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Abstract. The first step that is required to extract the correct information from a two-
dimensional (2D) diffraction signature is to remove the background accurately. However, 
direct background subtraction inevitably overcorrects the signal as it does not take into 
account the attenuation by the sample. Other traditional background removal methods, such 
as the rolling ball technique, can separate sharp diffraction peaks of crystalline materials from 
their background. These methods are unsuitable for biological tissue, which is amorphous and 
does not have sharp diffraction peaks. This technical note proposes a novel method that 
combines peak fitting and experimental results to estimate the background for 2D XRD 
signals.  

 
                               Keywords: X-ray diffraction, background removal, 2D XRD 
                               PACS: 87.59.-e       X-ray imaging 

                Submitted to Physics in Medicine and Biology 
 

 

1. Introduction 
X-ray diffraction (XRD) has long been used for crystalline material characterisation because it 

reveals atomic and sub-atomic structure. It can also be used for biological tissue classification (Lewis et 

al 2003; Petsche and Pinsky 2013; Theodorakou and Farquharson 2009), especially breast tissue 

classification (Pani et al 2010; Sidhu et al 2011). In a two-dimensional (2D) XRD measurement, the 

background consists of the primary X-ray beam and scattering from the equipment, rather than the 

sample, and needs to be removed to reveal the XRD signal (Bohndiek et al 2008; Chaparian et al 2010; 

O’Flynn et al 2013; Poulsen 2004).  

 
Figure 1. Schematic of the rolling ball algorithm 
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For crystalline material, the background can be removed by using a ‘rolling ball’ algorithm  

(Sternberg 1983). This algorithm as demonstrated in figure 1, can be understood as pressing and rolling 

a virtual ‘ball’ from underneath the intensity surface of the XRD pattern: the background is the highest 

point that is reached by the ‘ball’ at each pixel. The algorithm can remove the amorphous signal in a 

XRD pattern in order to extract the diffraction signal of crystalline material (He 2009), but it cannot be 

used to remove the background from the diffraction of an amorphous material. Instead of being a sharp 

peak as the XRD signal of a crystal, the diffraction signal of an amorphous material is blurred into a 

wide range of angles due to the lack of long range order. Since this traditional method, the ‘rolling ball’ 

algorithm, is designed to remove any small change in gradient, but to keep the large one, the broad peak 

from an amorphous material will be identified by the algorithm as part of the background and thus 

removed.  

Direct subtraction is a common method for background removal for amorphous material. The 

background image is an X-ray image from the system without the presence of the sample. In order to 

better distinguish the background image from the real background signal, from here on, the background 

image obtained by this method is called a flat image in this paper. By subtracting this flat image, the 

true 2D XRD signal can be extracted (Bohndiek 2008, O’Flynn 2013). However, this method of 

estimating the background level is only suitable if we can ignore the attenuation of the X-ray beam by 

the sample (Poulsen 2004). In other words, this only applies to a very thin and light sample, such as 

thin film.  

Without a beam-stop in the experimental setup, the flat image contains the primary X-ray beam 

and scattering from the equipment (Bohndiek 2008; Sampath et al 2012). The primary beam is 

attenuated by the sample, and thus a direct subtraction is not suitable if the sample thickness is not 

negligible. One approach to correcting for this would be to divide the flat image by a single attenuation 

correction factor. However, as Compton scattered photons have lower energy at a larger scatter angle, 

the attenuation correction of the flat image should not be a single value but should have angular 

dependence. Even with a beam-stop, scatter from the equipment can still bypass the beam-stop as it is 

coming from various angles due to multiple scattering. This effect becomes even more severe when the 

apertures of the collimators are larger as this allows X-rays (both primary and scattering) to pass 

through from a wider range of angles. When using an X-ray lab source, to increase the intensity of the 

XRD signal, often, a large collimator aperture is chosen to allow high X-ray intensity.   

In conclusion, for clinical use of XRD, a large collimator and thick sample is inevitable, and so a 

direct subtraction of the flat image cannot accurately correct the XRD single. Therefore, the first task to 

make XRD tissue diffraction suitable for clinical use is to develop a method that will remove this 

background signal for thick samples and large collimator apertures.  

 

2. Methods and results 

 

2.1 Experimental method for estimating the background signal 



 
(a)                                                                                                  (b) 

Figure 2. (a) The schematic of the experimental setup, a1= 1.0 mm, a2= 1.2 mm, d1=39 mm, d2= 12 mm, d3=2 mm, d4=106.5 

mm; (b) Position of the sample proposed in this paper to produce the true background signal. 

 

The experimental setup is as shown in figure 2(a). The X-ray source for this work is a 

Molybdenum source at 30 kVp with a 0.3 mm thick Molybdenum filter. The detector is a wafer-scale 

CMOS APS sensor coupled to a 150 µm thick CsI: TI scintillator (Konstantinidis et al 2012, Zhao et al 

2015) The sample is a 6 mm thickness of Perspex. This has a similar diffraction pattern to healthy 

breast tissue, and thus can be used as a tissue equivalent material for testing X-ray diffraction systems 

for breast tissue (Chaparian et al 2012; Zheng et al 2015). The incident beam collimation is made up of 

two apertures, called the source collimator and sample collimator in this work. The 2D XRD patterns 

were then reduced to a 1D XRD signal by averaging the 2D images radially from the center of the 2D 

XRD patterns, while this center was manually selected. As shown in figure 3, the values of the pixels 

which have the same distance from the center were averaged, which can then give a diffraction pattern 

as a function of the distance from the center (r). By combining the geometry of the experimental setup, 

we can then calculate the scatter angle. 

  
Figure 3. Schematic of the radial averaging process 

 

The radially averaged XRD profile is defined as 𝐼𝐼𝑠𝑠, while the radial profile of the flat image 

(obtained without the sample present) is represented as 𝐼𝐼𝑓𝑓  in this work. Traditionally, for a small 

sample, the XRD signal of a material can be obtained by finding 𝐼𝐼𝑠𝑠 - 𝐼𝐼𝑓𝑓. In this paper, we propose to 

place the sample between the two collimators (as shown in figure 2 (b)) and record the resulting image, 

Ibs as a replacement to If , the flat image. The values of 𝐼𝐼𝑠𝑠, 𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑏𝑏𝑠𝑠 are shown in figure 2(a). The result 



of 𝐼𝐼𝑠𝑠  - 𝐼𝐼𝑓𝑓  was noisy. Therefore, we smoothed the results using the moving average method with a 

window of 5 and plotted it in figure 4 (b).  

 
 

(a)                                                                     (b) 

Figure 4. The values of (a) 𝐼𝐼𝑠𝑠, 𝐼𝐼𝑓𝑓 and Ibs and (b) their subtraction (800 data points). The subtraction results (in grey) were compared to the 

diffraction profile of Perspex (in black) measured by Chaparian et al (2012). 

 

As can be seen in figure 4 (a), 𝐼𝐼𝑓𝑓 has a higher intensity than 𝐼𝐼𝑠𝑠 at scatter angles smaller than 6.5˚. 

This is caused by attenuation of the beam by the sample, reducing 𝐼𝐼𝑠𝑠. It can be seen from figure 4 (b) 

that subtracting the flat image directly (𝐼𝐼𝑠𝑠 − 𝐼𝐼𝑓𝑓) overcorrects the signal and results in a reduction in the 

diffraction peak at small angles, while subtracting 𝐼𝐼𝑏𝑏𝑠𝑠 produces a XRD profile that is similar to the 

diffraction profile measured by Chaparian et al. (2012). 

 
Figure 5. The ratio 𝐼𝐼𝑓𝑓  / 𝐼𝐼𝑏𝑏𝑠𝑠  as a function of the scatter angle. This ratio is 

equal to 1/𝑅𝑅(𝜃𝜃).   𝑅𝑅(𝜃𝜃)  represents the geometric transmission correction 

factor. 

 

The X-ray focal spot usually has a Gaussian (or double-Gaussian) shape. Thus, the pinhole image 

of the X-ray source also has a Gaussian distribution. As 𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑏𝑏𝑠𝑠  can be understood as the radial 

average profiles of pinhole images, they can be approximate to a Gaussian distribution.  Therefore, 

their quotient can also be approximate to a Gaussian distribution. To investigate the difference between 



𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑏𝑏𝑠𝑠, the ratio of 𝐼𝐼𝑓𝑓 to 𝐼𝐼𝑏𝑏𝑠𝑠 is plotted in figure 5 with a Gaussian fit to the data points. The fitting 

was done in Matlab by limiting the range of the fitting parameters so that in the following equation, a is 

between 0.5 to 1, b is between -0.01 and 0.01 and c is large than 0.  

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑒𝑒−
(𝑥𝑥−𝑏𝑏)2

2𝑐𝑐2                            (1) 

 

We define 1/𝑅𝑅(𝜃𝜃) as If/Ibs. The ratio 1/ 𝑅𝑅(𝜃𝜃) reflects the attenuation of the primary beam by the 

sample at each scatter angle. If this ratio is constant, it means that the attenuation of the primary beam 

is the same at different scatter angles. This is not true as scattering has angular dependence. Because 

this ratio is not constant, we cannot simply use 𝐼𝐼𝑓𝑓 multiplied by the transmission factor to correct the 

data. The transmission factor is given by 𝑒𝑒−𝜇𝜇𝜇𝜇, where μ is the attenuation coefficient of the sample and 

d is the path length of the X-ray beam. As the scatter angle increases, the ratio 1/𝑅𝑅(𝜃𝜃) decreases. This 

means that the beam is attenuated more at smaller scatter angles. One possible explanation could be that 

at small angle, the distribution of multiple scattering follows a Gaussian distribution in a forward 

direction (Podgorsak 2016). These scattering photos will have reduced energy compared to the original 

incident photons, thus can be easier absorbed by the samples. In summary, by representing 𝑅𝑅(𝜃𝜃) as 

𝐼𝐼𝑏𝑏𝑠𝑠(𝜃𝜃)/𝐼𝐼𝑓𝑓(𝜃𝜃), the true XRD signal 𝐼𝐼(𝜃𝜃) can be represented as: 

𝐼𝐼(𝜃𝜃) = 𝐼𝐼𝑠𝑠(𝜃𝜃)− 𝐼𝐼𝑏𝑏𝑠𝑠(𝜃𝜃) = 𝐼𝐼𝑠𝑠(𝜃𝜃) − 𝑅𝑅(𝜃𝜃)𝐼𝐼𝑓𝑓(𝜃𝜃)                                       (2) 

 

This method requires imaging the sample twice, which results in a doubling of the radiation dose. 

To increase the clinical potential of XRD, we would like to reduce radiation dose as low as possible. 

Therefore, an alternative method is described in the following section that estimates the geometric 

transmission correction factor  𝑅𝑅(𝜃𝜃)  based on 𝐼𝐼𝑠𝑠  and 𝐼𝐼𝑓𝑓 . The true background signal can then be 

calculated from 𝑅𝑅(𝜃𝜃)𝐼𝐼𝑓𝑓(𝜃𝜃). 

 

2.2 Combination of computational and experimental methods 

 

As shown in figure 4(a), 𝐼𝐼𝑠𝑠 and 𝐼𝐼𝑏𝑏𝑠𝑠 have similar values at low scatter angles (< 3˚) and large 

angles (>22˚). We will define the geometric transmission correction factor, 1/𝑅𝑅′(𝜃𝜃), as equal to the 

Gaussian fit of 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑠𝑠(𝜃𝜃) for θ< 3˚ or θ >22˚. In figure 6(a), 1/𝑅𝑅′(𝜃𝜃) is equal to 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑠𝑠(𝜃𝜃) while 

𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑏𝑏𝑠𝑠(𝜃𝜃)=1/𝑅𝑅(𝜃𝜃). The results of using this estimated correction factor 1/𝑅𝑅′(𝜃𝜃) to correct the 

background 𝐼𝐼𝑓𝑓 are shown in figure 6 (b). As can be seen from the figure, this method provides a result 

that is identical (p < 0.01) to the one obtained when directly measuring the background signal (𝐼𝐼𝑏𝑏𝑠𝑠).  



 
(a)                                                                                                          (b) 

Figure 6. (a) Comparison of fitting curve (1/𝑅𝑅(𝜃𝜃)) (obtained from 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑏𝑏𝑠𝑠(𝜃𝜃)) to the fitting 

curve (1/𝑅𝑅′(𝜃𝜃)) (obtained from 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑠𝑠(𝜃𝜃)) at scatter angles below 3˚ and above 22˚. A Gaussian 

function (as in (1)) was fitted to the partial data for 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑠𝑠(𝜃𝜃), where the scatter angle is less than 

3˚ and larger than 20˚ in order to avoid the diffraction signal. The fitting curve of 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑠𝑠(𝜃𝜃) that 

was applied to these parts of the data is identical to the fitting curve of 𝐼𝐼𝑓𝑓(𝜃𝜃)/𝐼𝐼𝑏𝑏𝑠𝑠(𝜃𝜃). Therefore, the 

transmission correction factor can be estimated by using the XRD pattern 𝐼𝐼𝑠𝑠(𝜃𝜃) and flat image 𝐼𝐼𝑓𝑓(𝜃𝜃) 

only. (b) Comparison of the diffraction patterns of Perspex when the adjusted flat background 

image is being subtracted. 

 

This second method for estimating the background signal can also be used to correct the 

fluctuation of the X-ray flux. The output of the X-ray source is proportional to 𝐼𝐼𝑠𝑠  at low angles. 

Therefore, by using this method, we can also normalize the signal to reduce the influence of X-ray 

source fluctuations. As shown in figure 7, the three measurements of the XRD profile of Perspex 

differed from each other before this correction method was used. This difference disappeared after the 

flat image was adjusted. In figure 7 (a), the XRD signal at scatter angles of less than 6˚ has negative 

values, as the background signal (raw flat image) being subtracted has a higher intensity than the XRD 

signal. The diffraction peak at the lower scatter angle was restored by subtracting the corrected flat 

image. It can also be seen that the peak at larger scatter angle (15˚) in figure 7 (b) has a higher intensity 

compared to the results before correction was made in figure 7 (a) 

 

 

 



 
 

(a)                                                                          (b) 

Figure 7. XRD profiles of Perspex. (a) The XRD data of Perspex, subtracting the flat image  𝐼𝐼𝑓𝑓(𝜃𝜃), and 

(b) XRD data of Perspex, subtracting the adjusted flat image 𝑅𝑅(𝜃𝜃)𝐼𝐼𝑓𝑓(𝜃𝜃).  

 
(a)                                                                                (b) 

Figure 8. XRD pattern of other materials.  (a) The XRD patterns from samples of 6 mm thickness of 

caffeine, cellulose and paracetamol, subtracting the flat image  𝐼𝐼𝑓𝑓(𝜃𝜃), and (b) XRD data subtracting the 

adjusted flat image 𝑅𝑅(𝜃𝜃)𝐼𝐼𝑓𝑓(𝜃𝜃). 

 

This correction method can also be used for other materials. Figure 8 shows the diffraction 

patterns of 6 mm Caffeine, Cellulose and Paracetamol samples. Notice that these three materials have 

crystalline structure, but when they are in a powder form in a XRD system with polyenergetic radiation, 

the blurring due to the limit of angular and energy resolutions of the system make the XRD pattern 

more similar to one from an amorphous material, which makes them suitable to demonstrate an 

application of the proposed correction method.  

 
(a)                                                                                    (b) 

Figure 9. XRD profiles of Perspex with different thickness: (a) without and (b) with attenuation correction  



To investigate whether this correction method can also be used in different thickness of Perspex, 

same Perspex sample of three thickness (6, 12 and 18 mm) were imaged. Their diffraction patterns are 

extracted and plotted in figure 9 (a). The thickness of the sample will influence: (1) the total attenuation 

(including photoelectric absorption, Compton scatter and coherent scatter) of the signal; (2) the amount 

of coherent scatter. These two factors have opposite effects on the XRD signal intensity. A thicker 

sample creates more attenuation, which results in a reduction of intensity. However, an increase in 

thickness means an increase in the material that produces coherent scatter, which causes an increase in 

the coherent scatter intensity. As we can see from figure 8 (a), for these three samples, the decrease of 

coherent scatter signal due to the decrease of thickness outweighs the reduction of attenuation. This can 

be corrected by using the following equation: 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎(𝐸𝐸) = 𝑒𝑒−𝜇𝜇(𝐸𝐸)𝑎𝑎 × (1 − 𝑒𝑒−𝜇𝜇𝑐𝑐𝑐𝑐ℎ(𝐸𝐸)𝑎𝑎)                                            (3) 

where 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎(𝐸𝐸) is the correction factor for photon with energy E, 𝜇𝜇  refers to the linear attenuation 

coefficient of the material, t is the thickness of the sample and 𝜇𝜇𝑐𝑐𝑐𝑐ℎ  is the linear coherent scatter 

coefficient.  

As the energy spectrum in the experiment is dominant by Mo Kα line with a narrow width, the 

energy of Mo Kα (17.4 keV) can be used to calculate the correction factor 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎. As shown in figure 9 

(b), after dividing the ADXRD signal by the correction factors, the XRD patterns become very similar. 

The difference of the XRD profiles after correction in figure 9 (b) could due to either beam hardening: 

the thicker the sample, the higher energy of the X-rays beam passing through the sample or system 

error in different measurements.  
 

3. Summary 

 

This paper proposes two methods to remove the background for XRD signal from a large sample (more 

than 3 mm) using a laboratory X-ray source (when a large collimator aperture is required). These two 

methods not only benefit the clinical use of XRD for cancer diagnosis, but can also be applied to 

extracting the XRD signal from bulk materials, such as those used for security screening. Both of these 

methods show agreement on the same data set. However, the second method has advantages in that: 1) 

it does not require the sample to be irradiated twice and 2) it can also reduce the influence of 

fluctuations between the acquisition of the flat field and that of the actual diffraction data in the 

radiation source beam intensity.  
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