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Abstract 

Despite a very large number of bacterial exopolysaccharides have been reported, detailed knowledge 

on their molecular structures and associative interactions with proteins is lacking. Small-angle X-ray 

scattering, dynamic light scattering  and analytical ultracentrifugation (AUC) were used to characterize 

the interactions of six lactic acid bacterial heteroexopolysaccharides (HePS-1–HePS-6) with β-

lactoglobulin (BLG). Compared to free HePSs, a large increase in the X-ray radius of gyration RG, 

maximum length L and hydrodynamic diameter dH of HePS-1–HePS-4 mixed with BLG revealed 

strong aggregation, the extent of which depended on the compact conformation and degree of 

branching of these HePSs. No  significant effects were observed with HePS-5 and HePS-6. Turbidity 

and AUC analyses showed that both soluble and insoluble BLG–HePS complexes were formed. The 

findings provide new insights into the role of molecular structures in associative interactions between 

HePSs and BLG which has relevance for various industrial applications. 

 

 

Keywords: β-lactoglobulin, heteroexopolysaccharides; aggregation; small-angle X-ray scattering; 

dynamic light scattering; analytical ultracentrifugation. 

Abbreviations: AUC, analytical ultracentrifugation; BLG, β-lactoglobulin; BMM, basal minimum 

medium; DLS, dynamic light scattering; EPS, exopolysaccharide; HePS, heteroexopolysaccharide; 

HoPS, homoexopolysaccharide; LAB, lactic acid bacteria; SAXS, small-angle X-ray scattering; SEC, 

size-exclusion chromatography; TCA, trichloroacetic acid. 
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1. Introduction 

Exopolysaccharides (EPSs) are extracellular carbohydrate biopolymers produced and secreted by a 

wide range of microorganisms including yeasts, molds, microalgae and bacteria [1–4].
 
EPSs produced 

by lactic acid bacteria (LAB) have wide diversity in structure, molecular mass, monosaccharide 

composition and glycosidic linkages, which confers unique physical properties [5–7]. LAB EPSs occur 

as homoexopolysaccharides (HoPSs) consisting of a single type of monosaccharide residues or as 

heteroexopolysaccharides (HePSs) that contain different monosaccharides forming repeat units [6,8]. 

Both HoPSs and HePSs are branched or unbranched complex biopolymers [6,9]. In their natural 

environment, LAB EPSs are believed to protect microbial cells against desiccation, phagocytosis, 

antibiotics and environmental stress, and they are also involved in adhesion to solid surfaces, biofilm 

formation and cell recognition [10–13].  

Nowadays, there is increasing interest in industrially applicable biopolymers, and bacterial EPSs 

have significant commercial application in the food and pharmaceutical industry due to their  

technological functionality and GRAS (“generally regarded as safe”) status [4,6]. In the food industry, 

LAB HePSs are mostly used to improve the physical stability and rheological properties of fermented 

dairy products [4,12,14]. The mechanism of how bacterial HePSs interacts with and influence the 

properties of milk proteins is poorly understood, but it is presumably associated with the specific 

structural characteristics of a given HePS (monosaccharide composition, molecular weight, degree of 

branching, nature of glycosidic linkages, charge and chain stiffness) as well as the ability to interact 

with proteins at low pH [15–18]. The functional and rheological properties of HePSs are related to their 

water-binding capacity and their molecular interactions with proteins [19,20], and these can be related 

to syneresis, viscosity, stiffness, body firmness, creaminess and a shiny surface of fermented dairy 

products [21]. Ayala-Hernández et al. have shown that the HePS from Lactococcus lactis ssp. cremoris 
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JFR1 forms a network with heat-aggregated whey proteins at low pH [22]. Surface plasmon resonance 

studies have shown that the binding capability of HoPSs with milk proteins varies according to the type 

of glycosidic linkage, degree of branching and molecular size, and that the binding decreased with 

increasing pH from 4.0 to 5.5 [23,24]. Bacterial EPSs have also been used as thickener and suspension 

stabilizer in many pharmaceutical creams and suspensions, and more recently as a potential drug 

delivery system [3,25,26]. 

EPSs extracted from bacterial sources have many advantages over plant, algal and animal 

polysaccharides, since their production can take place in a controlled and reproducible environment 

with high purity and viable economic cost value [27–29]. In the present study, we characterized six 

structurally different purified LAB HePSs (HePS-1–HePS-6) from Lactobacillus delbrueckii ssp. 

bulgaricus NCIMB 702483 [30], Lactobacillus rhamnosus GG (ATCC 53103) [31], Lactobacillus 

casei LB31 [32], Lactococcus lactis ssp. lactis CNRZ 371 [33], Streptococcus thermophilus EU20
 
[34] 

and Streptococcus thermophilus RD534 [35], respectively and measured their interactions with β-

lactoglobulin (BLG) using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and 

analytical ultracentrifugation (AUC). These methods are well developed and have previously been used 

to examine solution structures of HePSs [36], structural evolution of metastable protein aggregates 

[37], heat- and salt-induced aggregation of BLG [38,39], as well as zinc- and polyanion-induced self-

association of complement factor H [40,41]. The present data provide novel information on associative 

interactions between a collection of structure-determined HePSs and BLG. 

 

2. Materials and methods  

2.1. Production, purification and quantification of HePSs  
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HePS-1, HePS-2 and HePS-5 were produced in 10% skimmed milk medium by Lactobacillus 

delbrueckii ssp. bulgaricus NCIMB 702483 (NCIMB, Aberdeen, Scotland, United Kingdom), 

Lactobacillus rhamnosus GG (ATCC 53103) (ATCC, Manassas, VA, USA) and Streptococcus 

thermophilus EU20 (kind gift of Prof. Luc De Vuyst, Vrije Universiteit Brussels, Belgium), 

respectively, and were purified from the culture medium as we have described previously [36].  

HePS-3 was produced in basal minimum medium (BMM) by Lactobacillus casei LB31 (kind gift of 

Dr. C. P. Champagne, Saint-Hyacinthe RDC, AAFC, Saint-Hyacinthe, QC, Canada) and was purified 

as described previously
 
[42] with some modifications. Briefly, BMM containing glucose and lactose as 

carbon sources, was inoculated at an OD600 of 0.05, and the culture was grown in a fermentor under 

constant stirring at 150 rpm without aeration. The pH was controlled at 6.0 by 7 N NH4OH. To 

inactivate enzymes, the culture was heated in the fermentor at 90°C for 15 min under stirring, and after 

cooling, the cells were removed by centrifugation. If necessary, the supernatant was filtered under 

vacuum (Whatman #41 filter; Fisher Scientific, Ottawa, ON, Canada). After concentrating the solution 

(Amicon DC10L ultrafiltration system equipped with a Romicon PM100 membrane cartridge; 

Qualtech, Saint-Hyacinthe, QC, Canada), the HePS was precipitated by three volumes of ethanol at 

4°C overnight. The pellet collected by centrifugation was dissolved in deionized water, dialyzed and 

freeze-dried. Trichloroacetic acid (TCA, 10% (w/v)) was added to the freeze-dried powder to 

precipitate proteins. After centrifugation (15,800g at room temperature), the supernatant was dialyzed, 

filtered if necessary (Millipore Express Plus 0.22-μm filter; Fisher Scientific) under vacuum and 

freeze-dried. 

HePS-4 was produced by Lactococcus lactis ssp. lactis CNRZ 371 obtained from INRA (Rennes, 

France) culture collection grown in 10% skimmed milk, inoculated at an OD600 of 0.05 for 24 h at 30°C 

under aerobic conditions without stirring. After homogenization of the culture by vigorous agitation 
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followed by enzyme inactivation as described above, cells and proteins were removed by stirring with 

TCA (final concentration 20% (w/v)) for 20 min at R.T. After centrifugation and filtration (if 

necessary), crude HePS was precipitated with one volume of acetone at 4°C overnight, centrifuged, 

dissolved in deionized water, and the solution was extracted twice with one volume of 

phenol/chloroform/isoamyl alcohol 25:24:1 and once with one volume of chloroform/isoamyl alcohol 

24:1. After acetone precipitation and centrifugation as described above, the purified HePS was 

dissolved in deionized water, dialyzed, filtered (if necessary) and freeze-dried. 

HePS-6 was produced by Streptococcus thermophilus RD534 obtained from Danisco [35]. Isolation 

of HePS-6 was done as for HePS-3 followed by gel filtration (Sephacryl S-400, XK26-100 column; GE 

Healthcare, Uppsala, Sweden). Elution was performed with 50 mM NH4HCO3 at a flow rate of 1.3 

ml/min (Knauer Smartline system equipped with a differential refractometer model RI 2300 and an 

ultraviolet detector model 2600; Knauer, Berlin, Germany). Fractions corresponding to a positive 

refractive index peak with no absorption at 280 and 254 nm were pooled and freeze dried. 

HePS was quantified using the phenol–sulfuric acid method and monosaccharide mixtures 

corresponding to the composition of the various repeat units as standards [43]. 

2.2. Sample preparation 

BLG (6 mg/ml) was dissolved in milliQ water by stirring (150 rpm, overnight, R.T.). The solution was 

centrifuged (12,000g, 20 min, 20°C), filtered (0.22 μm syringe filter; Frisenette ApS, Knebel, 

Denmark) and the concentration was measured at 280 nm using a molar extinction coefficient ɛ = 

17,600 M
−1

·cm
−1 

[44]. HePSs (23 mg/ml) were dissolved in milliQ water by stirring (150 rpm, 

overnight, R.T.) to ensure complete hydration and filtered (0.45 µm syringe filter; Frisenette ApS). 

BLG and HePS stock solutions were diluted with buffers (stock 50 mM, final 10 mM), glycine (pH 2), 
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sodium citrate/citric acid (pH 3–6) and Tris-HCl (pH 7–8), and mixed to the desired ratios. All solution 

mixtures were equilibrated for 23 min before analysis. 

2.3. Molecular weight (Mw) distribution determination  

Molecular weights of HePS-1HePS-6 were determined by size-exclusion chromatography (SEC) as 

described [36], using a solvent delivery system (LC-10AD), autosampler (SIL-10A), RI detector (RID-

10A; all Shimadzu, Kyoto, Japan) and a size-exclusion column (Shodex OH-PK SB-805 HQ 300 × 8 

mm, Showa Denko, Tokyo, Japan). Dextran standards of Mw 4.5 MDa, 1.45 MDa, 560 kDa, 350 kDa 

(American Polymer Standards Corporation, Mentor, OH, USA), 276.5 kDa, 196.3 kDa, 123 kDa, 43 

kDa (Pharmacosmos, Holbaek, Denmark), and pullulan of 22 kDa were used for calibration. Standards 

(1–2.7 mg/ml) and HePSs (1–2 mg/ml) were dissolved in mobile phase (10 mM sodium citrate/citric 

acid pH 4.0), degassed, kept overnight, filtered (0.45 µm filters; Frisenette ApS, Knebel, Denmark), 

and 100 µl of the solution was subjected to SEC at a flow rate of 0.5 ml/min. The SEC data were 

analyzed by TriSEC conventional GPC software. 

2.4. SAXS of BLG mixed with HePS-1–HePS-6  

SAXS experiments of BLG mixtures with HePS-1, HePS-2, HePS-3, HePS-4 and HePS-6 were 

performed on beamline BM29 at the European Synchrotron Radiation Facility (Grenoble, France) [45]. 

Samples were measured in 10 time frames using 2 s exposure time. SAXS data for mixtures of BLG 

with HePS-5 were collected at beamline I911-4 at the MAX IV (synchrotron radiation facility, Lund, 

Sweden) [46] using 20 s exposure time in eight time frames. These exposure times were optimized 

using on-line checks during acquisitions to avoid radiation damage effects. The sample size was 

approximately 40 µl using an automated flow cell. Buffers were measured before and after each sample 

and averaged prior to subtraction. The frames were averaged to maximize signal-to-noise ratios. Buffer 

averaging and subtraction prior to data analysis was done in the PRIMUS program [47]. Data were 
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collected for BLG at 1 mg/ml and its mixtures with HePS-1‒HePS-5 at 50, 100 and 150 µg/ml, and 

with HePS-6 at 100 and 150 µg/ml in 10 mM sodium citrate pH 4.0. Guinier analysis gives the radius 

of gyration RG that monitors the degree of structural elongation in solution if the internal 

inhomogeneity of scattering within the macromolecules has no effect. Guinier plots at low Q (where Q 

= 4π sin θ/λ; 2θ is the scattering angle and λ is the wavelength) give RG and the forward scattering at 

zero angle I(0) [48]: 

 

ln I(Q) = ln I(0) − RG
2
Q

2
/3 

 

The RG analysis was done using PRIMUS. Indirect Fourier transformation of the full scattering curve 

I(Q) measured in reciprocal space into real space gives the distance distribution function P(r). P(r) 

represents the distribution of distances r between volume elements and gives an alternative calculation 

of RG, the maximum dimension L of the macromolecule and the most commonly occurring distance M 

within the macromolecule.  

dQQrQrQIrP  )(sin  )(  
2

1
 = )(

o

2 



 

The transformation was carried out using the GNOM software [49]. 

2.5. DLS of BLG mixed with HePS-1–HePS-6  

Size distribution experiments for BLG mixtures with HePS-1–HePS-6 were performed in 10 mM 

glycine pH 2, sodium citrate pH 3–6 and Tris-HCl pH 7–9 buffers at a scattering angle of 90° (BI-

200SM instrument; Brookhaven Instruments Corporation; Holtsville, NY, USA) and 23°C. DLS 

experiments for BLG mixed with HePS-1–HePS-6 in 10 mM sodium citrate pH 4.0 were also 

performed at 23°C using a Malvern Zetasizer Nano ZS (Malvern Instruments, Worcestershire, United 

Kingdom) equipped for backscattering at 173° with a 633 nm He–Ne laser.  
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DLS studies the size distribution of particles undergoing Brownian motion through illumination by a 

laser beam. Time-dependent fluctuations in the intensity of scattered light reflect the rate at which the 

particles diffuse. The distributions of mean apparent translational diffusion coefficients (DT) were 

determined by fitting the DLS autocorrelation functions obtained by the Brookhaven system using non-

negative constrained least-squares. The distribution of DT values was converted to the distribution of 

hydrodynamic diameters (dH, also known as Z-average) using the Stokes-Einstein equation: 

dH = kT/3πηDT 

 

where k is the Boltzmann constant, T the absolute temperature, and η the solvent viscosity (assumed to 

be that of water, 0.933 mPa·s). 

2.6. Turbidity and protein measurements  

Turbidity (at 600 nm) and protein absorbance (at 280 nm) of BLG–HePS-1 and  BLG–HePS-3 

mixtures were measured using Ultrospec pro 2100 spectrophotometer (Amersham Biosciences, 

Cambridge, United Kingdom).  

2.7. AUC of BLG–HePS-2 mixtures  

AUC was run only for HePS-2 mixed with BLG, because only HePS-2 formed soluble aggregates 

(non-visible). Sedimentation velocity experiments for BLG and BLG–HePS-2 mixtures were 

performed using a Beckman XL-A analytical ultracentrifuge (Beckman Coulter, Inc., Palo Alto, CA, 

USA) equipped with absorbance optics. Experiments for BLG at 0.5 mg/ml and for BLG–HePS-2 

mixtures at 50 and 100 µg/ml HePS-2 were done in 10 mM sodium citrate pH 4.0. Buffer density of 

0.9988 g/ml and partial specific volume of 0.74915 ml/g were calculated with SEDNTERP (version 

1.09) [50]. Prior to the start of experiments, BLG–HePS-2 mixtures were centrifuged at 10,000 rpm for 

10 min and filtered through 0.45 µm filters to remove traces of larger insoluble aggregates. 
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Sedimentation velocity data were collected at 50,000 rpm using a four-hole AnTi50 rotor with standard 

double-sector cells with column heights of 12 mm at 20°C using absorbance optics at 280 nm. The 

continuous c(s) analysis method was used to determine the sedimentation coefficients s20,w of BLG and 

BLG–HePS-2 using the SEDFIT software (version 14.1) [51]. 

3. Results and discussion  

3.1. HePS repeat units and molecular weight (Mw) distribution 

HePS-1, HePS-2, HePS-3, HePS-4, HePS-5 and HePS-6 consist of repeat units of dp7 (where dp 

stands for degree of polymerization) composed of glucose, rhamnose and galactose (molar ratio of 

1:1:5) [52], dp6 of N-acetyl-glucosamine, rhamnose and galactose (molar ratio of 1:1:4) [31], dp7 of 

glucose, rhamnose, galactose and pyruvate (molar ratio of 2:4:1:1) [42], dp7 of glucose, rhamnose and 

galactose (molar ratio of 2:2:3) [53], dp7 of glucose, rhamnose and galactose (molar ratio of 2:2:3) [33] 

and dp4 composed of glucose and galactose (molar ratio of 2:2) [54] (Fig. 1).  

Mw was determined to be 372 ± 8 kDa for HePS-1, 389 ± 6 kDa for HePS-2, 134 ± 10 kDa for HePS-

3, 12477 ± 1186 kDa for HePS-4 and 385 ± 10 kDa for HePS-6 [25] and 145 ± 4 kDa for HePS-5 (Fig. 

S1) by SEC. HePS-4 eluted in the exclusion volume, however, its Mw was estimated by extrapolation 

of the linear calibration curve, although this likely leads to underestimation. It is important to note that 

the size of the HePSs represents the apparent Mw, as dextrans and pullulan were used to establish the 

SEC calibration curves due to unavailability of comparable exopolysaccharides of known molar mass. 

The polydispersity values derived from SEC were 3.59 for HePS-1, 2.68 for HePS-2, 2.67 for HePS-3, 

2.20 for HePS-5 and 2.65 for HePS-6. Because HePS-4 was eluted in the exclusion volume, the 

polydipersity was not calculated.  

3.2. SAXS of BLG mixed with HePS-1–HePS-6  

Association of BLG in the absence and presence of HePS-1–HePS-6 was studied by SAXS. The  
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scattering data I(Q) for BLG and its mixtures with HePSs showed excellent signal-to-noise ratios with 

no radiation damage.  

3.2.1. Guinier analyses  

The Guinier analyses of ln I(Q) versus Q
2
 at low Q values give the radius of gyration RG that 

measures the degree of macromolecular elongation in solution. The Guinier fits of free BLG 

resulted in an RG value of 2.49 ± 0.10 nm using a Q range of 0.21–0.48 nm
−1

 (Fig. S2), in good 

agreement with the RG values of 2.16 ± 0.04 to 2.54 ± 0.04 nm reported for the BLG dimer at various 

pH values [55,56].
 
The distance distribution function P(r) of BLG gave an RG value of 2.51 ± 

0.03 nm and maximum length L of 7.9 nm, suggesting that BLG exists as a dimer at pH 4.0 (Table 

1, Fig. S2, inset).  

Scattering plots (log I vs Q) of BLG mixed with HePS-1, HePS-2, HePS-3 and HePS-4 resulted in a 

significant upturn of the intensities at low Q values shown by considerable deviation from linearity 

(Fig. 2). This deviation was most pronounced in the case of BLG‒HePS-1, BLG‒HePS-2 and 

BLG‒HePS-3 mixtures. Such upturn of intensity at low Q values is indicative of formation of relatively 

large aggregates [40,57] and therefore we did not perform Guinier analysis of these samples. No 

significant upturn in the intensities were observed for BLG‒HePS-5 and HePS-6 mixtures (Fig. S3).  
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Table 1. SAXS and DLS experimental data for BLG and its mixtures with HePSs 

 Concentration 

mg/ml 

Molecular 

weight (kDa) 

RG (nm)
a
   Length L 

(nm) 

dH (nm) 

BLG 1.0 18.4 2.51 ± 0.03 7.9 8.5 ± 1.2 

HePS-1 

BLG+HePS-1 

0.1  

1.0+0.05  

1.0+0.10  

1.0+0.15  

372 ± 8 

 

13 ± 0.3 

39  

42  

43  

42 

114 

124 

129           

57 ± 1 

 

2470 ± 173 

 

HePS-2 

BLG+HePS-2 

 

 

 0.1  

1.0+0.05  

1.0+0.10  

1.0+0.15  

389 ± 6 

 

13 ± 0.3 

20  

35  

37  

44 

65 

100 

102   

47 ± 3 

 

397 ± 7 

HePS-3 

BLG+HePS-3 

 0.1  

1.0+0.05 

1.0+0.10 

1.0+0.15 

134 ± 10 

 

10 ± 1  

22 ± 1 

37 ± 1 

44  

38 

76 

109 

116   

51 ± 7 

 

1457 ± 49 

 

HePS-4 

BLG+HePS-4 

  0.4  

  1.0+0.05 

  1.0+0.10 

  1.0+0.15 

12477 ± 1186 

 

17 ± 1 

18 ± 1 

27  

30  

  68 

  68 

  84 

  87 

87 ± 2 

 

174 ± 8 

 

HePS-5 

BLG+HePS-5 

 

0.1 

1.0+0.05 

1.0+0.10 

1.0+0.15 

145 ± 4 

 

  12 ± 0.3 

 4  

 6  

 7  

     41 

     n.d. 

     n.d. 

     n.d.   

   29 ± 1 

 

    21 ± 2 

 

HePS-6 

BLG+HePS-6 

0.1 

1.0+0.10  

1.0+0.15 

385 ± 10 

 

20 ± 0.3 

  8 ± 1 

19  

     70  

     35 

     66 

 56 ± 1 

   33 ± 3 

 

        

a: Derived from GNOM P(r) analyses (STDEV <1 is not shown for all complexes);. n.d.: not determined 
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3.2.2. Distance distribution P(r) analyses  

The distance distribution function P(r) provides information on the shapes of BLG–HePSs 

aggregates. The P(r) curve gives RG values as well as model-independent determinations of 

overall length L and yields most frequently occurring distances M from the position of peak 

maximum. Values of L were measured from the r value where the P(r) curve becomes zero.  

For BLG–HePS-1 mixture, two peaks (M1 and M2) were observed at r of 3‒4 and 49‒59 nm, RG of 

39‒43 nm and maximum length L of 124‒129 nm at 100 and 150 µg/ml HePS-1 (Fig. 3A, Fig. 4A, 

Table 1). These RG and L values were ~3-fold larger than the RG of 12.9 ± 0.3 and L of 42.0 nm 

measured for free HePS-1 (Table 1). The M1 and M2 values for free HePS-1 were 2 and 12 nm. The 

I(0)/c value is proportional to the relative molecular mass [40,49,58] and increased greatly with 

increase in concentration of HePS-1 (Fig. 3B), showing large aggregate formation when BLG was 

mixed with HePS-1.  

 For BLG‒HePS-2 mixtures, P(r) analyses resulted in RG values of 20–37 nm at 50, 100 and 150 

µg/ml HePS-2 (Fig. 3A, Table 1). The maximum length L of 100‒102 nm, and M1 and M2 at r of 3‒3 

and 43‒46 nm were observed at 100 and 150 µg/ml HePS-2 (Fig. 4B, Table 1). These values were 

larger than the RG value of 13 ± 0.3 nm,  L of 44 nm and M of 10 nm as measured for free HePS-2, 

indicating formation of large aggregates. The corresponding I(0)/c values also increased significantly 

with increase in concentration of HePS-2 (Fig. 3B). These RG and I(0)/c values for BLG–HePS-2 

mixtures were smaller than those observed for BLG–HePS-1 mixtures, suggesting that these 

aggregates are smaller in size than aggregates with HePS-1. This difference may be explained by a 

lower degree of branching in HePS-2, although there are three α-1→3 linkages in the repeat unit 
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backbone, which make HePS-2 more flexible to adopt a compact conformation in solution [36]. These 

data suggest that a high degree of branching may promote optimal binding with proteins. 

     The P(r) analyses for BLG mixed with HePS-3 (50, 100 and 150 µg/ml) gave RG values of 22‒44 

nm (Fig. 3A, Table 1). Two peaks (M1 and M2) at r of 2‒3 and 48‒56 nm, and maximum length L of 

109‒116 nm were observed at both 100 and 150 µg/ml HePS-3 (Fig. 4C, Table 1). Like P(r) analyses 

for BLG‒HePS-1 and BLG‒HePS-2 mixtures, these values were also larger than the RG of 10 ± 1 nm, 

M of 4 nm and L of 38 nm measured for free HePS-3, suggesting that BLG forms large aggregates with 

HePS-3. The I(0)/c values increased greatly with increasing concentration of HePS-3 (Fig. 3B). These 

RG and I(0)/c values were larger than the corresponding RG values observed for BLG–HePS-2 

mixtures, but slightly smaller than those observed for BLG–HePS-1 mixtures, suggesting that BLG 

interacts strongly with HePS-3 and forms large aggregates. These aggregates with HePS-3 were smaller 

in size than those with HePS-1 and larger than HePS-2 aggregates. Pyruvate has a pKa of ~2.5 [59,60] 

and BLG has an isoelectric point (pI) of 4.75.2 [61,62]. Therefore, HePS-3 is anticipated to interact 

with BLG at pH<5 through electrostatic interactions. Although direct evidence of electrostatic 

interactions between HePS pyruvate groups and BLG is not reported, studies using other anionic 

polysaccharides, e.g. alginate and carrageenan have shown strong interaction with BLG at pH<pI and 

formation of large complexes through electrostatic interactions, which was also shown for whey 

proteins and negatively charged polysaccharides [61,63–65]. Compared to HePS-1 and HePS-2, HePS-

3 exhibited a less compact conformation, supposedly due to repulsion between pyruvate groups.   

     The P(r) analyses for BLG mixed with HePS-4 (50, 100 and 150 µg/ml) resulted in RG of 18‒30 

nm (Fig. 3A, Table 1). Two peaks (M1 and M2) were obtained at r of 2‒3 and 33‒33 nm, and 

maximum length, L of 84‒87 nm at 100 and 150 µg/ml HePS-4 (Fig. 4D, Table 1). The corresponding 

I(0)/c values increased significantly with increasing concentration of HePS-4 (Fig. 3B). These values 
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were smaller than those observed for HePS-1, HePS-2 and HePS-3 mixed with BLG, but larger than 

the RG of 17 ± 1, M of 4 nm and L of 68 nm measured for free HePS-4, indicating weak aggregation 

when BLG is mixed with HePS-4. The reason for these weak interactions and aggregation remains 

elusive, but could be due to the low degree of branching of HePS-4. 

When HePS-5 was added to BLG, the P(r) analyses resulted in RG values from 4–7 nm at 50, 100 

and 150 µg/ml HePS-5 ( Fig. 3A, Table 1). These RG values were smaller than the RG of 12 ± 0.3 nm 

of free HePS-5, indicating that no significant aggregation is observed. Similarly, the P(r) analyses of 

BLG with HePS-6 gave RG values of 8–19 nm at 100 and 150 µg/ml, respectively (Fig. 3A, Table 1). 

These RG values remained in a similar range as observed for free HePS-6, suggesting that no significant 

aggregation is observed when HePS-6 is added.  

In summary, RG and I(0)/c values increased greatly with increase in HePSs concentration,  

showing that BLG formed large aggregates with HePS-1–HePS-4. Moreover, the intensity of M1 

corresponding to BLG peak maximum decreased with increasing HePS concentration, whereas M2 

became more prominent, indicating an increase in aggregate formation (Fig. 4).  

3.3. DLS of BLG–HePS mixtures  

SAXS does not provide accurate structural information on very large BLG–HePS aggregates 

observed in the present study, since information at very low Q range is hidden behind the beam stop. 

Thus, DLS which is sensitive to large aggregates, was used. The sizes of BLG mixed with HePS-

1‒HePS-6 as a function of pH were analyzed using particle sizing software. Free BLG gave 

hydrodynamic diameter dH (also called Z-average) of 6.0 ± 0.3 nm at pH 2–3 and 6.9 ± 0.6 nm at pH 

5–8. At pH 4.0, the dH of 8.5 ± 1.2 nm for BLG agreed well with the SAXS length L of 7.9 nm 

observed at pH 4.0, in good agreement with the SAXS maximum dimension of 6–7 nm reported for the 
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BLG dimer [66].
 
It has been reported that BLG exists as monomer at pH 2–3 in salt-free conditions 

[66,67].
 

For BLG mixed with HePS-1, dH varied from 15.0 ± 2 to 39.0 ± 6 nm when the pH decreased from 

8.0 to 5.0 (Fig. 5). The dH of BLG–HePS-1 mixtures increased dramatically to 2470 ± 173 nm at pH 

4.0, suggesting formation of large aggregates (Fig. 5, Table 1). Compared to dH values at pH 4.0, a 2–7-

fold decrease in dH was seen when the pH decreased from 3.0 to 2.0 (Fig. 5). This suggests that: i) 

dimeric BLG forms large aggregates by providing more optimal surface contacts with HePSs compared 

to the monomeric form; ii) because pH 4 is closer to the pI of BLG, the complexes are additionally 

more stabilized by hydrophobic interactions compared to pH 23. Since large aggregates were 

observed, DLS experiments for BLG‒HePS-1 mixtures were further performed at a backscattering 

angle of 173° at pH 4.0. Backscattering resulted in a dH of 1732 ± 58 nm for BLG‒HePS-1 mixtures 

and a dH of 57 ± 1 nm for free HePS-1. The data  (both at 90° and 173°) showed that large aggregates 

were formed at pH 4.0, thus supporting the SAXS data.  

Similarly, a large increase in dH was observed when HePS-2 and HePS-3 were added to BLG solution 

at pH<5, resulting in dH of 397 ± 7 and 1457 ± 49 nm for BLG–HePS-2 and BLG–HePS-3 mixtures at 

pH 4.0, respectively (Fig. 5, Table 1). Like for the BLG–HePS-1 mixture, a decrease in size was found 

by decreasing pH from 3.0 to 2.0 (Fig. 5). At 173°, DLS experiments of BLG mixed with HePS-2 and 

HePS-3 at pH 4.0 gave dH of 279 ± 27 and 444 ± 51 nm, respectively. These values were much larger                          

than dH of 47 ± 3 and 51 ± 7 nm observed at 173° for free HePS-2 and HePS-3, respectively, at pH 4.0. 

Furthermore, DLS analyses of BLG–HePS-2 at 173° showed that the size increased with time, 

suggesting that the complexes initially formed associate to form larger entities (Fig. S4). 

Compared to the above DLS results, only a small increase in the dH of BLG mixed with HePS-4 was 

observed at pH<5. For BLGHePS-4 mixtures, dH of 79 ± 11 ‒ 174 ± 8 nm at pH 2.0‒4.0 and 12.8 ± 
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3.2 nm were observed at pH 6. DLS of BLGHePS-4 at 173° gave dH of 99 ± 0.7 nm at pH 4.0, larger 

than the dH of 87 ± 2 nm observed for free HePS-4 at pH 4.0, indicating that HePS-4 interacts with 

BLG at pH<5 (Fig. 5). Like SAXS data for BLG mixed with HePS-5 and HePS-6, no significant 

changes were observed in the size distribution analyses, suggesting that no significant interactions 

occur between these HePSs and BLG (data not shown).   

In summary, the DLS size distribution analyses showed that larger aggregates were formed 

with HePS-1, HePS-2, HePS-3 and HePS-4, whereas no significant effects were observed when 

HePS-5 and HePS-6 were added to BLG. For the BLG-HePS-1, BLG-HePS-2 and BLG-HePS-3 

samples the dH values  derived from DLS data were significantly larger than the maximum length L 

observed in SAXS data. The difference in size of these large aggregates is attributed to the lack of 

structural information from the SAXS data at the very low Q values hidden behind the beam stop. 

Therefore, the result obtained from P(r) analyses is qualitative, not quantitative. 

3.4. Turbidity and protein absorbance of BLG–HePS mixtures  

Turbidity and protein absorbance measurements from the DLS samples (Fig. 5) were performed in 

order to assess the solubility of the complexes. Turbidity was observed only in the case of HePS-1 and 

HePS-3 when mixed with BLG, whereas no turbidity was observed with BLG-HePS-2 and HePS-4 

mixtures, consistent with the much smaller values of dH reported for these mixtures. In both 

experiments, a turbidity increase was observed at pH<5, whereas no change was observed at pH>5, 

suggesting attractive interactions (usually assumed to be electrostatic, van der Waals and hydrophobic 

interactions, and hydrogen bonding) between BLG and HePSs (Fig. 6). Mixing polysaccharides with 

proteins can  result in two types of phase separation: repulsive phase separation (thermodynamic 

incompatibility) that occurs at high concentrations of neutral or similarly charged protein and 

polysaccharide, and attractive phase separation (thermodynamic compatibility) that occurs between 
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molecules that carry opposite charges or polarity [68]. Here, we suggest that there could be an 

associative phase separation when mixing BLG with HePSs. A significant decrease in turbidity was 

observed at pH 2.0, indicative of dissociation of large complexes. This increase in turbidity at pH<5 

was supported by a decrease in protein absorbance at 280 nm in solution after centrifugation. A 

decrease in protein concentration in solution at pH<5 reflected formation of insoluble BLG–HePS-1 

and BLG–HePS-3 complexes. 

3.5. AUC of BLG–HePS-2 soluble complexes 

AUC was used as a comparative method for analysis of soluble complexes of BLG–HePS-2. The 

sedimentation coefficient s20,w monitors macromolecular elongation as well as associative and 

polydispersity effects in solution. The absorbance analyses for free BLG resulted in a single peak with 

s20,w of 2.71 ± 0.03 S which corresponds to a molecular mass of 33.3 ± 1.0 kDa obtained from the c(M) 

plot, attributed to the BLG homodimer (Fig. 7). The absorbance analyses of BLG–HePS-2 gave one 

major peak with s20,w of 2.74 ± 0.21 S attributed to free BLG and one small peak with s20,w of 27.56 ± 

0.21 S which correspond to a large BLG–HePS-2 soluble complex (Fig. 7) with molecular mass of 

around 1250 ± 140 kDa as indicated from the c(M) plot. It is important to note that AUC cannot 

accurately measure large insoluble aggregates, because these aggregates tend to sediment faster before 

data collection at high centrifugal force.  

The amounts of non-aggregated BLG and HePS-2-bound BLG were quantified using the integration 

function in the c(s) analyses [69]. Integration of the non-aggregated BLG peak and the complex 

(bound) peak intensities in the c(s) analyses permitted estimation of non-aggregated BLG and bound 

BLG in the BLG–HePS-2 mixture. Based on the comparison with free BLG, integration of non-

aggregated BLG and bound BLG peak in the BLG–HePS-2 mixture showed that the amount of non-

aggregated BLG was 93% and 88% and of bound BLG was 4.6 and 9.8% at 50 and 100 µg/ml HePS-2, 
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respectively. The amount of insoluble BLG removed by centrifugation/filtration was estimated to 

1.62.2% based on comparison with free BLG. Sedimentation velocity experiment for BLG-HePS-1 

mixtures was also performed for analysis of soluble BLG-HePS-1 complex. However, no significant 

signal for soluble BLG-HePS-1 complex was observed (Fig. S5), indicating that insoluble aggregates 

were formed which was in agreement with turbidity assay (Fig. 6). 

Previously, we have reported that LAB HePSs exhibited compact conformation in solution as 

determined by SAXS and DLS in conjunction with scattering modeling [63].
 
The types of glycosidic 

linkage in the backbone, the presence of side groups and the branched structure all play an important 

role in technological functionality of bacterial EPSs [20,70]. It have been reported that partial removal 

of the side groups in the repeating units of LAB HePSs tends to reduce the chain stiffness [70].
 
Since 

LAB EPSs are structurally very diverse, understanding the extent and nature of HePS–protein 

interactions is highly challenging. From our present results, we propose that the associative interactions 

between BLG and HePS-1–HePS-6 can be explained mainly by the degree of branching and presence 

of more flexible glycosidic linkages such as α-1→2, α-1→3 and α-1→4 linkages in the backbone. 

Compared to the stiffer β-1→4 linkages, the presence of these linkages in the backbone confers enough 

flexibility to HePSs to bring and spatially arrange distant side groups in close proximity for optimal 

binding with proteins. For instance, the associative interactions between BLG and HePS-1 can be 

attributed to the presence of α-1→2 and α-1→3 linkages in the repeating units and the degree of 

branching involving α-1→3, β-1→3 and β-1→4 linkages, conferring semi-flexible behavior to HePS-1, 

allowing to adopt a local helical-like structure with a cluster of branches on one side of the backbone, 

with a similar cluster forming on the other side of the backbone. Thus HePS-1 structure has a compact 

conformation
 
[36] that is preformed for optimal binding with proteins. Similarly, the results of the 

present study also showed that BLG aggregated strongly with the HePS containing a high degree of 
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branching in its repeat unit compared to the ones with lower degree of branching, implying that a high 

degree of branching might play an important role in the associative interaction and aggregation by 

providing more optimal contacts with BLG. The interaction of BLG with HePSs appeared to be 

essentially independent of molecular weight of intact HePSs. For instance, the molecular weight of 

HePS-6 was in a similar range as that of  HePS-1 and HePS-2, but HePS-6 has an extended 

conformation, and hence no significant effects were observed when HePS-6 was added to BLG 

solution. Similarly, for HePS-4 that has a very high Mw in comparison to HePS-1 and HePS-2 (Table 

1), only weak aggregation was observed when HePS-4 was mixed with BLG as shown by SAXS and 

DLS. 

4. Conclusions 

In the present study, the interactions of six structurally different LAB HePSs (HePS-1–HePS-6) with 

BLG were investigated using SAXS, DLS and AUC. Both SAXS and DLS data analyses of BLG 

binding with HePS-1–HePS-6 at pH 4 revealed that BLG aggregated strongly with HePS-1, HePS-2 

and HePS-3, weakly with HePS-4, and not with HePS-5 and HePS-6. BLG is negatively charged 

at pH>5, and while DLS at pH 6.0–8.0 showed no significant interactions between HePS-1–HePS-4 

and BLG, at pH 4.0 both SAXS and DLS showed RG, maximum length L and dH values to increase 

dramatically, indicating formation of large aggregates. We conclude that the extent of aggregation 

depends on the compact conformation and degree of branching of the HePSs and that the interaction of 

BLG with the HePSs is essentially independent of the molecular weight of HePSs. Adding HePSs to 

BLG at pH<5 resulted in formation of insoluble and soluble complexes as shown by turbidity and AUC 

analyses. 

   Although protein–polysaccharide complexes are reported to have diverse commercial applications 

in the food, biotechnology, medical, personal care and pharmaceutical industries [61,71,72], the 
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interactions between protein and polysaccharides are poorly understood. We propose that BLG 

molecules bind to LAB HePSs mainly through polar interactions resulting in formation of soluble and 

insoluble complexes. Structural studies using crystallographic and NMR techniques are underway in 

our group to identify the BLG residues involved in HePS binding. The present findings can be 

complemented by future dairy manufacture relevant analyses on rheological properties of these HePSs 

in mixtures with BLG and other whey proteins, and on particle morphology, structure and stability of 

BLG–HePS complexes by microscopy.  

 

Acknowledgements 

We thank Karina Jansen and Lotte Nielsen for their valuable technical assistance. This project was 

funded by the Danish Research Council for Independent Research | Technical and Production Sciences 

to the project “HEXPIN. Associative interactions between exopolysaccharides from lactic acid bacteria 

and milk proteins. Gaining insights deployable in design and optimised food texture”. We also thank 

Prof. Luc de Vuyst, Vrije Universiteit of Brussel, Belgium, for providing the Streptococcus 

thermophilus EU20 strain. The ESRF, EMBL Hamburg and MAXIV synchrotrons are thanked for 

beam time and outstanding support during data collection. We would like to thank the Biophysics 

Facility from the Center for Protein Research, University of Copenhagen for granting us access to the 

AUC instrument. The research presented has received funding from BioStruct-X and DANSCATT (the 

Danish agency for Science, Technology and Innovation). 

References  

[1]  F. Donot, A. Fontana, J.C. Baccou,  S. Schorr-Galindo, Carbohydr. Polym. 87 (2012) 951–962. 

[2] S.V. Dilna, H. Surya, R.G. Aswathy, K.K. Varsha, D.N. Sakthikumar, A. Pandey, K.M. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

22 

 

Nampoothiri, LWT- Food Sci. Technol. 64 (2015) 1179–1186.  

[3]  M. Moscovici, Front. Microbiol. 6 (2015) 1012.  

[4]  S. Badel, T. Bernardi, P. Michaud, Biotechnol. Adv. 29 (2011) 54–66. 

[5]  E. Dertli, I.J. Colquhoun, A.P. Gunning, R.J. Bongaerts, G. Le Gall, B.B. Bonev, M.J. Mayer, A. 

Narbad, J. Biol. Chem. 288 (2013) 31938–31951. 

[6]  M.I. Torino, G. Font de Valdez, F. Mozzi, Front. Microbiol. 6 (2015) 834.  

[7]  S. Mende, M. Peter, K. Bartels, H. Rohm, D. Jaros, Food Hydrocoll. 32 (2013) 178–118.  

[8]  A. Laws, Y. Gu, V. Marshall, Biotechnol. Adv. 19 (2001) 597–625. 

[9]  N. Salazar, M. Gueimonde, C.G. de Los Reyes-Gavilán, P. Ruas-Madiedo, Crit. Rev. Food Sci. 

Nutr. 56 (2016) 1440–1453.  

[10]  J. Schmid, V. Sieber, B. Rehm, Front. Microbiol. 6 (2015) 1–24. 

[11] S. Górska-Frączek, C. Sandström, L. Kenne, J. Rybka, M. Strus, P. Heczko, A. Gamian, 

Carbohydr. Res. 346 (2011) 2926–2932.  

[12]  P. Ruas-Madiedo, C.G. de los Reyes-Gavilán, J. Dairy Sci. 88 (2005) 843–856. 

[13]  L. De Vuyst, B. Degeest, FEMS Microbiol. Rev. 23 (1999) 153–177. 

[14]  A. Patel, J.B. Prajapati, Adv. Dairy Res. 1 (2013) 2.  

[15]  E.J. Faber, P. Zoon, J.P. Kamerling, J.F.G. Vliegenthart, Carbohydr. Res. 310 (1998) 269–276. 

 [16]  R. Tuinier, E. Ten Grotenhuis, C. Holt, P.A. Timmins, C.G. De Kruif, Phys. Rev. E 60 (1999) 

848–856. 

[17]  M. Girard, C. Schaffer-Lequart, Int. Dairy J. 17 (2007) 666–673.  

[18]  M-C. Gentès,  D. St-Gelais, S. L. Turgeon, Dairy Sci. Technol. 91 (2011) 645–661 

[19]  Y.L. Doleyres, L. Schaub, C. Lacroix, J. Dairy Sci. 88 (2005) 4146–4156.  

[20]  P. Ruas-Madiedo, R. Tuinier, M. Kanning, P. Zoon, Int. Dairy J. 12 (2002) 689–695. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

23 

 

[21]  D.M. Folkenberg, P. Dejmek, A. Skriver, R. Ipsen, J. Dairy Res.73 (2006) 385–393. 

[22]  I. Ayala-Hernández, A. Hassan, H.D. Goff, R. Mira de Orduña, M. Corredig, Int. Dairy J. 18 

(2008) 1109–1118. 

[23]  L.N. Babol, B. Svensson, R. Ipsen, Food Biophys. 6 (2011) 468–473. 

[24] S.K. Diemer, B. Svensson, L.N. Babol, D. Cockburn, P. Grijpstra, L. Dijkhuizen, D.M. 

Folkenberg, C. Garrigues, R.H. Ipsen, Food Biophys. 7 (2012) 220–226. 

[25]  J. Birch, H.K. Harðarson, S. Khan, M.R. Van Calsteren, R. Ibsen, C. Garrigues, Almdal, K., M. 

Abou Hachem, B. Svensson, Carbohydr. Polym. 177 (2017) 406–414. 

[26] G. Morris, S. Harding, Polysaccharides, microbial, in: M. Schaechter (Ed.), Encyclopedia of 

Microbiology, third ed., Elsevier, Amsterdam, 2009, pp. 482–494. 

[27]  C. Delbarre-Ladrat, C. Sinquin, L. Lebellenger, A. Zykwinska, S. Colliec-Jouault, Front. Chem. 2 

(2014) 85. 

[28]  F. Freitas, V.D. Alves, M.A.M. Reis,Trends Biotechnol. 29 (2011) 388–398. 

[29]  I. Finore, P. Di Donato, V. Mastascusa, B. Nicolaus, A. Poli, Mar. Drugs 12 (2014) 3005–3024.  

[30]  K.K.T. Goh, D.R. Haisman, H. Singh, Appl. Microbiol Biotechnol. 67 (2005) 202–208.  

[31]  C. Landersjö, Z. Yang, E. Huttunen, G. Widmalm, Biomacromolecules, 3 (2002) 880–884.  

[32]  C.P. Champagne, Y. Raymond, J.P. Simon, Appl. Microbiol. Biotechnol. 95 (2012) 745756. 

[33]  J. Cerning, C. Bouillanne, M. Landon, M.J. Desmazeaud, Dairy Sci. 75 (1992) 692–699. 

[34] V.M. Marshall, H. Dunn, M. Elvin, N. McLay, Y. Gu, A.P. Laws, Carbohydr. Res.  331 (2001) 

413–422. 

[35]  G. Robitaille, A. Tremblay, S. Moineau, D. St-Gelais, C. Vadeboncoeur, M.J. Britten, Dairy Sci. 

92 (2009) 477–482.  

[36]  S. Khan, J. Birch, P. Harris, M.-R. Van Calsteren, R. Ipsen, G.H. Peters, B. Svensson, K. Almdal, 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

24 

 

Biomacromolecules 18 (2017) 747–756. 

[37]  A. Sauter, F. Zhang, N.K. Szekely, V. Pipich, M. Sztucki, F. Schreiber, J. Phys. Chem. B 120 

(2016) 5564–5571  

[38]  M. Pouzot, T. Nicolai, R.W. Visschers, M. Weijers, Food Hydrocoll. 19 (2005) 231–238.  

[39]  K. Ako, T. Nicolai, D. Durand, Biomacromolecules 11 (2010) 864–871. 

[40]  R. Nan, S. Tetchner, E. Rodriguez, P.J. Pao, J. Gor, I. Lengyel, S.J.J. Perkins, J. Biol. Chem. 288 

(2013) 19197–19210. 

[41]  S. Khan, R. Nan, J. Gor, B. Mulloy, S.J. Perkins, Biochem. J. 444 (2012) 417–428.  

[42]  M.-R. Van Calsteren, C. Pau-Roblot, A. Bégin, D. Roy, Biochem. J. 363 (2002) 7–17. 

[43]  M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Anal. Chem. 28 (1956) 350–356. 

[44]  M. Collini, L. D’Alfonso, G. Baldini, Protein Sci. 10 (2000) 1968–1974. 

[45]  T. Narayanan, O. Diat, P. Bosecke, Nucl. Instrum. Methods Phys. Res. A  467–468 (2001) 1005–

1009.   

[46]  A. Labrador, Y. Cerenius, C. Svensson, K. Theodor, T.J. Plivelic, Phys. Conference Series 425 

(2013) 072019.  

[47]  M.V. Petoukhov, D. Franke, A.V. Shkumatov, G. Tria, A.G. Kikhney, M. Gajda, C. Gorba, 

H.D.T. Mertens, P.V. Konarev, D.I. Svergun, J. Appl. Crystallogr. 45 (2012) 342–350.  

[48]  O. Glatter, O. Kratky,  Small-Angle X-ray Scattering. Academic Press, New York, 1982.  

[49]  A.V. Semenyuk, D.I.J. Svergun, Appl. Crystallogr. 24 (1991) 537–540. 

[50]  T.M. Laue, B.D. Shah, T. M. Ridgeway, S.L. Pelletier, Computer-aided interpretation of 

analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and 

Polymer Science (S. E. Harding, A.J. Rowe, J.C. Horton, eds), Royal Society of Chemistry, 

Cambridge UK. 1992, pp. 90-125.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

25 

 

[51]  P. Schuck, Biophys. J. 78 (2000) 1606–1619.  

[52]  M. Gruter, B.R. Leeflang, J. Kuiper, J.P. Kamerling, J.F.G. Vliegenthart, Carbohydr. Res. 239 

(1993) 209–226.  

[53]  W.H.M. van Casteren, C. Dijkema, H.A. Schols, G. Beldman, A.G.J. Voragen, Carbohydr. Res.  

324 (2000) 170–181.  

[54]  J. Lemoine, F. Chirat, J.-M. Wieruszeski, G. Strecker, N. Favre, J.-R. Neeser, Appl. Environ. 

Microbiol. 63 (1997) 3512–3518. 

[55]  M. Gottschalk, K. Venu, B. Halle, Biophys. J. 84 (2003) 3941–3958. 

[56]  C. Moitzi, L. Donato, L. Schmitt Bovetto, G. Gillies, A. Stradner, Food Hydrocoll. 25 (2011) 

1766–1774.   

[57]  Z. Quan, K. Zhu, K.D. Knudsen, B. Nyström, R. Lund, Soft Matter 9 (2013) 10768–10778.  

[58]  S.J. Perkins, A.I. Okemefuna, A.N. Fernando, A. Bonner, H.E. Gilbert, P.B. Furtado, Methods 

Cell Biol. 84 (2008) 375–423.  

[59]  D. Pines,  J. Ditkovich,  T. Mukra,  Y. Miller,  P.M. Kiefer, S. Daschakraborty,  J.T. Hynes, E. 

Pines, J. Phys. Chem. B. 10 (2016) 120. 

[60]  Dewick, P. M. Essentials of Organic Chemistry: For Students of Pharmacy, Medicinal Chemistry 

and Biological Chemistry; Wiley: Chichester, UK, 2006. 

[61]  S.M.H. Hosseini,  Z. Emam-Djomeh, P. Sabatino,  P.  Van der Meeren, Food Hydrocoll. 50 

(2015) 16–26. 

 [62]  S.M.H. Hosseini, Z. Emam-Djomeh,  S. H. Razavi,  A.A. Moosavi-Movahedi, A.A. Saboury,, M. 

S. Atri, P. Van der Meeren, Food Hydrocoll. 32 (2013) 235–244.  

[63]  T. Harnsilawat,  R. Pongsawatmanit, D.J. McClements, Food Hydrocoll. 20 (2006) 577–585.  

[64]  R. Baeza, C.C. Sanchez, A.M.R. Pilosof, J.M.R. Patino, Food Hydrocoll. 19 (2005) 239–248.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

26 

 

[65]  V.B. Galazka, D. Smith, D.A. Ledward, E. Dickinson, Food Chem. 64 (1999) 303–310. 

[66] G. Baldini, S. Beretta, G. Chirico, H. Franz, E. Maccioni, P. Mariani, F. Spinozzi, 

Macromolecules 32 (1999) 6128–6138. 

[67]  K. Sakurai, M. Oobatake, Y. Goto, Protein Sci. 10 (2001) 2325–2335.  

[68]  J.-L. Doublier, C. Garnier , D. Renarda, C. Sanchezb, Curr. Opin. Colloid. Interface. Sci. 5 (2000) 

202214.  

[69]  A. Balbo, P. Schuck, Analytical Ultracentrifugation in the Study of Protein Self-association and 

Heterogeneous Protein-Protein Interactions. Inc; E. Golemis, P.D. Adams, ProteinProtein 

Interactions. Cold Spring Habor Laboratory Press Cold Spring Habor New York, 2005, pp. 

253277.  

[70]  R. Tuinier, W.H.M. van Casteren,  P.J. Looijesteijn, H.A. Schols, A.G.J. Voragen, P. Zoon, 

Biopolymers 59 (2001) 160–166. 

[71]  N. Ron, P. Zimet, J. Bargarum, Y.D. Livney, Int. Dairy J. 20 (2010) 686–693. 

[72]  A. Ye, Int. J. Food Sci. Technol. 43 (2008) 406–415.  

 

 

Figure legends 

Figure 1. Repeat unit structures of HePS-1HePS-6. HePS-1 from Lactobacillus delbrueckii ssp. 

bulgaricus (NCIMB 702483), HePS-2 from Lactobacillus rhamnosus GG (ATCC 53103), HePS-3 

from Lactobacillus casei LB31, HePS-4 from Lactococcus lactis ssp. lactis (CNRZ 371), HePS-5 from 

Streptococcus thermophilus EU20 and HePS-6 from Streptococcus thermophilus RD534.  

Figure 2. Small-angle X-ray scattering intensities of BLG, HePS-1HePS-4 and their mixtures in 10 

mM sodium citrate pH 4.0. Results are shown for BLG at 1 mg/ml, each HePS at 100 µg/ml, and 
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mixtures of BLG (1 mg/ml) with each HePS (50, 100 and 150 µg/ml). The upturn of intensities at low 

Q values indicates aggregation.  

Figure 3. Summary of the P(r) analyses for BLG mixed with six HePSs. BLG (1 mg/ml) was mixed 

with HePS-1HePS-5 (50, 100 and 150 µg/ml), and with HePS-6 (100 and 150 µg/ml) in 10 mM 

sodium citrate pH 4.0. (A-B) Dependence of the RG and I(0)/c values of BLG calculated from P(r) 

curves on the concentration of HePS-1HePS-6. The data representation in B is the same as given in A. 

Figure 4. Distance distribution function P(r) analyses of BLG and its mixtures with HePS-1–HePS-4. 

BLG (1 mg/ml) was studied in the presence of 100 and 150 µg/ml of each HePS in 10 mM sodium 

citrate pH 4. The unnormalized P(r) curves for BLG alone and with HePS-1–HePS-4 were calculated 

from the scattering curves. These unnormalized curves compare the intensities between different BLG–

HePS complexes. The most frequently occurring distance M and the maximum length L where visible 

within free BLG and in the complex are indicated.  

Figure 5. DLS characterization of BLG and BLG–HePS mixtures. Hydrodynamic diameter dH of BLG 

(1 mg/ml) and its mixtures with HePS-1, HePS-2, HePS-3 and HePS-4 (100 µg/ml) were measured as a 

function of pH.  

Figure 6. Turbidity (at 600 nm, open circles) and absorbance (at 280 nm, filled circles) of BLG mixed 

with HePS-1 and HePS-3 as a function of pH. The results shown in (A) and (B) are for the BLG–HePS-

1 and BLG–HePS-3 mixtures, respectively, used in Fig. 5. 

Figure 7. Analytical ultracentrifugation (AUC) size-distribution analyses c(s) of BLG mixed with 

HePS-2. BLG (0.5 mg/ml) was studied in the presence of HePS-2 (50 and 100 µg/ml) at a rotor speed 

of 50,000 rpm in 10 mM sodium citrate pH 4.0. The BLG dimer peak is labelled as 1, and the BLG–

HePS-2 complex peak is labelled as 2.  
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