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Abstract—A growing trend for information technology is to notAQ1 1

just react to changes, but anticipate them as much as possible.2

This paradigm made modern solutions, such as recommendation3

systems, a ubiquitous presence in today’s digital transactions.4

Anticipatory networking extends the idea to communication tech-5

nologies by studying patterns and periodicity in human behavior6

and network dynamics to optimize network performance. This7

survey collects and analyzes recent papers leveraging context8

information to forecast the evolution of network conditions and,9

in turn, to improve network performance. In particular, we iden-10

tify the main prediction and optimization tools adopted in this11

body of work and link them with objectives and constraints of the12

typical applications and scenarios. Finally, we consider open chal-13

lenges and research directions to make anticipatory networking14

part of next generation networks.15

Index Terms—Anticipatory, prediction, optimization, 5G,16

mobile networks.17

I. INTRODUCTION18

EVOLVING from one generation to the next, wire-19

less networks have been constantly increasing their20

performance in many different ways and for diverse pur-21

poses. Among them, communication efficiency has always22

been paramount to increase the network capabilities with-23

out updating the entire infrastructure. This survey investigates24

anticipatory networking, a recent research direction that sup-25

ports network optimization through system state prediction.26

The core concept of anticipatory networking is that, nowa-27

days, tools exist to make reliable prediction about network28
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status and performance. Moreover, information availability is 29

increasing every day as human behavior is becoming more 30

socially and digitally interconnected. In addition, data centers 31

are becoming more and more important in providing services 32

and tools to access and analyze huge amounts of data. 33

As a consequence, not only can researchers tailor their 34

solutions to specific places and users, but also they can 35

anticipate the sequence of locations a user is going to 36

visit or to forecast whether connectivity might be worsen- 37

ing, and to exploit the forecast information to take action 38

before the event happens. This enables the possibility to take 39

full advantage of good future conditions (such as getting 40

closer to a base station or entering a less loaded cell) and 41

to mitigate the impact of negative events (e.g., entering a 42

tunnel). 43

This survey covers a body of recent works on anticipatory 44

networking, which share two common aspects: 45

• Anticipation: they either explore prediction techniques 46

directly or consider some future knowledge as given. 47

• Networking: they aim to optimize communications in 48

mobile networks. 49

In addition, this survey delves into the following questions: 50

How can prediction support wireless networks? Which type 51

of information is possible to predict and which applica- 52

tions can take advantage of it? Which tools are the best 53

for a given scenario or application? Which scenarios, among 54

the ones envisioned for 5G networks, can benefit the most 55

from anticipatory networking? What is yet to be studied in 56

order for anticipatory networking to be implemented in 5G 57

networks? 58

The main contributions of this survey are the following: 59

• A thorough context-based analysis of the literature 60

classified according to the information exploited in the 61

predictive framework. 62

• Two handbooks on the prediction and optimization 63

techniques used in the literature, which allow the reader 64

to get familiar with them and critically assess the different 65

approaches. 66

• An analysis of the applicability of anticipatory 67

networking techniques to different types of wire- 68

less networks and at different layers of the protocol 69

stack. 70

• Summaries of all the main parts of the survey, highlight- 71

ing most popular choices and best practices. 72
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TABLE I
SURVEYAQ4 CLASSIFICATION AND STRUCTURE

• A final section analyzing open challenges and poten-73

tial issues to the adoption of anticipatory networking74

solutions in future generation mobile networks.75

A. Background and Guidelines76

Anticipatory networking is the engineering branch that77

focuses on communication solutions that leverage the knowl-78

edge of the future evolution of a system to improve its79

operation. For instance, while a standard networking solu-80

tion would answer the question “which is the best user to81

be served?”, an anticipatory equivalent would answer “which82

are the best users to be served in the next time frames given83

the predicted evolution of their channel condition and service84

requirements?”85

A typical anticipatory networking solution is usually charac-86

terized by the following three attributes, which also determine87

the structure of this survey:88

• Context defines the type of information considered to89

forecast the system evolution.90

• Prediction specifies how the system evolution is forecast91

from the current and past context.92

• Optimization describes how prediction is exploited to93

meet the application objectives.94

To continue with the access selection example, the antic-95

ipatory networking solution might exploit the history of96

Global Positioning System (GPS) information (the context)97

to train an AutoRegressive (AR) model (the prediction) to98

predict the future positions of the users and their channel99

conditions to solve an Integer Linear Programming (ILP)100

problem (the optimization) that maximizes their Quality-of-101

Experience (QoE).102

The main body of the anticipatory networking literature103

can be split into four categories based on the context used to104

characterize the system state and to determine its evolution:105

geographic, such as human mobility patterns derived from106

location-based information; link, such as channel gain, noise107

and interference levels obtained from reference signal feed-108

back; traffic, such as network load, throughput, and occupied109

physical resource blocks based on higher-layer performance110

indicators; social, such as user’s behavior, profile, and 111

information derived from user-generated contents and social 112

networks. 113

In order to determine which techniques are the most suit- 114

able to solve a given problem, it is important to analyze the 115

following: 116

• Properties of the context: 117

1) Dimension describes the number of variables predicted 118

by the model, which can be uni- or multivariate. 119

2) Granularity and precision define the smallest variation 120

of the parameter considered by the context and the accu- 121

racy of the data: the lower the granularity, the higher the 122

precision and vice versa. Temporal and spatial granulari- 123

ties are crucial to strike a balance between efficiency and 124

accuracy. 125

3) Range characterizes the distance (usually time or 126

space) between known data samples and the farthest 127

predicted sample. It is also known as prediction (or 128

optimization) horizon. 129

• Constraints of the prediction or optimization model: 130

1) Availability of physical model states whether a closed- 131

form expression exists to describe the phenomenon. 132

2) Linearity expresses the quality of the functions linking 133

inputs and outputs of a problem. 134

3) Side information determines whether the main context 135

can be supported by auxiliary information. 136

4) Reliability and validity of information specifies the 137

noisiness of the data set, depending on which the 138

prediction robustness should be calibrated. 139

The classification section will help the reader to under- 140

stand the link between the different contexts and the solutions 141

adopted to satisfy the given application requirements. Also, 142

it is meant to provide a complete panorama of anticipatory 143

networking. The two handbooks have the twofold objective 144

of providing the reader with a short overview of the tools 145

adopted in the literature and to analyze them in terms of vari- 146

ables of interest and constraints of the models. We believe that 147

not only will this survey help researchers studying anticipa- 148

tory networking, but also it will ease its adoption in future 149

generation networks by providing a comprehensive overview 150
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TABLE II
RELATED WORKS

of research directions, available solutions and application151

scenarios.152

Table I provides a mapping between the techniques153

described in Sections IV and V (columns) and the context dis-154

cussed in Section III (rows). Each main category is further split155

into subcategories according to its internal structure. Namely,156

the prediction category is subdivided into ideal (perfect157

prediction is assumed to be available), time series predictive158

modeling, similarity-based classification and regression anal-159

ysis, and probabilistic methods. The optimization category is160

split into Convex Optimization (ConvOpt), Markov Decision161

Process (MDP) and Model Predictive Control (MPC), game162

theoretic and, heuristic approaches.163

The rest of the survey consists of a quick overview of other164

surveys on related topics in Section II, a context-based classi-165

fication of the anticipatory networking literature in Section III,166

two handbooks on prediction and optimization techniques in167

Section IV and Section V, respectively. Sections VI and VII168

discuss how the anticipatory networking paradigm can be169

applied in a variety of network types and at different layers of170

the protocol stack. Sections VIII and VIII-C3 conclude the sur-171

vey reporting the impact of anticipatory networking on future172

networks, the envisioned hindrances to its implementation and173

the open challenges.174

II. RELATED WORK175

This section discusses a few recent survey on topics close176

to anticipatory networking and is summarized in Table II.177

Applying big data analytics for network optimization is178

studied in [1]. Based on the papers they reviewed, the authors179

propose a generic framework to support big data based opti-180

mization of mobile networks. Using traffic patterns derived181

from case studies, they argue that their framework can be used182

to optimize resource allocation, base station deployment, and183

interference coordination in such networks. In [2] and [3], the184

ability to extract and process contextual information by enti-185

ties in a network is identified as a key factor in improving186

network performance. In [2], the procedure of using context187

information in wireless networks is broken down into acqui-188

sition, modeling, exchanging and evaluating stages, where the189

first two deal with gathering information and predicting the190

future behavior, and the latter two perform self-optimization191

and decision making. A similar taxonomy is provided in [3]192

and various examples of different techniques are reviewed for193

each phase. In addition to that, the authors provide a thor- 194

ough survey on potential use cases of anticipatory networks 195

and their respective challenges. 196

Predicting future states of network attributes is an essential 197

task in designing anticipatory networks. Data classification, a 198

popular prediction technique, has been thoroughly surveyed 199

in [4]. Among other attributes, the prediction of data traf- 200

fic and throughput has been the subject of [5] and [6]. 201

Liu and Lee [5] consider seven algorithms for throughput 202

prediction, ranging from mean-based and linear regression 203

methods to Artificial Neural Networks (ANNs) and Support 204

Vector Machines (SVMs) and compare their performance 205

using a trace-driven simulator. Furthermore, they develop an 206

information theoretic lower bound for the prediction error. In a 207

similar attempt, [6] reviews real time Internet traffic classifica- 208

tion. Here, the authors not only review prediction algorithms, 209

but also try to shed light on practical challenges in deploying 210

different kinds of techniques under different network scenar- 211

ios. For instance, they argue that algorithms that require packet 212

inspection either in the form of port number or payload, 213

might have limited applicability due to potential encryption 214

compared to methods that rely on statistical traffic properties. 215

The capability to extract user behavior in online social 216

networks and use it to learn the evolution of traffic pat- 217

terns in mobile networks is the subject of another sur- 218

vey [7]. The general approach of the papers included in that 219

review is to use social graphs and classify different types 220

of interactions between users on social networks in order to 221

monitor the corresponding network traffic. Another important 222

attribute for network performance is modeling the Quality of 223

Experience (QoE) or how the service is perceived by the 224

user. Baraković and Skorin-Kapov [8] provide a thorough 225

survey including various methods for modeling QoE for dif- 226

ferent applications and also discuss tools for estimating and 227

predicting QoE values by probing network parameters. 228

Cognitive Radio (CR) and Radio Environment Map (REM) 229

are two very important technologies to measure, esti- 230

mate and predict spectrum availability and occupancy. For 231

instance, [9] and [10] provide two independent taxonomies 232

of methodologies, campaigns and models. In addition, they 233

review the reliability of these types of measurements [9] and 234

they illustrate how to predict the system evolution thanks to 235

available information and regression analysis [10]. 236

To the best of our knowledge, this survey is the first 237

to specifically address anticipatory techniques for mobile 238
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Fig. 1. Geographic context example: an example of estimated trajectories of
6 mobile users.

networks. We believe that, while the topic is undeniably hot,239

an overarching review of the body of work is still missing and240

greatly needed to facilitate the adoption of such a promising241

direction.242

III. A CONTEXT-BASED CLASSIFICATION OF243

ANTICIPATORY NETWORKING SOLUTIONS244

In this section, we classify the different types of context that245

can be predicted and exploited. For each one, we highlight the246

most popular prediction techniques as well as the applications247

for which an anticipatory optimization is performed.248

A. Geographic Context249

Geographic context refers to the geographic area associated250

to a specific event or information. In wireless communications,251

it refers to the location of the mobile users, often enriched252

with speed information as well as past and future trajectories.253

Understanding human mobility is an emergent research field254

that especially in the last few years has significantly benefited255

from the rapid proliferation of wireless devices that frequently256

report status and location updates. Fig. 1 illustrates an example257

of estimated trajectories of 6 mobile users.258

The potential predictability in user mobility can be as high259

as 93% [11].1 Along the same line, [12] investigates both the260

maximal predictability and how close to this value practical261

algorithms can come when applied to a large mobile phone262

dataset. Those results indicate that human mobility is very263

far from being random. Therefore, collecting, predicting and264

exploiting geographic context is of crucial importance.265

In the rest of this section we organize the papers dealing266

with geographic context according to their main focus: the267

majority of them deals with pure geographical prediction and268

differs on secondary aspects such as whether they predict a269

single future location, a sequence of places or a trajectory.270

1Value obtained for a high-income country with stable social conditions.
The percentage can decrease for different countries, e.g., low-income country
or natural disaster situation.

The second largest group of papers deals with multimedia 271

streaming optimization. 272

1) Next Location Prediction: The simplest approach is to 273

forecast where a given user will be at a predetermined instant 274

of time in the future. Jiang et al. [13] propose to track mobile 275

nodes using topological coordinates and topology preserving 276

maps. Nodes’ location is identified with a vector of distances 277

(in hops) from a set of nodes called anchors and a linear 278

predictor is used to estimate the mobile nodes’ future posi- 279

tions. Evaluation is performed on synthetic data and nodes 280

are assumed to move at constant speed. Results show that the 281

proposed method approaches an accuracy above 90% for a 282

prediction horizon of some tens of seconds. 283

A more general approach that exploits ANNs is discussed 284

in [14]. Extreme Learning Machines (ELMs), which do not 285

require any parameter tuning, are used to speed up the learning 286

process. The method is evaluated using synthetic data over 287

different mobility models. 288

To extend the prediction horizon [15] exploits users’ loca- 289

tions and short-term trajectories to predict the next handover. 290

The authors use Channel State Information (CSI) and han- 291

dover history to solve a classification problem via supervised 292

learning, i.e., employing a multi-class SVM. In particular, 293

each classifier corresponds to a possible previous cell and pre- 294

dicts the next cell. A real-time prediction scheme is proposed 295

and the feedback is used to improve the accuracy over time. 296

Simulation results have been derived using both synthetic and 297

real datasets. The longer moves along a given path, the higher 298

the accuracy of forecasting the rest. 299

Location information can be extracted from cellular network 300

records. In this way the granularity of the prediction is coarser, 301

but positioning can be obtained with little extra energy. In 302

particular, [16] aims at predicting a given user location from 303

those of similar users. Collective behavioral patterns and a 304

Markovian predictor are used to compute the next six locations 305

of a user with a one-hour granularity, i.e., a six-hour prediction 306

horizon. Evaluation is done using a real dataset and shows that 307

an accuracy of about 70% can be achieved in the first hour, 308

decreasing to 40 − 50% for the sixth hour of prediction. 309

2) Space and Time Prediction: Prediction of mobility in 310

a combined space-time domain is often modeled using sta- 311

tistical methods. In [17], the idea is to predict not only the 312

future location a user will reach, but also when and for how 313

long the user will stay there. To incorporate the sojourn time 314

during which a user remains in a certain location, mobility is 315

modeled as a semi-Markov process. In particular, the transition 316

probability matrix and the sojourn time distribution are derived 317

from the previous association history. Evaluation is done on a 318

real dataset and shows approximately 80% accuracy. A similar 319

approach is presented in [18], where the prediction is extended 320

from single to multi-transitions (estimating the likelihood of 321

the future event after an arbitrary number of transitions). Both 322

papers provide also some preliminary results on the benefits 323

of the prediction on resource allocation and balancing. 324

Barth et al. [19] represent the network coverage and move- 325

ments using graph theory. The user mobility is modeled 326

using a Continuous Time Markov (CTM) process where the 327

prediction of the next node to be visited depends not only on 328
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the current node but also on the previous one (i.e., second-329

order Markovian predictor). Considering both local as well330

as global users’ profiles, [20] extends the previous Markovian331

predictor and improves accuracy by about 30%. As pointed out332

in [21], sojourn times and transition probabilities are inhomo-333

geneous. Thus, an inhomogeneous CTM process is exploited334

to predict user mobility. Evaluation on a real dataset shows an335

accuracy of 67% for long time scale prediction.336

The interdependence between time and space is investigated337

also in [22] by examining real data collected from smartphones338

during a two-month deployment. Furthermore, [23] shows the339

benefit of using a location-dependent Markov predictor with340

respect to a location-independent model based on nonlinear341

time series analysis. Additionally, it is shown that informa-342

tion on arrival times and periodicity of location visits is343

needed to provide accurate prediction. A system design, named344

SmartDC, is presented in [24]–[26]. SmartDC comprises a345

mobility learner, a mobility predictor and an adaptive duty346

cycling. The proposed location monitoring scheme optimizes347

the sensing interval for a given energy budget. The system has348

been implemented and tested in a real environment. Notably,349

this is also one of the few papers that takes into account the350

cost of prediction, which in this case is evaluated in terms351

of energy. Namely, the authors detect approximately 90% of352

location changes, while reducing energy consumption at the353

expense of higher detection delay.354

3) Location Sequences and Trajectories: A natural exten-355

sion of the spatio-temporal perspective is the prediction of356

the location patterns and trajectories of the users. User mobil-357

ity profiles have been introduced in [27] to optimize call358

admission control, resource management and location updates.359

Statistical predictors are used to forecast the next cell to360

which a mobile phone is going to connect. The validation361

of the solution is done via simulation. In [28], an approach362

for location prediction based on nonlinear time series anal-363

ysis is presented. The framework focuses on the temporal364

predictability of users’ location, considering their arrival and365

dwell time in relevant places. The evaluation is done consid-366

ering four different real datasets. The authors evaluate first367

the predictability of the considered data and then show that368

the proposed nonlinear predictor outperforms both linear and369

Markov-based predictors. Precision approaches 70 − 90% for370

medium scale prediction (5 minutes) and decreases to 20−40%371

for long scale (up to 8 hours).372

In order to improve the accuracy of time series techniques,373

De Domenico et al. [29] exploit the movement of friends, peo-374

ple, and, in general, entities, with correlated mobility patterns.375

By means of multivariate nonlinear time series prediction tech-376

niques, they show that forecasting accuracy approaches 95%377

for medium time scale prediction (5 to 10 minutes) and is378

approximately 50% for 3 hour prediction. Confidence bands379

show a significant improvement when prediction exploits pat-380

terns with high correlation. Evaluation is done considering two381

different real datasets.382

Trajectory analysis and prediction also benefit from exploit-383

ing specific constraints such as streets, roads, traffic lights and384

public transportation routes. Fazio et al. [30] adapt the local385

Markovian prediction model for a specific coverage area in386

terms of a set of roads, moving directions, and traffic densi- 387

ties. When applying Markov prediction schemes, the authors 388

consider a road compression approach to avoid dealing with a 389

large number of locations, reduce the size of the state space, 390

and minimize the approximation error. A more attractive can- 391

didate for trajectory prediction is the public transportation 392

system, because of known routes and stops, and the large 393

amount of generated mobile data traffic. Abou-Zeid et al. [31] 394

investigate the predictability of mobility and signal variations 395

along public transportation routes, to examine the viability of 396

predictive content delivery. The analysis on a real dataset of 397

a bus route, covering both urban and sub-urban areas, shows 398

that modeling prediction uncertainty is paramount due to the 399

high variability observed, which depends on combined effects 400

of geographical area, time, forecasting window and contextual 401

factors such as signal lights and bus stops. 402

Moving from discrete to continuous trajectories, Kalman 403

filtering is used to predict the future velocity and moving 404

trends of vehicles and to improve the performance of broad- 405

casting [32]. The main idea is that each node should send 406

the message to be broadcast to the fastest candidate based on 407

its neighbors’ future mobility. Simulation results show modest 408

gains, in terms of percentage of packet delivery and end-to-end 409

delay, with respect to non-predictive methods. 410

An alternative to Kalman filters is the use of regression tech- 411

niques [33], which analyze GPS observations of past trips. 412

A systematic methodology, based on geometrical structures 413

and data-mining techniques, is proposed to extract meaning- 414

ful information for location patterns. This work characterizes 415

the location patterns, i.e., the set of locations visited, for sev- 416

eral millions of users using nationwide call data records. The 417

analysis highlights statistical properties of the typical covered 418

area and route, such as its size, average length and spatial 419

correlation. 420

Along the same line, [34] shows how the regularity of 421

driver’s behavior can be exploited to predict the current end- 422

to-end route. The prediction is done by exploiting clustering 423

techniques and is evaluated on a real dataset. A similar 424

approach, named WhereNext, is proposed in [35]. This method 425

predicts the next location of a moving object using past 426

movement patterns that are based on both spatial and tem- 427

poral information. The prediction is done by building a 428

decision tree, whose nodes are the regions frequently visited. 429

It is then used to predict the future location of a moving 430

object. Results are shown using a real dataset provided by 431

the GeoPKDD project [36]. The authors show the trade-off 432

between the fraction of predicted trajectories and the accuracy. 433

Both [34] and [35] show similar performance with an accu- 434

racy of approximately 40% and medium time scale prediction 435

(order of minutes). 436

4) Dealing With Errors: The impact of estimation and 437

prediction errors is modeled in [37]. The authors propose a 438

comprehensive overview of several mobility predictors and 439

associated errors and investigate the main error sources and 440

their impact on prediction. Based on this, they propose a 441

stochastic model to predict user throughput that accounts for 442

uncertainty. The method is evaluated using synthetic data while 443

assuming that prediction’s errors have a truncated Gaussian 444



IEE
E P

ro
of

6 IEEE COMMUNICATIONS SURVEYS & TUTORIALS

distribution. The joint analysis on the predictability of location445

and signal strength, which in this case is simply quantified by446

the standard deviation of the random variable, shown in [31]447

indicates that location-awareness is a key factor to enable448

accurate signal strength predictions. Location errors are also449

considered in [38] where both temporal and spatial correlation450

are exploited to predict the average channel gain. The proposed451

method combines an AR model with functional linear regres-452

sion and relies on location information. Results are derived453

using real data taken from the MOMENTUM project [39]454

and show that the proposed method outperforms SVM and455

AR processes.456

5) Mobility-Assisted Handover Optimization: Seamless457

mobility requires efficient resource reservation and context458

transfer procedures during handover, which should not be459

sensitive to randomness in user movement patterns. To guar-460

antee the service continuity for mobile users, the conventional461

in-advance resource reservation schemes make a bandwidth462

reservation over all the cells that a mobile host will visit dur-463

ing its active connection. With mobility pattern prediction, it is464

possible to prepare resources in the most probable cells for the465

moving users. Using a Markov chain-based pattern prediction466

scheme, Fazio et al. [30] propose a statistical bandwidth man-467

agement algorithm to handle proactive resource reservations468

to reduce bandwidth waste. Along similar lines, [19], [40]469

investigate mobility prediction schemes, considering not only470

location information but also user profiles, time-of-day, and471

duration characteristics, to improve the handover performance472

in terms of resource utilization, handover accuracy, call drop-473

ping and call blocking probabilities.474

6) Geographically-Assisted Video Optimization: One of the475

main applications that has been used to show the benefits476

of geographic context is video streaming. A pioneer work477

showing the benefit of a long-term location-based schedul-478

ing for streaming is [41]. The authors propose a system for479

bandwidth prediction based on geographic location and past480

network conditions. Specifically, the streaming device can use481

a GPS-based bandwidth-lookup service in order to predict482

the expected bandwidth availability and to optimally sched-483

ule the video playout. The authors present simulation as well484

as experimental results, where the prediction is performed for485

the upcoming 100 meters. The predictive algorithm reduces the486

number of buffer underruns and provides stable video quality.487

Application-layer video optimization based on prediction488

of user’s mobility and expected capacity, is proposed also489

in [42]–[44]. Lu and De Veciana [42] minimize a utility func-490

tion based on system utilization and rebuffering time. For the491

single user case they propose an online scheme based on par-492

tial knowledge, whereas the multiuser case is studied assuming493

complete future knowledge. In [43], different types of traffic494

are considered: full buffer, file download and buffered video.495

Prediction is assumed to be available and accurate over a496

limited time window. Three different utility functions are com-497

pared: maximization of the network throughput, maximization498

of the minimum user throughput, and minimization of the499

degradations of buffered video streams. Both works show500

results using synthetic data and assuming perfect prediction501

of the future wireless capacity variations over a time window502

Fig. 2. Link context example: a pathloss map of Berlin downtown obtained
from the data of the MOMENTUM project [39], where the triangles represent
base stations. Pathloss maps are frequently used to predict the evolution of
the connection quality in mobile networks.

with size ranging from tens to hundreds of seconds. In con- 503

trast, [44] introduces a data rate prediction mechanism that 504

exploits mobility information and is used by an enhanced 505

Proportionally Fair (PF) scheduler. The performance gain is 506

evaluated using a real dataset and shows a throughput increase 507

of 15%-55%. 508

Delay tolerant traffic can also benefit from offloading and 509

prefetching as shown in [45]. The authors propose methods to 510

minimize the data transfer over a mobile network by increasing 511

the traffic offloaded to WiFi hotspots. Three different algo- 512

rithms are proposed for both delay tolerant and delay sensitive 513

traffic. They are evaluated using empirical measurements and 514

assuming errors in the prediction. Results show that offloaded 515

traffic is maximized when using prediction, even when this is 516

affected by errors. 517

A geo-predictive streaming system called GTube, is 518

presented in [46]. The application obtains the user’s GPS loca- 519

tions and informs a server which provides the expected con- 520

nection quality for future locations. The streaming parameters 521

are adjusted accordingly. In particular, two quality adapta- 522

tion algorithms are presented, where the video quality level 523

is adapted for the upcoming 1 and n steps, respectively, based 524

on the estimated bandwidth. The system is tested using a real 525

dataset and shows that accuracy reaches almost 90% for very 526

short time scale prediction (few seconds), but it decreases very 527

fast approaching zero for medium time scale prediction (few 528

minutes). However, the proposed n-step algorithm improves 529

the stability of the video quality and increases bandwidth 530

utilization. 531

B. Link Context 532

Link context refers to the prediction of the evolution of 533

the physical wireless channel, i.e., the channel quality and its 534

specific parameters, so that it is possible either to take advan- 535

tage of future link improvements or to counter bad conditions 536

before they impact the system. As an example of link context, 537

Fig. 2 shows a pathloss map of the center of Berlin realized 538

with the data of the MOMENTUM [39] project. 539

1) Channel Parameter Prediction: One possible approach 540

to anticipate the evolution of the physical channel state is to 541

predict the specific parameters that characterize it. In gen- 542

eral, the variations of the physical channel can be caused 543
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by large-scale and small-scale fading. While predicting small-544

scale fading is quite challenging, if not impossible, several545

papers focuses on predicting path loss and shadowing effects.546

In [47], the time-varying nonlinear wireless channel model547

is adopted to predict the channel quality variation anticipating548

distance and pathloss exponent. The performance evaluation is549

done using both an indoor and an outdoor testbed. The good-550

put obtained with the proposed bitrate control scheme can be551

almost doubled compared to other approaches.552

Pathloss prediction in urban environments is investigated553

in [48]. The authors propose a two-step approach that com-554

bines machine learning and dimensional reduction techniques.555

Specifically, they propose a new model for generating the input556

vector, the dimension of which is reduced by applying linear557

and nonlinear principal component analysis. The reduced vec-558

tor is then given to a trained learning machine. The authors559

compare ANNs and SVMs using real measurements and con-560

clude that slightly better results can be achieved using the561

ANN regressors.562

Supporting the temporal prediction with spatial information563

is proposed in, e.g., [49] to study the evolution of shadow fad-564

ing. The authors suggest to implement a Kriged Kalman Filter565

(KKF) to track the time varying shadowing using a network566

of CRs. The prediction is used to anticipate the position of the567

primary users and the expected interference and, consequently,568

to maximize the transmission rate of CR networks. Errors569

with the proposed model approach 2 dB (compared to 10 dB570

obtained with the pathloss based model). Targeting the same571

objective, but using a different methodology, [50] formulates572

the CR throughput optimization problem as an MDP. In partic-573

ular, the predicted channel availability is used to maximize the574

throughput and to reduce the time overhead of channel sens-575

ing. Predictors robust to channel variations are investigated576

also in [51]. A clustering method with supervised SVM clas-577

sification is proposed. The performance is shown for bulk data578

transport via Transport Control Protocol (TCP) and it is also579

shown that the predictive approach outperforms non-predictive580

ones.581

Finally, maps can be used to summarize predicted infor-582

mation; for instance, algorithms to build pathloss maps are583

proposed in [52]. In this paper, the authors propose two kernel-584

based adaptive algorithms, namely the adaptive projected585

subgradient method and the multikernel approach with adap-586

tive model selection. Numerical evaluation is done for both587

a urban scenario and a campus network scenario, using real588

measurements. The performance of the algorithms is evaluated589

assuming perfect knowledge of the users’ trajectories.590

2) Combined Channel and Mobility Context: Channel qual-591

ity and mobility information are jointly predicted in [53].592

The authors combine information on visited locations and593

corresponding achieved link quality to provide connectivity594

forecast. A Markov model is implemented in order to fore-595

cast future channel conditions. Location prediction accuracy596

is approximately 70% for a prediction window of 20 seconds.597

However, the location information has quite a coarse granu-598

larity (of about 100 m). In terms of bandwidth, the proposed599

model, evaluated on a real dataset, shows an accuracy within600

10 KB/s for over 50% of the evaluation period, and within601

50 KB/s for over 80% of the time. In [54], prediction is 602

employed to adjust the routing metrics in ad hoc wireless 603

networks. In particular, the metrics considered in the paper are 604

the average number of retransmissions needed and the time 605

expected to transmit a data packet. The solution anticipates 606

the future signal strength using linear regression on the his- 607

tory of the link quality measurements. Simulations show that 608

the packet delivery ratio is close to 100%, even though it drops 609

to 20% using classical methods. 610

When the information used to drive the prediction is 611

affected by errors, it is important to account for the mag- 612

nitude of the error. This has been considered, for instance, 613

in [55] and [56], where the impact of location uncertainties is 614

taken into account. Namely, Muppirisetty et al. [55] show that 615

classical Gaussian Process (GP) wrongly predicts the chan- 616

nel gain in presence of errors, while uncertain GP, which 617

explicitly accounts for location uncertainty, outperforms the 618

former in both learning and predicting the received power. 619

Gains are shown also for a simple proactive resource allo- 620

cation scenario. Similarly, Muppirisetty et al. [57] a proactive 621

scheduling mechanism that exploits the statistical properties of 622

user demand and channel conditions. Furthermore, the model 623

captures the impact of prediction uncertainties and assesses 624

the optimal gain obtained by the proactive resource scheduler. 625

The authors also propose an asymptotically optimal policy that 626

attains the optimal gain rapidly as the prediction window size 627

increases. Uncertainties are also dealt with in [58], where a 628

resource allocation algorithm for mobile networks that lever- 629

ages link quality prediction is proposed. Time series filtering 630

techniques (AutoRegressive and Moving Average (ARMA)) 631

are used to predict near term link quality, whereas medium to 632

long term prediction is based on statistical models. The authors 633

propose a resource allocation optimization framework under 634

imperfect prediction of future available capacity. Simulations 635

are done using a real dataset and show that the proposed solu- 636

tion outperforms the limited horizon optimizer (i.e., when the 637

prediction is done only for the upcoming few seconds) by 638

10−15%. Resource allocation is also addressed in [44], which 639

extends the standard PF scheduler of 4G networks to account 640

for data rate prediction obtained through adaptive radio maps. 641

3) Channel-Assisted Video Optimization: Wang et al. [59] 642

propose an adaptive mobile video streaming framework, which 643

stores video in the cloud and offers to each user a continuous 644

video streaming adapted to the fluctuations of the link quality. 645

The paper proposes a mechanism to predict the potential avail- 646

able bandwidth in the next time window (of a duration of a few 647

seconds) based on the measurements of the link quality done 648

in the previous time window. A prototype implementation of 649

the proposed framework is used to evaluate the performance. 650

This shows that the prediction has a relative error of about 651

10% for very short time windows (a couple of seconds) but 652

becomes relatively poor for larger time windows. The video 653

performance is evaluated in terms of “click-to-play” delay, 654

which is halved with the proposed approach. A Markov model 655

is used in [60], where information on both channel and buffer 656

states is combined to optimize mobile video streaming. Both 657

an optimal policy as well as a fast heuristic are proposed. 658

A drive test was conducted to evaluate the performance of 659
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the proposed solution. In particular, the authors show the660

proportional dependency between utility and buffer size, as661

well as the complexity of the two algorithms. Furthermore, a662

Markov model is adopted to represent different user’s achiev-663

able rates [61] and channel states [62]. The transition matrix664

is derived empirically to minimize the number of video stalls665

and their duration over a 10-second horizon.666

Video calls are considered in [63]. Namely, a cross-layer667

design for proactive congestion control, named Rebera, is668

proposed. The system measures the real-time available band-669

width and uses a linear adaptive filter to estimate the future670

capacity. Furthermore, it ensures that the video sending rate671

never exceeds the predicted values, thereby preventing self-672

congestion and reducing delays. Performance results with673

respect to today’s solutions are given for both a testbed674

and a real cellular network. Liu and Wei [64] propose a675

hop-by-hop video quality adaptation scheme at the router676

level to improve the performance of adaptive video stream-677

ing in Content Centric Networks (CCNs). In this context, the678

routers monitor network conditions by estimating the end-679

to-end bandwidth and proactively decrease the video quality680

when network congestion occurs. Performance is evaluated681

considering a realistic large-scale network topology and it is682

shown that the proposed solution outperforms state of the683

art schemes in terms of both playback quality and average684

delay.685

4) Video Optimization Under Uncertainty: For the video686

optimization use case, some works also assess the impact of687

uncertain predictions. Dräxler et al. [65] propose a stochas-688

tic model of prediction errors, based on [37], and introduce689

an online scheduler that is aware of prediction errors. Namely,690

based on the expected prediction accuracy, the algorithm deter-691

mines whether to consider or discard the predicted data rate.692

A similar model for prediction errors is introduced in [66]. In693

this case, a Linear Programming (LP) formulation is proposed694

to trade off spectral efficiency and stalling time. The proposed695

solution shows good gains with respect to the case without696

prediction, even when errors occur. LP is used also in [67]697

to minimize the base station airtime with the constraint of no698

video interruption. In this case, uncertainties are modeled by699

using a fuzzy approach. Furthermore, in order to keep track700

of the previous values of the error, a Kalman filter is used.701

Simulations are run using synthetic data and show the effect of702

channel variability on video degradation and average airtime.703

In [68], bandwidth prediction is exploited to increase the qual-704

ity of video streaming. Both perfect and uncertain prediction705

are considered and a robust heuristic is proposed to mitigate706

the effect of prediction errors when adapting the video bitrate.707

In [69] and [70], a predictive resource allocation robust to708

rate uncertainties is proposed. The authors propose a frame-709

work that provides quality guarantees with the objective of710

minimizing energy consumption. Both optimal gradient-based711

and real-time guided heuristic solutions are presented. In [69]712

both Gaussian and Bernstein approximation are used to model713

rate uncertainties, whereas [70] considers only the former one.714

Similarly, [71] provides predictive Quality-of-Service (QoS)715

over wireless Asynchronous Transfer Mode (ATM) networks:716

given the TDMA nature of these networks, these schemes717

optimize the number of allocated time slots depending on the 718

characteristics of the traffic stream and the wireless link. 719

5) Efficiency Bounds and Approximations for Multimedia 720

Streaming Applications: A few papers [72]–[79] investigate 721

resource allocation optimization assuming that the future 722

channel state is perfectly known. While addressing differ- 723

ent objectives, these papers share similar methods: they first 724

devise a problem formulation from which an optimal solution 725

can be obtained (using standard optimization techniques), then 726

they propose sub-optimal approaches and on-line algorithms to 727

obtain an approximation of the optimal solution. Furthermore, 728

all these papers leverage a buffer to counteract the random- 729

ness of the channel. For instance, in case a given amount of 730

information has to be gathered within a deadline, the buffer 731

allows the system to optimize (for a given objective function) 732

the resource allocation while meeting the deadline. 733

In this regard, energy-efficiency is the primary objective 734

in [72] and [73], which is optimized by allowing the network 735

base stations to be switched off once the users’ streaming 736

requirements have been satisfied. Simulations show that an 737

energy saving up to 80% with respect to the baseline approach 738

can be achieved and that the performance of the heuristic 739

solution is quite close to the optimal (but impractical) Mixed- 740

Integer Linear Programming (MILP) approach. Buffer size is 741

investigated in [78], where the author introduces a linear for- 742

mulation that minimizes the amount for resources assigned to 743

non-real time video streaming with constraints on the user’s 744

playout buffer. Results are shown for a scenario with both 745

video and best effort users and highlight the gain in terms of 746

required resources to serve the video users as well as data rate 747

for the best effort users. 748

The trade-off between streaming interruption time and 749

average quality is investigated in [76] and [77] by devis- 750

ing a mixed-integer quadratically constrained problem which 751

computes the optimal download time and quality for video 752

segments. Then, the authors propose a set of heuristics tai- 753

lored to greedily optimize segment scheduling according to 754

a specific objective function, e.g., maximum quality, mini- 755

mum streaming interruption, or fairness. Similar objectives 756

are tackled in [74] and [75] in a lexicographic approach, so 757

that streaming continuity is always prioritized over quality. 758

They first propose a heuristic for the lateness-quality problem 759

that performs almost as good as the MILP formulation. Then, 760

they extend the MILP formulation to include QoS guarantees 761

and they introduce an iterative approximation based on a sim- 762

pler LP formulation. A further heuristic approach is devised 763

in [79] and accounts for the buffer and channel state prediction. 764

The proposed approach maximizes the streaming quality while 765

guaranteeing that there are no interruptions. 766

6) Cognitive Radio Maps: CRs are context-aware wireless 767

devices that adapt their functionalities to changes in the envi- 768

ronment. They have been recently used [80]–[82] to obtained 769

the so-called REM: a multi-dimensional database containing a 770

wide set of information ranging from regulations to spectrum 771

usage. 772

For instance, REM are used to predict spectrum availability 773

in CR [80]: the paper exploits cognitive maps to provide con- 774

textual information for predictive machine learning approaches 775
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such as Hidden Markov Models (HMM), ANN and regression776

techniques. The construction of these maps is discussed in [81]777

and the references therein, while their use as enabler for CR778

networks is analyzed in [82].779

In the context of anticipatory networking, REMs are often780

used as a source of contextual information for the actual781

prediction technique adopted, rather than as prediction tools782

themselves. References [9] and [10] present two surveys of783

methodologies and measurement campaigns of spectrum occu-784

pancy. In particular, [9] proposes a conservative approach785

to account for measurement uncertainty, while [10] exploits786

predictors to provide the future channel status. In addition,787

prediction through machine learning approaches is addressed788

in [83], where different techniques are compared to assess789

future channel availability.790

Imperfect measurements are dealt with in [84], which mod-791

els the problem as a repeated game and maximizes the792

total network payoff. However, in cognitive networks, the793

channel status depends on the activity of primary users.794

Reference [85] surveys the models proposed so far to describe795

primary users activity and that can be used to drive prediction796

in this area. Once the activity of primary users is available797

or predicted, it is possible to control the activity of sec-798

ondary users in order to guarantee the agreed QoS to the799

former [86], [87]. These papers compute the feasible cognitive800

interference region in order to allow secondary users’ com-801

munication respecting primary users’ rights. The utilization of802

spectrum opportunity describes the probability of a secondary803

user to exploit a free communication slot [88].804

A similar form of opportunistic spectrum usage goes under805

the name of white space [89]: i.e., channels that are unused806

at specific location and time. CRs can take advantage of these807

frequencies thanks to dynamic spectrum access. Finally, [90]808

describes how to exploit CR to realize a complete smart grid809

scenario; [91] describes how to exploit channel bonding to810

increase the bandwidth and decrease the delay of CR.811

C. Traffic Context812

This section overviews some of the approaches that focus813

on traffic and throughput prediction. Although related to the814

previous context, the papers discussed in this section lever-815

age information collected from higher layers of the protocol816

stack. For instance, solutions falling in this category try to817

predict, among other parameters, the number of active users818

in the network and the amount of traffic they are going to pro-819

duce. Similarly, but from the perspective of a single user, the820

prediction can target the data rate that a streaming application821

is going to achieve in the near term.822

We grouped these papers in three main classes: pure823

analysis of mobile traffic; traffic prediction for networking824

optimization; and direct throughput prediction.825

1) Traffic Analysis and Characterization: The analysis of826

mobile traffic is fundamental for long-term network optimiza-827

tion and re-configuration. To this end, several pieces of work828

have addressed such research topics in the recent past.829

The work in [92] targets the creation of regressors for830

different performance indicators at different spatio-temporal831

granularity for mobile cellular networks. Namely, the authors 832

focus on the characterization of per-device throughput, base 833

station throughput and device mobility. A one-week nation- 834

wide cellular network dataset is collected through proprietary 835

traffic inspection tools placed in the operator network and are 836

used to characterize the per-user traffic, cell-aggregate traffic 837

and to perform further spatio-temporal correlation analysis. 838

A similar scope is addressed by [93] which, on the other 839

hand, focuses more on core network measurements. Flow level 840

mobile device traffic data are collected from a cellular opera- 841

tor’s core network and are used to characterize the IP traffic 842

patterns of mobile cellular devices. 843

More recently, Sayeed et al. [94] studied traffic prediction in 844

cloud analytics and prove that optimizing the choice of metrics 845

and parameters can lead to accurate prediction even under high 846

latency. This prediction is exploited at the application/TCP 847

layer to improve the performance of the application avoiding 848

buffer overflows and/or congestion. 849

2) Traffic Prediction: Several applications can benefit from 850

the prediction of traffic performance features. For instance, 851

a predictive framework that anticipates the arrival of upcom- 852

ing requests is used in [95] to prefetch the needed content at 853

the mobile terminal. The authors propose a theoretical frame- 854

work to assess how the outage probability scales with the 855

prediction horizon. The theoretical framework accounts for 856

prediction errors and multicast delivery. Along the same line, 857

queue modeling [96] and analysis [97] is used to predict the 858

upcoming workloads in a lookahead time window. Leveraging 859

the workload prediction, a multi-slot joint power control and 860

scheduling problem is formulated to find the optimal assign- 861

ment that minimizes the total cost [96] or maximizes the 862

QoS [97]. 863

Multimedia optimization is the focus in [98]. By predicting 864

throughput, packet loss and transmission delay half a sec- 865

ond in advance, the authors propose to dynamically adjust 866

application-level parameters of the reference video stream- 867

ing or video conferencing services including the compression 868

ratio of the video codec, the forward error correction code 869

rate and the size of the de-jittering buffer. Traffic prediction 870

is also addressed in [99], where the authors propose to use 871

a database of events (concerts, gatherings, etc.) to improve 872

the quality of the traffic prediction in case of unexpected traf- 873

fic patterns and in [100], where a general predictive control 874

framework along with Kalman filter is proposed to counteract 875

the impact of network delay and packet loss. The objective 876

of [101] is to build a model for user engagement as a function 877

of performance metrics in the context of video streaming ser- 878

vices. The authors use a supervised learning approach based 879

on average bitrate, join time, buffering ratio and buffering to 880

estimate the user engagement. Finally, inter-download time 881

can be modeled [102] and subsequently predicted for quality 882

optimization. 883

The work in [103] targets energy-efficient resource schedul- 884

ing in mobile radio networks. The authors introduce a Mixed 885

Non-Linear Program (MNLP) which returns on a slot basis the 886

optimal allocation of resources to users and the optimal users- 887

cell association pattern. The proposed model leverages optimal 888

traffic predictors to obtain the expected traffic conditions in 889
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the following slots. Radio resource allocation in mobile radio890

networks is addressed also in [104] and later by the same891

authors in [105]; the target is to design a predictive framework892

to optimally orchestrate the resource allocation and network893

selection in case one operator owns multiple access networks.894

The predictive framework aims at minimizing the expected895

time average power consumption while keeping the network896

(user queues) stable. The core contribution of [106] and [107]897

is the use of deep learning techniques to predict the upcom-898

ing video traffic sessions; the prediction outcome is then used899

to proactively allocate the resources of video servers to these900

future traffic demands.901

3) Throughput Prediction: Rather than predicting the902

expected traffic or optimizing the network based on903

traffic prediction, the work in this section targets the904

prediction/optimization based on the expected throughput. A905

common characteristic of the work described here is that the906

spatio-temporal correlation is exploited in the prediction phase907

of the expected throughput.908

Quite a few early works studied how to effectively909

predict the obtainable data rate. In particular, long term910

prediction [108] with 12-hour granularity allows to estimate911

aggregate demands up to 6 months in advance. Shorter and912

variable time scales are studied in [109] and [110] adopting913

AutoRegressive Integrated and Moving Average (ARIMA) and914

Generalized AutoRegressive Conditionally Heteroskedastic915

(GARCH) techniques.916

Abou-Zeid and Hassanein [111] propose a dynamic frame-917

work to allocate downlink radio resources across multiple918

cells of 4G systems. The proposed framework leverages con-919

text information of three types: radio maps, user’s location920

and mobility, as well as application-related information. The921

authors assume that a forecast of this information is avail-922

able and can be used to optimize the resource allocation923

in the network. The performance of the proposed solution924

is evaluated through simulation for the specific use case of925

video streaming. Geo-localized radio maps are also exploited926

in [112]. Here the optimization is performed at the appli-927

cation layer by letting adaptive video streaming clients and928

servers dynamically change the streaming rate on the basis of929

the current bandwidth prediction from the bandwidth maps.930

The empirical collection of geo-localized data rate measures931

is also addressed in [113] which introduces a dataset of adap-932

tive Hypertext Transfer Protocol (HTTP) sessions performed933

by mobile users.934

The work in [114] considers the problem of predicting935

end-to-end quality of multi-hop paths in community WiFi936

networks. The end-to-end quality is measured by a linear com-937

bination of the expected transmission count across all the links938

composing the multi-hop path. The authors resort to a real data939

set of a WiFi community network and test several predictors940

for the end-to-end quality.941

The anticipation of the upcoming throughput values is often942

applied to the optimization of adaptive video streaming ser-943

vices. In this context, Yin et al. [115] leverage throughput944

prediction to optimally adapt the bit rate of video encoders;945

here, prediction is based on the harmonic mean of the last k946

throughput samples.947

Sun et al. [116] and Jiang et al. [117] build on the conjecture 948

that video sessions sharing the same critical features have simi- 949

lar QoE (e.g., re-buffering, startup latency, etc.). Consequently, 950

first clustering techniques are applied to group similar video 951

sessions, and then throughput predictors based on HMMs are 952

applied to each cluster to dynamically adapt the bit rate of the 953

video encoder to the predicted throughput samples. 954

The work in [118] resorts to a model-based throughput 955

predictor in which the throughput of a Dynamic Adaptive 956

Streaming over HTTP (DASH)-based video streaming service 957

is assumed to be a random variable with Beta-like distribution 958

whose parameters are empirically estimated within an obser- 959

vation time window. Building on this estimate, the authors 960

propose a MNLP with a concave objective function and linear 961

constraints. The program is implemented as a multiple choice 962

knapsack problem and solved using commercial solvers. Along 963

the same lines, the optimization of a DASH-based video 964

streaming service is addressed in [119], where the authors 965

propose an adaptive video streaming framework based on a 966

smoothed rate estimate for the video sessions. 967

The work in [120] considers the scenario where a small 968

cell is used to deliver video content to a highly dense set of 969

users. The video delivery can also be supported in a distributed 970

way by end-user devices storing content locally. A control- 971

theoretic framework is proposed to dynamically set the video 972

quality of the downloaded content while enforcing stability of 973

the system. 974

D. Social Context 975

The work on anticipatory networking leveraging social con- 976

text exploits ex ante or ex post information on social-type 977

relationships between agents in the networking environment. 978

Such information may include: the network of social ties and 979

connections, the user’s preference on contents, measures on 980

user’s centrality in a social network, and measures on users’ 981

mobility habits. The aforementioned context information is 982

leveraged in three main application scenarios: caching at the 983

edge of mobile networks, mobility prediction, and downlink 984

resource allocation in mobile networks. 985

1) Social-Assisted Caching: Motivated by the need of 986

limiting the load in the backhaul of 5G networks, refer- 987

ences [121]–[123] propose two schemes to proactively move 988

contents closer to the end users. In [121], caching happens 989

at the small cells, whereas in [122] and [123] contents can 990

be proactively downloaded by a subset of end users which 991

then re-distribute them via device-to-device (D2D) commu- 992

nication. The authors first define two optimization problems 993

which target the load reduction in the backhaul (caching at 994

small cells) and in the small cell (caching at end users), respec- 995

tively, then heuristic algorithms based on machine learning 996

tools are proposed to obtain sub-optimal solutions in reason- 997

able processing time. The heuristic first collects users’ content 998

rating/preferences to predict the popularity matrix Pm. Then, 999

content is placed at each small cell in a greedy way start- 1000

ing from the most popular ones until a storage budget is hit. 1001

The first algorithmic step of caching at the end users is to 1002
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identify the K most connected users and to cluster the remain-1003

ing ones in communities. Then it is possible to characterize1004

the content preference distributions within each community1005

and greedily place contents at the cluster heads. In [123],1006

the prediction leverages additional information on the under-1007

lying structure of content popularity within the communities1008

of users. Joint mobility and popularity prediction for content1009

caching at small cell base stations is studied in [124]. Here,1010

the authors propose a heuristic caching scheme that determines1011

whether a particular content item should be cached at a par-1012

ticular base station by jointly predicting the mobility pattern1013

of users that request that item as well as its popularity, where1014

popularity prediction is performed using the inter-arrival times1015

of consecutive requests for that object. They conclude that the1016

joint scheme outperforms caching with only mobility and only1017

popularity models.1018

A similar problem is addressed in [125]: the authors con-1019

sider a distributed network of femto base stations, which can1020

be leveraged to cache videos. The authors study where to cache1021

videos such that the average sum delay across all the end users1022

is minimized for a given video content popularity distribution,1023

a given storage capacity and an arbitrary model for the wire-1024

less link. A greedy heuristic is then proposed to reduce the1025

computational complexity.1026

In [126] and [127], it is argued that proactive caching of1027

delay intolerant content based on user preferences is subject1028

to prediction uncertainties that affect the performance of any1029

caching scheme. In [126], these uncertainties are modeled as1030

probability distributions of content requests over a given time1031

period. The authors provide lower bounds on the content deliv-1032

ery cost given that the probability distribution for the requests1033

is available. They also derive caching policies that achieve1034

this lower bound asymptotically. It is shown that under uni-1035

form uncertainty, the proposed policy breaks down to equally1036

spreading the amount of predicted content data over the hori-1037

zon of the prediction window. Another approach to solve the1038

same problem is used in [127], where personalized content1039

pricing schemes are deployed by the service provider based1040

on user preferences in order to enhance the certainty about1041

future demand. The authors model the pricing problem as an1042

optimization problem. Due to the non-convex nature of their1043

model, they use an iterative sub-optimal solution that separates1044

price allocation and proactive download decisions.1045

2) Social-Assisted Matching Game Theory: Matching game1046

theory [128] can be used to allocate networks resources1047

between users and base stations, when social attributes are1048

used to profile users. For instance, by letting users and base1049

stations rank one another to capture users’ similarities in terms1050

of interests, activities and interactions, it is possible to cre-1051

ate social utility functions controlling a distributed matching1052

game. In [129], a self-organizing, context-aware framework1053

for D2D resource allocation is proposed that exploits the like-1054

lihood of strongly connected users to request similar contents.1055

The solution is shown to be computationally feasible and to1056

offer substantial benefits when users’ social similarities are1057

present. A similar approach is used in [130] to deal with joint1058

millimeter and micro wave dual base station resource allo-1059

cation, in [131] for user base station association in small cell1060

networks, and in [132] to optimize D2D offloading techniques. 1061

Caching in small cell networks can also be addressed as a 1062

many-to-many matching game [133]: by matching video pop- 1063

ularity among users most frequently served by a given server 1064

it is possible to devise caching policies that minimize end- 1065

users’ delays. Simulations show the approach is effective in 1066

small cell networks. 1067

3) Social-Assisted Mobility Prediction: Motivated by the 1068

need to reduce the active scanning overhead in IEEE 802.11 1069

networks, Wanalertlak et al. [40] propose a mobility prediction 1070

tool to anticipate the next access point a WiFi user is moving 1071

to. The proposed solution is based on context information on 1072

the handoffs which were performed in the past; specifically, 1073

the system stores centrally a time varying handoff table which 1074

is then fed into an ARIMA predictor which returns the like- 1075

lihood of a given user to handoff to a specific access point. 1076

The quality of the predictor is measured in terms of signaling 1077

reduction due to active scanning. 1078

The prediction of user mobility is also addressed in [134]. 1079

The authors leverage information coming from the social plat- 1080

form Foursquare to predict user mobility on coarse granularity. 1081

The next check-in problem is formulated to determine the next 1082

place in an urban environment which will be most likely vis- 1083

ited by a user. The authors build a time-stamped dataset of 1084

“check-ins” performed by Foursquare users over a period of 1085

one month across several venues worldwide. A set of fea- 1086

tures is then defined to represent user mobility including user 1087

mobility features (e.g., number of historical visits to specific 1088

venues or categories of venues, number of historical visits 1089

that friends have done to specific venues), global mobility 1090

features (e.g., popularity of venues, distance between venues, 1091

transition frequency between couples of venues), and tem- 1092

poral features which measures the historical check-ins over 1093

specific time periods. Such a feature set is then used to train a 1094

supervised classification problem to predict the next check-in 1095

venue. Linear regression and M5 decision trees are used in this 1096

regard. The work is mostly speculative and does not address 1097

directly any specific application/use of the proposed mobility 1098

prediction tool. 1099

Along the same lines, the mobility of users in urban envi- 1100

ronments is characterized in [135]. Different from the previous 1101

work which only exploits social information, the authors also 1102

leverage physical information about the current position of 1103

moving users. A probabilistic model of the mobile users’ 1104

behavior is built and trained on a real life dataset of user 1105

mobility traces. A social-assisted mobility prediction model 1106

is proposed in [136], where a variable-order Markov model 1107

is developed and trained on both temporal features (i.e., 1108

when users were at specific locations) and social ones (i.e., 1109

when friends of specific users were at a given location). The 1110

accuracy of the proposed model is cross-validated on two 1111

user-mobility datasets. 1112

4) Social-Assisted Radio Resource Allocation: The opti- 1113

mization of elastic traffic in the downlink of mobile radio 1114

networks is addressed in [137] and [138]. The key tenet 1115

is to provide to the downlink scheduler “richer” context to 1116

make better decisions in the allocation of the radio resources. 1117

Besides classical network-side context including the cell load 1118
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TABLE III
CONTEXT CLASSIFICATION SUMMARY: EACH CONTEXT IS ASSOCIATED TO ITS MOST POPULAR APPLICATIONS, PREDICTION TECHNIQUES,

OPTIMIZATION METHODS AND MAIN NOTABLE CHARACTERISTICS

and the current channel quality indicator which are widely1119

used in the literature to steer the scheduling, the authors pro-1120

pose to include user-side features which generically capture1121

the satisfaction degree of the user for the reference application.1122

Namely, the authors introduce the concept of a transaction,1123

which represents the atomic data download requested by the1124

end user (e.g., a Web page download via HTTP, an object1125

download via HTTP or a file download via File Transfer1126

Protocol (FTP)). For each transaction and for each application,1127

a utility function is defined capturing the user’s sensitivity with1128

respect to the transmission delay and the expected completion1129

time. The functional form of this utility function depends on1130

the type of application which “generated” the transaction; as1131

an example, the authors make the distinction between trans-1132

actions from applications which are running in the foreground1133

and the background on the user’s terminal. For the sake of1134

presentation, a parametric logistic function is used to repre-1135

sent the aforementioned utility. The authors then formulate1136

an optimization problem to maximize the sum utility across1137

all the users and transactions in a given mobile radio cell1138

and design a greedy heuristic to obtain a sub-optimal solu-1139

tion in reasonable computing time. The proposed algorithm1140

is validated against state-of-the-art scheduling solutions (PF /1141

weighted PF scheduling) through simulation on synthetic data1142

mimicking realistic user distributions, mobility patterns and1143

traffic patterns.1144

In order to predict the spatial traffic of base stations in a1145

cellular network, [139] applies the idea of social networks to1146

base stations. Here, the base stations themselves create a social1147

network and a social graph is created between them based1148

on the spatial correlation of the traffic of each of them. The1149

correlation is calculated using the Pearson coefficient. Based1150

on the topology of the social graph, the most important base1151

stations are identified and used for traffic prediction of the 1152

entire network, which is done using SVM. The authors con- 1153

clude that with the traffic data of less than 10% of the base 1154

stations, effective prediction with less than 20% mean error 1155

can be achieved. 1156

Social-oriented techniques related to the popularity of the 1157

end users are leveraged also in [140] where Tsiropoulos et al. 1158

target the performance optimization of downlink resource 1159

allocation in future generation networks. The utility max- 1160

imization problem is formulated with the utility being a 1161

combination (product) of a network-oriented term (available 1162

bandwidth) and a social-oriented term (social distance). The 1163

social-oriented term is defined to be the degree centrality 1164

measure [141] for a specific user. The proposed problem 1165

is sub-optimally solved through a heuristic which is finally 1166

validated using synthetic data. 1167

E. Summary 1168

Hereafter, we summarize the main takeaways of the section 1169

in terms of application and objective for which different con- 1170

text types can be used. Table III provides a synthesis of the 1171

main considerations: each context is associated with its typical 1172

applications, prediction methodologies (ordered by decreasing 1173

popularity), optimization approaches and general remarks. 1174

1) Mobility Prediction: It has been shown that predictabil- 1175

ity of user mobility can be potentially very high (93% potential 1176

predictability in user mobility as stated in [11]), despite the 1177

significant differences in the travel patterns. As a matter of 1178

fact, many papers study how to forecast users’ mobility by 1179

means of a variety of techniques. For predicting trajectories, 1180

characterized by sequences of discretized locations indicated 1181

by cell identitys (IDs) or road segments, fixed-order Markov 1182
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models or variable-order Markov models are the most promis-1183

ing tools, while for continuous trajectories, regression tech-1184

niques are widely used. To enhance the prediction accuracy,1185

the most popular ones leverage geographic information: GPS1186

data, cell records and received signal strength are used to1187

obtain precise and frequent data sampling to locate users on1188

a map. However, the movements of an individual are largely1189

influenced by those of other individuals via social relations.1190

Several papers analyze social information and location check-1191

ins to find recurrent patterns. For this second case usually a1192

sparser dataset is available and may limit the accuracy of the1193

prediction.1194

2) Network Efficiency: Predicting and optimizing network1195

efficiency (i.e., increasing the performance of the network1196

while using the same amount of resources) is the most fre-1197

quent objective in anticipatory networking. We found papers1198

exploiting all four types of context to achieve this. As such,1199

objectives and constraints cover the whole attribute space.1200

Improving network efficiency is likely to become the main1201

driver for including anticipatory networking solutions in next1202

generation networks.1203

3) Multimedia Streaming: The main source of data traffic in1204

4G networks has been multimedia streaming and, in particular,1205

video on demand. 5G networks are expected to continue and1206

even increase this trend. As a consequence, several anticipatory1207

networking solutions focus on the optimization of this service.1208

All the context types have been used to this extent and each1209

has a different merit: social information is needed to predict1210

when a given user is going to request a given content, com-1211

bined geographic and social information allows the network to1212

cache that content closer to where it will be required and phys-1213

ical channel information can be used to optimize the resource1214

assignment.1215

4) Network Offloading: Mobility prediction can be used to1216

handover communications between different technologies to1217

decrease network congestion, improve user experience, reduce1218

users’ costs and increase energy efficiency.1219

5) Cognitive Networking: Physical channel prediction can1220

be exploited for cognitive networking and for network map-1221

ping. The former application allows secondary users to access1222

a shared medium when primary subscribers left resource1223

unused, thus, predicting when this is going to happen will1224

highly improve the effectiveness of the solution. The lat-1225

ter, instead, exploits link information to build networking1226

maps that can provide other applications with an estimate of1227

communication quality at a given time and place.1228

6) Throughput- and Traffic-Based Applications: Traffic1229

information is usually studied to be, first, modeled and, sub-1230

sequently, predicted. Traffic models and predictors are then1231

used to improve networking efficiency by means of resource1232

allocation, traffic shaping and network planning.1233

IV. PREDICTION METHODOLOGIES FOR1234

ANTICIPATORY NETWORKING1235

In this section, we present some selected prediction meth-1236

ods for the types of context introduced in Section I-A. The1237

selected methods are classified into four main categories: time1238

series methods, similarity-based classification, regression 1239

analysis, and statistical methods for probabilistic modeling. 1240

Their mathematical principles and the application to infer- 1241

ring and predicting the aforementioned contextual information 1242

are introduced in Sections IV-A, IV-B, IV-C, and IV-D, 1243

respectively. 1244

The goal of the prediction handbook is to show which 1245

methods work in which situation. In fact, selecting the appro- 1246

priate prediction method requires to analyze the prediction 1247

variables and the model constraints with respect to the appli- 1248

cation scenario (see Section I-A). This section concludes with 1249

a series of takeaways that summarize some general princi- 1250

ples for selection of prediction methods based on the scenario 1251

analysis. 1252

A. Time Series Predictive Modeling 1253

A time series is a set of time-stamped data entries which 1254

allows a natural association of data collected on a regular or 1255

irregular time basis. In wireless networks, large volumes of 1256

data are stored as time series and frequently show temporal 1257

correlation. For example, the trajectory of the mobile device 1258

can be characterized by successive time-stamped locations 1259

obtained from geographical measurements; individual social 1260

behavior can be expressed through time-evolving events; traf- 1261

fic loads modeled in time series can be leveraged for network 1262

planning and controlling. Fig. 3(a) and (b) illustrate two time 1263

series of per-cell and per-city aggregated uplink and downlink 1264

data traffic, where temporal correlation is clearly recognizable. 1265

In the following, we introduce the two most widely 1266

used time series models based on linear dynamic 1267

systems: 1) AutoRegressive and Moving Average (ARMA), 1268

and 2) Kalman filters. Examples of context prediction in 1269

wireless networks are given and their extensions to nonlinear 1270

systems are briefly discussed. 1271

1) Autoregressive and Moving Average Models: Consider 1272

a univariate time series {Xt:t ∈ T }, where T denotes the 1273

set of time indices. The general ARMA model, denoted by 1274

ARMA(p, q), has p AR terms and q Moving Average (MA) 1275

terms, given by 1276

Xt = Zt +
p∑

i=1

φiXt−i +
q∑

j=1

θjZt−j (1) 1277

where Zt is the process of the white noise errors, and {φi}p
i=1 1278

and {θj}q
j=1 are the parameters. The ARMA model is a gen- 1279

eralization of the simpler AR and MA models that can be 1280

obtained for q = 0 and p = 0 respectively. Using the lag 1281

operator LiXt := Xt−i the model becomes 1282

φ(L)Xt = θ(L)Zt (2) 1283

where φ(L) := 1 − ∑p
i=1 φiLi and θ(L) := 1 + ∑q

j=1 θjLj. 1284

The fitting procedure of such processes assumes stationar- 1285

ity. However, this property is seldom verified in practice and 1286

non-stationary time series need to be stationarized through dif- 1287

ferencing and logging. The ARIMA model generalizes ARMA 1288

models for the case of non-stationary time series: a non sea- 1289

sonal ARIMA model ARIMA(p, d, q) after d differentiations 1290
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Fig. 3. Example of time series: Traffic load (aggregated every 15 minutes)
for a week in March 2015 in Rome, Italy. Data source from Telecom Italia’s
Big Data Challenge [142].

reduces to an ARMA(p, q) of the form1291

φ(L)�dXt = θ(L)Zt, (3)1292

where �d = (1 − L)d denotes the dth difference operator.1293

Numerous studies have been done on prediction of traffic1294

load in wireless or IP backbone networks using autoregres-1295

sive models. The stationarity analysis often provides impor-1296

tant clues for selecting the appropriate model. For instance,1297

in [108] a low-order ARIMA model is applied to capture the1298

non-stationary short memory process of traffic load, while1299

in [109] a Gegenbauer ARMA model is used to specify1300

long memory processes under the assumption of stationar-1301

ity. Similar models are applied to mobility- or channel-related1302

contexts. In [40], an exponential weighted moving average,1303

equivalent to ARIMA(0, 1, 1), is used to forecast handoffs.1304

In [13] and [47], AR models are applied to predict future1305

signal-to-noise ratio values and user positions, respectively. If1306

the variance of the data varies with time, as in [110] for data1307

traffic, and can be expressed using an ARMA, then the whole1308

model is referred to as GARCH.1309

2) Kalman Filter: Kalman filters are widely applied in time1310

series analysis for linear dynamic systems, which track the1311

estimated system state and its uncertainty variance. In the1312

anticipatory networking literature, Kalman filters have been1313

mainly adopted to model the linear dependence of the system1314

states based on historical data.1315

Consider a multivariate time series {xt ∈ R
n : t ∈ T }, the1316

Kalman filter addresses the problem of estimating state xt that1317

is governed by the linear stochastic difference equation1318

xt = Atxt−1 + Btut + wt, t = 0, 1, . . . , (4)1319

where At ∈ R
n×n expresses the state transition, and Bt ∈ R

n×l
1320

relates the optional control input ut ∈ R
l to the state xt ∈ R

n. 1321

The random variable wt ∼ N (0, Qt) represents a multivariate 1322

normal noise process with covariance matrix Qt ∈ R
n×n. The 1323

observation zt ∈ R
m of the true state xt is given by 1324

zt = Htxt + vt, (5) 1325

where Ht ∈ R
m×n maps the true state space into the observed 1326

space. The random variable vt is the observation noise pro- 1327

cess following vt ∼ N (0, Rt) with covariance Rt ∈ R
n×n. 1328

Kalman filters iterate between 1) predicting the system state 1329

with Eq. (4) and 2) updating the model according to Eq. (5) to 1330

refine the previous prediction. The interested reader is referred 1331

to [143] for more details. 1332

In [32] and [144], Kalman filters are used to study users’ 1333

mobility. Wireless channel gains are studied in [49] with KKF, 1334

while Okutani and Stephanedes [145] adopt the technique 1335

to predict short-term traffic volume. The extended Kalman 1336

filter adapts the standard model to nonlinear systems via 1337

online Taylor expansion. According to [146], this improves 1338

shadow/fading estimation. 1339

B. Similarity-Based Classification 1340

Similarity-based classification aims to find inherent struc- 1341

tures within a dataset. The core rationale is that similarity 1342

patterns in a dataset can be used to predict unknown data 1343

or missing features. Recommendation systems are a typical 1344

application where users give a score to items and the system 1345

tries to infer similarities among users and scores to predict the 1346

missing entries. 1347

These techniques are unsupervised learning methods, since 1348

categories are not predetermined, but are inferred from the 1349

data. They are applied to datasets exhibiting one or more of 1350

the following properties: 1) entries of the dataset have many 1351

attributes, 2) no law is known to link the different features, and 1352

3) no classification is available to manually label the dataset. 1353

In what follows, we briefly review the similarity-based 1354

classification tools that have been used in the anticipatory 1355

networking literature accounted for in this survey. 1356

1) Collaborative Filtering: Recommendation systems usu- 1357

ally adopt Collaborative Filtering (CF) to predict unknown 1358

opinions according to user’s and/or content’s similarities. 1359

While a thorough survey is available in [147], here, we just 1360

introduce the main concepts related to anticipatory networking. 1361

CF predicts the missing entries of a nc × nu matrix 1362

Y ∈ Anc×nu , mapping nc users to nu contents through their 1363

opinions which are taken from an alphabet A of possible 1364

ratings. Thus, the entry yik, i ∈ {1, . . . , nc}, k ∈ {1, . . . , nu} 1365

expresses how much user k likes content i. An auxiliary matrix 1366

R ∈ [0, 1]nc×nu expresses whether user k evaluated content i 1367

(rik = 1) or not (rik = 0). 1368

To predict the missing entries of Y the feature learning 1369

approach exploits a set of nf features to represent contents’ 1370

and users’ similarities and defines two matrices X ∈ [0, 1]nc×nf 1371

and � ∈ Anu×nf , whose entries xij and θkj represent how much 1372

content i is represented by feature j and how high user k would 1373

rate a content completely defined by feature j, respectively. The 1374
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new matrices aim to map Y in the feature space and they can1375

be computed by:1376

argmin
X,�

∑

i,k:rik=1

(
xi∗θT

k∗ − yik
)2

, (6)1377

where xi∗ := (coliXT)T denotes the i-th row of matrix X. Note1378

that in (6) the regularization terms are omitted. Solving (6)1379

amounts to obtain a matrix Ỹ = X�T which best approxi-1380

mates Y according to the available information (i, k : rik = 1).1381

Finally, ỹik = xi∗θT
k∗ predicts how user k with parameters θk∗1382

rates content i having feature vector xi∗.1383

Other applications of CF are, for instance, network caching1384

optimization [148], [149], where communication efficiency1385

is optimized by storing contents where and when they are1386

predicted to be consumed. Similarly, location-based ser-1387

vices [134] predict where and what to serve to a given1388

user.1389

2) Clustering: Clustering techniques are meant to group1390

elements that share similar characteristics. The following1391

provides an introduction to K-means, which is among the1392

most commonly-used clustering techniques in anticipatory1393

networking. The interested reader is referred to [150] for a1394

complete review.1395

K-means splits a given dataset into K groups without any1396

prior information about the group structure. The basic idea is1397

to associate each observation point from a dataset X := {xi ∈1398

R
n : i = 1, . . . , M}, to one of the centroids in set M := {μj ∈1399

R
n : j = 1, . . . , K}. The centroids are optimized by minimizing1400

the intra-cluster sum of squares (sum of distance of each point1401

in the cluster to the K centroids), given by1402

minimize
C ,M

K∑

j=1

M∑

i=1

cij
∥∥xi − μj

∥∥2
, (7)1403

where C := {cij ∈ {0, 1} : i = 1, . . . , M, j = 1, . . . , K} asso-1404

ciates entry xi to centroid μj. No entry can be associated to1405

multiple centroids (
∑K

j=1 cij = 1,∀i ∈ M ).1406

Clustering is applied in anticipatory networking to build a1407

data-driven link model [51], to find similarities within vehicu-1408

lar paths [34], to identify social events [99] that might impact1409

network performance, and to identify device types [93].1410

3) Decision Trees: A supervised version of clustering is1411

decision tree learning (the interested reader is referred to [151]1412

for a survey on the topic). Assuming that each input observa-1413

tion is mapped to a consequence on its target value (such as1414

reward, utility, cost, etc.), the goal of decision tree learning is1415

to build a set of rules to map the observations to their target1416

values. Each decision branches the tree into different paths1417

that lead to leaves representing the class labels. With prior1418

knowledge, decision trees can be exploited for location-based1419

services [134], for identifying trajectory similarities [35], and1420

for predicting the QoE for multimedia streams [101]. For con-1421

tinuous target variables, regression trees can be used to learn1422

trends in network performance [98].1423

C. Regression Analysis1424

When the interest lies in understanding the relationship1425

between different variables, regression analysis is used to1426

Fig. 4. Example of a functional dataset: WiFi traffic in Rome depending on
hour of the day. Data source from Telecom Italia’s Big Data Challenge [142].

predict dependent variables from a number of independent 1427

variables by means of so-called regression functions. In the 1428

following, we introduce three regression techniques, which 1429

are able to capture complex nonlinear relationships, namely 1430

functional regression, support vector machines and artificial 1431

neural networks. 1432

1) Functional Regression: Functional data often arise from 1433

measurements, where each point is expressed as a function 1434

over a physical continuum (e.g., Fig. 4 illustrates the example 1435

of aggregated WiFi traffic as a function of the hour of the day). 1436

Functional regression has two interesting properties: smooth- 1437

ness allows to study derivatives, which may reveal important 1438

aspects of the processes generating the data, and the mapping 1439

between original data and the functional space may reduce the 1440

dimensionality of the problem and, as a consequence, the com- 1441

putational complexity [152]. The commonly encountered form 1442

of function prediction regression model (scalar-on-function) is 1443

given by [153]: 1444

Yi = B0 +
∫

Xi(z)B(z)dz + Ei (8) 1445

where Yi, i = 1, . . . , M is a continuous response, Xi(z) is a 1446

functional predictor over the variable z, B(z) is the functional 1447

coefficient, B0 is the intercept, and Ei is the residual error. 1448

Functional regression methods are applied in [94] to 1449

predict traffic-related Long Term Evolution (LTE) metrics 1450

(e.g., throughput, modulation and coding scheme, and used 1451

resources) showing that cloud analytics of short-term LTE 1452

metrics is feasible. In [154], functional regression is used to 1453

study churn rate of mobile subscribers to maximize the carrier 1454

profitability. 1455

2) Support Vector Machines: SVM is a supervised learning 1456

technique that constructs a hyperplane or set of hyperplanes 1457

(linear or nonlinear) in a high- or infinite-dimensional space, 1458

which can be used for classification, regression, or other tasks. 1459

In this survey we introduce the SVM for classification, and 1460

the same principle is used by SVM for regression. Consider a 1461

training dataset {(xi, yi):xi ∈ R
n, yi ∈ {−1, 1}, i = 1, . . . , M}, 1462

where xi is the i-th training vector and yi the label of its class. 1463

First, let us assume that the data is linearly separable and 1464

define the linear separating hyperplane as w ·x−b = 0, where 1465

w · x is the Euclidean inner product. The optimal hyperplane 1466

is the one that maximizes the margin (i.e., distance from the 1467

hyperplane to the instances closest to it on either side), which 1468
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Fig. 5. Examples of SVM, where different datasets are analyzed according
to a linear (left) and a Gaussian (right) kernel.

can be found by solving the following optimization problem:1469

minimize
1

2
||w||21470

subject to yi(xi · w + b) − 1 ≥ 0 ∀i ∈ {1, . . . , M}. (9)1471

Fig. 5(a) shows an example of linear SVM classifier separating1472

two classes in R
2.1473

If the data is not linearly separable, the training points are1474

projected to a high-dimensional space H through a nonlin-1475

ear transformation φ : Rn → H . Then, a linear model in the1476

new space is built, which corresponds to a nonlinear model in1477

the original space. Since the solution of (9) consists of inner1478

products of training data xi · xj, for all i, j, in the new space1479

the solution is in the form of φ(xi) · φ(xj). The kernel trick1480

is applied to replace the inner product of basis functions by a1481

kernel function K(xi, xj) = φ(xi) · φ(xj) between instances1482

in the original input space, without explicitly building the1483

transformation φ.1484

The Gaussian kernel K(x, y) := exp(γ ||x − y||2) is one of1485

the most widely used kernels in the literature. For example, it1486

is used in [15] to predict user mobility. Kasparick et al. [52]1487

propose an algorithm for reconstructing coverage maps from1488

path-loss measurements using a kernel method. Nevertheless,1489

choosing an appropriate kernel for a given prediction task1490

remains one of the main challenges.1491

3) Artificial Neural Networks: ANN is a supervised1492

machine learning solution for both regression and classifica-1493

tion. An ANN is a network of nodes, or neurons, grouped1494

into three layers (input, hidden and output), which allows for1495

nonlinear classification. Ideally, it can achieve zero training1496

error.1497

Consider a training dataset {(xi, yi) : xi ∈ R
n, i =1498

1, . . . , M}. Each hidden node hl approximates a so-called1499

logistic function in the form hl = 1/(1 + exp(−ωl · x)), where1500

ωl is a weight vector. The outputs of the hidden nodes are1501

processed by the output nodes to approximate y. These nodes1502

use linear and logistic functions for regression and classifica-1503

tion, respectively. In the linear case, the approximated output1504

is represented as:1505

ŷ =
L∑

l=1

hlvl =
L∑

l=1

1

1 + exp(−ωl · x)
vl, (10)1506

where L is the number of hidden nodes and vl is the weight1507

vector of the output layer. The training of an ANN can1508

be performed by means of the backpropagation method that1509

finds weights for both layers to minimize the mean squared1510

error between the training labels y and their approxima- 1511

tions ŷ. In the anticipatory networking literature, ANNs have 1512

been used for example to predict mobility in mobile ad-hoc 1513

networks [14], [155]. 1514

For both SVMs and ANNs, as for other supervised learning 1515

approaches, no prior knowledge about the system is required 1516

but a large training set has to be acquired for parameter set- 1517

ting in the predictive model. A careful analysis needs to be 1518

performed while processing the training data in order to avoid 1519

both overfitting and underlearning. 1520

D. Statistical Methods for Probabilistic Forecasting 1521

Probabilistic forecasting involves the use of information 1522

at hand to make statements about the likely course of 1523

future events. In the following subsections, we introduce two 1524

probabilistic forecasting techniques: Markovian models and 1525

Bayesian inference. 1526

1) Markovian Models: These models can be applied to any 1527

system for which state transitions only depend on the current 1528

state. In the following we briefly discuss the basic concepts of 1529

discrete, and continuous time Markov Chains (MCs) and their 1530

respective applications to anticipatory networking. 1531

A Discrete Time Markov Chain (DTMC) is a discrete time 1532

stochastic process Xn(n ∈ N), where a state Xn takes a 1533

finite number of values from a set X in each time slot. The 1534

Markovian property for a DTMC transitioning from any time 1535

slot k to k + 1 is expressed as follows: 1536

P(Xk+1 = j|Xk = i) = pij(k). (11) 1537

For a stationary DTMC, the subscript k is omitted and the 1538

transition matrix P, where pij represents the transition proba- 1539

bility from state i to state j, completely describes the model. 1540

Empirical measurements on mobility and traffic evolution can 1541

be accurately predicted using a DTMC with low computational 1542

complexity [19], [23], [26], [93], [136]. However, obtaining 1543

the transition probabilities of the system requires a variable 1544

training period, which depends on the prediction goal. In prac- 1545

tice, the data collection period can be in the order of one [93] 1546

or even multiple weeks [20], [53]. 1547

A DTMC assumes the time the system spends in each state 1548

is equal for all states. This time depends on the prediction 1549

application and can range from a few hundred milliseconds 1550

to predict wireless channel quality [62], to tens of seconds 1551

for user mobility prediction [19], [53], to hours for Internet 1552

traffic [93]. For tractability reason, the state space is often 1553

compressed by means of simple heuristics [20], [53], [102], 1554

K-means clustering [62], [136], equal probability classifica- 1555

tion [102], and density-based clustering [136]. 1556

Eq. (11) defines a first order DTMC and can be extended 1557

to the l-th order (i.e., transition probabilities depend on 1558

the l previous states). By Using higher order, DTMCs can 1559

increase the accuracy of the prediction at the expense of a 1560

longer training time and an increased computational complex- 1561

ity [19], [23], [136]. 1562

If the sojourn time of each state is relevant to the prediction, 1563

the system can be modeled as a Continuous Time Markov 1564

Chain (CTMC). The Markovian property is preserved in 1565
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CTMC when the sojourn time is exponentially distributed,1566

as in [21]. When the sojourn time has an arbitrary distri-1567

bution, it becomes a Markov renewal process as described1568

in [17] and [18].1569

If the transition probabilities cannot be directly measured,1570

but only the output of the system is quantifiable (dependent1571

on the state), hidden Markov models allow to map the output1572

state space to the unobservable model that governs the system.1573

As an example, the inter-download times of video segments1574

are predicted in [102], where the output sequences are the1575

inter-download times of the already downloaded segments and1576

the states are the instants of the next download request.1577

2) Bayesian Inference: This approach allows to make state-1578

ments about what is unknown, by conditioning on what is1579

known. Bayesian prediction can be summarized in the follow-1580

ing steps: 1) define a model that expresses qualitative aspects1581

of our knowledge but has unknown parameters, 2) specify1582

a prior probability distribution for the unknown parame-1583

ters, 3) compute the posterior probability distribution for the1584

parameters, given the observed data, and 4) make predictions1585

by averaging over the posterior distribution.1586

Given a set of observed data D := {(xi, yi) : i = 1, . . . , M}1587

consisting of a set of input samples X := {xi ∈ R
p : i =1588

1, . . . , M} and a set of output samples Y := {yi ∈ R
q : i =1589

1, . . . , M}, inference in Bayesian models is based on the pos-1590

terior distribution over the parameters, given by the Bayes’1591

rule:1592

p(θ |D) = p(Y |X , θ)p(θ)

p(Y |X )
∝ p(Y |X , θ)p(θ), (12)1593

where θ is the unknown parameter vector.1594

Two recent works adopting the Bayesian framework1595

are [38] and [55]. The former focuses on spatial prediction1596

of the wireless channel, building a 2D non-stationary random1597

field accounting for pathloss, shadowing and multipath. The1598

latter exploits spatial and temporal correlation to develop a1599

general prediction model for the channel gain of mobile users.1600

E. Summary1601

Hereafter, we provide some guidelines for selecting the1602

appropriate prediction methods depending on the application1603

scenario or context of interest.1604

1) Applications and Data: The predicted context is the1605

most important information that drives decision making in1606

anticipatory optimization problems (see Section V). Thus, the1607

selection of the prediction method shall take into consideration1608

the objectives of the application and the constraints imposed1609

by the available data.1610

a) Choosing the outputs: Applications define the proper-1611

ties of the predicted variables, such as dimension, granularity,1612

accuracy, and range. For example, large granularity or high1613

data aggregation (such as frequently visited location, social1614

behavior pattern) is best dealt with similarity-based classifica-1615

tion methods which provide sufficiently accurate prediction1616

without the complexity of other model-based regression1617

techniques.1618

b) System model and data: The application environ-1619

ment is equally important as its outputs, which determines1620

the constraints of modeling. Often, an accurate analysis of 1621

the scenario might highlight linearity, deterministic and/or 1622

causal laws among the variables that can further improve the 1623

prediction accuracy. Moreover, the quality of dataset heav- 1624

ily affects the prediction accuracy. Different methods exhibit 1625

different level of robustness to noisy data. 1626

2) Guidelines for Selecting Methods: To choose the correct 1627

tool among the aforementioned set, we study the rationale for 1628

adopting each of them in the literature and derive the following 1629

practical guidelines. 1630

a) Model-based methods: When a physical model exists, 1631

model-based regression techniques based on closed-form 1632

expressions can be used to obtain an accurate prediction. They 1633

are usually preferable for long-term forecast and exhibit good 1634

resilience to poor data quality. 1635

b) Time series-based methods: These are the most conve- 1636

nient tools when the information is abundant and shows strong 1637

temporal correlation. Under these conditions, time series meth- 1638

ods provide simple means to obtain multiple scale prediction 1639

of moderate to high precision. 1640

c) Causal methods: If the data exhibits large and fast 1641

variations, causality laws can be key to obtain robust predic- 1642

tions. In particular, if a causal relationship can be observed 1643

between the variables of interest and the other observable data, 1644

causal models usually outperform pure data-driven models. 1645

d) Probabilistic models: If the physical model of the 1646

prediction variable is either unavailable or too complex to be 1647

used, probabilistic models offer robust prediction based on the 1648

observation of a sufficient amount of data. In addition, proba- 1649

bilistic methods are capable of quantifying the uncertainty of 1650

the prediction, based on the probability density function of the 1651

predicted state. 1652

3) Prediction Summary: Table IV characterizes each 1653

prediction method with respect to properties of the context 1654

and constraints presented in Section I-A. Note that the meth- 1655

ods for predicting a multivariate process can be applied to 1656

univariate processes without loss of generality. The granular- 1657

ity of variables and the prediction range are described using 1658

qualitative attributes such as Short, Medium, Large, and any 1659

instead of explicit values. For example, for the time series 1660

of traffic load per cell, S, M and L time scales are generally 1661

defined by minutes, tens of minutes and hours, respectively, 1662

while for the time series of channel gain, they can be seen as 1663

milliseconds, hundreds of milliseconds and seconds, respec- 1664

tively. The sixth column reports the prediction type, that can 1665

be driven by data, models or both. Linearity indicates whether 1666

it is required (Y) or not (N) or applicable in both cases. The 1667

side information column states whether out-of-band informa- 1668

tion can (both), cannot (N) or must ( Y) be used to build 1669

the model. Finally, the quality column reports whether the 1670

predictor is weak or robust against insufficient or unreliable 1671

dataset. 1672

V. OPTIMIZATION TECHNIQUES FOR ANTICIPATORY 1673

NETWORKING 1674

This section identifies the main optimization techniques 1675

adopted by anticipatory networking solutions to achieve their 1676
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TABLE IV
SELECTED PREDICTION METHODS: VARIABLES OF INTEREST AND CONSTRAINTS OF MODELING

TABLE V
OPTIMIZATIONAQ5 METHODS SUMMARY

objectives. Disregarding the particular domain of each work,1677

the common denominator is to leverage some future knowl-1678

edge obtained by means of prediction to drive the system1679

optimization. How this optimization is performed depends1680

both on the ultimate objectives and how data are predicted1681

and stored.1682

In general, we found two main strategies for optimization:1683

(1) adopting a well-known optimization framework to model1684

the problem and (2) designing a novel solution (most often)1685

based on heuristic considerations about the problem. The two1686

strategies are not mutually exclusive and often, when known1687

approaches lead to too complex or impractical solutions, they1688

are mixed in order to provide feasible approximation of the1689

original problem.1690

Heuristic approaches usually consist of (1) algorithms that1691

allow for fast computation of an approximation of the solu-1692

tion of a more complex problem (e.g., convex optimization)1693

and (2) greedy approaches that can be proven optimal under1694

some set of assumptions. Both approaches trade optimality1695

for complexity and most often are able to obtain performance1696

quite close to the optimal one. However, heuristic approaches1697

are tailored to the specific application and are usually difficult1698

to be generalized or to be adapted for different scenarios, thus1699

they cannot be directly applied to new applications if the new1700

requirements do not match those of the original scenario.1701

In what follows, we focus on optimization methods only and1702

we will provide some introductory descriptions of the most1703

relevant ones used for anticipatory networking. The objec-1704

tive is to provide the reader with a minimum set of tools1705

to understand the methodologies and to highlight the main 1706

properties and applications. 1707

A. Convex Optimization 1708

Convex optimization is a field that studies the problem of 1709

minimizing a convex function over convex sets. The interested 1710

reader can refer to [160] for convex optimization theory and 1711

algorithms. Hereafter, we will adopt Boyd’s notation [160] to 1712

introduce definitions and formulations that frequently appear 1713

in anticipatory networking papers. 1714

The inputs are often referred to as the optimization variables 1715

of the problem and defined as the vector x = (x1, . . . , xn). In 1716

order to compute the best configuration or, more precisely, 1717

to optimize the variables, an objective is defined: this usually 1718

corresponds to minimizing a function of the optimization vari- 1719

ables, f0 : Rn → R. The feasible set of input configurations 1720

is usually defined through a set of m constraints fi(x) ≤ bi, 1721

i = 1, . . . , m, with fi : Rn → R. The general formulation of 1722

the problem is 1723

minimize f0(x) 1724

subject to fi ≤ bi, i = 1, . . . , m. (13) 1725

The solution to the optimization problem is an optimal vec- 1726

tor x∗ that provides the smallest value of the objective function, 1727

while satisfying all the constraints. 1728

The convexity property (i.e., objective and constraint func- 1729

tions satisfy fi(ax + (1 − a)y) ≤ afi(x) + (1 − a)fi(y) for 1730

all x, y ∈ R
n and a ∈ [0, 1]) can be exploited in order to 1731
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derive efficient algorithms that allows for fast computation of1732

the optimal solution. Furthermore, if the optimization function1733

and the constraints are linear, i.e., fi(ax+by) = afi(x)+bfi(y)1734

for all x, y ∈ R
n and a, b ∈ R, the problem belongs to the class1735

of linear optimization. For this class, highly efficient solvers1736

exist, thanks to their inherently simple structure. Within the1737

linear optimization class, three subclasses are of particular1738

interest for anticipatory networking: least-squares problems,1739

linear programs and mixed-integer linear programs.1740

Least-squares problems can be thought of as distance1741

minimization problems. They have no constraints (m = 0)1742

and their general formulation is:1743

minimize f0(x) = ||Ax − b||22, (14)1744

where A ∈ R
k×n, with k ≥ n and ||x||2 is the Euclidean norm.1745

Notably, problems of this class have an analytical solution1746

x = (ATA)−1ATb (where superscript T denotes the trans-1747

pose) derived from reducing the problem to the set of linear1748

equations ATAx = ATb.1749

Linear programming (LP) problems are characterized by1750

linear objective function and constraints and are written as1751

minimize cTx1752

subject to ATx ≤ b, (15)1753

where c ∈ R
n, A ∈ R

n×m and b ∈ R
n are the parameters1754

of the problem. Although, there is no analytical closed-form1755

solution to LP problems, a variety of efficient algorithms are1756

available to compute the optimal vector x∗. When the opti-1757

mization variable is a vector of integers x ∈ Z
n, the class1758

of problems is called integer linear programming (ILP), while1759

the class of mixed-integers linear programming (MILP) allows1760

for both integer and real variables to co-exist. These last two1761

classes of problems can be shown to be NP-hard (while LP1762

is P complete) and their solution often implies combinatorial1763

aspects. See [161] for more details on integer optimization.1764

In anticipatory networking, we find that resource allocation1765

problems are often modeled as LP, ILP or MILP, by setting1766

the amount of resources to be allocated as the optimization1767

variable and accounting for prediction in the constraints of the1768

problem. In [72], prediction of the channel gain is exploited to1769

optimize the energy efficiency of the network. Time is mod-1770

eled as a finite number of slots corresponding to the look-ahead1771

time of the prediction. When dealing with multimedia stream-1772

ing, the data buffer is usually modeled in the constraints of the1773

problem by linking the state at a given time slot to the previous1774

slot. The solver will then choose whether to use resources in1775

the current slot or use what has been accumulated in the buffer,1776

as in, e.g., [77]. Admission control is often used to enforce1777

quality-of-service, e.g., [74] and [156], with the drawback of1778

introducing integer variables in the optimization function. In1779

these cases, the optimal ILP/MILP formulation is followed by1780

a fast heuristic that enables the implementation of real-time1781

algorithms.1782

B. Model Predictive Control1783

Model Predictive Control (MPC) is a control theoretic1784

approach that optimizes the sequence of actions in a dynamic1785

system by using the process model of that system within a 1786

finite time horizon. Therefore, the process model, i.e., the pro- 1787

cess that turns the system from one state to the next, should be 1788

known. In each time slot t, the system state, x(t), is defined as 1789

a vector of attributes that define the relevant properties of the 1790

system. At each state, the control action, u(t), turns the system 1791

to the next state x(t + 1) and results in the output y(t + 1). 1792

In case the system is linear, both the next state and the output 1793

can be determined as follows: 1794

x(t + 1) = Ax(t) + Bu(t) + ψ(t) (16) 1795

y(t) = Cx(t) + ε(t), (17) 1796

where ψ(t) and ε(t) are usually zero mean random variables 1797

used to model the effect of disturbances on the input and out- 1798

put, respectively, and A, B, and C are matrices determined by 1799

the system model. 1800

At each time slot, the next N states and their respective 1801

outputs are predicted and a cost function J(·) is minimized to 1802

determine the optimal control action u∗(t) at t = t0: 1803

u∗(t0) = arg min
u(t0)

J
(
x̂(t0), u(t0)

)
, (18) 1804

where x̂(t0) is the set of all the predicted states from t = t0 +1 1805

to t = t0 + N, including the observed state at t = t0. The 1806

expression in (18) essentially states that the optimal action 1807

of the current time slot is computed based on the predicted 1808

states of a finite time horizon in the future. In other words, 1809

in each time slot the MPC sequentially performs a N step 1810

lookahead open loop optimization of which only the first step 1811

is implemented [162]. 1812

This approach has been adopted for on-line prediction and 1813

optimization of wireless networks [100], [158]. Since the pro- 1814

cess model (for the prediction of future states and outputs) is 1815

available in this kind of systems, autoregressive methods can 1816

be used along with Kalman filtering [100], or max-min MPC 1817

formulation [159]. In [158], Kalman filtering is compared to 1818

other methods such as mean and median value estimation, 1819

Markov chains, and exponential averaging filters. 1820

Optimization based on MPC relies on a finite horizon. The 1821

length of the horizon determines the trade-off between com- 1822

plexity and accuracy. Longer horizons need further look ahead 1823

and more complex prediction but in turn result in a more fore- 1824

sighted control action [159]. Reducing the horizon reduces 1825

the complexity while resulting in a more myopic action. This 1826

trade-off is examined in [158] by proposing an algorithm that 1827

adaptively adjusts the horizon length. In general, the prediction 1828

horizon is kept to a fairly low number (1 step in [159] and 1829

6 steps in [100]) to avoid high computation overhead. 1830

It is worth noting that MPC methods can be extended to the 1831

nonlinear case. In this case, the prediction accuracy and control 1832

optimality increase at the cost of more complex algorithms to 1833

find the solution [162]. Another benefit of these approaches is 1834

their applicability to non-stationary problems. 1835

C. Markov Decision Process 1836

Markov Decision Process (MDP) is an efficient tool for opti- 1837

mizing sequential decision making in stochastic environments. 1838

Unlike MPCs, MDPs can only be applied to stationary systems 1839
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where a priori information about the dynamics of the system1840

as well as the state-action space is available.1841

A MDP consists of a four tuple (X , U, P, r), where X and1842

U represent the set of all achievable states in the system and1843

the set of all actions that can be performed in each of the1844

states, respectively. Time is assumed to be slotted and in any1845

time slot t, the system is in state xt ∈ X from which it can1846

take an action ut from the set Uxt ∈ U. Due to the assumption1847

of stationarity, we can omit the time subscript for states and1848

actions. Upon taking action u in state x, the system moves to1849

the next state x′ ∈ X with transition probability P(x′|x, u) and1850

receives a reward equal to r(x, u, x′). The transition probabil-1851

ities are predicted and modeled as a Markov Chain prior to1852

solving the MDP and preserve the Markovian behavior of the1853

system.1854

The goal is to find the optimal policy π∗ : X → U (i.e.,1855

optimal sequence of actions that must be taken from any initial1856

state) in order to maximize the long term discounted average1857

reward E
(∑∞

t=0 γ tr(xt, ut, xt+1)
)
, where 0 ≤ γ < 1 is called1858

discount factor and determines how myopic (if closer to zero)1859

or foresighted (if closer to 1) the decision process should be.1860

In order to derive the optimal policy, each state is assigned1861

to a value function Vπ (x), which is defined as the long term1862

discounted sum of rewards obtained by following policy π1863

from state x onwards. The goal of MDP algorithms is to find1864

Vπ∗
(x)(∀x ∈ X ). Given that the Markovian property holds, it1865

has been proved that the optimal value functions follow the1866

Bellman optimality criterion described below [163]:1867

Vπ∗
(x) = max

u∈U

∑

x′∈X ′

(
r
(
x, u, x′) + γ P

(
x′|x, u

)
Vπ∗

(x′)
)

1868

∀x ∈ X , (19)1869

where X ′ ⊂ X is the set of states for which P(x′|x, u) > 0. In1870

order to solve the above equation set, linear programming or1871

dynamic programming techniques can be used, in which the1872

optimal policy is derived by simple iterative algorithms such1873

as policy iteration and value iteration [163].1874

MDPs are very efficient for several problems, especially1875

in the framework of anticipatory networking, due to their1876

wide applicability and ease of implementation. MDP-based1877

optimized download policies for adaptive video transmission1878

under varying channel and network conditions are presented1879

in [60], [62], and [157].1880

In order to avoid large state spaces (which limit the appli-1881

cability of MDPs), there are cases where the accuracy of the1882

model must be compromised for simplicity. In [157], a large1883

video receiver buffer is modeled for storing video on demand1884

but only a small portion of the buffer is used in the optimiza-1885

tion, while the rest of the buffer follows a heuristic download1886

policy. References [60] and [62] solve this problem by increas-1887

ing the duration of the time slot such that more video can1888

be downloaded in each slot and, therefore, the buffer is filled1889

entirely based on the optimal policy. This, in turn, comes at the1890

cost of lower accuracy, since the assumption is that the system1891

is static within the duration of a time slot. Heuristic approaches1892

are also adopted for on-line applications. For instance, creat-1893

ing decision trees with low depth from the MDP outputs is1894

proposed in [62]. Simpler heuristics are also applied to the 1895

MDP outputs in [60], [149], and [157]. 1896

If any of the assumptions discussed above does not hold, 1897

or if the state space of the system is too large, MDPs and 1898

their respective dynamic programming solution algorithms fail. 1899

However, there are alternative techniques to solve this kind 1900

of problems. For instance, if the system dynamics follow 1901

a Markov Renewal Process instead of a MC, a semi MDP 1902

is solved instead of the regular one [163]. In non-stationary 1903

systems, for which the dynamics cannot be predicted a priori 1904

or the reward function is not known beforehand, reinforcement 1905

learning [164] can be applied and the optimization turns into 1906

an on-line unsupervised learning problem. Large state spaces 1907

can be dealt with using value function approximation, where 1908

the value function of the MDP is approximated as a linear 1909

function, a neural network, or a decision tree [164]. If differ- 1910

ent subsets of state attributes have independent effects on the 1911

overall reward, i.e., multi user resource allocation, the problem 1912

can be modeled as a weakly coupled MDP [165] and can be 1913

decomposed into smaller and more tractable MDPs. 1914

D. Game Theoretic Approaches 1915

Although small in number, the papers adopting a game the- 1916

oretic framework offer an alternative approach to optimization. 1917

In fact, while the approaches described in the previous sub- 1918

sections strive to compute the optimal solution of an often 1919

complex problem formulation, game theory defines policies 1920

that allow the system to converge towards a so-called equilib- 1921

rium, where no player can modify her action to improve her 1922

utility. In mobile networks, game theory is applied in the form 1923

of matching games [128], where system players (e.g., users) 1924

have to be matched with network resources (e.g., base stations 1925

or resource blocks). 1926

Three types of matching games can be used depending on 1927

the application scenario: 1) one-to-one matching, where each 1928

user can be matched with at most one resource (as in [129], 1929

which optimizes D2D communication in small cell scenar- 1930

ios); 2) many-to-one matching, where either multiple resources 1931

can be assigned to a single user (as in [130] for small cell 1932

resource allocation), or multiple users can be matched to a 1933

single resource (as in [131] for user-cell association); 3) many- 1934

to-many matching, where multiple users can be matched with 1935

multiple resource (as in [133] where videos are associated to 1936

caching servers). 1937

E. Summary 1938

This section (and Table VI) summarizes the main takeaways 1939

of this optimization handbook. 1940

1) Convex Optimization Methods: These methods are often 1941

combined with time series analysis or ideal prediction. The 1942

main reason is that they are used to determine performance 1943

bounds when the solving time is not a system constraint. Thus, 1944

convex optimization is suggested as a benchmark for large 1945

scale prediction. This may have to be replaced by fast heuris- 1946

tics in case the optimization tool needs to work in real-time. 1947

An exception to this is LP for which very efficient algo- 1948

rithms exist that can compute a solution in polynomial time. 1949
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TABLE VI
ANTICIPATORY NETWORKING APPLICABILITY TO DIFFERENT NETWORK TYPES

In contrast, convex optimization methods should be preferred1950

when dealing with high precision and continuous output. They1951

require the complete dataset and show a reliability comparable1952

to that of the used predictor.1953

2) Model Predictive Control: MPC combines prediction1954

and optimization to minimize the control error by tuning both1955

the prediction and the control parameters. Therefore, it can1956

be coupled with any predictor. The main drawback of this1957

approach is that, by definition, prediction and optimization1958

cannot be decoupled and must be evaluated at each iteration.1959

This makes the solution computationally very heavy and it1960

is generally difficult to obtain real-time algorithms based on1961

MPC. The close coupling between prediction and optimiza-1962

tion makes it possible to adopt the method for any application1963

for which a predictor can be designed with the only additional1964

constraint being the execution time. Objectives and constraints1965

are usually those imposed by the used predictor.1966

3) Markov Decision Processes: MDPs are characterized by1967

a statistical description of the system state and they usually1968

model the system evolution through probabilistic predictors.1969

As such, they best fit to scenarios that show similar objective1970

functions and constraints as those of probabilistic predictors.1971

Thus, MDPs are the ideal choice when the optimization objec-1972

tive aims at obtaining stationary policies (i.e., policies that can1973

be applied independently of the system time). This translates1974

to low precision and high reliability. Moreover, even though1975

they require a computationally heavy phase to optimize the1976

policies, once the policies are obtained, fast algorithms can1977

easily be applied.1978

4) Game Theory: Matching games prove to be effective1979

solutions that, without struggling to compute an overly com-1980

plex optimal configuration, let the system converge towards a1981

stable equilibrium which satisfies all the players (i.e., no action1982

can be taken to improve the utility of any player). These are the1983

preferable solutions for those applications where the compu-1984

tational capability is a stringent constraint and where fairness1985

is important for the system quality.1986

VI. APPLICABILITY OF ANTICIPATORY NETWORKING TO1987

OTHER WIRELESS NETWORKS1988

So far this survey mainly focused on current cellular1989

networks. In this section we analyze how different types of1990

mobile wireless networks can take advantage of anticipa- 1991

tory networking solutions. Although each type would deserve 1992

a dedicated survey, in what follows we provide brief sum- 1993

maries of the distinctive features, the application scenarios, the 1994

expected benefits and the challenges related to the implemen- 1995

tation of anticipatory networking for each of them. Table VI 1996

summarizes the discussion of this section. 1997

A. 5G Cellular Networks 1998

LTE and LTE-advanced represent the fourth generation of 1999

mobile cellular networks and, as it emerged from the anal- 2000

yses of the previous sections, they can already benefit from 2001

predictive optimization. Since the fifth generation is expected 2002

to improve on its predecessors in every aspect [166], not only 2003

is anticipatory networking applicable, but also it will provide 2004

even greater benefits. 2005

1) Characteristics: The next generation of mobile cellu- 2006

lar networks will provide faster communications, improved 2007

users QoE, shorter communication delays, higher reliability 2008

and improved energy savings. Among the solutions envisioned 2009

to realize these improvements, cell densification, mm-wave 2010

bands, massive MIMO, unified multi-technology frame struc- 2011

ture and architecture and network function virtualization are 2012

the ones that are going to have a substantial impact on existing 2013

and future use case scenarios. In fact, a denser infrastructure 2014

is going to decrease the average time mobile users spend 2015

in a specific cell; the directionality of communications in 2016

higher portion of the spectrum will increase the importance 2017

of localization and tracking functionalities; while the increase 2018

of communicating elements and the de-localization of radio 2019

access functionalities are going to impact on channel models 2020

and network resource management. 2021

2) Advantages: The performance of 5G cellular networks 2022

will strongly depend on their knowledge of the exact user 2023

positions (e.g., localization for mm-wave, resource manage- 2024

ment for network function virtualization). As a consequence, 2025

predictive solutions that provide the system with accurate 2026

information about users’ current and future positions, trajecto- 2027

ries, traffic profiles and content request probabilities are likely 2028

to be the most desirable aspects of anticipatory solutions. 2029

For what concerns 5G applications, we believe network 2030

caching and cloud Radio Access Network (RAN) will also 2031



IEE
E P

ro
of

22 IEEE COMMUNICATIONS SURVEYS & TUTORIALS

greatly benefit from this. In fact, the former can exploit2032

prediction to decide which content to store in which specific2033

part of the network to serve a given user profile, while the2034

latter can, for instance, forecast when to instantiate a num-2035

ber of virtual machines to face an increase of the network2036

traffic.2037

3) Challenges: The upcoming 5G technologies will also2038

bring new challenges to the basic mechanisms of anticipatory2039

networking. In particular, we see mm-wave, massive MIMO2040

and cell densification as disruptive technologies for the current2041

methods used for predictive optimization. In this regard, mm-2042

waves channel model is going to impact how to forecast future2043

signal quality and achievable data rates while network densi-2044

fication and massive MIMO will challenge the scalability of2045

prediction techniques due to the sheer size of the information2046

needed to describe and exchange them.2047

B. Mobile Ad Hoc Networks2048

Mobile Ad-hoc Networks (MANET) consist of mobile2049

wireless devices connected to one another without a fixed2050

infrastructure [167]. As a consequence, they share some2051

characteristics with cellular networks but have some unique2052

features due to the variable topology. These networks are the2053

most practical form of communication when an infrastruc-2054

ture is absent or it has been compromised by a disruptive2055

event.2056

1) Characteristics: The dynamic nature of MANETs2057

causes the path between any two nodes to vary over time and2058

require adaptive routing mechanisms that allow, on one hand,2059

to maintain the connectivity among all the network nodes and,2060

on the other hand, to balance the load in the different areas of2061

the network. In addition, adaptive discovery and management2062

functionalities are needed to allow new devices and services to2063

be added to an existing network and to report problems and2064

missing links/nodes. When a MANET extends over an area2065

larger than the communication range of the devices, transmis-2066

sions must be relayed from one node to another in order to2067

allow messages to reach their destinations.2068

2) Advantages: Knowing nodes’ positions in advance and2069

being able to track their trajectories enable advanced routing2070

functionalities: in fact, additional paths can be created before2071

a missing link interrupts a route without waiting for a new2072

discovery procedure to be performed. Also, routing tables can2073

be readily adapted when shorter routes appear. In a similar2074

way, management procedure can be enhanced by knowing in2075

advance the traffic being produced by a given node or area2076

of the network or by forecasting which service is going to be2077

needed in a given part of the network.2078

3) Challenges: The absence of a fixed infrastructure is the2079

main source of challenges that are distinctive of MANETs. For2080

instance, it is not possible to have known databases collect-2081

ing users’ and devices’ information to build prediction models2082

nor centralized optimization services can be provided or they2083

may suffer from delays in delivering solutions and/or informa-2084

tion to the whole network. Moreover, the topology variability2085

makes map-based prediction techniques difficult or impossible2086

to apply.2087

C. Cognitive Radio Networks 2088

CR networks consist of devices that exploit channels that 2089

are unused at specific locations and times [10], but that are 2090

usually allocated to primary users (i.e., users that can legiti- 2091

mately communicate using a given channel). CR devices are 2092

usually referred to as secondary users as their operations must 2093

not interfere with those performed by the primary users. 2094

1) Characteristics: The main distinctive feature of CR 2095

devices is that they need to scan for primary users’ activity 2096

before attempting any communication in order not to dis- 2097

rupt legitimate transmissions. This scanning/sensing activity 2098

decreases the amount of time secondary users’ can spend on 2099

actual communications and, thus, it reduces their throughput. 2100

On the other hand, a CR network is usually able to build 2101

accurate spectrum occupancy models fusing the information 2102

coming from different devices. 2103

2) Advantages: Prediction capabilities are already envi- 2104

sioned for CR networks, in fact, it is easily understandable 2105

that being able to predict when primary users are going 2106

to occupy their channel will decrease the amount of sens- 2107

ing needed to decide when a secondary user is allowed to 2108

transmit. Not only can spectrum occupancy maps be used to 2109

predict the upcoming channel state, but also, content infor- 2110

mation and predictive models available to primary users can 2111

be exploited by secondary users to reduce their interference 2112

probability. Therefore, allowing secondary users to access pri- 2113

mary user information is profitable for both: if CR are able to 2114

improve their throughput by more precisely picking spectrum 2115

holes, primary users will be more protected from secondary 2116

interference. 2117

3) Challenges: Although anticipatory CR can be seen as 2118

symbiotic to primary users, their operations introduce a non 2119

trivial feedback in the resulting system. In fact, those mod- 2120

els that are valid when primary users operate only may be 2121

no longer valid when secondary users contribute. However, 2122

given that those models are usually built using information 2123

about primary users only, it will be impossible with the cur- 2124

rent techniques to create or modify prediction and optimization 2125

solutions that take into consideration secondary users. As such, 2126

the whole anticipatory infrastructure needs to account for CR 2127

in order to allow prediction-based schemes to work for primary 2128

and secondary users. 2129

D. Device-to-Device 2130

D2D communication refers to the use of direct commu- 2131

nication between mobile phones to support the operations 2132

of a cellular network [168]. In addition, since D2D must 2133

not interfere with the regular cellular network operations it 2134

can be seen as secondary users to the main communica- 2135

tions. Therefore, they share characteristics that are specific to 2136

MANETs and CR networks. 2137

1) Characteristics: D2D communications are characterized 2138

by a complex topology where the usual star network overlies 2139

a mesh network. Also, the devices may use different RANs 2140

in the mesh network: for instance they can exploit the same 2141

cellular technology (inband) or other wireless solutions such 2142

as direct-WiFi. 2143
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2) Advantages: Given the similarities to MANETs and2144

CRs, D2D communications can take advantage from antic-2145

ipatory networking mostly to mitigate interference related2146

problems and to improve the resource and power allocation.2147

3) Challenges: While we do not expect D2D communica-2148

tions to pose distinctive challenges to the implementation of2149

anticipatory networking that are not listed in the previous sec-2150

tions, that will make the adoption of current prediction models2151

less straightforward. In fact, prediction-based optimization and2152

other anticipatory schemes will be made more complex due2153

to the possible coexistence of multiple technologies and the2154

primary/secondary interference and interactions, which will2155

require to also predict D2D channels, in addition to primary.2156

E. Internet of Things2157

Nowadays, thanks to the miniaturization and the progressive2158

decrease of computational and communicating chipsets, more2159

and more ordinary objects are being equipped with micro-2160

CPUs and are connected to the Internet [169]–[171]: in such2161

a way smart cities and smart industries, among a variety of2162

other enhanced scenarios, can be realized. The typical device2163

in the Internet-of-Things (IoT) is capable of performing one2164

or a set of measurements and/or actuations on the real world.2165

They are usually constrained in their capabilities: for instance,2166

they can be battery powered or equipped with low data rate2167

radios or their computational power may be limited.2168

1) Characteristics: Due to the wide definition of the enti-2169

ties that populate the IoT, many of its features have been2170

already described in the preceding subsections. For instance,2171

IoT communications often involve D2D aspects, they can be2172

CR if they are able to sense spectrum and they can be consid-2173

ered part of a MANET if they are mobile. However, the most2174

unique features that are only present in IoT devices are that2175

they involve Machine-to-Machine (M2M) type communication2176

and that devices are typically constrained. Moreover, although2177

the number of smart things is expected to grow exponentially2178

in the next decade, their traffic is not going to grow as fast2179

as that, e.g., the one generated by mobile cellular networks.2180

In fact, IoT traffic is expected to be mainly due to monitor-2181

ing, control and detection activities, which are characterized2182

by limited throughput and almost deterministic transmission2183

frequency.2184

2) Advantages: Anticipatory networking and prediction-2185

based optimization can be applied to many aspects of the IoT.2186

For instance, devices that harvest their energy from renew-2187

able sources may predict the source availability and optimize2188

their operations according to that. Furthermore, data prediction2189

models can be used to compress the data produced by devices2190

by sending only the difference from the forecast or the same2191

models can be used to identify anomalies or prevent disruptive2192

events before they can cause serious problems. Finally, due to2193

the almost deterministic periodicity of data production, their2194

communication can be easily modeled and accounted for to2195

mitigate their impact on the overall system.2196

3) Challenges: Scalability is one of the main challenges in2197

IoT. In fact, due to the variety of device types, the difference2198

in their capabilities, requirements and applications, the amount2199

of information needed to represent and model the IoT is huge 2200

and the obtained benefits must more than compensate for the 2201

cost related to its realization. Moreover, the IoT is impacted 2202

by most of the challenges and problems discussed above for 2203

the other network types. 2204

VII. ON THE IMPACT OF ANTICIPATORY NETWORKING 2205

ON THE PROTOCOL STACK 2206

In this section, we address another important aspect of antic- 2207

ipatory networking solutions: where to implement them in the 2208

ISO/OSI protocol stack [172] and which layers contribute to 2209

their realizations. 2210

A. Physical 2211

We do not expect anticipatory networking solutions to mod- 2212

ify how the physical layer is designed and managed. In fact, 2213

in order to apply prediction-based schemes, some form of 2214

interaction is required between two or more entities of the 2215

system. As a consequence, the physical layer, which defines 2216

how information is transferred to bits and wave-form [172], 2217

might provide different profiles to allow for predictive tech- 2218

niques to be applied in the higher layers, but will not directly 2219

implement any of them. 2220

B. Data Link 2221

The data link layer is the first entry point for predictive 2222

solutions. In particular, this layer implements Medium Access 2223

Control (MAC) functionalities. Therefore, resource manage- 2224

ment [42] and admission control [75] procedures are likely to 2225

greatly benefit from anticipatory optimization. Also, we envi- 2226

sion that anticipatory networking to be even more important 2227

in next generation networks: in particular, channel estimation 2228

and beam steering solutions are going to be key for the success 2229

of mm-wave a massive MIMO communications [166]. 2230

C. Network 2231

The network layer contains two of the functionalities 2232

that can benefit the most from prediction: routing and 2233

caching [54], [122]. In fact, by knowing users’ mobility and 2234

traffic in advance it is possible to optimize routes and caching 2235

location to maximize network performance and save resources. 2236

For instance, it is possible to build alternative paths before the 2237

existing ones deteriorate and break and popular contents may 2238

be moved across the network according to where they will be 2239

requested with higher probability. 2240

D. Transport 2241

This layer is mainly concerned with end-to-end message 2242

delivery and the two most popular protocols are TCP and User 2243

Datagram Protocol. (UDP): the former guarantees reliable 2244

communications, while the latter is a lightweight best-effort 2245

solution. Anticipatory networking solutions are easily imple- 2246

mented here [31], [135], in particular, when error correction 2247

and retransmissions are driven by network metrics such as, 2248

among others, Round Trip Time (RTT) and Bit Error Rate 2249

(BER). Prediction models can be used to react to changes in 2250
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the network conditions before they reach a disruptive state and2251

recovery actions have to be taken. In addition, modern trans-2252

port solutions, such as multipath-TCP, can exploit predictive2253

optimization to manage the traffic flows along the different2254

routes and improve the QoS.2255

E. Session, Presentation and Application2256

Since these layers are concerned with connection manage-2257

ment between end-points (session), syntax mapping between2258

different protocols (presentation) and interaction with users2259

and software (application), they are the least preferable to2260

implement anticipatory networking solutions. However, in2261

order to allow applications to exploit predictive mecha-2262

nisms, these three layers will act as a connection point2263

to provide application with the needed context information2264

and to allow them to configure the needed services and2265

parameters for the application requirements. For instance,2266

in Section III-A6 we described geographically-assisted video2267

optimization [62], [77] where mobile phone applications mod-2268

ulated the request video bit rate to optimize the playback of2269

the video itself, or geo-assisted applications [134] that exploits2270

social and contextual information to enhance their services.2271

VIII. ISSUES, CHALLENGES, AND2272

RESEARCH DIRECTIONS2273

We conclude the paper by providing some insights on how2274

anticipatory optimization will enable new 5G use cases and2275

by detailing the open challenges of anticipatory networking in2276

order to be successfully applied in 5G.2277

A. Context Related Analyses2278

1) Geographic Context: Geographic context is essential2279

to achieve seamless service. Depending on the optimization2280

objective, a mobility state can be defined with different gran-2281

ularity in multiple dimensions (location, time, speed, etc.). For2282

example, for handover optimization it is sufficient to predict2283

the staying time in the current serving cell and the next2284

serving cell of the user. Medium to large spatial granular-2285

ity such as cell ID or cell coverage area can be considered2286

as a state, and a trajectory can be characterized by a dis-2287

crete sequence of cell IDs over time. State-space models such2288

as Markov chains, HMM and Kalman filters fit the system2289

modeling, while requiring large training samples and consid-2290

erable insight to make the model compact and tractable. An2291

alternative is the variable-order Markov models, including a2292

variety of lossless compression algorithms (some of the most2293

used belong to Lempel-Ziv family), where Shannon’s entropy2294

measure is identified as a basis for comparing user mobility2295

models. Such an information-theoretic approach enables adap-2296

tive online learning of the model, to reduce update paging2297

cost. Moving from discrete to continuous models, which are2298

applied to assist the prediction of other system metrics with2299

high granularity, e.g., link gain or capacity, regression tech-2300

niques are widely used. To enhance the prediction accuracy, a2301

priori knowledge can be exploited to provide additional con-2302

straints on the content and form of the model, based on street2303

layouts, traffic density, user profiles, etc. However, finding the2304

right trade-off between the model accuracy and complexity is 2305

challenging. An effective solution is to decompose the state 2306

space and to introduce localized models, e.g., to use distinct 2307

models for weekdays and weekends, or urban and rural areas. 2308

Although mobility prediction has been shown to be viable, 2309

it has not been widely adopted in practical systems. This 2310

is because, unlike location-aware applications with users’ 2311

permission to use their location information, mobile ser- 2312

vice providers must not violate the privacy and security of 2313

mobile users. To facilitate the next generation of user-centric 2314

networks, new interaction protocols and platforms need to be 2315

developed for enabling more user-friendly agreements on the 2316

data usage between the service providers and the mobile users. 2317

Furthermore, next generation wireless networks introduce 2318

ultra-dense small cells and high frequencies such as mmWaves. 2319

The transmission range gets shorter and transmission often 2320

occurs in line-of-sight conditions. Thus, 2D geographic con- 2321

text with a coarse level of accuracy is not sufficient to 2322

fully utilize the future radio techniques and resources. This 2323

trend opens the door for new research directions in infer- 2324

ence and prediction of 3D geographic context, by utilizing 2325

advanced feedback from sensors in user equipments such as 2326

accelerometers, magnetometers, and gyroscopes. 2327

2) Link Context: When predicting link context, i.e., channel 2328

quality and its parameters, linear time series models have the 2329

potential to provide the best tradeoff between performance and 2330

complexity. When the channel changes slowly, e.g., because 2331

users are static or pedestrian, it is convenient to exploit the 2332

temporal correlation of historic measurements of the users’ 2333

channel and implement linear auto-regressive prediction. This 2334

can be quite accurate for very short prediction horizons and at 2335

the same time simple enough to be implemented in real time 2336

systems. Kalman filters can also be used to track errors and 2337

their variance, based on previous measurements, thus handling 2338

uncertainties. However, time series and linear models are not 2339

robust to fast changes. Therefore, in high mobility scenarios, 2340

more complex models are needed. One possible approach is 2341

to exploit the spatio-temporal correlation between location and 2342

channel quality. By combining the prediction of the channel 2343

qualities with the prediction of the user’s trajectory, regression 2344

analysis, e.g., SVMs, can be employed to build accurate radio 2345

maps to estimate the long term average channel quality, which 2346

accounts for pathloss and slow fading, but neglects fast fading 2347

variations. Ideally, one should have two predictions available: 2348

a very accurate short term prediction and an approximate long 2349

term prediction. 2350

Usually, such prediction is exploited to optimize the 2351

scheduling, i.e., resource allocation over time or frequency. 2352

Convex and linear optimization are often used when prediction 2353

is assumed to be perfect. In contrast, Markov models are 2354

applied when a probabilistic forecasting is available. Despite 2355

the great benefits that link context can potentially bring to 2356

resource (and more generally network) optimization, today’s 2357

networks do not yet have the proper infrastructure to collect, 2358

share, process and distribute link context. Furthermore, proper 2359

methods are needed not only to gather data from users, but 2360

also, to discard irrelevant or redundant measurements as well 2361

as to handle sparsity or gaps in the collected data. 2362
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3) Traffic Context: Traffic and throughput prediction has a2363

concrete impact on the optimization of different services of2364

different networks at different time scales.2365

Network-wide and for long time scales, linear time series2366

models are already used to predict the macroscopic traffic pat-2367

terns of mobile radio cells for medium/long-term management2368

and optimization of the radio resources. At faster time scales2369

and for specific radio cells or groups of radio cells, the prob-2370

abilistic forecasting of the upcoming traffic, e.g., by using2371

Markovian models, can be exploited to solve short-term prob-2372

lems including the radio resource allocation among users and2373

the cell assignment problem.2374

Throughput prediction tools are then naturally coupled2375

with video streaming services in mobile radio networks2376

which have embedded rate adaptation capabilities. In this2377

context, a good practice is to use simple yet effective look-2378

ahead video throughput predictors based on time windows2379

which are often coupled with clustering approaches to group2380

similar video sessions. Deep learning techniques are also2381

proposed to predict the throughput of video sessions, which2382

offer improved performance at the price of a much higher2383

complexity.2384

The data coming from traffic/throughput prediction can2385

be effectively coupled with application/scenario-specific opti-2386

mization frameworks. When targeting network-wide efficiency,2387

centralized optimization approaches seem to be superior and2388

more widely used. As an example, the problem of radio2389

resource allocation in mobile radio networks is effectively2390

representable and solvable though convex optimization tech-2391

niques in semi-real-time scenario. In contrast, when the2392

optimization has to be performed with the granularity of2393

the technology-specific time slot, sub-optimal heuristics are2394

preferable. Besides resorting to optimization approaches, con-2395

trol theoretic modeling is extremely powerful in all those cases2396

where the optimization objective includes traffic (and queue)2397

stability.2398

4) Social Context: We can conclude that leveraging the2399

social context of data transmission results in gains for proac-2400

tive caching of multimedia content and can improve resource2401

allocation by predicting the social behavior of users. For the2402

former, determining the popularity of content plays a crucial2403

role. Collaborative filtering is a well-known approach for this2404

purpose. However, due to the heavy tail nature of content pop-2405

ularity, trying to use this kind of models for a broad class of2406

content will usually not lead to good results. However, for2407

more specific and limited classes of content, i.e., localized2408

advertisement, where a particular item is likely to be requested2409

by a large number of users, popularity prediction is an appeal-2410

ing solution. In general, proactive caching requires that content2411

is stored on caches close to the edge network in order not to put2412

excessive load on the core network. For optimizing resource2413

allocation using social behavior, the social interaction of dif-2414

ferent users can be used to create social graphs that determine2415

the level of activity of each user and thereby make it possi-2416

ble to predict the amount of resources each user will need.2417

Network utility maximization and heuristic methods are the2418

most popular techniques for this context. Due to the complex-2419

ity of modeling the social behavior of users, they are useful for2420

wireless networks that either expose a great deal of measur- 2421

able social interaction (device-to-device communication, dense 2422

cellular networks with small cells, local wireless networks in 2423

a sports stadium), or when resources are very scarce. 2424

B. Anticipation-Enabled Use Cases 2425

Future networks are envisioned to cater to a large vari- 2426

ety of new services and applications. Broadband access in 2427

dense areas, massive sensor networks, tactile Internet and 2428

ultra-reliable communications are only a few of the use cases 2429

detailed in [173]. The network capabilities of today’s systems 2430

(i.e., 4G systems) are not able to support such requirements. 2431

Therefore, 5G systems will be designed to guarantee an effi- 2432

cient and flexible use (and sharing) of wireless resources, 2433

supported by a native software defined network and/or network 2434

function virtualization architecture [173]. Big data analysis 2435

and context awareness are not only enablers for new value 2436

added services but, combined with the power of anticipatory 2437

optimization, can play a role in the 5G technology. 2438

1) Mobility Management: Network densification will be 2439

used in 5G systems in order to cope with the tremendous 2440

growth of traffic volume. As a drawback, mobility manage- 2441

ment will become more difficult. Additionally, it is foreseen 2442

that mobility in 5G will be on-demand [173], i.e., provided 2443

for and customized to the specific service that needs it. In this 2444

sense, being able to predict the user’s context (e.g., requested 2445

service) and his mobility behavior can be extremely useful in 2446

order to speed up handover procedures and to enable seamless 2447

connectivity. Furthermore, since individual mobility is highly 2448

social, social context and mobility information will be jointly 2449

used to perform predictions for a group of socially related 2450

individuals. 2451

2) Network Sharing: 5G systems will support resource and 2452

network sharing among different stakeholders, e.g., operators, 2453

infrastructure providers, service providers. The effectiveness of 2454

such sharing mechanisms relies on the ability of each player 2455

to predict the evolution of his own network, e.g., expected 2456

network load, anticipated user’s link quality and prediction 2457

of the requested services. Wireless sharing mechanisms can 2458

strongly benefit from the added value provided by anticipation, 2459

especially when prediction is available at fine granularity, e.g., 2460

in a multi-operator scheduler [174]. 2461

3) Extreme Real-Time Communications: Tactile Internet is 2462

only one of the applications that will require a very low latency 2463

(i.e., in the order of some milliseconds). Allocating resources 2464

and guaranteeing such low end-to-end delay will be very chal- 2465

lenging. 5G systems will support such requirements by means 2466

of a new physical layer (e.g., a new air interface). However, 2467

this will not be enough if not combined with context infor- 2468

mation used to prioritize control information (e.g., used to 2469

move virtual or real objects in real time) over content [175]. 2470

Knowledge about the information that is transmitted and its 2471

specific requirements will be crucial in order to assign priori- 2472

ties and meet the expected quality-of-experience in a combined 2473

effort of physical and higher layers. 2474

4) Ultra-Reliable Communications: Reliability is men- 2475

tioned in several 5G white papers, e.g., in [173], as necessary 2476
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prerequisite for lifeline communications and e-health services,2477

e.g., remote surgery. A recent work [176] proposed a quan-2478

tified definition of reliability in wireless access networks. As2479

outlined here, a posteriori evaluation of the achieved reliability2480

is not enough in order to meet the expected target, which in2481

some cases is as high as 99.999%. To this end, it is mandatory2482

to design resource allocation mechanisms that account for (and2483

are able to anticipate the impact on) reliability in advance.2484

C. Open Challenges2485

While the literature surveyed so far clearly points out how2486

anticipatory networking can enhance current networks, this2487

section discusses several problems that need to be solved for2488

its wider adoption. In particular, we identified four function-2489

alities that are going to play an important role in the adoption2490

of anticipatory networking in 5G networks:2491

• Measurements and information collection: in order to2492

provide means to obtain and share context information,2493

future networks need to provide trusted mechanisms to2494

manage the information exchange.2495

• Data analysis and prediction: information databases2496

need interoperable procedures to make sure that process-2497

ing and forecasting tools are usable with many possible2498

information sources .2499

• Optimization and decision making: data and procedures2500

are then exploited to derive system management policies.2501

• Execution: finally, in contrast to current procedures,2502

anticipatory execution engines need to take into account2503

the impact of the decisions made in the past and re-2504

evaluate their costs and rewards in hindsight of the actual2505

evolution of the system.2506

For instance, scheduling and load balancing are two processes2507

that greatly profit from anticipatory networking and cannot2508

be realized without a comprehensive integration of the four2509

aforementioned functionalities in future generation networks.2510

The realization of these functionalities poses the following2511

important challenges.2512

1) Privacy and Security: In our opinion, one of the main2513

hindrances for anticipatory networking to become part of next2514

generation networks is related to how users feel about shar-2515

ing data and being profiled. While voluntarily sharing personal2516

information has become a daily habit, many disapprove that2517

companies create profiles using their data [177]. In a sim-2518

ilar way, there might be a strong resistance against a new2519

technology that, even though in an anonymous way, collects2520

and analyzes users’ behavior to anticipate users’ decisions.2521

Standards and procedures need to be studied to enforce users’2522

privacy, data anonymity and an adequate security level for2523

information storage. In addition, data ownership and control2524

need to be defined and regulated in order to allow users and2525

providers to interact in a trusted environment, where the for-2526

mer can decide the level of information disclosure and the2527

latter can operate within shared agreements.2528

2) Network Functions and Interfaces: Many of the appli-2529

cations that are likely to benefit from anticipatory networking2530

capabilities (i.e., decision making and execution) require2531

unprecedented interactions among information producers,2532

analyzers and consumers. A simple example is provided 2533

by predictive media streaming optimizers, which need to 2534

obtain content information from the related database and 2535

user streaming information from the user and/or the network 2536

operator. This information is then analyzed and fed to a 2537

streaming provider that optimizes its service accordingly. 2538

While ad hoc services can be realized exploiting the current 2539

networking functionalities, next generation applications, such 2540

as the extreme real-time communications mentioned above, 2541

will greatly benefit from a tighter coupling between context 2542

information and communication interfaces. We believe that the 2543

potential of anticipatory functionalities can be used in commu- 2544

nication system and they could be applied to other domains, 2545

such as public transportation and smart city management. 2546

3) Next Generation Architecture: 5G networks are cur- 2547

rently being discussed and, while much attention is paid to 2548

increasing the network capacity and virtualizing the network 2549

functions, we believe that the current infrastructure should be 2550

enhanced with repositories for context information and appli- 2551

cation profiles [178] to assist the realization of novel predictive 2552

applications. As per the previous concerns above, sharing sen- 2553

sible information, even in an anonymized way, will require 2554

particular care in terms of users’ privacy and database accessi- 2555

bility. We believe that anticipatory networking can potentially 2556

improve every kind of mobile networks: cellular networks will 2557

likely be the first to exploit this paradigm, because they already 2558

own the information needed to enable the predictive frame- 2559

works and it is only a matter of time and regulations to make it 2560

a reality. Once it will be integrated in cellular networks, other 2561

systems, such as public WiFi deployments, device-to-device 2562

solutions and the Internet of Things, will be able to partici- 2563

pate in the infrastructure to exploit forecasting functionalities; 2564

in particular, we believe this will be applied to smart cities 2565

and multi-modal transportation. 2566

4) Impact of Prediction Errors: When making and using 2567

predictions, one should carefully estimate its accuracy, which 2568

is itself a challenge. It might be potentially more harmful to 2569

use a wrong prediction than not using prediction at all. Usually, 2570

a good accuracy can be obtained for a short prediction horizon, 2571

which, however, should not be too short, otherwise the opti- 2572

mization algorithms cannot benefit from it. Therefore, a good 2573

balance between prediction horizon and accuracy must be 2574

found in order to provide gains. In contrast, over medium/long 2575

term periods, metrics can usually be predicted in terms of sta- 2576

tistical behavior only. Furthermore, to build robust algorithms 2577

that are able to deal with uncertainties, proper prediction error 2578

models should be derived. In the existing literature, uncertain- 2579

ties are mainly modeled as Gaussian random variables. Despite 2580

the practicability of such an assumption, more complex error 2581

models should be derived to take into account the source (e.g., 2582

location and/or channel quality) as well as the cause (e.g., GPS 2583

accuracy and/or fast fading effect) of errors. 2584

IX. CONCLUSION 2585

This survey analyzed the literature on anticipatory 2586

networking for mobile networks. We provided a thorough anal- 2587

ysis of application scenarios categorized by the contextual 2588
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information used to build the predictive framework. The most2589

relevant prediction and optimization techniques adopted in the2590

literature have been described and commented in two hand-2591

books that have the twofold objective of supporting researchers2592

to advance in the field and providing standardization and2593

regulation bodies with a common ground on anticipatory2594

networking solutions. While the core of this survey is devoted2595

to mobile cellular networks, we also analyzed applicability2596

and advantages of anticipatory networking solution to other2597

types of wireless networks and at the different layers of2598

the protocol stack. Finally, we analyzed benefits and dis-2599

advantages of the proposed solutions, the most promising2600

application scenarios for 5G networks, and the challenges2601

that are yet to be faced to adopt anticipatory networking2602

paradigms.2603

To conclude, while the literature reviewed in this works sug-2604

gests that anticipatory networking is a quite mature approach2605

to improve the performance of mobile networks, we believe2606

that issues (mainly at the system level) still need to be solved2607

to realize its potential. In particular, most of the work which2608

has been evaluated in this survey tends to focus on the ben-2609

efit of anticipation, while overlooking possible problems and2610

disadvantages in the anticipatory networking framework.2611

All the main components of anticipatory networking, the2612

context database and the prediction/anticipation intelligence,2613

must be effectively integrated into the mobile network archi-2614

tecture which poses challenges at different levels. First, new2615

interfaces and communication paradigms must be defined for2616

data collection from both end users and sources external to2617

the mobile network itself; second, the management of the con-2618

text databases brings an additional burden in terms of required2619

bandwidth and processing power for several network elements2620

which may lead to scalability issues as well as security and pri-2621

vacy concerns. To this extent, a thorough and comprehensive2622

cost-benefit analysis for specific anticipatory networking sce-2623

narios is, in our opinion, a required next step for the research2624

in the field.2625

X. LIST OF ACRONYMS2626

ANN Artificial Neural Network2627

AR AutoRegressive2628

ARIMA AutoRegressive Integrated and Moving Average2629

ARMA AutoRegressive and Moving Average2630

ATM Asynchronous Transfer Mode2631

BER Bit Error Rate2632

CCN Content Centric Network2633

CF Collaborative Filtering2634

ConvOpt Convex Optimization2635

CR Cognitive Radio2636

CSI Channel State Information2637

CTM Continuous Time Markov2638

CTMC Continuous Time Markov Chain2639

D2D device-to-device2640

DASH Dynamic Adaptive Streaming over HTTP2641

DTMC Discrete Time Markov Chain2642

ELM Extreme Learning Machine2643

FTP File Transfer Protocol2644

GARCH Generalized AutoRegressive Conditionally 2645

Heteroskedastic 2646

GP Gaussian Process 2647

GPS Global Positioning System 2648

HMM Hidden Markov Models 2649

HTTP Hypertext Transfer Protocol 2650

ID identity 2651

ILP Integer Linear Programming 2652

IoT Internet-of-Things 2653

KKF Kriged Kalman Filter 2654

LTE Long Term Evolution 2655

LP Linear Programming 2656

LZ Lempel-Ziv 2657

M2M Machine-to-Machine 2658

MA Moving Average 2659

MAC Medium Access Control 2660

MANET Mobile Ad-hoc Networks 2661

MC Markov Chain 2662

MILP Mixed-Integer Linear Programming 2663

MNLP Mixed Non-Linear Program 2664

MPC Model Predictive Control 2665

MDP Markov Decision Process 2666

PF Proportionally Fair 2667

QoE Quality-of-Experience 2668

QoS Quality-of-Service 2669

RAN Radio Access Network 2670

REM Radio Environment Map 2671

RTT Round Trip Time 2672

SVM Support Vector Machine 2673

TCP Transmission Control Protocol 2674

TCP Transport Control Protocol 2675

UDP User Datagram Protocol. 2676
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