, mathematical models and real time data elaboration. This is in line with the role also 
suggested in the aerospace field. The topical role within Industry 4.0 manufacturing systems is to exploit these 
features to forecast and optimize the behaviour of the production system at each life cycle phase in real time. This is 
fully enabled by the Industry 4.0 technologies and it is in line with the view of [50]. 

The MAYA approach to the DT will be demonstrated with the use of two industrial use cases: the first is a big 
company in the automotive sector that will exploit the DT for a quicker Virtual Commissioning of its assembly 
lines; the second is an SME producing cutting, bending and shearing lines for metal sheets, where the DT is useful 
to improve line performance evaluation and optimization.   

5. Conclusions 

The paper proposes a literature analysis about the concept of DT, in order to clarify its definition and its history, 
started from the aerospace field and then translated also in manufacturing applications. Although it is a highly 
relevant concept at industrial and research initiatives level, on the DT many elaborations and works have been 
proposed that did not necessarily reflect the same definition of DT. These publications are recent and mostly 
polarized on conference proceedings, suggesting the fact that the scientific literature is still at its infancy. For this 
reason, the paper contribution comes at the right moment, by offering a systematic review of what has been written 
on the topic and by creating a first basis for future research works on the topic. This paper in fact is aimed at 
clearing out the definitions given in the scientific literature and at shaping the role of the DT for Industry 4.0 
manufacturing contexts, in order to motivate and analyze why and how a concept, originally born in the aerospace 
sector, could be beneficial to the manufacturing domain, in the presence of the technologies associated to Industry 
4.0. In particular, it emerged that the relevance of DT for manufacturing industry lies in their definition as virtual 
counterparts of physical devices. These are digital representations based on semantic data models that allow running 
simulations in different disciplines, that support not only a prognostic assessment at design stage (static perspective), 
but also a continuous update of the virtual representation of the object by a real time synchronization with sensed 
data. This allows the representation to reflect the current status of the system and to perform real-time optimizations, 
decision making and predictive maintenance according to the sensed conditions.  

The presence of already available or soon upcoming commercial software tools to support the DT creation 
demonstrates its importance for industry, to name a few: Predix (GE digital) (www.predix.com) and Simcenter 3D 
by Siemens (www.plm.automation.siemens.com/it_it/products/simcenter/3d/). 

Research on Digital Twins is still at the beginning, there is a need for future research works on relevant industrial 
applications to investigate and demonstrate the wide range of applications and benefits where the DT could express 
their potential. An interesting application where the role of DT could be fundamental is the demonstration of new 
production control methods, see e.g. the so called Synchro-push production control policy, which has been recently 
formulated by [51] and that needs real-time synchronized simulations of the production system operations to be fully 
demonstrated, such as the DT. 
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