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ABSTRACT

Gerrymandering is a central problem for many representative democracies. Formally, gerry-
mandering is the manipulation of spatial boundaries to provide political advantage to a particular
group (Warf, 2006). The term often refers to political district design, where the boundaries of
political districts are “unnaturally” manipulated by redistricting officials to generate durable ad-
vantages for one group or party. Since free and fair elections are possibly the critical part of
representative democracy, it is important for this cresting tide to have scientifically validated
tools. This dissertation supports a current wave of reform by developing a general inferential
technique to “localize” inferential bias measures, generating a new type of district-level score.
The new method relies on the statistical intuition behind jackknife methods to construct relative
local indicators. | find that existing statewide indicators of partisan bias can be localized us-
ing this technique, providing an estimate of how strongly a district impacts statewide partisan
bias over an entire decade. When compared to measures of shape compactness (a common
gerrymandering detection statistic), | find that weirdly-shaped districts have no consistent re-
lationship with impact in many states during the 2000 and 2010 redistricting plan. To ensure
that this work is valid, | examine existing seats-votes modeling strategies and develop a novel
method for constructing seats-votes curves. | find that, while the empirical structure of electoral
swing shows significant spatial dependence (even in the face of spatial heterogeneity), existing
seats-votes specifications are more robust than anticipated to spatial dependence. Centrally,
this dissertation contributes to the much larger social aim to resist electoral manipulation: that
individuals & organizations suffer no undue burden on political access from partisan gerryman-

dering.
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Chapter 1

ELECTORAL SYSTEMS ANALYSIS

The analysis of partisan bias in electoral systems is one of the foundational issues in po-
litical science and electoral geography. Arising from both first-past-the-post and proportional
representation systems, the analysis of electoral geography and electoral rules to determine
whether they provide a structural advantage to one party over another is a longstanding inter-
est of political systems analysis, and is fraught with real-world consequences.

One kind of structural advantage, that conferred by gerrymandering, refers to the manipula-
tion of electoral boundaries in order to (dis)empower specific group or party. In the American
context, many social groups may benefit from the manipulation of political boundaries. One con-
tentious type of gerrymandering, racial gerrymandering, has strong legal remedies and effective
quantitative methods that can be used to identify when racial gerrymandering occurs. Another
type of gerrymandering benefits incumbents, those currently sitting, and can take the form of
anticompetitive gerrymandering, by which a districts’ boundaries are manipulated to prevent ef-
fective two-party competition, or factional gerrymandering, where party leaders force members
of their own party to compete or to leave their district in order to increase the power of the party
leaders. A final type of gerrymandering is partisan gerrymandering, which intentionally dilutes
the power of one party. Insofar as the various types can be separated, this dissertation focuses
explicitly on partisan gerrymandering, the intentional biasing of the political system towards or
against one political party.

At its core, statistical analysis of election systems requires solving a critical challenge: elec-
tions provide deceptively little information. The number of political districts in any state is often
quite small, as is the number of elections held under a single districting scheme (in the United
States). In addition, many district seats are uncontested or only nominally contested in many
elections. Thus, the critical issue for quantitative analysis of partisan gerrymandering is to make

statistically reasonable conclusions about partisan advantage when the raw data is both sparse



Symbol \ Name Meaning Relation

Vi; | District Vote # votes cast for party j in district i H;; * m;
H;; | District Vote Share % of votes cast for party j in district i Vii/m;

h; | Party Vote Share % of all votes cast that were for party j )}, V;;/ Y, m;

s; | District Winner index j of the party that won in district i argmaxj(Vij)
§; | Party Seat Share  share of all seats won by party j YiZ(si=j)/N
m; | Turnout # of votes cast in district i for any party -

Table 1. Fully-general notation for electoral systems analysis. Z represents the indicator
function, which is one when the predicate is true and zero otherwise.

and noisy. How can advantage be identified in only two elections or in only three districts? The
methods used in this dissertation involve modeling the target data generating process and an-
alyzing sets of simulated elections, but this only shifts the issue of data scarcity to the initial
phase of analysis. While this is common method, it is important to acknowledge that this (and
much of the formal notation and methods that follow) is essentially designed to maximize the
information about the observed electoral process.

Before proceeding, | will define some terms. Each congressional election is a unique event,
a contest between two (or more) discrete choices in each of the N constituencies in a state’s
congressional delegation. At the end of the election, an N x 1 record is made of the total num-
ber of votes cast in each constituency, called m, as well as an N x P matrix of the raw number
of votes cast for each party j = 1,2, ... P over the constituencies, denoted V. Sometimes, if
full data is not available in historical settings, only the vote shares for party j, H;, are recorded
as V;/m; = H;. In these cases, m; is often unavailable. Since this dissertation concerns bien-
nial contemporary United States congressional elections from Chapter 3, it deals exclusively in
first-past-the-post election rules, where the party with the most votes in a district wins the seat,

and when V is available, so too are H and m.

Under this win rule, let the vector s be the district seats vector, an N x 1 vector of indicator
variables where s; = j if party j wins more votes in district i than any other party. Another
summary of the electoral performance of each party, the party seat share vector, s, is the

P-length vector containing the overall percentage of seats won by each party, or the empirical



frequency vector of s. Thus, §; is the percent of the congressional delegation controlled by party
j- An analogue to the party seat share, called the party vote share, is also available. This vector,
h,isa P-length vector containing the fractions of votes cast for each party j = 1,2,..., P, out
of all votes cast in the election. For clarity, these are summarized over districts i and parties j
in Table 1.

Since these terms are discussed for a single election, multiple elections in time yield an
additional index k in a total number of time periods T over which these observations can be
summarized. In general, symbols with a bar over them are party-wise summaries, and are
P x T in one dimension. Most other summaries are district-level, and so are N x T.

Fortunately, in the United States, some of the party complexity can be reduced. Since
there are only two major parties, | can be reduced to 1. The remaining party’s raw vote, vote
shares, or percentages are always recoverable from the grand totals, so recording only one
party provides significant simplifications. The party that becomes the focal point of analysis is
then called the reference party, and the party whose results are omitted the complementary
party. Using this reference/complement split, matrices can be reduced to single vectors: V
becomes v, an N x 1 vector of the raw votes cast for the reference party over N districts,
and H becomes h, the N x 1 vector of the reference party vote shares. In addition, h,s
become scalars, with /1 representing the share of the popular vote the reference party wins
in the congressional election and 5 the share of the seats in the congressional delegation the
reference party wins. Further, s; becomes a binary indicator vector, reflecting whether the
reference wins in the district. The designation of the reference party is arbitrary, and its reversal

simply reverses the analysis.

Most questions about electoral fairness in the United States reduce to questions about the
relationship between vote share and seat share, & and 3. These party-level summaries are

often implicated in claims about the electoral system:

Candidate A won the electoral college, even though he won fewer votes than his
opponent. This is unfair!



Symbol \ Name Meaning Relation

v; | District Vote # of votes cast for RP in district h; *xm;
h; | District Vote Share % of votes cast for RP in district i v;/m;
fzj Party Vote Share % of all votes cast for RP Yivi/ Y, m;
5; | District Winner 1 if the RP wins district 7, 0 otherwise. ~ Z(v; > .5)
§; | Party Seat Share % of all seats won by the RP Y.i5i/N
m; | Turnout # of votes cast in district i for any party -

Table 2. Two-Party notation for electoral systems analysis. Z represents the indicator function,
which is one when the argument is true and zero otherwise. “RP” stands for reference party,
which is always the Democrats throughout this dissertation. This choice is arbitrary, and only
affects the orientation of the effects.

Party A wins two seats for every 10, 000 votes they win, but party B only wins 1.2
seats on average. Clearly, votes for party B are being wasted, and the system is
biased in favor of A.

Both of these claims, at a point, reduce to questions about the seats-votes relationship. But,
each election only provides a small amount of information about the relationship between seats
and votes for each party, a single observation (f, 5;). While some focus on the historical re-
lationship between (f;,3;) pools elections over t (Tufte, 1973), newer techniques use “extra”
information: the information in the covariance of district-level vote counts. These techniques
tend focus on the h,s vectors, summarizing them in novel ways (Brookes, 1960; Johnston,
2002; Hill, 2010), or extracting information using simulations (Gelman and King, 1994a; Gel-
man et al., 2010; Linzer, 2012). An entirely separate set of detection measures relies on the
geometric properties of district shapes (Young, 1988). Districts whose shapes are irregular in
some way are considered likely to be gerrymandered, since their boundaries are likely to be ma-
nipulated. These measures do not involve the relationship between 1 and 3, and exist entirely
independently of the political outcomes in the electoral system.

Crucially, the analysis of partisan advantage in political systems often comes into play
around the time to redraw congressional district lines. This process, called redistricting, is a
constitutionally-mandated state-by-state spatial reconfiguration of the American electorate. Re-
districting occurs every ten years, at minimum, to equalize population between congressional
districts in the US House of Representatives (Wesberry v. Sanders, 376 US 1 (1964)) as well

as state legislatures (Reynolds v. Sims, 377 US 533 (1964)) and some local offices (Avery



v. Midland County, 390 US 474 (1968)). While equalizing populations between districts is a
critical motivation for redrawing district lines, communities and constituencies also change in
composition and spatial configuration. For a congressional geography to be “representative” of
its underlying population distribution in addition to providing for equal “one person, one vote”
representation, the lines must be redrawn to capture this structural and spatial shift.

Redrawn districts may result in geographies that cause one party to be more successful
than it was in the previous plan. However, this change in fortunes is not necessarily indicative
of partisan gerrymandering outright; the change may be driven entirely by demographic or
ideological change in the state. Regardless, individuals may believe the system to advantage
a particular party and use subjective interpretations of how congressional districts in the state
should look to identify that partisan gerrymandering occurred. This perceptual standard of
evidence leads to many “common sense” solutions to redistricting issues.

Unfortunately, no silver bullet has yet been loaded or fired. Determining whether a specific
district or districting plan has been gerrymandered to advantage a given party over and above
the advantages the party may enjoy due to social attitudes or incumbent candidates requires
answers to a complex set of questions at the intersection of race, party, history, and community.
This dissertation provides a new technique to identify partisan gerrymandering that can be
used to answer those questions. This new technique may be applied to many different types
of inferential analyses of partisan advantage, and thus sidesteps much of the debate in the
literature attempting to identify the single most appropriate measure. In the tradition of model-
based gerrymandering identification techniques, the new method is able to conditionally control
for other potentially confounding sources of political advantage, in addition to being providing
an indication of the impact each district has on the measure of partisan advantage in state
congressional delegations.

To do this, | first examine the fundamental assumptions used in the counterfactual model-
ing process in Chapters 4, 5, and 6. The local measures of political advantage are secondary
statistics about an electoral model, so their values may be affected significantly by model mis-

specification in either of two models. The main concern is with the seats-votes model that



drives inference. The seats-votes model assumes that the election results in each congres-
sional district are independent from one another. The extent to which the vote shares are in
fact independent will be assessed using spatial econometric techniques. Second, the inferen-
tial advantage measures also depend on a model of electoral swing used to generate electoral
counterfactuals, elections that occur under conditions that are not observed. Here, electoral
swing, J, is the change in vote over N districts won by a party between two elections. Some-
times, d is constantoveralli = 1,2, ..., N, and sometimes it is modeled as a random effect with
varying specifications. Given this, some model of swing is used to shift the average expected
vote, E[h], to a known target value or to fix the simulated party vote share to the observed
party vote share. Under these simulations in controlled conditions, the resulting bias statistics
are analyzed. Thus, the swing model should represent plausible but unobserved elections. In
many cases, modeling electoral swing as an independent and identically-distributed random in-
novation is implausible in light of its observed empirical structure. Thus, the extent to which the
vote share model and the model of electoral swing reflect observed elections is assessed. In
addition, potential spatial misspecification of both the vote share and swing models is examined.

In general, | find that electoral swing in the United States is significantly spatially corre-
lated while accounting for various exogenous forms of heterogeneity. Thus, the use of inde-
pendent, identically-distributed random swing effects generates empirically-unlikely maps of
potential swings at either the county or the legislative level. However, the resulting maps of
electoral outcomes do tend to be realistic, even though the maps of swing are unrealistic, since
the magnitude of swing is often small with respect to the vote share to which it applies. Further,
using a spatially-correlated swing model to provide more “realistic” counterfactual maps of elec-
toral swing simply does not have a large impact on bias measures or the estimated seats-votes
curve. Adding a small magnitude of white (spatial) noise to an electoral map generates nearly
the same electoral results as adding a small magnitude of correlated noise. | also find that
a common model of electoral outcomes used in gerrymandering analysis suffers from spatial
misspecification. However, resolving this spatial misspecification does not significantly improve

counterfactual simulations in any plausible scenario. | develop a new, retrospective method to



model the seats-votes curve using bootstrapping which does not depend on an explicit para-
metric model of swing. While this bootstrap is exceptionally simple (and highly-extensible), it
also does not account for dependence or heterogeneity in electoral swing. This method is
compared to two other types of seats-votes curve models, and tends to agree more with one
model than another. Thus, it appears that corrections to the standard linear model to account
for empirically-observed dependence in swing or vote share do not make a large difference in
conclusions about the electoral system as a whole.

Given that these models are more robust than anticipated, | derive novel jackknife measures
of district-level partisan impact. After deriving the impact measures, | examine their properties
in a few case studies. | focus on California first, as its large number of congressional districts
and adoption of vastly different electoral rules & districting schemes in the 2010 cycle yields an
interesting significant breakpoint. | also examine the post-2010 redistricting in Wisconsin. | aim
to determine whether impact behaves consistently over time and space. To do this, | develop
a method of analysis for these jackknife impact measures. In addition, | examine whether the
measure of impact is related to classical measures of observation influence in the underlying
statistical model. If the districts that influence bias scores tend to be the districts that influence
the underlying electoral model, then standard model influence measures might be more simple
to use as local partisan advantage measures. Otherwise, it may be the case that districts that
are influential on the underlying stochastic model do not significantly influence the bias of the
statewide plan, or that influence of districts is inconsistent over time. If either is true, districts
may be considered “not consistently impactful” on partisan advantage in a given state. Finally, |
characterize two axes along which plans may vary in terms of their bias statistics. The first axis
is balance. Balanced plans have impact measures that are symmetrically distributed around the
statewide advantage measure, meaning that some districts may increase statewide advantage
and some may decrease. Unbalanced plans have impact measures that fall primarily on one
side of the statewide advantage, meaning most districts tend to move the advantage in a single
direction. The second axis is precarity. Plans that are precarious have districts with consistently

large impact scores; plans that are not tend to have low district impact scores.



| find that impact measures are significantly different from classical measures of influence
in linear regressions. Second, | find that the classical measures of influence are not consistent
over the model specification considered. Third, | find that a nominal control on incumbency
filters out many districts from being “impactful.” Since there is no definitive answer as to whether
bias under observed conditions or bias controlling for incumbency is more critical to examine,
this difference is important to acknowledge. | also find that the impact measures follow the same
general relationship to one another as the statewide measures which they decompose. Further,
| note that impact measures sometimes disagree with one another, in that one suggests a
district’s removal benefits Republicans and another suggests its removal benefits Democrats. In
general, the measures are observed to work in two groups: the efficiency gap of McGhee (2014)
and the bias-at-median defined in Gelman and King (1994a) tend to provide similar impact
classifications, and the attainment gap from Linzer (2012) and bias at observed vote (discussed
by Gelman et al. (2010)) tend to agree. Finally, | find that there are some precariously balanced
plans, where each district has a strong impact on statewide advantage and, those districts tend
to pull the bias in different directions. But, this bimodality tends to be stronger for individual
impact measures than an inherent property of the plan itself.

Then, | compare the statistic to commonly-used measures of boundary manipulation in
Chapter 8. This is done in a combination of exploratory regression and less-structured cor-
relation analysis. Geometric measures are used to identify when an individual district might
have had its boundaries manipulated during drafting. This manipulation is then assumed to
be caused by an attempt to provide advantage to a given group. Thus, if the districts picked
up for boundary manipulation do have large impact on statewide advantage, then this assump-
tion holds. Otherwise, geometric measures may pick up irregular geometries, but not discover
districts that provide advantage. By examining the relationship between the new impact mea-
sures and districts’ compactness scores, | aim to identify whether the boundary manipulation
measures tend to pick up on districts that also have significant partisan impact. If this were the
case, then shape measures would not necessarily discover gerrymandering, which is boundary

manipulation that generates political advantage.



| find that geometric measures are unrelated to impact statistics for many different measures
of partisan advantage. Thus, a causal relationship of the “boundary manipulation” detected by
these measures generating partisan advantage qua impact is either unlikely, swamped by noise,
or both. This lack of relationship occurs despite the presence of a separate aggregate relation-
ship: compactness is negatively related to Democratic vote shares at the congressional district
level. Further, | find that using geometric measures as a decision rule to identify bad districts
would be unacceptable. Selecting “bad” districts based on their compactness scores would
single out a large number of districts that have negligible impact on statewide bias. Further, |
find that selecting on geometric measures would skip over some districts as not manipulated
when they in fact have a significant impact on partisan advantage in the state. Drilling further
down, | find that geometric measures are not useful predictors of partisan outcomes in the un-
derlying statistical models themselves, and changes in district compactness tend to have no
relationship to changes in partisan bias measures. Thus, geometric measures, insofar as they
detect boundary manipulation pursuant to partisan advantage, should be retired.

Overall, the main realizations from this dissertation are that impact measures provide a
powerful new tool to identify individual districts that influence statewide partisan advantage
scores. In addition, these measures tell us something novel about the structure of the electoral
models themselves and the conclusions we may draw about congressional districting plans.
Critically, spatial dependence matters a lot less for modeling seats-votes curves and partisan
bias than | thought it may from the outset. Thus, at least one commonly-used seats-votes
modeling method is robust to spatial misspecification, even though it (in theory) may require
a spatial correction. In finding this, | find that while some models are unrealistic and wrong,
they are so useful as to be effectively indistinguishable from an empirically “correct” model.
Finally, geometric measures are invalidated as an effective district-specific indicator of partisan

gerrymandering, since they are unrelated to partisan advantage.



Chapter 2

MEASURING ADVANTAGE & BOUNDARY MANIPULATION

Many different measures of partisan advantage are available in its longstanding literature.
While some suggest that measures of advantage should all standardize on specific indicators of
advantage and argue court precedent demonstrates this need (Grofman and King, 2007), many
core criticisms of these methods remain unanswered (Stephanopoulos and McGhee, 2015).
As a recent comprehensive overview by Nagle (2015) demonstrates, consensus on appropri-
ate measures has mainly fragmented since an early pre-Davis v. Bandemer review, Grofman
(1983). Notably, many of the measures suggested by Grofman (1983) are dismissed by Nagle
(2015) for concerns about construct validity: does the measure accurately & consistently indi-
cate advantage when present? Critiques of measures tend to focus on construct validity more
generally, such as with Altman (2002) on Johnston et al. (1999)’s application of Brookes (1960),
critiques of the excess seats measures from Gelman and King (1994a) & Grofman and King
(2007) made by McGhee (2014); McDonald and Best (2015), and Tam Cho (2017)’s review of
McGhee (2014). These concerns about validity complement jurisprudence skeptical of these
measures.

These advantage statistics abound because each strikes a novel compromise between
descriptive and inferential purpose, normative grounding, and empirical applicability. Starting
from a specific interpretation of what “advantage” means, they then provide a specific scalar
measure of advantage that relies on a model of how advantage arises. Critically, though, these
developments are often not unified with a consistent behavioral or process theory. Different
measures can be constructed with reference to many different standards of electoral justice,
and the process that generates the elections may be different from the process under which
fairness can be measured. Measures often require a zero point, a hypothetically “fair” position

against which some measure of distance is made. This zero point is frequently contentious,
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implicit, and difficult to model because it is both unobserved and must be established through
normative argument.

In what follows, | first briefly discuss the legal history of partisan gerrymandering in the
United States. Then, | outline two common standards by which electoral systems are judged,
both in academic and legal discourse. After this, | discuss how these standards are opera-
tionalized in a few common measures of partisan advantage in electoral systems. | pay specific
attention to the construct validity of these measures, the implicit model of electoral fairness
they operationalize, and how many fair positions are possible. In addition, | outline how to es-
timate these statistics in a two-party system given a generic model yet-unspecified stochastic
model of elections in Section 2.3. After the discussion of political measures, | will discuss mea-
sures of boundary manipulation in Section 2.4, again paying close attention to construct validity
concerns noted at least as early as Young (1988). After this introductory chapter on how to es-
timate system-wide partisan advantage measures and district-specific boundary manipulation
measures, a novel technique for constructing local measures of a district’s impact on partisan
advantage will be presented in Chapter 7. Also in Chapter 7, these measures will be compared
to classical measures of model influence for a specific model of electoral outcomes found in the
literature. Finally, these measures will be compared to the geometric measures discussed here
in Chapter 8, and the social and human contexts for this work discussed in Chapter 9. The work
concludes in Chapter 10, where general understandings are stated and a workflow presented

for using impact measures.

2.1 A Short Legal History of Partisan Gerrymandering

The history of legal review of partisan gerrymandering begins in earnest only in the latter
half of the twentieth century. Although major cases (like Baker v. Carr & Gomillion v. Lightfoot)
engage with districting questions, Davis v. Bandemer (478 US 109 (1986)) first established
partisan gerrymandering as a justiciable subject. However, the decision contains an extreme

reluctance to identify a single standard (or set of standards) that might be used to identify par-
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tisan advantage. Thus, while partisan gerrymandering could be reviewed, the court did not
set a standard on how to review it. Since courts in the United States have been reluctant to
participate in reviewing “political questions,” which are legal issues driven primarily by direct po-
litical motives, judicial review of alleged partisan gerrymandering without empirical standards is
a fraught endeavor. Cases after Bandemer, such as Vieth v. Jubelirer (541 US 267 (2004)) or
League of United Latin American Citizens (LULAC) v. Perry (548 US 399 (2006)) significantly
intensified the legal, social, and scholarly imperatives to provide convincing, valid measures of
partisan advantage. Specifically, in an opinion authored by the Justice Scalia, the Vieth prece-
dent hinges on the “lack of a judicially discoverable and manageable standard” for adjudicating
partisan gerrymandering cases, which is one of many definitive properties of “political ques-
tions” defined in Baker v. Carr (369 US 186 (1962)). This skepticism echoes that found in
Bandemer, that partisan gerrymandering cases are theoretically justiciable, but the lack of a
clear, manageable standard interferes with judicial action. This call from the courts to provide
a manageable judicial standard, a measure of partisan advantage grounded in the logic of the
American single-member district (SMD), first-past-the-post (FPTP) electoral system, has not
yet been definitively answered.’

Thus, despite the intensification of need from Bandemer v. Davis through Vieth v. Jubelirer
and LULAC v. Perry (Godfrey et al., 2005; Grofman and King, 2007), redistricting and partisan
gerrymandering-adjacent court cases have proliferated. A string of recent cases on redistricting
shows partisan gerrymandering and redistricting reform is an increasingly contentious legal
issue. Especially as scholarship intensifies, the search for a manageable standard to detect
partisan gerrymandering surfaces new debates and analyses in many court cases. In a pair of
cases about the Arizona Independent Redistricting Commission (AIRC), the US Supreme Court

validated the use of nonpartisan redistricting commissions? and reaffirmed the importance of

1 First-past-the-post (FPTP) single-member district electoral systems are those in which the candidate with the
largest share of the votes in a given district wins the election in that district.

2 Arizona State Legislature v. AIRC, 576 US ___ (2015)
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restraining partisan gerrymandering.® Another case, Evenwel v. Abbot (578 US __ (2016)),
clarified the meaning of “person” in the “one person, one vote” doctrine established by Baker
v. Carr (369 US 186 (1962)). The pace of litigation on redistricting is not set to slacken, either,
North Carolina (McRory v. Harris, 15-1262, (M.D.N.C. 2017), pending) Wisconsin (Whitford
v. Gill, 15 C.V. 421 B.B.C. (Wisc. 2016)), Maryland (Shapiro v. McManus, 1-13 C.V. 03233
J.K.B. (D.Md. 2015)), and Florida (League of Women Voters of Florida v. Detzner, 172 So. 3d
363, (Fla. 2015)) all have had redistricting plans overturned or challenged due in part to undue
partisan advantage.* Critically, Cooper v. Harris (58 US ___ (2017)) seems to have broken
down the barriers between partisan and racial gerrymandering arguments, recognizing that in
many places in the United States, race and party identification are nearly indistinguishable, and
a racial gerrymander may look identically to a partisan gerrymander. Regardless, all of these
court cases will likely change the rules significantly for the 2020 redistricting, especially as the
cases percolate upwards through the system to the Supreme Court.

In each of these cases, many different measures of advantage and boundary manipulation
were used across many different amici curiae briefs. No single best measure of advantage is
championed in any of the eventual jurisprudence, however, so recent work on novel measures
and methods abounds. Specifically, dedicated paper competitions on gerrymandering foren-
sics have provided significant high-quality work in the area, focusing both on new measures
(McGann et al., 2015; McDonald and Best, 2015; Wang, 2016; Arrington, 2016) and plan eval-
uation methods (Chen and Rodden, 2015; Cho and Liu, 2016b). Complicating matters, former
President Barack Obama called for further political reforms to address partisan gerrymandering
in redistricting in his final State of the Union address in 2016 and, upon leaving office, joined
in the establishment of a specific, targeted redistricting reform organization and partisan action
group on redistricting. Further reforms, such as independent redistricting commissions, which

have an uncertain impact on redistricting outcomes (Miller and Grofman, 2013), are nonethe-

8 Harris v. AIRC, 578 US ___ (2016)

4Regardless of the eventual success or defeat of Whitford et al. in Gill v. Whitford in the Supreme Court, explicit
measures of partisan advantage are unlikely to fade with a single Supreme Court case
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less important non-consequentialist methods of improving procedural fairness in redistricting
(Webster, 2013; Stephanopoulos, 2013). Thus, new academic work on effective measures of
partisan advantage will both drive and be driven by innovation in law, jurisprudence, and insti-
tutional reform, regardless of where the legal precedent moves the federal position on partisan

gerrymandering.

2.2 Disentangling Standards and Measures

Thus, to provide a manageable judicial standard or usable measures,® it is important to
differentiate between the standard of justice and the appropriate measure of this standard. An
electoral standard is a set of normative arguments that allow for the construction of a “fair” elec-
toral result. A measure of advantage is a statistic that expresses the discrepancy between the
state of an electoral system (observed or hypothetical) and fairness. Thus, measures exist in
reference to standards, and standards do not implicate any specific measure in their construc-
tion of “fair” reference positions.

Standards of electoral fairness in redistricting have almost always focused on this deviation;
the distance between the anticipated or observed impacts of a plan and what is “fair” constitutes
a tangible (or impending) harm. However, “consequentialist” standards that focus on the results
of elections & thus the consequences of redistricting are not the only standards of justice pos-
sible Stephanopoulos (2013). Alternative standards might focus instead on “procedural justice”
which places constraints on the actual process of drawing lines. Methods to provide for proce-
dural justice include the adoption of nonpartisan/independent redistricting commissions, explicit
rules focused on empowering historically disadvantaged groups (Webster, 2013), or precluding
the use of partisan information in the process of constructing districts.

However, procedural justice is quite difficult to ensure. First, it is unclear whether non- or

bipartisan redistricting commissions generate significantly different plans from partisan ones

5A common theme about existing partisan advantage measures is that no one responsible for drawing bound-
aries uses them, as per the interviews in Chapter 9
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(Abramowitz et al., 2006a; McDonald, 2006; Miller and Grofman, 2013; Hasen, 2013). This un-
certainty about the impact of redistricting is in part due to the rarity of independent redistricting
commissions and infrequent redistricting events. Regardless of the empirical stalemate, non-
or bipartisan commissions are strongly encouraged by participants in those systems, as will
be discussed in Chapter 9. Second, the type of redistricting for social justice suggested by
Webster (2013) is unlikely to be constitutional under existing racial precedents. Further, it may
be difficult to enact politically for redistricting commissions in states, which often are directed
by objectives in state constitutions, rather than in statutes. Finally, precluding the explicit use of
political information from redistricting hardly limits the unspoken political information in the dis-
cussions of “places that belong together” that occur between commissioners themselves, again
discussed further in Chapter 9.

As such, the standards considered in this dissertation are exclusively consequentialist. Fur-
ther, | suggest that empirically-validated partisan fairness is sufficient to constrain partisan ger-
rymandering, but other types of gerrymandering, such as racial or incumbent gerrymandering,
may require much stricter attention to procedural fairness. As such, | reject out of hand the pos-
sibility of “expressive harms” (Pildes and Niemi, 1993) in partisan redistricting. These harms
were first suggested as existing in the racial redistricting context. They are affective, may sup-
press individuals’ political efficacy or identity expression, and are exceedingly difficult to validate
empirically in racial redistricting cases (Ansolabehere and Persily, 2015). They are hypothe-
sized to be inflicted when individuals interact with a district map’s geographical imaginary, the
social, racial, and political power relationships embodied by the boundary lines. These harms
are sometimes used to justify developments of new redistricting tools focused on shape com-
pactness (Chambers, 2010, e.g.), but reflect an difficult-to-measure undercurrent in the context
of measures of political advantage. As such, affective factors like expressive harms are not
considered here, and are often not ignored when considering partisan gerrymandering.

This common explicit focus, designing standards and measures of the consequences of re-
districting, leads quite easily to the blending of standard and measure. The distinction between

standard and measure is hinted at by Grofman and King (2007), but they (and others) imme-
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diately proceed to conflate their chosen standard with their preferred measurement of it. They
argue that partisan symmetry as measured by an excess seats measure operationalized in Gel-
man and King (1994a) is the single most appropriate method for detecting bias in the shadow
of the Vieth decision. This conflation is then picked up and critiqued by McGhee (2014) when
defining a novel measure of partisan advantage. However, McGhee (2014) defines the “effi-
ciency gap” as if it were somehow against or independent of a symmetry. In fact, the efficiency
gap in some formulations is a substantially more constrained seat symmetry measure placing
a significantly stronger constraint on what a “fair” seat-vote relationship can look like (Jackman,
2017). However, since McGhee (2014)’s development occurs without a direct reference to a
seats-votes model, the fact that the measure is implicates a symmetry standard eludes the
initial discussion and other establishing presentations (Stephanopoulos and McGhee, 2015).
This is not a new deficit: early discussions of advantage measures like Brookes (1960) pro-
vide hardly any normative grounding for what the author considers the “fair” electoral position. A
similar level of implicitness affects the development of boundary manipulation measures as well,
which are often constructed without specific reference to the type of manipulation the author
hopes to identify. Later advantage measures, namely those counterfactual measures following
from standards discussed in King and Browning (1987), are focused explicitly on the standards
of “partisan symmetry.” Other measures, such as the efficiency gap of McGhee (2014), the at-
tainment gap from Linzer (2012), or registration comparisons from Kousser (1996), derive from
the same standards, but measure deviation from this standard in significantly different ways.
The fact that two methods of analysis may share the same standard but may not be concor-
dant on the measure is lost when these are conflated. Thus, confusion between the chosen
measure and given standard has significantly affected both the discussion and development of

novel techniques, and enforcing a clear distinction between standards and measures is critical.
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2.2.1 A Vocabulary to Define Standards

Before defining precisely standards of partisan advantage, it helps to distinguish a few con-
cepts in the theory of electoral system. The four concepts in Niemi and Deegan (1978) are
helpful and still implicitly inform many current structural analyses of first-past-the-post electoral
systems. However, Niemi and Deegan (1978) embed these concepts directly in measures of
the system. This means that the four criteria are not necessarily orthogonal and do not, in and
of themselves reflect distinct theoretical properties of the electoral system. These are proper-
ties of a seats-votes relationship, which is not a sufficient representation of an electoral system
by itself, since it often ignores discrepancies in turnout or party registration (Kousser, 1996;
McGhee, 2014), and is insufficient to distinguish the political system as observed from the the-
oretical representation. In addition, Niemi and Deegan (1978) present specific constraints of
these properties that are necessary to be satisfied if the system is to be fair. They use these
constraints to establish the “adequacy” of districting plans. This makes their development of
a “theory” of districting systems to be rather empirical, and admit no operational distinctions
between the concepts they suggest and the measures by which the system can be assessed.
Thus, | suggest two new criteria to add to the four presented by Niemi and Deegan (1978) that
can be used to ground or distinguish partisan advantage measures and then discuss and jus-
tify the two additional analytical criteria. | also back-out the underlaying theoretical concepts
of the various traits where necessary. | will avoid placing constraints on the structure of these

properties until after discussing them in full and presenting the revised indicators.
Responsiveness
One property discussed by Niemi and Deegan (1978) is a longstanding critical interest of
electoral systems analysis. Electoral responsiveness is the rate at which the number of seats a
party wins changes with respect to a party’s popular vote (or average district vote) share. For a

parametric model relating party seat share and popular/average vote share, this is simply slope
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of the curve fit by that model. Empirically speaking, seat shares are a stepwise linear function
of vote shares, since seats are either won or lost by a party. This means the number of seats
awarded for each percentage change in popular vote may not be constant. Some regions of the
system may be more “responsive” than others. Intuitively, this may seem to be the rule rather
than the exception in first-past-the-post systems: the difference in the number of seats won
when the vote share increases from 75% to 85% is likely much smaller than the change from
45% to 55% of the vote. This is shown to be the case empirically as well in Chapter 4. When
a single scalar estimate of responsiveness is made, the estimate is often referred to as the
“swing ratio,” reflecting the rate at which the legislature “swings” with respect to changes in vote.
As a theoretical construct, responsiveness reflects the extent to which legislative composition
changes with respect to changes in electorate preference, and seems well served by Niemi and

Deegan (1978)’s choice of empirical measure in both multiparty and two-party systems.

Range

A closely related property to responsiveness is the range of the system. The range of an
electoral system reflects the range of vote share over which seat share changes. Thus, this is
the set of vote shares where responsiveness is nonzero. This property can be thought of as
constituting the “barrier to entry” in a multiparty system, and extremely restrictive systems will
be expected to have a narrow range. In addition, systems with smaller ranges must have higher
responsiveness, since the entire range of seat shares must be traversed in a smaller vote share
domain. In theory, this concept reflects the set of outcomes that the electoral system rewards,
since movement in vote share below the minimum threshold or above the maximum threshold

provides no change in seat share.
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Competitiveness

Competitiveness, as defined by Niemi and Deegan (1978), refers to the fraction of districts
whose “normal” vote, the expected vote share for a given party in the district, is within some
fixed distance of 50%, the median in two-party systems. In their terms, competitive systems
have more districts with vote shares closer to 50%, and less competitive systems have districts
with party vote shares far away from 50%. In multiparty systems, identifying the correct loca-
tion for a reference point may be difficult. While pinning to 50% may still appear reasonable
(since that indicates outright control of the district), this is likely inapplicable. In addition, the
best hinge point may vary over districts: since patterns of competition often vary in multiparty
systems (Linzer, 2012), the relevant hinge point may as well. In this case, one might use the
size of the gap between the winning and next-most-popular party as a measure of the com-
petitiveness. More generally, the expression of competitiveness identified by this procedure
attempts to express how closely to the electoral margin districts fall, and attempts to provide
an indication of how marginal a district is. Incorporated in this measure are implicit proxy in-
dicators of candidate recruitment in the district, since hotly contested districts may have more

viable competitors, and districts with viable competitors tend to have tighter races.

Neutrality

Neutrality reflects the extent to which a political system does not favor one party over an-
other when parties are similarly-situated. Much subsequent work on neutrality focuses on one
necessary and sufficient condition Niemi and Deegan (1978) discuss, symmetry. While Niemi
and Deegan (1978) suggest neutrality be understood intuitively as advantage, the necessary
condition of symmetry becomes the criteria on which future research is established. Under sym-
metry, if one party wins 3 seat share after having won # fraction of the popular vote, it should
win 1 — 3 seat share after winning 1 — 1 percent of the popular vote. Thus, this criteria is or-

thogonal to range, responsiveness, and competitiveness, since any system can have different
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values for them while remaining symmetric or asymmetric. Symmetry is a difficult criteria to as-
sess directly, since elections in their typical course provide no direct indication about neutrality.
Further, it is rare for naturally-occurring elections under similar conditions to return & one time
and 1 — h the next, let alone return (1,3) and (1 — i, 1 — 5). Niemi and Deegan (1978) provide
no direct empirical method to measure neutrality in their discussion, unlike most of the rest of

the properties which can be measured directly from electoral results.

Fixity

While competitiveness measures of district-level vote shares are useful to characterize vot-
ing behavior, they do not provide an indication of how stable partisan control of the delegation
or legislature is. Thus, one idea that captures aggregate competitiveness of an electoral system
is the fixity of its majority. This embodies the extent to which an electoral system plan provides
one party stable periods of control. One simple measure of fixity is the number of elections
under which partisan control of the legislature or delegation flips. An alternative measure might
be the distance between the “tipping” district vote share and 50%. In this context, the “tipping”
vote share is the fraction of vote share required to be added or subtracted to all district vote
shares in order to change the control of the state legislature from one party to another.® Im-
portantly, the empirical assessment of neutrality depends strongly on a system’s fixity: many
statistical methods to assess neutrality assume that the case where control of the legislature
or delegation may flip is at least a plausible situation. If one party’s majority is unwavering,
this situation may reflect a significant extrapolation from the observed results. Thus, systems
with strong fixity may pose significant challenges to the validity of symmetry measures. Further,
fixity and competitiveness are not necessarily identical: an electoral system with small variance

in vote shares may result in highly-competitive elections with generally fixed majorities. Thus,

8Clearly, this relies on an assumption that this change in vote share applies uniformly over districts, an assump-
tion with deeply challenging geographic implications that are examined in Chapter 4.
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competitiveness (in Niemi and Deegan (1978)’s sense) is a district-level measure and fixity is

an aggregate system-level measure for a similar concept of party majority solidity.

Contest Size

One common complaint about seats-votes techniques is that they focus on parties and
their aggregate performance over the behavior of individual voters or blocs of voters. This
measurement is important, however, since the fraction of votes a party wins in a given district
implicitly standardizes the measure of system properties over the universe of voters, not the
universe of people. While legislative districts are required to be nearly exactly equivalent in
terms of district residents, the number of voters in each district can vary widely. Thus, the
extent to which turnout varies in a district may also reflect certain patterns of vote wasting
and also create differences in the effect districts have on system responsiveness (Johnston,
1983). In light of this, a few measures of partisan advantage have focused on derived properties
of observed or expected contest size (Brookes, 1960; Kousser, 1996; Johnston et al., 1999;
McGhee, 2014). Thus, its explicit inclusion in a vocabulary for discussing standards of electoral

fairness is important.

2.2.2 Defining Standards

With these six traits, a few common standards of fairness for representation systems are
immediate. First, a standard of proportional representation requires partisan neutrality and
linear responsiveness. Most common types of proportional representation also require that
the slope of responsiveness be as close to one as possible, meaning a 1% change in vote
share should be accompanied by as close to a 1% change in seat share as possible. How-
ever, in practice, many proportional representation systems implement a minimum threshold of
representation, so many proportional representation systems have an effective responsiveness

larger than 1 and that may fluctuate occasionally due to the finite number of seats available
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to assign (Taagepera and Shugart, 1989; Gallagher, 1991; Curtice and Steed, 1986; Grofman,
1983). In addition, some forms of minimizing discrepancies in contest size, such as attain-
ing a zero “simplified” efficiency gap (discussed by McGhee (2014)), would result in neutral,
piecewise-linear response in elections (Jackman, 2017; Tam Cho, 2017).

In contrast, King and Browning (1987) and Grofman and King (2007) suggest neutrality
alone is sufficient to provide for electoral fairness between parties in the United States. This is
a significantly more flexible standard, since it allows for winners bonuses. In first-past-the-post
single-member-district election systems, the responsiveness is nonlinear: increasing a party’s
average vote share from 45% to 55% might result in a much smaller shift in the fraction of seats
controlled in the legislature than an increase from 55% to 65%, as will be discussed in Chapter
5. If the distribution of individual district vote shares is bi-modal, with many safe districts for
either party and a few marginal districts in the center, the shift from 45% to 55% may entail a
party flipping only the few marginal districts while the winners of “safe” seats remain unchanged.
Moving from 55% to 65% might result in “safe” districts from the opponent beginning to flip to
the reference party en masse. This means that a nonlinear seats-votes response, which is
unfair under most common types of generalized proportionality, is just fine under neutrality-as-
fairness.

However, many critics of symmetry-only standards of fairness focus on the fact that fixity
and seat costs are important to how fair a political system is as actually experienced, rather
than in the hypothetical “tables-turned” electoral scenarios. Before the articulation of Niemi
and Deegan (1978), advantage measures like those developed by Brookes (1960) focus on
differences in the size of contests that parties tend to win or lose. If one party tends to lose many
small contests but win a few big ones, then the number of seats that party wins may often be
significantly smaller than their popular support may suggest. Alternatively, if a party wins many
small contests and loses large ones, they may be more represented than their popular support
may suggest. If districts that one party tends to win have much larger contest sizes, they may be
more expensive in terms of total human and organizational costs. Thus, the measure focuses

on consistent contest sizes for the losses and wins between parties and have been used in
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the American context (Johnston, 2002; Johnston et al., 2005; Hill, 2010). Other methods to
assess fairness like the efficiency gap based on turnout also focus on aspects of contest size,
but incorporate information about the size of majorities and minorities, rather than the sizes of
contests parties tend to win or lose. Finally, an early critique of symmetry-only analysis uses the
anticipated differences in contest sizes using differences in voter registration (Kousser, 1996),
arguing that registered voters tend to be effective predictive indicators of whether districts will

have excessively-large majorities or large but consistent minorities.

2.3 Measures of Partisan Advantage

In this dissertation, a stand on which measure of partisan fairness is “superior” will not be
made directly. Rather, | am concerned with developing a new technique that can be applied
to decompose the impact each district has on these scores. Some measures may be more
sensitive than others, have more stable distributional properties, or may have stronger face
validity relative to specific arguments about how the political process works. It is true that the
impact measures will inherit the same grounds as their plan-wide referents. But, the use of
these impact measures will also allow for a better understanding of the plan-wide statistics
themselves. By interpreting the types of districts that may (or may not) have strong influence
on a measure, arguments about what types of manipulation or partisan impact a measure is
supposed to detect can be directly assessed.

Five stochastic measures are considered in this dissertation. They all depend on the under-
lying data-generating process discussed in Chapter 5. In theory, two can be computed directly
from the observed election returns, but are not done so here in order to keep the analysis on the
same inferential footing. The stochastic measures must all be estimated using some simulation
regime: an electoral model and simulation strategy are used together to construct hypothetical
elections. These hypothetical elections occur under controlled conditions and are made to obey
certain constraints. These simulations are then analyzed using a summary statistic about that

condition. These “reference” conditions are electoral scenarios where bias can be measured
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directly, and arguments about their plausibility (or validity) justify the logic of the each method.”
The distribution of summary statistics generated across all simulations provides an uncertainty
bound on the statistic, and the distribution is either summarized directly in terms of quantiles or
indirectly in terms of its mean and dispersion. Importantly, no formal theory provides structure
to the measures’ simulation distributions, so statements about confidence intervals on the “true
value” of the simulation statistic are unavailable. Only statements about the likelihood of attain-
ing a similar result in simulation are available. The simulation distribution is contingent on the
entire chain of analysis, so misspecification in either the electoral model or the counterfactual
model may affect the simulation distribution. This misspecification in models of the observed &
counterfactual outcomes are discussed in Chapter 6.

Below, it is only necessary to understand that some stochastic process can generate simu-
lated (possibly counterfactual) electoral outcomes for election cycle t, called h?, given a set of
observed vote shares h;, observed electoral conditions X;, and simulation conditions X7. In the
most general terms, the electoral model is some distributional statement about h; as a function
of Xi:

hy ~ P(X;) (2.1)

and the counterfactual model is a statement about h; as a function of X7, given that observed

situation X; produced observed outcomes h;:
hy ~ P (X7 X, he) (2.2)

Some models have no analytical form for P; other models stipulate that the conditioning on X;
and h; is unnecessary, so there is no difference between forward simulation from the electoral
model (Eq. 2.1) and a counterfactual model (Eq. 2.2). Regardless, all of the simulated statistics
are driven by many realizations of h; and the empirical versions are driven solely by h;.

The five partisan advantage measures | compute can be reduced to three essential types.

The first type are efficiency gap statistics. McGhee (2014) suggests two forms of the statistic;

7Practitioners and stakeholders were interviewed about their perceptions of the validity of these reference sce-
narios. These results are recorded in Section 9.4.
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the “full” version, which measures discrepancies in “wasted” votes between parties, and the
“simple” version, which assumes turnout is constant and reduces to a measure of the seats-
votes relationship directly. These statistics can be assessed directly from observed h; and
turnout vector m; in election ¢, and can also be computed for simulated elections hy to provide
a sense of the uncertainty around the observed value. If the model for hy does not include
information about m¢, then simulated turnout m; may be required.® The efficiency gap statistics
can be computed directly from observed election returns, but this provides no indication of their
potential uncertainty, and so is not conducted in this dissertation.

The remaining types of advantage measures cannot be constructed without simulation. One
of these types are symmetry measures from Gelman and King (1994a). These can be mea-
sured at the observed share of the vote, at the electoral median, or summarized as an average
over an arbitrary range of vote shares. This dissertation computes the median & observed sym-
metry measures. Median bonus is the discrepancy between parties’ seat shares when they
split the popular vote at 50%. The observed bonus requires a counterfactual “tables turned”
scenario, summarizing a function of 5 with one set of simulations at the observed h and another
set at 1 — h. Finally, the attainment gap, suggested by Linzer (2012) in a multiparty context,
reflects the expected minimum share of votes required for a party to win a bare majority of

seats.

2.3.1 Efficiency Gaps

The efficiency gap discussed by (Stephanopoulos and McGhee, 2015), derived from the
relative wasted votes measure of McGhee (2014), and the partisan satisfaction measures sug-
gested by Nagle (2015) use the differences in the size of parties’ majorities and minorities to
measure define partisan advantage. McGhee (2014) suggests that most popular understand-

ings of gerrymandering revolve around the concept of “wasted votes,” votes that are cast which

8For this perspective, note Linzer (2012)’s use of Gaussian mixture models for the joint distribution of m; and
h;.
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do not affect the outcome of an election. He argues that votes cast for winning candidates
that they do not need in order to win and all votes cast for losing candidates are wasted, since
they might, under other circumstances, be transferred to another district and change its winner
without affecting the winner of the focal district. The votes wasted on winning candidates will be
called here “surplus votes,” and votes wasted on losing candidates will be called “losing votes.”
Added together, they provide the total number of votes wasted on a party. If the reference party
wastes few votes and the opponent wastes many votes as a fraction of all votes cast, the district-
ing plan makes the reference party more electorally efficient, and thus confers an advantage to
that party.

In its original form from McGhee (2014), the efficiency gap is driven by the difference in
parties’ total wasted votes. To define these let us first focus on a single election and let the
losing votes for the reference party (W;) be all votes cast for the reference party in districts i

where the reference party loses:

N
W, = ZI(I‘IZ < 5) * V; (2.3)

i
where Z(.) is the indicator function returning 1 when the argument is true and zero otherwise,
and v; is the raw number of votes cast for the reference party in district i. Further, let the surplus

votes be the share of votes cast in districts a party wins, minus 50%:
N
Ws = ZI(hl > 5) * (hl — 5) * U (2.4)
i

Total waste for the reference party (W,) is then the sum of losing and surplus votes, W, =
W; + Ws. Then, the same quantities are computed from 1 — h;, the opponent’s vote share
vector, to get W,, the opponent’s total wasted votes. The efficiency gap is then:

Wg_Wr
Em=—8_—
Y, m;

E,, reflects the difference in votes wasted between parties as a percentage of all votes cast.

(2.5)

The system is biased against the reference party when E,, is negative, and biased towards the
reference party when E,; is positive. To construct E,, from simulated elections, h° is used in

place of h, and m° may be used in place of m if a model for m is specified.
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As discussed by McGhee (2014), the efficiency gap can be stated more simply in two-party

systems when assuming that all districts have equal turnout:
E=(5—-.5)—2(h—.5) (2.6)

This version of the efficiency gap is a straightforward constraint on the seats-votes curve, requir-
ing neutrality and linear response of 2. This hyper-proportionality requires that a party’s seat
share increases by 2% for every increase in popular vote percentage. To assess this measure

for simulated elections, 5 and i may be replaced by 3° and h°.

2.3.2 Bonus Measures

Bonus measures derive directly from the neutrality property of Niemi and Deegan (1978).
Reprising Niemi and Deegan (1978), King and Browning (1987) defines these measures as the
“excess” seat share won (or lost) by the reference party if its opponent were to do as well as
the reference party. For example, if the reference party wins 5 = .6 of the legislature with an
observed popular vote share i; = .52, then it is necessary to estimate 35°, the fraction of seats
the reference party wins when h° = 1 — .52. If 3° = .62, then the system is biased against
the reference party by 2%, since it wins 2% fewer seats than the opponent when tables are
turned. Alternatively, if 3° = .58, it is biased towards the reference party by 2% for the mirrored
reason. This reflection strategy quantifies the “observed” excess bonus, since it characterizes
the asymmetry of the seats-votes curve at the observed vote shares, & for the reference party
and 1 —  for the opponent. Alternatively, if it were the case that # = 1 — h, then it would
be sufficient to consider 5 alone. If the reference party wins 50% of the popular vote but wins
53% of the legislature, the system is biased towards them by 6%. This is the “median” bonus
measure, which demonstrates partisan symmetry at the electoral median, 50% vote share.

Both of these techniques require different sets of simulations. In addition, some view the
“median” bonus as more realistic: since the median scenario simulates h¢ | = .5, it is always

closer to the observed h; than hf = 1 — h;. So, h? in simulations at the median is never a
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more distant extrapolation than at 1 — /;, and thus may reflect a less “extreme” counterfactual.®
Regardless of scenario, the counterfactual is core to the measure, resisted by academics, and
might be found unrealistic by practitioners. A simulation regime to construct these symmetry

measures are provided below.

Algorithm 1 To compute partisan bias in an election t at a given target vote share h* in a

two-party system with a counterfactual generation method like that in Eq. 2.2:

~

. Simulate K realizations of district vote share vectors h°.

2. Add a perturbation (electoral swing) 6 to each hy so thathy = h*, k =1,2,...,K.

3. Simulate K new district vote share vectors (or translate previous K simulations using a
new d) so thathy =1 — h*.

4. Compute the corresponding party seat shares, 5°, for all K realizations in both sets of
simulations.

5. Over all simulations, compute the average of 5° in both sets of simulations, denoted 5]

ands;.
The bonus towards the reference party at h* is:
Bj. =35 —(1-5;) (2.7)

Breaking this down into its constituent terms, the second term, (1 —53), is an estimate of
the share of seats the opponent wins when they get i* share of the vote. The first term, 3] is
the share of seats won by the reference party when they get i* vote share. So, B is expressed
in the percent of extra seat share the reference party wins. Positive values indicate that the
reference party would expect to win more seats than the opponent if it wins h° = h* share of
the popular vote. In contrast, negative values of B mean the opponent party can expect to win

more seats than the reference party would at 1° = h*.

9In all interviews in Washington and Arizona, interviewees corroborated this statistical intuition: parties splitting
the popular vote at 50% was more likely than parties swapping in their observed statewide vote share. This is
discussed in Chapter 9.
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This can also be simplified when h° = 1 — °. Since §; = 3 in that case, the equation can
be restated:

Bs=2%5"—1 (2.8)

which only requires K simulated h° vectors and a single shift term, &. In addition, since |° —
5] < |h° — (1 —h°)| for any h° € (0,1), the required § will always be smaller to produce

simulations at the median election than simulations at 1 — #*.

2.3.3 Attainment Gap

In theory, attainment gap is the inversion of the relationship measured by the median bonus
measure in Section 2.3.2. Instead of measuring the excess share of seats the reference party
wins when the vote is split evenly, the attainment gap estimates the difference in vote shares
when the seat share is split as close to evenly as possible from above. If one party can win a
majority of the seats with fewer votes than another party, it has an electoral advantage over the
other party. This measure can also be used in multiparty systems, since it focuses solely on a
single party and ignores the breakdown of other parties’ seat and vote shares Linzer (2012).

However, this inversion is more difficult to estimate. It requires the generation of scenarios
at fixed 5° rather than i°. Typical simulation models allow for both /° and h° to be controlled,
but 5° is often not controlled. Since the functional relationship between h and s is lossy, a
specification in terms of 5° would not be complete for 1°; a majority can be built many ways.
In addition, this simulation strategy also requires counterfactual estimation, since parties are
often not observed as winning the smallest possible majority. Further, this measure may be
difficult to apply in states with small, even-numbered delegations; for a state with two districts,
the barest majority is a single-party sweep of the delegation. The attainment gap in this case
would estimate the smallest expected vote share at which this sweep occurs.

While Linzer (2012) suggests estimating the attainment gap by extrapolating linearly (ac-
cording to an estimate of responsiveness) along the seats-votes curve to (h°, .5), this estimating

procedure admits no uncertainty about the value of the attainment gap. Instead, the problem
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can also be stated as a direct optimization problem over a stochastic process. One algorithm

to estimate the attainment gap would conduct a grid search for the minimum 1° with E[3] > .5:

Algorithm 2 Given a counterfactual generation method like that in Eq. 2.2 and a convex loss
function S (06), such as a mean absolute deviation or squared error loss for the estimate § and
target 0, the attainment gap in election t can be estimated by finding the h° such that S(3|.5) is

minimized from above.

1. generate a batch of K realizations of h°® at a starting party vote share, h°, and compute
E[5°] for that batch.

2. generate two more batches of K realizations, hS. and h° , at both h° + 6, where 6 is a
small step size and compute the E[3°] for each batch.

3. score each batch using the loss function S(5|.5). If5 < .5 for a batch, let the loss of that
batch’s h° value be infinite.

4. Ifh° has the lowest score, designate it as the optimal h* and save the value. Otherwise,

shift h° to the scenario with the lowest loss and return to 1.

Repeating this procedure L times, the attainment gap is the expected value of h* over L repli-
cations:

A =.5—E[h" (2.9)

Thus, the attainment gap is expressed as the extra vote share a party must win (or can afford
not to win) in order to gain a majority. If the attainment gap is negative, the party expects to
need more than 50% of the votes in order to win a bare majority of the seats. Alternatively, if
the attainment gap is positive, the party can expect to need fewer than 50% of the votes to win
a majority

While the form of the loss function S may change slightly from batch to batch, using the
expected values over K realizations in each batch significantly reduces its variability. Thus,
standard bounded line search techniques, such as Brent’'s method, can also be used instead of

grid search. In addition, estimates of A tend to be insensitive to whether absolute or squared
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District No. 1 2 3 4 5

hoote 0.55 0.64 0.38 0.0 0.42
Moo16 349,398 325408 313,277 229,919 323,534
6 7 8 9 10

0.62 1.0 0.39 0.73 0.59

327,834 378,754 320,865 281,482 290,564

Table 3. Washington congressional election results, 2016

error loss is used. However, each replication requires many batches of simulations to be gen-
erated as the loss function is minimized. One could also retain the initial h® vector and simply
optimize h° as a function of J directly. In practice, either of these methods yields consistently
smooth loss functions, and the estimated attainment gaps are stable across replications for

either method.

2.3.4 Example: Washington 2016

In the following discussion, | compute the measures for the observed congressional elec-
tions in Washington in 2016. In the analysis in the rest of the dissertation, these observed
results stand in as one of the many realizations summarized using these advantage measures.
Thus, while | present only one realization in this example, the analyses later in the dissertation
summarize over many simulated elections. Table 3 contains the election returns for Washington
in 2016. Notably, districts 4 and 7 are considered “uncontested.” These were, in fact, contests
between the top-two primary finishers, which both happened to be of the same party. Due to
Washington’s top-two primary, two Republicans ran against each other in the general election
in district 4, two Democrats in district 7. | will leave them as uncontested in this example to keep
the discussion simple, but in Chapters 4,5, and 6 | impute the values of uncontested elections,
analyzing the expected vote share if they were to have been contested.

For the efficiency gap, it is necessary to total the vote waste. Districts 3,4,5, & 8 were lost
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to Democrats, and so all votes cast for Democratic candidates in those districts are lost:
WID = .38 % 313227 + 0 % 229919 + .42 *x 323534 + .39 * 320865
and the waste in districts where Democrats won derives from the remaining districts:

WP =(.55 — 5) % 349398 + (.64 — .5) x 325408 + (.62 — .5) x 327834

+ (1= 5) % 378754 + (.73 — .5) % 281482 + (.59 — .5) 290564

The same calculations for the complement sets of districts yields the two components of waste

for Republicans:

WR =(1 — .55) 349398 4 (1 — .64) * 325408 + (1 — .62) * 327834
4 (1 —1) % 378754 + (1 — .73) % 281482 + (1 — .59) * 290564
WR =(.5 — .38) % 313227 + (.5 — 0) % 229919

+ (.5 — .42) % 323534 + (.5 — .39) % 320865

and the final efficiency gap is:
(WP + W) — (WF + W)
Y m;

The simple gap can be obtained directly from the / and 5 values. In this case, we refer to the

En = = —.016

simple average (not turnout-weighted average) of h;, since this measure assumes all districts

are equally-sized. Thus, the simple efficiency gap for 2016 in Washington is:
E=(6—.5)—2%(.53—.5) =.04

Using the turnout-weighted average vote share,'? the measure is slightly different:
E=(6—-.5)—2%(.55—-.5)=.00

Since there is no uncertainty information provided by these estimates, it is unknown whether
an efficiency gap of .04 is egregiously large (or even significantly different from zero) without

conducting simulation studies.

Owhich is also the share of popular vote for Democrats
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Moving to the bonus measures, | first examine the median bonus. The worked example
below might be thought of as a single realization of the bonus statistic, where many realizations
are used with simulated h and § and summarized to provide an estimate. The empirical h,016
will be used below, with two types of § considered, a strict uniform and generalized uniform
effect. Again, using the average (not turnout-weighted) vote share 1 = .53, | add § = —.03
to h to shift 1° = .5.'" In the case of districts where § causes an invalid vote share to occur,
these cases may be truncated to (0,1) (Gelman and King, 1994a). If imputation is used (as
discussed in Chapter 6), this truncation is rarely required, since the shift to the median is often
much smaller than the distance from any imputed district’s vote share to 0 or 1. With this shifted
vote share vector, no districts change hands. Thus, Democrats still win 6 seats, so 3 still is .6,

and the expected bonus at median is:
Bs=2x.6—-1=.2

Note that if 6 were a random effect, a shift of —.03 in mean may result in district 1 flipping from

Democrats to Republicans, if 1 < —.05. In that case, that realization’s bias measure would be:
5=2%x5-1=0

Since no other districts are likely to flip when E[6] = —.03, the fraction of times district 1 is won
by Democrats versus the fraction of times it is won by Republicans in simulations is the effective
determinant of the value of Bs.

For the observed bonus, we must flip i° = 1 —h = 1 — .53 = .47, which requires a
J of twice the magnitude.'® If we simply add 6 = —.06 to h,016, we see district 1 flipping
from Democrats to Republicans, but no other district flips. This would make 5, = .5, since

Democrats win 5 seats in the “tables turned” counterfactual, when their vote share is 47%.

" Accounting for varying turnout is not difficult here, too. A uniform swing of § is converted using the turnout
weights into a vector of adjustments. | deal in the average here to keep discussions simple.

2Thus, one sees how potential spatial correlation in & may cause different simulation outcomes to be more likely,
especially as swings become large.
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Thus, the observed bias in this scenario would be:
B =.6—(1-.5)=.1

However, if § were a random effect, it may be the case that district 10 flips in addition to district

1, or that neither districts 10 or 1 flips. If both flip, the realizations’ observed bonus would be
Bj. =.6—(1—.4)=0

If neither flip, the realizations’ observed bonus would be
Bj.=.6—(1—.6)=2

On the whole, it is only likely that districts 10 and 1 are “in play” during this counterfactual; either
both of them flips, only one flips, or none flip. The estimate of B;. thus is a summary of the
frequency of those three outcomes.

For the attainment gap, the minimum value of /1 such that 5 > .5 is needed. Since there
are an even number of districts (and 50% is not a majority), this means the smallest vote share
where Democrats still win 6 seats is required. In this case, assuming a strict uniform swing,
that would be i = .48, the value at which district 1 flips to Republicans and Democrats &

Republicans split the delegation at 50%. This would make the attainment gap estimate:
A=5—-48=.02

indicating that Democrats win majorities in the Washington congressional delegation with
around 2% fewer popular votes than Republicans. For a random swing with fixed expecta-
tion, the average of the minimal attainable #° would be the estimate used for the attainment

gap, given that either districts 10 or 1 might flip in simulations.

2.4 Geometric Measures of Boundary Manipulation

While partisan gerrymandering is embodied by the existence of partisan advantage, many

previous studies and attempts at detecting partisan gerrymandering (and gerrymandering more
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generally) have focused instead on electoral boundary manipulation. Akin to the early work on
the measurement of partisan advantage, many measures that purport to identify when a con-
gressional districts’ boundary obscures or manipulates the underlying population distribution
have been developed. Early measures, such as the moment of inertia measure suggested
first by Weaver and Hess (1963), are essentially the same in spirit as more recent measures
(Fan et al., 2015). In addition, concern about the sufficiency of geometric measures to iden-
tify legitimate boundary manipulation have also been ever-present (Young, 1988; Humphreys,
2011).

Regardless, many of the most commonly-used measures of boundary manipulation arise
from simple geometric relationships between the observed shape of a congressional district
and an ideal reference shape. Typically, one measure purports to identify a single dimension of
shape regularity, such as shape elongation, boundary perforation, or winding (Niemi et al., 1990;
Altman, 1998a; Wentz, 2000). Recent measures, such as that suggested by Chambers (2010)
or Fryer and Holden (2011) attempt to make the scores relative to the context in which regularity
is achieved. They aim to account for the fact that some states are less regularly-shaped than
others. The way the frame is divided may affect the regularity of possible district shapes, so
controlling for this frame dependence is necessary to make geometric measures that can be
compared between states. For Chambers (2010), this is done by considering the set of shortest
paths between voters; districts that are likely to fully-contain shortest paths are considered well-
shaped. Likewise, Fryer and Holden (2011) suggest an index that describes plan compactness
relative to the maximal compactness possible for a given frame. More recently, Fan et al.
(2015)’s novel moment of area measure follows a similar logic to Weaver and Hess (1963) and
Boyce and Clark (1964), but also construct a relative measure, standardized by the maximally-
compact packing of population available in the district.

While these attempts to address shape measures’ generalizability is admirable, critical eval-
uations of the effectiveness of these new measures in the vein of MacEachren (1985) is not
common. Indeed, since allegations of boundary manipulation are based on these measures,

new ones are often not “ground-truthed” by identifying commonly-agreed-upon districts that
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were manipulated. While Ansolabehere and Palmer (2015) does this in a sense, comparing
recent districts to the original “Gerry mander” of 1812 to identify whether compactness has in-
creased or decreased as a whole, the use of a pre-Baker v. Carr district is not helpful; the legal
and social regime for redistricting was massively different after the 1960s cases discussed in
Section 2.1. Thus, while work strives to make these boundary manipulation measures compa-
rable between states or over time, fundamental issues with validity, uncertainty, and accuracy
have not been addressed.

At its core, many reservations with shape measures revolve around their overly-simplistic
view of human spatial social structure. Part of the issue with identifying boundary manipulation
is that people do not tend to live in regular polygons, tiled spatially with similar social, ideo-
logical, racial, and ethnic characteristics (Archer, 1988; Gimpel and Schuknecht, 2009; Walker,
2013) Indeed, the spatial and ethnic configuration of people in cities is not exogenous; so-
cial and spatial aspects of ethnic and racial divisions can reinforce or arrest political attitudes,
sometimes changing their expressions (Giles and Hertz, 1994; Sastry et al., 2002; Rocha and
Espino, 2009). Some cities (or subregions within cities) have significant disparities in terms of
their local population density, and the structure of these differences manifests in different styles
of population grouping (Reardon et al., 2006). In addition, the link between the observed district
boundary and the intuitive idea about how a given numerical summary presents the manipula-
tion of “natural” or “latent” social or physical boundaries is tenuous. Compactness (and shape
regularity more generally) has many dimensions (Angel et al., 2010), and many practitioners in-
terviewed in Chapter 9 could not articulate what they viewed as important when thinking about
district shape regularity.

Regardless, geometric measures provide the only commonly-used local measures of dis-
tricts. The partisan scoring methods discussed in Section 2.3 generate a single, plan-wide
score. In contrast, many of the geometric scores are expressed district-by-district. With the
exception of Fryer and Holden (2011), this means that individual “bad” districts can be identi-
fied. Thus, these measures are commonly used in both popular discussion and litigation about

redistricting concerns. In fact, occasionally these measures of shape regularity are balanced
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Reock Convex Hull

Schwartzberg Polsby Popper

Figure 1. Ideal shapes for a congressional district, Maryland’s 5th District from 1903 to 1923.

against measures of political advantage; when political advantage is detected over the entire
plan, spatially-irregular districts are often singled out for legal reproach. Since the partisan
measures used up to this point have no capability to identify which districts strongly affect the
statewide bias measure, this is a reasonable mode of analysis.

So, in order to compare the localizations of the bias measures in Section 2.3 to geometric
measures, | first discuss which geometric measures are used and how they will be computed.
The five measures used in my comparison derive from four distinct ideal shapes. These ideal
shapes are shown below in Figure 1. Typically, ideal shapes refer explicitly to an optimization of
the given metric used to identify irregularity. When using a population measure, the ideal should
have a uniform and efficient distribution of population; when using a perforation measure, the
ideal should have as nearly smooth boundaries as possible. In practice, many ideal shapes are

circles or simplexes.
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Most of the common geometric forensics range between zero and one, where one indicates
perfect similarity to the ideal shape, and zero indicates perfect dissimilarity. As a result, districts
that score well are close to unity, and are considered “not gerrymandered” because their shapes
are close to the ideal comparison shape. Measures that focus on boundary perforation are often
highly-sensitive to the scale at which the boundary is measured (Mandelbrot, 1967), and so are
often avoided in cases of complex coastline districts. While these statistics have a restricted
domain, no further distributional theory is available for their values. They admit no uncertainty,
being simple summaries of the geometric or population information about a district, and provide

no indication of how unusual a given shape is in a relative or absolute sense.

2.4.1 Ideal Circle Measures

Three measures used in this dissertation fall into this category. Many compactness proper-
ties are satisfied by circles (Angel et al., 2010), but the reference circles constructed for each of
the three measures used in this dissertation are distinct. The first reference circle measure, sug-
gested famously by Polsby and Popper (1991) is the isoperimetric quotient, sometimes called
the Polsby-Popper metric in the districting literature. The isoperimetric quotient is a well-known
property of shapes that describes how “efficiently” an area is enclosed by a perimeter. Polsby
and Popper (1991) suggest that this measure should filter out districts that meander around the
map, attempting to avoid or pick-up target areas. For a district D, let its area be denoted Ap
and its perimeter be denoted Pp. Then, the isoperimetric quotient is the ratio between the area

of the district and the area of a circle having the same perimeter as the district:

47TAD

IPQ =
Q P2

(2.10)

The IPQ is always less than one, and is exactly one when the shape is circular. Since a circle
encloses an area with the minimal perimeter, this measure can be thought of as the “shrinkage”
in the size of the district due to its kinked and winding perimeter. Schwartzberg (1965) suggests

a similar metric, instead using the isoareal quotient. A less well-known quantity, the isoareal
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quotient relates the perimeter of the district to the perimeter of a circle enclosing the same area:
\/E
G
IAQ = By (2.11)
One novel measure for this purpose might acknowledge that a perfectly-spherical district would
not tile alongside other districts. Thus, an isoareal/isoperimetric quotient might also be derived
using the regular hexagon with the same area/same perimeter, respectively. While the origina-
tors suggest that these two measures ostensibly single out different districts and use different
arguments to justify the measures, the two are perfectly rank-correlated, since they are one-to-
one nonlinear transformations of one another. Thus, if examining the value of these scores or
their raw correlations with other measures, we might expect them to be different. However, ex-
amining quantiles or rank distributions of these statistics should yield nearly identical selected
districts, depending on the precision of the computation, and identify identically-manipulated
districts, despite the fact that both authors provide distinct arguments about what the indices
measure.
The final ideal circle measure used here is the Reock measure (Reock, 1961). This mea-
sure is argued to identify elongated shapes. It relates the area of the minimum bounding circle

to the area of the target district:
_ 4o
AMBC

R 2.12)

Since the bounding circle is guaranteed to contain the district, it must have an area at least as
large as the district. Therefore, R varies between zero and one, with values approaching one
indicating that a district is very nearly shaped like its bounding circle. Computing the minimum
bounding circle is a linear-time optimization problem isomorphic to a facility location problem.
However, a large constant factor (and high-resolution boundaries) make it difficult to compute
this value for many shapes. At most, the minimum bounding circle intersects three points
of the input shape (Skyum, 1990), and at worst has the diameter of the shape (the furthest
pairwise distance between boundary points) as its own diameter. There is no intrinsic meaning
to the minimum bounding circle in this context, in the same sense as the circles in the isocircle

measures.
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2.4.2 Convex Hull Measures

Two other measures used to compare shapes involve the convex hull of the district. A con-
vex hull is the simplex containing all pairwise pairwise connections between points on the shape
(De Berg et al., 2008). Stated in terms of dissimilarity metrics, the following two measures are
studied by Brinkhoff et al. (1995) for examining geographic shape regularity. One was also
used by Ansolabehere and Palmer (2015): the convex hull areal ratio. This relates the area of

a shape to the area of its convex hull:

Ap

CA=—"F==
AcH

(2.13)

Like the Reock measure, this lies between zero and one, with values close to one indicating
that the district is almost coincident with its convex hull. Since the convex hull is guaranteed to
contain the district, its area is guaranteed to be at least as large as the district. An alternative
measure involving convex hulls relates the length of the district perimeter to the perimeter of
the convex hull:

BA = l;f; (2.14)
This specification is a direct similarity measure. By pivoting the dissimilarity measures from
Brinkhoff et al. (1995) into similarity metrics, | preserve the same interpretation as the previous
ideal shape measures: values approaching one indicate close-to-ideal shapes, and values near
zero indicate potentially-manipulated boundaries. Brinkhoff et al. (1995) call their dissimilarity
specification of this measure the “boundary amplitude”, since it provides a rough indication of
how twisted the boundary of the polygon must be to fit within the convex hull.

These five measures will be used to attempt to characterize how “regular” district shapes
are when boundary regularity is compared directly to political impact. By relating them to the
measures of district impact developed in the next section, | will demonstrate the link between
suggested measures of boundary manipulation and the actual impact districts whose bound-

aries may be manipulated have on the measures of partisan advantage.
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Chapter 3

DATASET: SPATIOTEMPORAL DATABASE OF CONGRESSIONAL ELECTIONS, 1898-2016

3.1 Sources of Constituency-level Electoral Data

Longitudinal study of Congressional elections in the United States focusing on the estima-
tion of bias and responsiveness is not new. With the publication of King (1994), high-quality
data on US Congressional elections at constituency level was made available for various stud-
ies of redistricting, voter behavior, and electoral system analysis. Many of the influential post-
Bandemer studies on the impact of redistricting on Congress uses this data (Gelman and King,
1994b,a). In the decade after it was published, many other studies of American elections also
used this data.

However, later studies of elections have not provided data to extend King (1994) directly. In
most cases, these studies both extend and enrich the original data set, providing a superset
of the original Congressional elections data. Often, these analyses focused on sociodemo-
graphic study of redistricting’s impact on various aspects of the electoral system (Abramowitz
et al., 2006b; McDonald, 2006; McKee et al., 2006) or are general studies of the social and
demographic structure of American Congressional geography (Gimpel and Schuknecht, 2009;
Crespin et al., 2011). While privately-owned data exists for this purpose, the price of obtaining
coverage comparable to (King, 1994) is high. Thus, the Constituency-Level Electoral Archive
(CLEA) was developed in part to provide an extended, more detailed, and open data set on leg-
islative electoral geography (Kollman et al., 2016). For US Congressional elections, this data
set also provides much more data about minor parties and candidates themselves, and has
been used in a variety of contemporary electoral studies (Linzer, 2012; Gerring et al., 2015;
Kayser and Lindstadt, 2015; Bochsler, 2016). Since the CLEA is a multi-country data set, it is
used often for comparative studies that examine the generalizability or comparative validity of

particular theories about campaigns or elections, as well as generic polimetric or psephological
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studies. For US elections, the CLEA has been used for longitudinal analysis of electoral struc-
tures, examining how specific electoral properties, like effective number of political parties or
competitiveness, change over time.

For the geospatial research on US Congressional elections, work has focused on the devel-
opment and propagation of macro-scale sectionalism and the construction of ideological and
geographic voting blocs over time (Archer and Taylor, 1981; Bensel, 1987; Shelley and Archer,
1995), as well as the analysis of scale-sensitive political identities, both in redistricting and
in identifying “normal” vote (Openshaw and Taylor, 1979; Archer, 1988). Recently, calls for a
revitalized quantitative electoral geography, focusing on electoral systems analysis and voter be-
havior, have been made (Warf and Leib, 2011; Cho and Gimpel, 2012), and many foundational
problems in the spatial analysis of electoral systems, such as those articulated by Gudgin and
Taylor (1979), have been explicitly reclaimed by contemporary authors (Rodden, 2010; Calvo
and Rodden, 2015). This has seen an explosion of spatio-temporal analysis of the electoral ge-
ography of the U.S. Congress (Calvo and Escolar, 2003; Coleman, 2014), as well as analyses at
non-Congressional spatial scales (Gelman, 2007; Bishop, 2009; Hawley and Sagarzazu, 2012),
and non-American electoral systems (Shin and Agnew, 2007; Harbers, 2016). Altogether, the
literature on electoral analysis has become both robust and wide ranging.

Complementing the revitalization of electoral systems analysis, most of the data generated
in this literature has been openly shared under permissive licenses. However, the construction
and maintenance of spatially-referenced data sets for Congressional analysis can be a more
difficult process than analysis of elections at a state or county level. Indeed, King (1994) and the
CLEA only provide spatial information in terms of the states in which districts are found. They
do not provide information about the shape or extent of the districts, nor the neighborhood &
topological relations between districts. Geography & spatial effects may be richer than nesting
relationships alone, however, so longitudinal study of spatial effects in congressional districts
is quite restricted (Owen et al., 2015). While the CLEA provides a selection of “georeferenced
elections data” (the GRED), this data set is not comprehensive, with limited temporal scope

when compared to US elections coverage in the CLEA. To remedy this, | have constructed a
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general-purpose spatial database for this work that extends King (1994) forward in time using
data from the CLEA and novel data on incumbency. With this extended dataset, | connect the
individual district geometries compiled by Lewis et al. (2013) to yield a single spatio-temporal
database of US Congressional elections since 1898 using a single continuous encoding and
indexing scheme. In what follows, | discuss the process for constructing this data set, compare
the relative values of the source data sets, and briefly discuss potential use cases or novel

analyses that this new data may provide.

3.2 Methods

To extend King (1994) using the CLEA and bind both to Lewis et al. (2013), a common key
across all data sets was needed. This required a coherent data modeling strategy that could
encompass the abstractions in each of the data sources. Thus, the data set | construct is a
collection of the results of general elections to the US Congress. Elections to a Congress are
composed of some number of contests, which are electoral challenges in which some number
of winning candidates are declared. Each contest occurs within some territorially-bound con-
stituency, or district, which may or may not be unique in each Congress. Relating the three
data sets required disambiguating the relationship between contests, districts, and the Con-
gresses. Occasionally, a district may have more than one contest within it, like the Alabama
congressional for the 88th congress, where all eight seats were elected at large.

To ensure unique indexing of contests and disambiguation from the districts themselves,
the Inter-University Consortium for Political and Social Research (ICPSR) numerical codes for
states used in King (1994) were first converted to US Census Bureau Federal Information Pro-
cessing Standard Codes (FIPS codes). These codes are contained in column state_fips of
the example table segment shown in Table 4. Then, a composite database key was constructed
to refer uniquely to a contest’s Congress, state, and district. The first three characters of the
composite index reflect the Congress number of the record, with zero-padding on the left if the

Congress number is less than three digits. The second three digits of the composite index are
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the zero-padded state FIPS code. The third three digits of the composite index are the zero-
padded district number. This provides a unique index for each territory while allowing more
than one seat to be in each of these constituencies.

Finding a common district numbering scheme was the first design challenge for this data
set. In all cases, the sources used different conventions to refer to “at-large” districts, districts
that are the entire state. In the CLEA, at-large districts were variously referred to as the first
district (vermont 01), as the “zeroth” district (vermont 00), or having no number (vermont). In
all cases, Lewis et al. (2013) referred to at-large districts as the “zeroth” district. In both data
sets, district numbers refer to the spatial constituency in which the contest occurs, so multiple
contests may have the same district number. In contrast, King (1994) constructs multiple district
indexes in the case of a multi-member district. In at-large contests, a “district” index is labeled
decreasing from 98, meaning that in these cases, the index uniquely identifies a contest, not
a district. If two candidates run at-large in a state, their “district” numbers are 98 and 97 even
though the spatial territory of their electorate is the same.

The Lewis et al. (2013) convention is the most simple and robust for this application since
it treats the district consistently as a spatial object, rather than as a hybrid of contest and
district concepts. In addition, the Lewis et al. (2013) indexing strategy retains an advantage
of King (1994)’s index, since at-large contests can be separated efficiently. At-large contests
can be structurally different from typical Congressional elections that occur at the sub-state
level, and at-large occasionally merit separate consideration. So, the CLEA records were made
consistent with the Lewis et al. (2013) convention, and the King (1994) records were converted
to this convention as well. The final index is contained in the geom_id column of Table 4, and
the original indices retained in king_dist and lewis_dist, which reflect the two consistent
styles of district numbers.

In addition, a unique index for the geometries themselves, the index from Lewis et al. (2013),
is retained in each record. This is composed of four three-digit codes. The first component is
the zero-padded state FIPS code. The second component is the Congress in which the district

shape first appeared. The third component is the last Congress in which the district shape
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was used. The final component reflects the district number assigned to the district during its
lifetime. This index uniquely identifies the geometries of constituencies in US Congressional
elections, whereas the other index provides a unique identifier for the contests, referring to their
Congress, state, and constituency. In addition, this index allows for the construction of a high-
quality redistricting indicator variable since a contest in a “new” district is one whose congress
variable matches the second triplet in the component index.

For elections before 1992, the vote_share and turnout, delsouth, and inc covariates
are taken directly from King (1994). For later elections, vote_share, delsouth, and turnout
is constructed from the CLEA and inc is coded by hand. All variables aim to replicate the
method used to generate King (1994). The simplest to replicate is delsouth, a binary variable
indicating that a record is in a southern state. The vote shares, in this case, are the share of
the two-party vote cast for Democratic candidates. To construct this from the CLEA, the total
number of votes cast for the candidate endorsed by the major party candidates is recorded.
Thus, in cases of “fusion voting,” where the same candidate appears on multiple party tickets,
these counts are added to the major party’s total. The sum of these votes is turnout. Then,
the share of turnout that the Democratic candidate receives is the vote_share. To match
the structure of King (1994), the detail in the party identification in the CLEA was reduced to
three parties: Democrat, Republican, and Other. In most cases, the reduction in parties was
not significant. However, one case should be mentioned: Farmer-Labor candidates before the
Democrat Farmer-Labor merger in 1944 were considered to be Democrats. This decision does
not affect the resulting data product, since only King (1994) was used during this period, but will
be apparent in the validation plots shown below. The CLEA does not contain incumbency infor-
mation, so the inc variable was derived by hand from Congressional rosters. The post-1992
inc variate was coded to match King (1994): a Republican incumbent who runs for reelection
is coded as -1, a Democrat who runs for reelection is coded as 1, and a zero is recorded when
there is no single incumbent. Together, this comprises the dataset produced from the CLEA. It
provides similar data to King (1994) in addition to extending past 1992 and enriching the data

with spatial information. The period of overlap in King (1994) and the data derived form the
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congress delsouth fips contest_uid inc king dist lewis_dist

114 1 22 114022006 0 NaN 6
114 0 23 114023001 1 NaN 1
96 0 6 96006027 -1 27 27
96 1 13 96013002 1 2 2
state_name turnout vote_share year geom_uid wkb
louisiana 329327 0.288853 2014 022113114006 01060000...
maine 281425 0.663317 2014 022113114001 01060000...
california 175272 0.489981 1978 006094097027 01030000...
georgia 42234 1 1978 013093097002 01030000...

Table 4. The example schema of the final data product, broken into two lines. The column
containing the shapes encoded in well-known binary is truncated for brevity.

CLEA, all US elections from 1896 to 1992, will be analyzed in the validation section to ensure

that the CLEA data after 1992 comports with the data sourced from King (1994).

After this, all data was inserted into a SQLite database and a outer join conducted, retaining
all district shapes. The join resulted in over 98% of matches on keys, so only a tiny fraction of
the districts in Lewis et al. (2013) did not find matches in the extended King (1994). Most of
the remaining missing entities reflected duplications, malformed original entries that slipped
through the data cleaning process, or non-voting constituencies that were not recorded in the
CLEA or King (1994). The geometry information was stored in a text format in a column, wkb, of
the resulting comma-separated table. This column is shown truncated in Table 4, and contains
Polygons or MultiPolygons (as defined by Open Geospatial Consortium (2010)) encoded in well-
known binary (WKB), stated in hexidecimal. This more concise statement of WKB-encoded
geometry is common in database software (such as PostGIS), but still results in a column
with long elements. The coordinates are stored without a coordinate system using the NAD83

datum, inherited from Lewis et al. (2013).
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3.2.1 Code availability

The methods used to generate the data set will be made available through the Open Sci-
ence framework. All scripts were implemented in Python, and requires a few Python data
analysis libraries: pandas, a tabular data processing library, geopandas, a geospatial tabular
processing library, numpy, a numerical computation library, and SQLite, used for the final out-
of-core database join. In addition, a makefile is provided for convenience, to ensure the build
process executes in the correct order.

When run in the correct order, the scripts generate intermediate data and final data
products from a collection of sources. First, Kollman et al. (2016), King (1994), and the
manually-constructed collection of incumbency information for elections beyond 1992 are
contained in a sources directory. The first script, 00_get_all_shapes.py, collects all dis-
trict shapes from the repository maintained by Lewis et al. (2013), placing them in the
sources directory as well. Two intermediate data products are constructed. First, after
running 01_data_munge_clea.py, a cleaned and party-reduced version of the CLEA data
is stored in intermediates/clean_clea.csv. Second, the next script in the sequence,
02_rebuild_database.py, combines all of the district shapes together in a single table in
a SQLite database. Then, the fourth script, 03_extended6311.py, concatenates the original
King (1994) with the cleaned CLEA data. This first product, the extended_6311.csv data
set, has the same schema as the final data set constructed by 04_final_merge.py, which
accesses the SQLite database and merges the extended King (1994) with the collection of
district shapes. In this merge, two final outputs are generated, products/pre1948.csv and
products/post1948. csv, which split the results of the merge in two parts. The split divides
the series roughly in half, and corresponds to the division between full Congresses organized by
the Legislative Reorganization Act of 1946. Finally, if if more columns from the Lewis dataset
are required by analysts, the retained columns of the merge in 04_final_merge.py can be

changed without affecting the merge process.
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Figure 2. Relationship between Democrat share of the two-party vote in King (1994)
(ICPSR-6311) and that constructed from Kollman et al. (2016) (CLEA).

3.3 Data Records

As discussed in the Section 3.2.1, three data products are combined within the dataset.
The spatial dataset due to Lewis et al. (2013) is split into pre-1948 and post-1948 components
to reduce the size of the resulting product. To join these pieces together, the latter table’s
header must be removed and the tables concatenated. Both tables have the schema discussed
above in Table 4 with columns in the same order. To assist those who have no need for the
spatial referencing, products/extended_6311.csv, named for the original ICPSR numerical
designation of King (1994), contains the complete elections data with the geometric column

omitted.

3.4 Technical Validation

After merging and validation, the resulting two-party vote shares constructed from the CLEA
were compared to the original source King (1994) during the period of overlap in the dataset,

from 1896 to 1992. In this period, the CLEA data is not retained in the final product. But,
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Figure 3. Comparisons of the national average Democratic vote share between King (1994)
(ICPSR-6311) and Kollman et al. (2016) (CLEA)

comparisons over this period of overlap illustrates how closely the method constructs a dataset
from the CLEA with the same semantics as King (1994). First, the comparison shown in Fig-
ure 2 presents the scatterplot of the Democratic party vote shares in Congressional elections
constructed using the CLEA and that from King (1994) (ICPSR-6311). The plot for the early
period of overlap is shown on the left, and the comparison over the latter period is shown on
the right. The early period of overlap contains all Congresses conducted before the Legislative
Reorganization Act of 1946, and the latter period contains all full Congresses that take place af-
ter the passage of the Act. The correspondence in the two data sets is high, but is much better
in the second half of the data than in the first. This is likely both due to the way the Democrat-
Farmer-Labor faction was processed and the relative disappearance of minor factional party
classifications in the CLEA in the period after 1948. In addition, the prevalence of fusion voting
declines in this period, which makes tabulation of the two-party vote much simpler. Thus, this
comparison indicates that using the data derived from the CLEA should provide an accurate

post-1992 extension of King (1994), since accuracy is better for the contemporary Congresses

However, this plot does clearly show cases where the CLEA and King (1994) are almost
perfectly negatively correlated. When isolated, these cases occurred when the two source data

sets disagreed about the party identification of the legislators in a contest. Since this is two-
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party vote data, a disagreement about party would lead #; to be 1 — k; in the other dataset over
a universe h; € [0,1]. Upon further examination, these cases were consistently determined to
be errors in the CLEA and were reported. However, since these coding errors are detected only
in the pre-1992 portion of the CLEA-derived data, these few coding errors do not propagate into
the derived spatiotemporal database.

A second verification step, comparing the share of votes Democrats receive and the share
of seats Democrats win in the US Congress between the two data sets was conducted. This
comparison is shown in Figure 3. Both sources generate similar estimates in these two cases,
and again tend to track better in later Congresses. Notably, however, the two most recent CLEA
releases (versions 8 and 9) omit elections in the United States for 1918, which this graph makes
clear. Since the derived dataset uses King (1994) for all years before 1992, this missing data
does not affect the final data product. Thus, with these two comparisons, it seems the two-party
vote data generated from the CLEA is sufficient to extend King (1994) past 1992, and the final

spatio-temporal database of US Congressional elections since 1896 is coherent.

3.5 Further Potential Uses

To use this enhanced version of King (1994), the data must first be loaded correctly into
an efficient spatial format. The format chosen here is standards-compliant and can be read by
any tabular data reader with access to GDAL, the Geographic Data Abstraction Library. In addi-
tion, the table can be read directly into various SQL engines (such as PostgreSQL or SQLite),
and the well-known binary column converted directly to geometries using appropriate PostGIS
or Spatialite functionality. Then, spatial analysis can be conducted using standard statistical
packages (Thomas et al., 2004; Rey and Anselin, 2007; Bivand and Piras, 2015). This may
include spatial econometric analysis of electoral models (Anselin and Rey, 2014), exploratory
local spatial modeling (Calvo and Escolar, 2003), or cluster analysis and voter diffusion detec-
tion (Coleman, 2014). In this dissertation, the dataset allows for a novel study of the relationship

between measures of partisan advantage and measures of electoral boundary manipulation. |
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also am interested in linking the dataset with *-NOMINATE scores Poole and Rosenthal (1987)

to investigate the ways boundary change and political ideology may shift together over time.
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Chapter 4

EMPIRICAL STRUCTURE OF ELECTORAL SWING

All of the partisan advantage measures considered in this dissertation (starting from Chap-
ter 2 onwards) and nearly all measures of partisan advantage discussed in the literature (e.g.
Nagle, 2015) stand upon a model of the relationship between seat shares and vote shares in the
electoral system. They either do so explicitly, by specifying and estimating a stochastic model
of elections against which fair reference scenarios are evaluated, or implicitly, by constructing a
measure of advantage that prizes certain functional relationships between seats and votes over
others. Abstract standards of electoral fairness often place constraints on the structure of this
relationship as well (Grofman, 1983; Stephanopoulos, 2013). In some studies, such as Tufte
(1973), the model of 1, 5 is stated, and statistics used to characterize the potential fairness of an
electoral system pertain to summaries of the estimated relationship. In others, an implicit stan-
dard of justice belies an “ideal” theoretical seats-votes relationship, but a specific parametric
form is not provided and the “fair” curve not constructed directly. Regardless, misspecification
in the model of elections may provide erroneous estimates of the seats-votes curve, and thus
incorrect or unrealistic values for bias and responsiveness estimates from these curves.

Recent work using implicit seats-votes models to diagnose advantage focus on compar-
ing the observed slope and location of an assumed-ideal seats-votes curve (McGhee, 2014;
Stephanopoulos and McGhee, 2015) or require a given skewness for the seats-votes relation-
ship (McDonald and Best, 2015; Wang, 2016). Some methods of measuring partisan electoral
advantage do consciously attempt to avoid implicating a model of the seats-votes relationship
(Brookes, 1960; Johnston et al., 1999; Hill, 2010), but these methods do not provide a clear
alternative theory for what they quantify (Altman, 2002). Other work simulates many district
plans and compare the outcome of the observed plan to the set of outcomes expected under
the simulated plans (Chen, 2013; Cho and Liu, 2016b). Alternative methods also focus on

comparing the enacted plan to alternative candidate plans known to policymakers, attempting
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to demonstrate specific directional tradeoffs between objectives rather than characterizing the
abstract fairness of plans given a standard (Altman et al., 2015). Many analyses that attempt to
avoid explicit seats-votes arguments end up invoking an implied seats-votes structure regard-
less (Kousser, 1996; McGhee, 2014), so identifying a sufficiently-robust seats-votes model will
benefit many different types of gerrymandering analyses.

Thus, before proceeding to develop & examine local estimates of partisan advantage gen-
erated by one of these modeling strategies, | will spend time considering deeply the structure
of seats-votes modeling strategies that are used in subsequent chapters to estimate local im-
pact scores. | develop a new seats-votes modeling strategy based around bootstrap inference.
| also aim to characterize the empirical structure of electoral swing. The difference between
each years’ election results, electoral swing holds a significant place in modeling elections,
and models of swing are required to estimate seats votes curves and measures of partisan
advantage. Thus, | will examine whether common assumptions about swing are empirically
verified and whether common electoral models are spatially misspecified. In addition, | will con-
sider whether corrections to account for spatial misspecification have any effect on the resulting

curve.

4.1 Political Advantage as a “Hypothetical” Edge

Historically, work on modeling the relationship between seats and votes focused on reliable
and robust estimation of system responsiveness. Namely, in an attempt to validate a “natu-
ral law” of democratic societies, the “Cube Rule”(Kendall and Stuart, 1950) motivated many
foundational analyses of bias and responsiveness in democratic systems (Tufte, 1973). The
movement away from full-system analysis to the current focus on district- or precinct-level mod-
els cemented in the early 1990’s with a sequence of influential papers, and is accelerating as
data availability becomes better.

In tandem with the development of new responsiveness and bias estimation methods, the

development of better seats-votes modeling methods surged around the Davis v. Bandemer
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(1986) case. As discussed in Chapter 2, theoretical and empirical arguments about partisan
advantage and boundary manipulation abound in this period. The literature engaging with
the case (Grofman, 1985; Niemi and Deegan, 1978), centered primarily on discussions of ap-
propriate measures of boundary manipulation and political advantage and the theory of stan-
dards in districting. Focusing on methods to reliably estimate these quantities, Niemi and Fett
(1986) critiques “historical” analyses, where a seats-votes relationship is estimated directly from
(h:, 5;) across many previous elections. These methods tend to provide sensitive estimates that
change dramatically from year to year and are highly contingent on the few data points avail-
able.

In its place, Niemi and Fett (1986) suggests “hypothetical” analysis, where seats-votes
curves are constructed directly from district level information in a single year or pair of years
using an explicit model of electoral swing, or the model of how changes in party average vote
share apply to each district. Absent any other model for how a change in system-wide average
vote share is reflected in each district, Niemi and Fett (1986) assume that an increase in a
party’s system-wide vote share is well-modeled by a proportional increase in all districts. How-
ever, the assumption that changes in party average vote share should apply uniformly to all
districts in an electoral model is an assumption with a significant history of debate in electoral
geography. The model of strict uniform swing, where each district increases exactly by the
average increase, is still used thoroughly today as a first approximation of electoral dynamics.

Preliminary interest in hypothetical modeling using strict uniform swings is followed by a
pair of influential papers, Browning and King (1987) and King (1989). In this, a structural theory
of elections based entirely on the “hypotheticals” of Niemi and Fett (1986) is used to justify a
system to measure partisan advantage. These hypothetical methods rely entirely on an im-
plicit model partisan swing that is used to shift observed outcomes into desired counterfactual
scenarios (Gelman and King, 1994a). However, to provide for more realistic counterfactuals,
Gelman and King (1994a) suggest that uncertainty about the electoral process should be parti-
tioned into inherent error and a separate component for uncertainty within the electoral system.

Inherent error, they suggest, is present in all attempts to model the electoral system. Electoral
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Kind Mean Variance Covariance

Strict constant - -
Generalized constant constant -
Hierarchical regional regional within-region

Table 5. Swing specifications common in political science literature. Note that none assume
correlation between observations in different regions.

uncertainty, though, is unique to each redistricting period and allows counterfactual elections
to be simulated with less uncertainty: since the outcome for election ¢ is observed, any coun-
terfactual for ¢t should be some combination of the observed outcome h; and the predicted ﬁt
given the counterfactual electoral conditions, X°. Thus, Gelman and King (1994a) suggest a
method to conduct counterfactual analysis in a way that shrinks counterfactual h; towards the
observed h;, meaning the realization-specific uncertainty is removed.'3

In this model, a generalized uniform partisan swing is used to construct counterfactual
elections, where shifts in 1 are generated by a random effect with a fixed expectation. Contem-
poraneously, Jackman (1994) also models seats-votes curves using multiple stochastic compo-
nents, but treats swing instead as a spatial hierarchical random effect, suggesting that swings
for a given constituency result from nested local, state, regional, and national processes. This
also results in a generalized uniform partisan swing, where any single district experiences a

swing correlated with its state and regional context.

Together, these illustrate that the sense of the term “uniform” swing is ambiguous at best.
Random effects are not uniform in value, though they may be in expectation. So, they are
hardly strictly uniform in value, the sense used by Niemi and Fett (1986). A spatial hierarchical
effect is not spatially uniform (even in expectation). Yet both authors discuss their methods as a
generalization or extension of “uniform” swing. This ambiguity is actually older than the reaction

to the models & work flowing from Bandemer, and can be divided into three distinct conceptual

13This will be detailed further in Section 5.3.1.1.
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models for how shifts in aggregate party vote share () is (or should be modeled as) related to

the vector of party vote shares (h):

Strict Uniform Swing: Empirically, constituency-level swing is so tightly clustered around
the aggregate swing that it is effectively constant. As a modeler, this means a single
scalar shift, 4, may be used to construct counterfactual elections.

Generalized Spatially Uniform Swing: Constituency-level swing has variability, but this
variability has a common distributional structure over space. Thus, swing can be modeled
as identically distributed random shocks in each constituency, exogenous to electoral
conditions or district context.

Spatially Independent Swing: Constituency-level swing may be spatially heterogeneous,
but conditional on the heterogeneity, swing is independent. Thus, swing may be modeled

as an exchangeable random effect.

In many ways, these three claims drive a significant amount of discussion about effective ways
to model electoral volatility. In general, the spatially-independent argument is still quite popular,
with some suggesting that it holds so strongly that electoral modeling is a “solved” (Gelman,
2014) problem.

Since the model for electoral swing is implicit in the construction of electoral counterfactuals,
the simulation distributions for the measures discussed in Chapter 2 are contingent on these
specifications. Thus, misspecification in either the electoral model or the simulation method for
counterfactual elections may result in an incorrect seats-votes curve and invalid measures of
advantage or responsiveness. It is necessary to clarify and examine the structure of electoral
swing in modeling seats-votes curves before developing the local measure of partisan impact

that rely on these measures.
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4.2 Disagreement About “Uniformity” in Electoral Swing

The longevity of argument between these perspectives on what uniformity means still re-
flects current divides; a clear lack of consensus about the spatial structure of electoral swing
has been manifest throughout the 20th century. Early use of uniform swing arguments include
Brookes (1960)’s method to decompose electoral advantage using strict uniform swing or the
model of electoral volatility provided by Hawkes (1969). However, Rasmussen (1964) opposes
arguments using strict uniform swing in British multiparty electoral politics, suggesting that it
oversimplifies electoral dynamics and presents a misleading picture of how elections are won
and lost.

In contrast to the strict uniform strategies, early foundational work from Stokes (1965)
presages Jackman (1994), modeling electoral swing with local- and state-level components.
Thus, “uniform” for Stokes (1965) is in fact a generalized swing: a shift in support for one party
manifests as a shift in all places towards that party, but the shifts are essentially random. Going
further, (Katz, 1973b,a) provides a revision of Stokes (1965) allowing for further spatial hetero-
geneity. Levels of the hierarchy may vary in their response to a given swing. But, given the
swing in a district’s state, region, or nation, the distribution is linked together by a common hi-
erarchy, and swings are independent conditional on this hierarchy (Wilson, 1978). While early
formal treatment of explicit models for spatial dependence existed at this time (Whittle, 1954),
dependence between districts was not a foundational concern like nested multilevel structures
were.

In another context, arguments about the meaning of “uniformity” surface in a robust debate
about the usefulness of swing in analyzing Australian elections. These elections pose a a
distinct set of challenges to the estimation of responsiveness and advantage, since instant-
runoff voting in a multi-party system means that swing is not zero-sum (Mackerras, 1973). In
this context, Mackerras (1976) suggests that changes in a constructed two-party vote share
for dominant coalition parties in Australia in 1975 tended to be strictly uniform, arguing that

each sub-national constituency experienced nearly the same swing as the national average
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swing. Sharp critiques of this view echo Rasmussen (1964), and focus on the fact that a
uniform swing in a multi-party democracy is an unnecessarily strong simplification (Sharman,
1978; Mackerras, 1978). One relevant critique, that of Austen (1978), focuses instead on how
Mackerras (1976) is inconsistent: if swing were strictly uniform, then the significant fraction of
text Mackerras (1976) uses to analyze how some areas do not swing like the nation would be
moot.

Their discussion of just how “uniform” is uniform enough, generated no conclusive answers.
This tension between “strict” and “generalized” senses of uniform swing has also re-aired since
then in different venues, such as the exchange initiated by Butler and Van Beek (1990). They ar-
gue that swing should be used in the analysis of American elections, citing its use in Australian
and British analyses. Rose (1991) disagrees, again suggesting that swing is an unnecessary
simplification and is generally unhelpful because volatility is rarely constant over space. Coun-
tering, Gibson (1992) argues that swing is no worse than Rose (1991)’s own favored electoral
simplifications. More recently, these arguments resurface in discussions of uniform swing as
a “first approximation” for presidential electoral models (Jackman, 2014; Ghitza and Gelman,
2013). In addition, recent work discussing relative swings by social group in an ecological anal-
ysis of voting behavior in the Weimar Republic vote for the NDSAP (Nazi party) King et al.
(2008) reiterate a view of generalized uniform swing as essentially correct.

Foundational work by quantitative electoral geographers is also critical of the empirical basis
for strict uniform swing (Johnston, 1982, 1983). Two important monographs, Johnston (1979)
and Gudgin and Taylor (1979), make explicit theories about the structure of electoral politics,
swing, and partisan efficiency. While Gudgin and Taylor (1979) suggest uniform swing may be
a helpful analytical technique to reason about the distribution of district vote shares, they do
not suggest that swing is strictly uniform over space. This avoidance of strict uniformity is all
the more interesting due to the contemporaneous work detailing how the spatial structure of
macro-political alignments is relatively consistent over time (Archer and Taylor, 1981; Bensel,
1987).

Johnston (1983) also provides a novel theoretical argument illustrating the tension between

58



two types of strict uniformity. Strict uniform swing might be understood in two ways: all places
shift the same absolute percentage points, or they shift the same relative fraction of support
from their current level. A relative swing of +5% would move a constituency where Republicans
get 51% of the vote by 2.55 percentage points, but would move the district where they get
42% by only 2.21 percentage points. Thus, a strict relative swing must result in a generalized
swing, depending on the distribution of district vote shares. Further, a strict absolute swing,
where all districts rise or fall by the same number of percentage points, results in a distribution
of relative swings. Districts usually have unequal turnout, so this distinction affects the party’s
system-wide popular vote, and thus makes the relationship between the party’s system-wide
vote share and the district vote share less certain. More generally, Johnston (1983) argues
that the distribution of vote shares and the distribution of volatility are necessarily linked, and
constant shifts are empirically unlikely when districts are different, too.

These discussions and ideas from electoral geographers only weakly percolate into the later
discussions of electoral swing in political science (Johnston, 2005). Although King et al. (2008)
cites O’Loughlin et al. (1994) and states that “spatial research” analyzing electoral swing in the

Nazi vote is “informative” (p. 971), they then suggest in a footnote:

The idea that partisan swing is approximately uniform across geographic
units dates to Butler [(1951)] ... [and] has been generalized to a stochastic model
that fits electoral data in Gelman and King [(1994)]. For an example of the no-
tion that citizen support for political candidates shifts uniformly across most social
groups in the same direction and extent as the national swing, see Gelman and
King [(1993)]. (emphasis added)

Thus, again, the sense of “uniform” is confused. The author suggests that prior work has
demonstrated swing is spatially uniform, so neither heterogeneous or dependent. However,
consulting Gelman and King (1993), where discussion focuses on swing in support among
social groups, they suggest that electoral swing is strongly geographically correlated and com-
monly distributed, so that “dependence among states” (p. 416) must be modeled within years.
While states might shift together uniformly in mean in presidential elections, the swings are not
correlated when conditioning on their group nested structure (Bernardo, 1996).

For the purposes of seats-votes modeling, Gelman and King (1994a) hardly engages with
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spatial structure for the electoral swing term. A preceding paper, Gelman and King (1990),

suggests instead that:

We assume, therefore, that vote swings about the statewide mean are spatially
independent across districts ... Modeling districts with additional information such
as spatial correlation or covariates, if they were available, would probably yield more
accurate estimates of the seats-votes curve. Omitting this unavailable information
is unlikely to systematically bias our results.

Later, Thomas et al. (2013) also explicitly suggests “generalized” swing is sufficient, claiming
that swings tend to be independent conditional on state or regional groups.

A thread pulls consistently in objections to the spatially “uniform” swing asserted by King
et al. (2008). Claims that swing is distinctly spatially heterogeneous have been present ever
since (Katz, 1973b,a)’s critique of Stokes (1965). The line of reasoning remains in Austen
(1978)’s response to Mackerras (1976) and surfaces again with Rose (1991)’s critique of swing
in general as being unhelpful because it varies spatially. However, systematic spatial analysis
of electoral swing is not common in political science outside of hierarchical arguments (Katz,
1973b; Gelman and King, 1993).

Thus, an analysis of the empirical structure of electoral swing will prove rewarding in both its
own right. Targeting the structure of swing in seats-votes models may also improve the gener-
ation of realistic counterfactuals and improve the validity of those approaches. A “generalized”
uniform swing with no heterogeneity or dependence may only match the distribution of swing in
a given year and appear entirely unlike a map of swing that has ever been observed. Hypothet-
ical election maps would then be somewhat unrealistic, in that a heterogeneous white noise is
applied to all districts when, in fact, neighboring districts might tend to shift together. Theoret-
ically, if nearby districts swing together, then there are significant implications for questions of
polarization and sorting in redistricting (Carson et al., 2003; Bishop, 2009; McCarty et al., 2009;
Johnston et al., 2016).

Thus, in what follows, an empirical examination of the spatial structure of electoral swing will

be conducted. First, recent presidential election swings at the county level will reveal spatially-
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correlated electoral swings, even when controlling for heterogeneity. Then, the empirical struc-

ture of swing at the congressional level since 1992 will be analyzed.

4.3 Analyzing Spatial Dependence in Electoral Swing Under Known Spatial Heterogeneity

Voting in American elections has distinct structure at various levels of spatial hierarchies
(Archer and Taylor, 1981; Bensel, 1987; Archer, 1988; Gimpel and Schuknecht, 2009). While
significant attention in American electoral geography has focused on identifying the spatial struc-
ture of the “normal vote,” the expected behavior of places in regions or in political eras (Con-
verse, 1966; Miller, 1979), analysis of electoral volatility directly is less common. When done,
the work focuses on sectional realignment (i.e. macro-scale heterogeneity), on the long-wave
processes of political realignment and coalition building. Instead, Johnston (1983) suggests the
study of volatility not in terms of strategic coalitions and realignment but in terms of direct analy-
sis of electoral swing, which is not as common in the analysis of American electoral geography.
Since models of electoral swing are critical to the generation of the plausible counterfactuals
required by partisan advantage measures, the lack of direct spatial analysis of electoral swing
is somewhat surprising. Below, | will discuss the structure of the 2016 election in terms of
the spatial structure of electoral swing at county level. Then, | will focus explicitly on swing in
legislative elections since 1992. Doing this analysis at two scales, | aim to identify that swing
in congressional elections is substantively different than swing in the county level, and may re-
quire much more subtle treatment for a few reasons that will be identified after the discussion

of empirical results.

4.3.1 Macro-geographical Structure of 2016 Presidential Swing

At the county level, contemporary presidential voting patterns tend to be fairly stable. In

this vein, the three county-level maps of presidential elections since 2008 shown in Figure 4

demonstrate a trend to red in some marginally-aligned areas of the Midwest and Ohio River
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Figure 4. Democratic share of the Two-Party Vote in presidential elections since 2008 at the
county level

Valley states, but the overall pattern of strongly-aligned areas does not change significantly.'*
A reasonable visual interpretation of these spatial trends is that everything appears to get more
red, moving from the 2008 to the 2016 contest. While 2008 and 2016 are memorable electoral
contests, neither fit the pattern of the “watershed” election, which would present strong spatial

realignments in partisan coalitions."®

However, examining the maps of swing in the presidential elections since 2008 (shown
in Figure 5, the two maps appear quite different. Notably, these maps show that change in
the electorate from election to election is strongly patterned, but was inconsistent between the
08-12 swing and the 12-16 swing. Some areas, such as Wisconsin and Michigan, appear to
have moved steadily red over the past two elections; in contrast, the Minnesota break to the
Republicans is a 2016 innovation. Regardless, the swing is strongly spatially patterned, with
both 2016 and 2012 exhibiting similar levels of spatial dependence. The Moran’s I for electoral
swing in county-level presidential vote in 2012 is .66 (p < .0001) and 2016 is .61 (p < .0001).
Clearly, swing is not spatially uniform; some places move towards Democrats and some away
from Democrats, and the spatial structure of this deviation is likely not random. In addition, the
distribution of swings at the county level shown in Figure 6 appears to be well-behaved and
accord with the generalized uniform partisan swing arguments. The distribution is unimodal

and nearly symmetrical in both years, hanging close to the slightly-negative national median

4Robert Watrel & J. Clark Archer’s recent work on spatial and temporal principal components of normal voting
in the US Presidential is further illustrative here, but remains unpublished.

15Again here, citing Watrel & Clark would be illustrative.
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Figure 5. Swing in Democrat two-party vote share from 2008 to 2012 & from 2012 to 2016.
Here, negative values indicate states that became much more strongly republican, and
positive values indicate counties that became more Democrat, measured in percentage points
of popular vote for president. The swing in the 2016 election was around twice as dispersed as
the swing for 2012, so the color-bars are nearly double in range between the two maps. In
addition, the “midpoint” of the color ramp is the median national swing; it is slightly negative in
both elections.
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Figure 6. Distributions of county presidential swing and its spatial lag using Queen contiguity
weights from 2008 to 2012 and from 2012 to 2016.

swing. In addition to the distribution of swing being well-behaved, the distribution of the spatial
lag of swing is also well-distributed, with almost identical apparent structure to the distribution

of swing itself.

However, determining whether or not this positive dependence value is robust to spatial het-
erogeneity is somewhat complicated. While spatial dependence is distinct from spatial hetero-
geneity (Anselin and Arribas-Bel, 2013), the extent to which exploratory statistics like Moran’s
I are robust to heterogeneity can be examined. One thing that is clear in the maps of swing
is strong state and region heterogeneity. For example, Utah becomes significantly more Re-
publican during the 2012 election. Mitt Romney, a candidate with significant connection to the

state, attained an usually-strong level of support there, which reverted in the next election. To
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examine the extent to which the Moran statistic is robust to exogenously-identifiable spatial
heterogeneity, | develop two methods. One, a “hierarchical” Moran technique, re-specifies the
Moran regression as a hierarchical mixed-effect model. The second involves a conceptually-
simpler de-meaning of the response vector by group means before conducting analysis.

To define the hierarchical model, first consider the typical Moran-form regression:
WY =a+pY +€ (4.1)

where « is the conditional mean, W is a row-standardized spatial weighting matrix that records
the N x N spatial relationships between observations, Y is the N x 1 vector of the variate
under study, and € is an independent and identically-distributed Gaussian error term. | call
this specification a “Moran-form” regression to distinguish from the so-called “spatial lag”-form
of mixed regressive, spatial autoregressive model considered by Cliff and Ord (1973); Anselin
(1988) which is more standard in multivariate spatial regression work. The mixed-regressive,
spatial autoregressive specification is more well-used because it is well-defined when p = 0,

whereas Eq. 4.1 is often undefined when p = 0 in reduced form:

WY =a+pY +e (4.2)

WY —pY =a+e (4.3)
(W—pl)Y =a+e (4.4)
Y =(W-—pl) Ha+e) (4.5)

When p = 0, this leaves W~ alone. Many common specifications of W are singular, and thus
the specification becomes undefined. Regardless, | proceed from the Moran-form regression
as the underlying specification of Moran’s I, one exceedingly-common diagnostic statistic for
spatial autocorrelation in univariate data (Anselin, 1996).

Thus, a hierarchical Moran statistic involves the same type of specification as in Eqg. 4.1, but
instead of fitting a single global intercept «, the intercepts are modeled hierarchically. Thus, with
data Y, the same W mapping the N x N spatial proximity relationships between observations,

and a new N x | matrix, A, relating each of the N observations to their groupj = 1,2,...,].
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This lets us express the model as a function of both the global mean i and group-mean effects
v:

WY = Aa +pY + €
(4.6)

a=1pu+y+u
where 1; is a J-length vector of ones. In this model, u is the group-wise variance component,
€ is the unit-specific error term, and p corresponds to a Moran’s I-style dependence coeffi-
cient conditional on the hierarchical model for a, containing global effects 3 and region-specific

effects, . This results in the following single-equation Moran-form regression in reduced form:
Y = (W—pl) '(Iyp+ Ay + Au+e) (4.7)

However, due to the introduction of the joint random effect Au + €, custom estimators are
required to fit this model (Wolf, 2016). For a simplification that can be implemented without
specialized estimators, the group-level variance component can be removed. This results in

the following model, a spatial fixed-effect Moran model:
WY = Ay +pY +e€ (4.8)

where 7y is still the J-length vector of conditional group means. Another extension may privilege
variation due to heterogeneity over variation in dependence by constructing the group-means
unconditionally. This “group de-meaned” functions like a standard Moran specification where

the empirical (unconditional) group means are subtracted off of Y before estimation:
WY —-Ag)=u+p(Y —AF)+e€ (4.9)

where 4 is the naive group mean of Y grouped by | groups. This provides a measure of
the relationship between the N lower-level units after having removed the potential effects of
exogenous spatial heterogeneity in A%. While this model is not as rich as that in Eq. 4.6, this
initial group de-meaning is incredibly simple to implement, can be estimated without concern
for the dual error terms, and has a “direct” empirical interpretation as removing the spatial

heterogeneity expressed in A4 This method allows for the analyst to control for the presence of
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potential known heterogeneity while still exploring the structure of dependence in a dataset. By
examining the group de-meaned data directly, the structure of dependence after heterogeneity

can be examined after filtering out the potentially different means.'®

4.3.2 Exploring a Decomposition of Spatial Heterogeneity & Dependence in County-level

Presidential Vote

First, simply examining the following Moran-form regression using OLS provides a compa-

rable value of p to the univariate Moran’s |, conditioning on heterogeneity across states:
W (hgo16 — hoo12) = W16 = 02016 + Asy +€ (4.10)

where Ag is the grouping matrix for counties-in-states, meaning v models the state-specific
conditional means. In addition, J; is the swing vector from the previous election to the tth
election. The parameter estimates from this regression are contained in Table 4.3.2. Using
this model, we obtain an autoregressive coefficient of .3817, which is about half the Moran
coefficient estimated without the fixed effects, .6171. Twenty-seven statistically-significant state

fixed effects surface in this model, and these are shown graphically in Figure 7.

So, conditional on the heterogeneity at the state level, the county-level spatial dependence
(as measured by the p effect in regression 4.10) is still around half of the Moran’s I for the
2016 swing without attempts to control for spatial heterogeneity. But, what if this heterogeneity
is diagnosed at the wrong scale? Referring again to figure 5, some larger-than-state regions
appear to swing together frequently. This might be addressed using endogenous cluster detec-
tion in the future (Duque et al., 2012), but here | suggest a repeated application of the group

de-meaning strategy from Equation 4.9 using states, census divisions, or census regions. This

16This style of dependence-after-control strategy is similar to that advocated in the remarkable study conducted
by Hodges and Reich (2010), which suggests partitioning the sums of squares in spatial error specifications to avoid
“clobbering” your fixed effects with correlated errors.
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Coefficient  Std. Err.  p-value || Coefficient Std. Err.  p-value
Swing 0.3817  0.0091 0.0000**
AL -0.0262  0.0025 0.0000** || AZ 0.0216  0.0059 0.0003**
AR -0.0033  0.0034 0.3343 || CA 0.0279  0.0037 0.0000**
CO 0.0029  0.0035 0.4058 || CT 0.0022  0.0076 0.7713
DE -0.0010  0.0119 0.9308 || FL 0.0006  0.0035 0.8603
GA 0.0076  0.0029 0.0096** || ID 0.0088 0.0039 0.0254*
IL -0.0269  0.0032 0.0000* || IN -0.0270  0.0033 0.0000**
1A -0.0480 0.0033 0.0000* || KS 0.0003 0.0032 0.9358
KY -0.0233  0.0031 0.0000** || LA 0.0070  0.0035 0.0471*
ME -0.0248 0.0056 0.0000** || MD 0.0140 0.0048 0.0037**
MA 0.0231 0.0063 0.0003** || MI -0.0288  0.0033 0.0000**
MN -0.0404  0.0033 0.0000** || MS 0.0042  0.0033 0.2038
MO -0.0345 0.0031 0.0000** || MT -0.0122  0.0037 0.0009**
NE -0.0175  0.0032 0.0000** || NV 0.0050 0.0055 0.3596
NH 0.0011 0.0068 0.8673 || NJ 0.0143  0.0051 0.0047**
NM 0.0022  0.0043 0.6106 || NY -0.0219  0.0036 0.0000**
NC 0.0029 0.0032 0.3550 || ND -0.0410 0.0038 0.0000**
OH -0.0371 0.0033 0.0000** || OK -0.0084  0.0034 0.0131**
OR 0.0023 0.0042 0.5793 || PA -0.0207  0.0035 0.0000**
RI -0.0178  0.0094 0.0574* || SC 0.0046  0.0039 0.2327
SD -0.0314  0.0035 0.0000** || TN -0.0180 0.0032 0.0000**
X 0.0115  0.0028 0.0000** || UT 0.0396  0.0046 0.0000**
VT -0.0105 0.0059 0.0782* || VA -0.0013 0.0031 0.6753
WA 0.0067  0.0041 0.1008 || WV -0.0853  0.0037 0.0000**
Wi -0.0270  0.0035 0.0000** || WY 0.0020  0.0049 0.6763

Table 6. Regression results for a spatial fixed effects Moran model detailed in Eq. 4.6. The

model achieved an adjusted R? of .75 and a significant F statistic. Two asterisks indicates the

p-value is less than .01, and one asterisk indicates p < .1.

might also be implemented using a hierarchical Moran regression specification that nests these

levels (like Stokes (1965)) to identify the empirical structure of this variation through an ex-

ploratory model.!”

7 In theory, since the group de-meaning occurs before applying the Moran statistic, local indicators could be
naively constructed for the de-meaned sequences simply by treating them as input data (Anselin, 1995). However,
it is both unclear whether this is statistically appropriate, given the multiple layers of distributional assumptions im-
plicit in repeated demeaning, and if the identified clusters have any useful interpretable meaning without conducting
further basic research into the use of hierarchical Moran techniques. Further, with the nested hierarchical imple-
mentation, distributional assumptions are made about the structure of the model which likely push the technique
out of the exploratory spatial data analysis context supplied by common deployments of the Moran & Local Moran
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Figure 7. Statistically-significant fixed effect estimates in model 4.10. Twenty-seven states in
all have fixed-effect estimates distinct from zero at the .01 level.
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Figure 8. The four Moran scatterplots for county-level presidential vote swing in 2016 with their
lines-of-best fit in orange. The coefficients of each of these lines represents the equivalent
Moran-style spatial autoregressive effect, conditional on the regional heterogeneity. The effect
size and p-value are stated at the bottom of the scatterplot. All are significant at p < .001.
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Figure 9. The full spatial autocorrelation function, truncated at the first kth order at which the
correlation becomes negligible. This is computed on the 2016 presidential swing at county
level.

The successively de-meaned Moran scatterplots are shown in Figure 8. In this case, each
plot subtracts its groupwise mean from its constituent observations and treats the data as if
it were organic input data to a typical Moran statistic. All of the p-values for these repeated
analyses are statistically significant Thus, the x and y axes plot the de-meaned swing and
lagged de-meaned swing. The line of best fit is plotted through each point cloud, whose slope
represents the Moran coefficient for that regression. Thus, as you increase the scale of controls
for the spatial heterogeneity, the dependence measure declines in this dataset. Conceptually,
this means that Moran statistics may not be robust to spatial heterogeneity, especially when

that heterogeneity is strong.

Another method of examining this similar facet is to compute the (partial) spatial autocorre-
lation function. Akin to the temporal (p)ACF, the spatial p(ACF) measures the (partial) depen-
dence between successive orders of spatial lag in a lattice dataset. Here, the full spatial ACF is
most illustrative, since it characterizes the speed of the decay in correlation between counties
as the order of neighbors increases. In the spatial context, the kth exact order neighbors of
observation y; is the set of observations y; that are first reached in k steps. This means that

statistics—Thus;-while-l-have-implemented-“local” hierarchical Moran statistics for this analysis, | do not present their

results on this data in this dissertation.
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the graph distance between observation y; and y; is exactly k:

{yik:min(||yj—yi|\):k Vi=1,2,...,n}

Thus, the kth order spatial autocorrelation function is:

px = cor(y, ka) (4.11)

where WX is the adjacency matrix for k-minimal neighbors. The kth-order partial spatial auto-

correlation function is:
o = cor(y, Wy | Wity wh=2y, . Wly) (4.12)

This structure, focusing on the counties first reached in k steps, prevents the repeated inclu-
sion of low-order neighbors in high-order lag evaluations. As shown in Figure 9, the correlation
between adjacent counties declines as a smooth function of proximity. At around the 20th-
order neighbors, observations begin to become uncorrelated. Conceptually, this means that
dependence between counties likely operates at a scale somewhere between the state and the
Census division, since Census divisions are populated by around 200 to around 500 counties,
whereas states typically have well under 100 counties. In contrast, the partial spatial autocorre-
lation function, which conditions on each subsequent set of kth order neighbors as discussed
in Eq. 4.12, suggests that correlation goes to zero almost immediately. Once the first-order
neighbors are conditioned on, the second-order neighbors provide nearly no information about

the source observation.
4.3.3 Spatial Dependence & Heterogeneity in Congressional Swing
When conducting a similar analysis for the swing in Congressional election returns in recent
elections, it becomes necessary to handle uncontested elections in some way. This concern
of how to address uncontested elections has long affected seats-votes modeling work. Since

many elections are uncontested in Congress, the “swing” from year to year in legislative vote
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Figure 10. Distributions of congressional-level Democratic vote share and swing each year.

For swing, matching of congressional districts is done when no redistricting occurs, so only

years with known successor-predecessor pairs are shown. This means swing is unavailable
for all years ending in 2, immediately following redistricting.

shares may be much more volatile than for county-level presidential returns. In the case where
an election is uncontested one year and then contested the next, the swing might be on the
order of +.4. This does communicate some information about the change in vote shares, but
it may provide more noise than valuable information. In addition, the move from uncontested
to weakly-contested is more common than the move from uncontested to strongly-challenged,
s0 most swings for uncontested districts that are contested in the next period are smaller than
the worst case. Finally, the distribution of swings without imputing the uncontested elections is

more similar to than without the correction than that for the vote shares directly.

For example, consider the distribution of swings and vote shares on the left side and right
side of Figure 10, respectively. Regardless of whether swing or vote shares are being used,
the imputation removes the extreme secondary peaks of the distributions. These secondary
peaks surface due to uncontested districts becoming contested in the subsequent election.

Regardless, though, the magnitude of these peaks is much smaller in the swing distributions
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Figure 11. Global and group-wise de-meaned Moran statistics for Congressional elections
since 1992. Points in red are “statistically significant” with no multiple comparison correction.
The magnitude of the statistic is provided on the y-axis. Uncontested elections have been
imputed using an autoregressive strategy detailed in Section 6.2.

than in the vote share distributions. Examining the structure of the imputed distributions results
in a more well-conditioned analysis. In addition, the spatial dependence in the swing distribution
increases when uncontested districts are dropped. This is in part due to the fact that dropping
uncontested districts affects both the connectivity structure and distribution of values. Thus,
it seems most appropriate to analyze the distributions after imputing the uncontested election

vote shares, rather than only the contested elections.'®

Given that we are using the autoregressive imputation strategy, the results from the year-
by-year Moran statistic plot is shown in Figure 11. Without any multiple comparison correction,
Moran statistics with pseudo-p-values under .05 are colored red. With a Bonferroni correction,
only the second and last Regional D-Moran statistic are significant; only the second Division
D-Moran, and the D-Moran for 2008 are significant under a Bonferroni correction for the Divi-
sion and State versions. Regardless, the spatial patterning in Congressional vote shares after
accounting for uncontested districts is inconsistent over time; swing is not always significantly
correlated, regardless of whether a correction for exogenous spatial heterogeneity along cen-
sus region, division, or state lines is used.

In addition, the fact that the I statistic becomes negative after the state-level heterogeneity

correction is remarkable. If, as some suggest (see Haining (2003, pg. 87), also Griffith and

8For more on the actual imputation model, refer to Section 6.2.
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Arbia (2010)), negative spatial autocorrelation arises from competitive processes in ecology or
human geography, then an interesting theory might be explored given the shift towards nega-
tive spatial dependence in the congressional swing after accounting for spatial heterogeneity at
the state level. Noting that districts are drawn to be “safe” more often than not,'® swings tend
to act on these safe districts in opposing directions, conditional on the statewide swing. Thus,
since safe Democrat and safe Republican districts likely share borders, the negative spatial
dependence after accounting for statewide swing would imply that neighboring congressional
races tend to “tighten” or “loosen” together, rather than shift linearly together. Since the auto-
correlation is negative, a “tightening” would involve safe Democrat districts swinging down and
safe Republican districts swinging up, with respect to the Democrat vote share in the district. A
“loosening” would involve safe Democrat districts swinging towards a Democrat vote share of
1 and safe Republican districts swinging towards 0. While this exploratory analysis indicates
there may be negative dependence in the movement of Congressional vote shares after ac-
counting for spatial heterogeneity at the state level, this result should not be over-interpreted;
the p-values on these statistics are marginal (at most two in each series are significant after a

Bonferroni correction) and the implied model is likely underspecified.2°

4.4 Conclusion

Regardless, electoral swing is clearly not strictly uniform. Indeed, electoral swing does not
behave empirically like any of the common models of swing suggested above. Despite con-
trolling for differences in the mean swing over states or regions, swing still exhibits significant
spatial dependence in presidential elections. Thus, it seems that a single theory for how elec-

toral swing is best specified will likely not hold across time, elections, or geographies. Indeed,

19For example, see the analysis of interviews in Chapter 9.

20 To truly demonstrate whether this holds, that congressional races tend to either tighten or loosen together
rather than drift together linearly after accounting for spatial heterogeneity would require a follow-up study that
attempts to control for incumbency and midterm structures, likely through some form of spatial panel model with
state fixed effects.
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claiming that electoral swing can be modeled sufficiently as a uniform random (or hierarchical
random) effect should be justified by empirical illustration. In this instance, electoral swing in
presidential vote by county is strongly spatially-dependent even when accounting for potential
spatial heterogeneity. Thus, and modeling it as a uniform random effect is inapt. However,
spatial dependence in electoral swing is much weaker in congressional geographies.

After this thorough exploration of introducing spatial effects into seats-votes counterfactual
generating processes, a few takeaway points are clear. First, electoral swing (like raw vote
shares) are strongly correlated over space, in many elections, and at many scales. In presi-
dential election returns, electoral swing is quite strong, positive, and is robust to corrections for
spatial heterogeneity at the state, Census division, or Census region level. As far as the “cor-
rect” scale of spatial heterogeneity present in the macrogeography of presidential vote, it seems
that swing is best modeled as heterogeneous somewhere between the state- and division level.
This was detected using two novel analyses; one, a family of hierarchical/group de-meaned
Moran statistics were specified. Two, a spatial autocorrelation function akin to the temporal
autocorrelation function was developed for discontinuous lattice data and estimated. This pro-
vided an estimate of scale in county-level presidential vote that suggested that counties are
unrelated after moving around 20 counties out. Exploratory regionalization or scale-discover
regression techniques (such as GWR or multi-scale GWR) might corroborate this analysis. In
congressional elections, the spatial dependence is much weaker and is less-consistent over
time as well. Indeed, after a correction for spatial heterogeneity, swing becomes negatively
spatially correlated, although this correlation is again marginal.

Thus, when the models discussed in Chapter 5 are examined for potential spatial misspec-
ification in chapter 6, | anticipate there being misspecification. However, since the strength of
dependence in the congressional models is so weak, | also anticipate the correction for this
misspecification (either in vote share models directly or in the counterfactual generating model)
having little-to-no effect on the resulting advantage measures or seats-votes curves. That is, the
models will likely be misspecified in the sense that there exists a spatial pattern to swing that is

not modeled sulfficiently by treating swing as a uniform random effect. But, using an empirically-
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realistic model of electoral swing might only induce slight patterning, since the dependence is

small.
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Chapter 5

MODELING SEATS & VOTES: SPECIFICATION AND COMPARISON

Given that electoral swing is empirically nonuniform, it is important to explore whether more
realistic models of partisan swing may affect estimates seats-votes curves. That is, does it
make a difference to the shape of seats-votes curves if vote models or swing structures exhibit
spatial dependence? Even ignoring Johnston (1983)’s argument from first principles, positive
spatial correlation in swing might indicate that, in general, nearby constituencies swing in a
similar manner, and that volatility in electoral outcomes may cluster. But, without perfect spatial
correlation, there must be fluctuation in the structure of the swing over the electoral map. A
model that assumes swings are independent between observations when electoral conditions
are held constant (c.f. Gelman and King, 1994a; Jackman, 1994; Linzer, 2012; McGann et al.,
2016) would provide for generalized spatially-independent swings.

Thus, in the following discussion, | review seats-votes modeling techniques and make their
models of electoral swing explicit. First, the basic theoretical model is presented. Originally
justified as a model under strict uniform swing (Jackman, 1994), the empirical seats-votes curve
estimate is shown to be a translation of the rank distribution of vote shares. This will allow for
a thorough explanation of the way the seats-votes curve represents an electoral system, and
illustrate one critical step of all more complicated seats-votes curve estimation strategies. After
this, two stochastic methods to generate seats-votes curves will be discussed, and a novel
bootstrapping method will be developed.

The estimated seats-votes curves from the three approaches are compared, and the simula-
tions assessed along multiple dimensions of quality. Then, one of these methods is selected for
an intensive study of potential spatial misspecification. In addition to straightforward testing of
model adequacy, | also conduct extensive simulations under four distinct spatially-explicit data
generating processes to examine how this misspecification may result in different estimates

than the original specification in Chapter 6. If there is no substantial difference when explicitly-
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spatial models are used— if correlated swings tend to result in similar seats-votes models than
uncorrelated swings— then the introduction of complex models and estimators that account for

spatial dependence may not be worth the additional effort.

5.1 Development of Seats-Votes Modeling Frameworks

In general, seats-votes models, are composed of two distinct models; one of legislative
vote shares and one of electoral swing, the change in vote shares from year to year examined
in Chapter 4. The model of electoral swing is used to generate “counterfactual” or “hypotheti-
cal” elections, which then in turn are analyzed to identify partisan advantage. The analysis of
“hypothetical” elections (suggested by Niemi and Fett (1986)) has a few advantages over the
straightforward empirical analysis of observed elections. Constructing a seats-votes curve as
the functional relationship between the observed system-wide average party vote, /, and the
share of the delegation or legislature that the party wins, 3, ignores essentially all information
about the district-level dispersion, correlation, and electoral conditions that give rise to 5§ and
h. For a given districting plan in the US, there might be five observations of (Et,ét) under the
typical decadal redistricting and reapportionment regime in the US. This is simply not enough
information to reliably estimate a relationship if only these five observations are used.

More information is available in each election, however: the district-level vote share vector,
h:. This is useful since it implicitly contains information about how probable values of 5; may
be under minor changes in electoral conditions or outcomes. By treating 5; as the only useful
realization of the response in election ¢, a potentially rich source of information about the seats-
votes relationship is ignored.

Thus, district-level analysis models the seats-votes relationship using plausible hypothetical
district vote share vectors, & that attain known hypothetical average vote shares, i but occur
under changed electoral conditions or small disturbances. These simulation ensembles consti-
tute the “zone of chance” surrounding an observed (/1,5) (Wang, 2016). Elections in this “zone”

are just as useful as the observed election in computing summaries of advantage, efficiency,
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or responsiveness. Thus, for district-level seats-votes analysis techniques, two models are re-
quired: a distributional model for i and a generative model of h°. While some methods use
the same construct for both (McGann et al., 2016), many use separate process and generative
models (Jackman, 1994; Gelman and King, 1994a; Kastellec et al., 2008; Thomas et al., 2013).

Further still, some analyses compare the results of plans directly, either to candidate plans
(Kousser, 1996; Altman et al., 2015) or simulated plans (Chen and Rodden, 2015; Cho and Liu,
2016b). These strategies aim to reveal the impacts of the enacted plan as contrasted to known
or attainable alternative plans. This contrasts from seats-votes perspectives that estimate ad-
vantage conditional on the given boundaries. Instead, these plan comparison strategies identify
when an enacted plan deviates significantly from the simulated or observed comparison plans.
Thus, these strategies are still essentially comparative, but the “zone of chance” surrounds the
boundaries of an electoral system, rather than the observed results within fixed boundaries. In
theory, these methods are not mutually exclusive, since seats-votes models may be estimated
for simulated district plans, too. But, the goal of using district map comparisons is often to avoid
seats-votes constructs entirely (Kousser, 1996), since advantage in these approaches derives
directly from boundary differences rather than the structure of simulated k° for the observed
plan.

Focusing on seats-votes approaches, many recent analyses of districting plans used in le-
gal proceedings or academic literature focus on critiquing the accuracy and validity of the model
of h.2" Typically, models of h need only be accurate distributional models, in that the typical
parameters in the linear model are not substantively interesting. Regardless, thorough specifi-
cation searches for models of h are uncommon. Although simple forms of misspecification have
received attention for seats-votes curve estimation (King and Roberts, 2015), empirical compar-

isons of new seats-votes methods to one another is relatively uncommon (McGann et al., 2016,

21For this, many defendant amici curiae in both Florida League of Women Voters v. Detzner (2015) and Whitford
v. Gill (2016) are illustrative, simple critiques of the inaccuracy and uncertainty in the predictions of these models.
Neither swayed the court, but this line of argument is expected.
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c.f.), although the comparison of the summary measures from seats-votes curves is common
(Grofman et al., 1997a; Linzer, 2012).

This is unfortunate, since many different measures of partisan advantage can be computed
from a given seats-votes curve (Nagle, 2015). They focus on different sections of the curve or
compute deviation from fairness differently, so it may affect these measures if a given seats-
votes curve estimate is significantly different from another. Most of the time, due to structural
stability in US legislative elections, reasonably accurate post-hoc analysis of h using demo-
graphic, political, social, or candidate factors (contained in a design matrix, X), is not too difficult,
and predicted h vectors often agree between many modeling methods. However, the structure
of the seats-votes curve may be different depending on the generative model of h°. By com-
paring only the estimates of a given quantity of interest, there is no systematic understanding

of how the differences in the generative model differs.

5.1.1 Common Methods for Estimating Seats-Votes Curves

Typically, seats-votes curve estimation methods divide into two groups. One group, sug-
gested by Tufte (1973), estimates the curve as a linear function of the observed relationship
between system-wide seat shares and vote shares pooled over a number of elections. In each
election, one observation of a party’s average national/statewide vote share i and the fraction
of the legislature/congressional delegation it controls (5) are observed. Pooling over many elec-
tions, a linear regression relating 5 and h provides the expected share of seats a party wins
given that it wins some level of the popular vote.

This technique discards all information about the dispersion and modes of the underlying
district vote shares, h, and has largely been superseded by alternative methods (Jackman,
1994). On this, Jackman (1994) and Gelman and King (1994a) suggest that district-level infor-
mation should be used to construct a seats-votes curve. They argue that these single-election
(or paired-election) strategies avoid pooling between dissimilar elections. These techniques

typically combine two conceptual models of the electoral process: a substantive model of elec-
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toral outcomes under uncertainty, a model of the inherent randomness in an electoral system
even under perfect estimation. The first model is justified as a method of constructing accurate
estimates of the n-length vector of district-level vote shares, h, and the second model is justified
as a method of constructing plausible hypothetical outcomes, h°, from h.??

Various techniques of increasing complexity are used in the first vote shares model, depend-
ing on data availability and the demands of the model. These techniques vary from focusing
exclusively on observed election results (i.e. empirical model-free analysis) to large modeling
frameworks designed to control for multiple structural factors under counterfactual simulation.
Typically, the second component is called the model of “electoral swing,” a term used to imply
randomness in the deviations between the last election and the current election. While many
different model specifications exist for the first case, most methods of elections assume that
swing is an independent, identically-distributed random effect, while prediction uncertainty can
be complex, correlated, and heteroskedastic.

In addition, Nagle (2015) suggests and | show below that previous intuitions about the
seats-votes curve are equivalent to statistics about the rank-vote distribution of a given elec-
toral system. Summaries of expected seat shares that a party wins at a given expected
statewide/national vote share map directly to questions about the expected rank of the district
won with that vote share. This both simplifies the conceptual model of the seats-votes curve,
the presentation of its results, and the computation of statistics about the seats-votes curve.
While developed historically with reference to a swing model, the seats-votes curve shape is,
in fact, available without one. Most critically, this means that the full length of the seats-votes
curve is informative, since the vote shares attained by the most Democratic or most Republican
contest may be wider than the vote shares attained at the median district, but the curve through
this domain is less “valid” from the perspective of the model. This contrasts with the focus in

Tufte (1973) inherited by Gelman and King (1994a); Gelman et al. (2010), which suggests that

22|n general, k° will denote a “hypothetical” k, for any symbol or property k. Any hypothetical k° may be simulated,
in that it obtains under identical conditions to that of k, or it may be counterfactual, in that it obtains under alternative
electoral conditions. For this discussion, this distinction is not important. But, in later discussions of the validity of
these approaches, this distinction matters greatly.
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seats-votes curves are only “valid” within a close band of the observed (h,3). Extreme ranks
are not intrinsically “less certain” than middle ranks, nor are ranks around the pivotal district
more certain than ranks near the edges. As will be shown below, the certainty associated with
a rank (shown by range of vote shares that can be expected for a district at that partisan rank)
may vary in a nonstandard way.

In the following discussion, | will detail a few methods of estimating seats-votes curves, from
the simplest empirical uniform-swing strategy to arguably the most complex model types found
in the literature deriving from that suggested by Gelman and King (1994a). Then, | examine
three stochastic methods to model the seats-votes curve, comparing their estimates and model
specifications. Then, | explore the extent to which these model specifications are valid and
whether the elections generated are plausible electoral events. This line of inquiry suggests
that, in general, better vote share models will lead to more valid seats-votes curves, but the
impact of various vote share model misspecifications on the structure of the seats-votes curve

estimates may not be straightforward to determine.

5.2 Uniform Swing & the Seats-Votes/Rank-Votes Curves

The uniform swing method forms the basis for all other types of seats-votes curve estimation
strategies. This technique examines the hypothetical relationship between party average vote
share and the fraction of seats it wins in a Congressional delegation or state legislature by using
the size of the average change required to flip each district from one party to another. In the
end, it is an analysis of the rank distribution for h (Nagle, 2015), or a scaled-shifted version of it.
Thus, the techniques for constructing this seats-votes curve and its corresponding rank-votes
curve are used in every other seats-votes estimating technique considered in Section 5.3, and
are critical to the construction of advantage measures discussed in Chapter 2. Since each of
the realizations from a model of h; corresponds to a single rank-vote distribution, the set of
simulated rank curves is a direct summary of the relationship between expected seat shares

given a party’s level of popular support.
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Figure 12. Seats Votes Curves for the US House in the 2012 elections under uniform partisan
swing.

Proceeding, the uniform swing presentation of the empirical seats-votes curve requires the
vector of vote shares, h, the average statewide or national vote share for that party, /, and a
shift term, é. Let the fraction of the delegation won by the reference party (5°) when the average
vote share increases by some amount, J, be the point (i + 6,3°) that lies on the seats-votes
curve (Jackman, 1994). This point reflects a strict uniform swing in h (in the sense from Chapter
4, since a shift in average vote share is achieved by adding ¢ directly toeach h;,i =1,2,..., N.
Using a uniform swing, the fraction of seats the Democrats win at a given hypothetical shift §°
is:

o _ YNT(hi+6° > 5)
- N

(5.1)

where 7 is the indicator function. This means the seats-votes curve under uniform swing is
a monotonically-increasing step function related to the cumulative distribution function for the
opponent’s vote shares. The districts most strongly aligned with the reference party sit at the
bottom left of the seats-votes curve, since those districts are the most strongly aligned with
Democrats. Since they sit at very low values of /1°, they must have large district-level Democrat
vote shares, h;, since they are still won by Democrats when their average support is weak. As §°
increases (Democrat aggregate support increases), districts can only flip from the Republicans
to Democrats, until the districts in the top right of the seats-votes curve — the ones most

strongly aligned with the Republicans — flip to the Democrats as they win overwhelming levels
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of aggregate support. An example of this method, three empirical seats-votes curves for each
election since 2012, are shown in Figure 12.23

While this provides one way that the relation between seats and votes can be measured,
this construction requires a theory of strict uniform electoral swing, which is a contentious as-
sertion (as discussed in Chapter 4). However, the assumption of uniform partisan swing is not
necessary to develop the curves shown in Figure 12. In fact, these curves are a scaled and
shifted rank distribution of the district vote shares (Nagle, 2015). The seats-votes curve con-
structed by uniform swing is always a non-decreasing step function; this is apparent in Figure
13, a detail of the national 2012 seats-votes curve shown in Figure 12 that focuses on the me-
dian “tipping point” district, the district closest to h; = .5 from above. For these curves, any
step point in a uniform swing seats-votes curve occurs at some hypothetical party vote share,
when some district’s vote share crosses .5 for a given value of 6°. To the left of the step, the
reference party wins district i and all other districts k that require d; < é; to cross .5. To the

right, the party loses i and all k where &, > §;.

Let the rank of a district in the distribution of vote shares be denoted r;, and let ranks be
assigned by a ascending ranking function R on the “right” edge, so that ties are all assigned
the maximum rank of members of the set. This means that, for 435 congressional districts,
the district most strongly aligned with the reference party has rank 1, the three districts tied for
the second all have rank 4, and the district with the lowest support for the reference party has
rank 435. Thus, when a hypothetical “pointer” district with vote share h; 4+ §° crosses .5 and
increases rank, the seat share won by Democrats also increases at that 6°.

Together, the set of (1 — h;, r;) points define the rank vote curve that corresponds to the
seats-votes curve. This is simply a reflection on the x-axis of (h;, r;). At each observed h;, the
rank either stays the same or increments by one. The strongest-aligned Democratic party dis-

tricts are in the bottom left, have the smallest rank numbers, and are won with the lowest levels

23This uses the technique suggested by Jackman (1994) from in the Political Science Computational Library
(Jackman, 2015), reimplemented in Python.
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Figure 13. Detail of a uniform-swing Seats-Votes curve in the 2012 House elections alongside
a normalized Rank-Vote curve.
of aggregate support; the upper right is the set of districts most aligned with the opposition,
have the largest rank numbers, and require that the Democratic party win a large average vote
share to flip.

However, if r; alone were used, then the curve would not have the correct range, varying
between 1 and N instead of 0 to 1. In addition, the rank-vote curve is slightly offset from the
seats-votes curve in some cases, namely when i # .5. To show this shift, let us first define the

rank of the “marginal district,” the district where Democrats win with the smallest margin:
re = R({hilh; > .5}) (5.2)

where (x — ) denotes a censored positive difference between x and y.24 Since the maximum
rank is assigned among ties, § = rﬁk for any 6° where /i + 6° maintains the rank r,. When
the rank of the hypothetical /1 4+ 6° changes, the seat share changes by #—ﬁ, the fraction of

all districts that share rank r, and thus change hands when the marginal rank changes.?® This

24|n the Washington example from 2 (data in Table 3, this is_district 1. lts rank would be 6, since it is the 6th most
Democratic district. In that example, Democrats win § = .6 at i = .53.).

25Practically, contested district vote shares are rarely exactly equal, so there is often only two sets of ties: the
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means any step point on the rank-vote curve in Figure 13 can be re-scaled to match the domain
of the seats-votes curve: each seats-votes step point is level with a re-scaled rank-vote step
point, (1 —h;, R(h;)/N).

Finally, the rank-vote curve may not necessarily pass through (, 3), but it must have a level
set at 5. In fact, there are only, at most, N possible level sets of seat shares because of the finite
number of seats. If a party wins 12 districts, then some district (or set of districts) must be the
12th-most aligned district for that party. Since that district is the marginal district by definition,
its level set must pass through .5, and it must be the seat with the closest vote share below
h. Thus, the marginal district k is the step point to the left of i1, and can be aligned with the
seats-votes curve by adding  — .5 to hy. Since the width of steps is the same between the two
curves, adding i — .5 to the marginal district aligns the rest of the rank-vote curve with the left

edge of the seats-votes curve, as shown in Figure 13.

5.3 Generalized Uniform Partisan Swing Methods

Critically, recognizing the seats-votes curve as a transformation of the rank distribution sim-
plifies both the language and the empirics of structural elections analysis. This relationship is
easiest to present for the empirical, observed election. But, it is most helpful when consider-
ing stochastic methods to model the seats-votes curve. These techniques, sometimes called
“generalized” uniform partisan swing methods, are obtained from the uniform swing method of
constructing seats-votes curves by relaxing the assumption of strict uniform swing. Given the
mapping from rank-votes to seats-votes curves, these techniques can also be seen as leverag-
ing many simulated rank-votes curves to provide a single expected seats-votes curve.

In this vein, stochastic seats-votes modeling methods construct a model for h, simulate h°
under controlled conditions X°, and summarize the resulting 3° given the controlled /° and h°.

With the mapping between rank-vote and seats-vote distributions, this is equivalent to summa-

uncontested districts where either the reference party or the opponent receives all recorded votes. All other steps
are increments of 4.
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rizing the average rank of districts that attain a specific i7. Some techniques explicitly model
the deviation in simulated elections as if they were random changes from the previous election,
and thus partition the variance in outcomes between a “structural” component due to electoral
rules, norms, or geographies, and an idiosyncratic component that embodies uncertainty due
to estimation. Other methods focus simply on generating accurate process models of h that
produce believable h° under hypothetical conditions (X°), and another set focuses on model-
ing the distribution dynamics of h, without reference to process justifications. In the discussion
that follows, | present two current methods for constructing seats-votes curves in a predictive

context and suggest two alternative methods of seats-votes curve construction.

5.3.1 Stochastic Methods for Estimating Seats-Votes Curves

Earlier stochastic models of seats-votes curves focused on estimating the empirical rela-
tionship between /1 and 3, pooling observations over many elections (Tufte, 1973). In contrast,
newer methods aim to use the district-level information about the electoral system contained
in the full vote share vector (1) to model the relationship between /1 and 5. The uniform swing
method discussed above has its roots in early scholarship that relied heavily on the assump-
tion, since many seats-votes analyses use no explicit stochastic models for h or swing (Brookes
(1960), see also Jackman (1994); Johnston et al. (1999)). And, while the assumption of uniform
swing is useful, it is certainly not empirically accurate, as shown in Chapter 4. However, it does
appear to be relatively well behaved in recent congressional elections. This regularity drives
the pervasive use of normal approximations and is the justification for “generalized” uniform
partisan swing. Critically, this assumption makes estimation of the seats-votes curves from
district-level data tenable using simple regression techniques. Before wading into the complexi-
ties of how this modeling strategy works, | present a simple example using one of the methods

considered in this dissertation.
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5.3.1.1  The Gelman-King Model

One of the more commonly-used methods to construct seats-votes curves is due to Gelman
and King (1994a). First, a model of h is estimated. Then, a counterfactual/hypothetical election,
h°, is simulated using this model. After h° is obtained, it is then adjusted using the model of
swing, 6°. Finally, this results in a single realization of a rank distribution, r° that is simply
the rank vector of the hypothetical outcome, h°® 4 6°. As discussed above, this rank vector
is sufficient to construct one realization of the seats-votes curve implied by the model. Then,
many seats-vote curves over many simulations are generated and analyzed. When each of
these seats-votes curves are considered together together, any level set of 5° has a «-sized
confidence band: the middle 1 — 5% range of simulated vote shares for the 5° x Nth-ranked
district contains a “level set” of 1 — 5% of all simulated seats-votes curves. When considering
all simulations, this “level set” represents the set of h? that are attained at that rank, r;, or seat
share r;/N. By connecting the quantiles of i across all ranks, an estimate and simulation

interval for the entire seats-votes function is attained.2®

One example of this method is shown in Figure 14. On the left, a single simulated election
is plotted against the observed election’s rank-vote distribution. The observed F is plotted in
the gold vertical line on the left, and the observed 5 is the point at which that line intersects the
black quantile plot. Then, on the right, 1000 seats-votes realizations are plotted in green under-
neath the observed outcome in black. The 5th, 50th and 95th percentiles of vote shares within
the rank are connected by the overlaid gold lines, meaning 90% of all simulated seats-votes
curves fall within the gold lines. Practically, these gold lines are formed by connecting the target
percentiles within each rank/level set, (1 — h;, %), i =1,2,...,N. Critically, all hypothetical
measures of advantage pertain to quantities that summaries the sets of simulations in green.

Likewise, “empirical” measures of advantage pertain only to the black observed rank-vote out-

26While this is not discussed directly in Gelman et al. (2010), the package it explains implements this method
when computing quantities of interest.
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Figure 14. A Seats-Votes curve estimate for the California congressional delegation in 2014.
On left, the gold vertical line is the statewide average party vote share. On right, the gold lines
connect the 5th, 50th, and 95th percentiles of simulated vote shares within each rank, centered
on the median of simulations.
come set. Thus, if spatial misspecification were to affect this model, it must affect the shape of
the simulation envelope shown in green. It is not enough to simply affect the covariance of the
disturbances in the model; it must also generate differently-shaped rank distributions to matter.
Another view of this procedure is shown in Fig. 15. In this example, we are attempting to
construct E[5|h = .5], a very common quantity of interest. This value is used to estimate the
median bonus measure discussed in Section 2.3, a measure of partisan advantage. The figure
portrays the full simulation envelope (like that shown on the right of Figure 14) on the left. Then,
the center plot shows a high-detail focus on the median vote share, 1 = .5 In this case, Gelman
et al. (2010); Linzer (2012) suggests summarizing the distribution within a search band around
h = .5 instead of directly at the target value. Thus, a small search band, .5 % .005, is plotted in
light blue around .5, and is made clear in the detail at the center of the plot The distribution of
5° that fall within within the search band is shown to the right of the plot. So, the rank of districts

within this search band are recorded for every simulation. Then, a measure of central tendency
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Figure 15. Seats-Votes curve for Texas in 2014. When the share of the vote Democrats win is
50%, the party can expect to win only around 41% of the Texas Congressional delegation.
This would correspond to a median bias estimate of —.18. Here, this estimate is computed
from the average rank of a district that falls within the blue band, divided by N, and is the
average value of the distribution on the right of the figure. This distribution is the set of
simulated seat shares that fall within the search band and is shown on the right.

for the distribution to the right is used as the estimate of 5°, and can be used in the measures

of advantage outlined in Section 2.3.

Proceeding to a more detailed presentation, the authoritative discussion is provided in Gel-
man and King (1994a), while the most current implementation derives from work in Gelman
et al. (2010). Occasionally, these describe different techniques; when in doubt, the interpre-
tation provided in Gelman et al. (2010) is considered the canonical form, since it is the only
existing implementation of the technique. A presentation of the method described there will
be provided below. While popular, the method has also been soundly critiqued many times
since its inception. | use it here not as the end-all method of modeling seats-votes curves, but
rather in hopes that using a stable model specification with well-known properties will make the
exploration of the new impact statistics simpler. The following discussion focuses on the main
estimating concerns as discussed by Kastellec et al. (2008); Gelman et al. (2010) and that are
required to generate the style of curve from Figure 14.

First, Gelman and King (1994a) suggest modeling the district vote shares for the reference

party in a given year, h;, as a function of available electoral conditions in that year, X; and the
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vote outcome in the previous election, h;_; if available. No attempt is made to link districts
across the redistricting threshold if boundaries change. Thus, every year immediately following
a redistricting, only X; is available for the model; in all other years, both X; and h;_; are avail-
able. In this way, the method suggested by Gelman and King (1994a) and many analyses that
follow from it (Gelman and King, 1994b; McKee et al., 2006; McGann et al., 2015, e.g.) concep-
tualize each districting plan as a single continuous panel. Each decadal redistricting breaks the
panel, even if the districts themselves mostly remain unchanged. However, Gelman and King
(1994a) do not use typical panel analysis techniques, since their model uses the one-step pool-
ing of h;_4 to predict h;. Over a single decade, this results in four separate two-cycle models
and one single-cycle model, each with their own parameter estimates. Thus, even though h;_4
is present in most models of h;, the model is not a typical autoregressive process model either,
since all parameters are considered non-stationary and temporally independent.

Using these models, an estimate of the inherent deviation (o) and structural uncertainty (A)
are made for each decade. To explain, let the basic model be stated for pairs of elections in

timetandt —1:

hy = X¢Br +athi 1 + 7+ €

Y ~ N(0,Ac?) (5.3)

e ~N(0,(1=A)?)
In this, 7y is the structural error component that applies to all realizations within the redistricting
decade, ¢; is the inherent error component, B; are the marginal effects of the electoral condi-
tions, and A is the fraction of the overall variance that is “systemic,” which is assumed to remain
constant from year to year. In a single model, ; is not separable from e; without additional
information, so their sum is the only thing identified at each individual ¢. This also means A is
unidentified at any ¢. In addition, it is unlikely that separate, two-cycle regressions will recover
time-stationary o, though they may be similar.

Thus, a correction/secondary modeling step is suggested. First, to estimate A and the

invariant o, Gelman and King (1994a); Gelman et al. (2010) estimate A from the average of the
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first-order temporal autoregressive effect, a;, over all of the two-cycle models, and estimate o
from the average of Uf. Since the specification for each cycle pair ((¢,f — 1)) has a different
estimate of B;, a; and o7, the average «; over the entire decade provides the estimate for the
fraction of the variance that is “structural,” i.e. the decade random effect in a panel sense.
Then, each year’s random effect ,e;, derives from the fraction of remaining variance once this
is accounted for.

For the purposes of counterfactual simulation and election prediction, these grand estimates
are then plugged back into the model in 5.3. But, since <y is how known, a “more precise” coun-
terfactual can be generated, since more information is known about %; than that available if it
were not observed at all. Thus, Gelman and King (1994a) ostensibly suggest a process jus-
tification for this model term, but appear to leverage it heavily in order to reduce the variance
of counterfactual simulations. The “known” information from observing h; that is yielded when
simulating h¢ is contained directly in -y, so only the remaining (1 — A)¢? variance is required.
As such, the distribution of a hypothetical/counterfactual district vote share vector, hy, for hypo-
thetical electoral conditions X; conditions on the observed district vote share vector h; in time

t and is Gaussian:
p(hfhy) = N (Ahy + (X7 — AXp)Br + 61, (1 — A%)o? I+ (X7 — AX)Eg, (X7 — AX;)')  (5.4)

where X, is the covariance matrix of the § estimates in the model for period t and J; is a scalar
electoral swing term used to control the magnitude of i°. In this model, A ensures that the
counterfactual realization of hy is shrunk towards the observed h;. Gelman and King (1994a)
emphasizes this similarity by considering the expected counterfactual h; when hypothetical

conditions are equivalent to observed conditions, X; = X;:
E[hg|hy) = Ahy + (1 — A)XiBs + 6 (5.5)

Thus, the use of this decadal “structural” random effect term allows h° to condition on h, reduc-
ing its variance using A. This is made clear when examining the predictive distribution, which

has no conditioning on h; 1 because it is unavailable. This takes the form:

p(h®) = N(X°B + 6, X°Lg(X°) + 0°1) (5.6)
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which shows no shrinkage due to A. However, | use only the counterfactual mode in this
dissertation, so the predictive distribution, while implemented, is largely ignored.

This method is defensible, since expanding a first-order autoregressive representation
yields a similar expression to that given in 5.3, if & were time-consistent, this would result in

a model for h; with a persistent error akin to -:
hy = XB+ah;1 +e = XiB +a(Xe—1Bi-1) + a1 + € (5.7)

But, since this is indeed not a VARX (1) model, a; are not necessarily bounded between —1
and 1 like typical stable autoregressive coefficients. This means A has no domain bounds,
either. In theory, A may fall outside of (0,1), which would force the resulting variance of vy
or € to be negative. In all models considered, both A and « remain firmly in (0,1), clustering
tightly between .6 and .8.%” In addition to potential issues with A, the substantive effects (B) can
vary wildly over time since they are unconstrained. In practice, these effects also tend to be
relatively stable over time for the two-cycle models. However, their estimates in the initial model
each decade is rather different. This occurs because the mode with h;_; is quite different from
the model without it, since h;_1 is often a very good predictor of h;.

Three implications are important to note about this modeling strategy. First, since Xg, is
used in the covariance of hy, the covariance between the electoral processes in X; may induce
correlation or heteroskedasticity in the simulated outcomes. In practice, this makes sense,
since the vote share won by Democrats in a district with an uncontested Democratic incumbent
might be expected to be much less volatile than a contested election with no incumbent. If this
is consistently observed, then it will also manifest in the resulting counterfactuals.

Second, the variance of the counterfactual can be decomposed to emphasize how this is
a generalized uniform random swing model. Reprising the counterfactual distribution from Eq.

5.4:

p(hfhy) = N (Ahg + (hy — Ahy) By + 6, (1 — A?)o? 1+ (X7 — AX) g, (X7 — AX,)')

27 A result noted by Gelman and King (1994a) as well.
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we can identify a “functional” separation into three components. First, a component from the
conditioning with no uncertainty attached. Second, a stochastic component due to the intrinsic
uncertainty surrounding the estimation of B; and its application to a counterfactual electoral
condition X}. Third, a stochastic generalized uniform random swing term. Stated in descending

order:
p(h°lhy) =Ah;
+ N (X7 — AX3)Br, (X7 — AXe) g, (X7 — AXy)') (5.8)
+ N (8, (1 —A)o?T)
In addition, note that any linear model of h; that uses h;_; as a predictor can be treated in
this manner. Thus, this structure is not unique to the Gelman-King formulation, and is instead a

property of first-differencing. Without using the repeated estimation and averaging of Gelman

and King (1994a), we can state a generic two-cycle model:
ht = Xﬁt + Dlht,1 +e€ (59)

Then, we introduce an additional +h;_; term, which has no net effect on the model, but allows

us to rearrange the model for h; into one for J;:

hy =Xp+ah;_1£h g +e€ (5.10)
ht_ht—l = X,Bt—l—(zx—l)ht_l—i—e (511)
5t :Xﬁt+(ﬂl—1)ht,1+€ (512)

Thus, the “total” uncertainty for J; will be due to uncertainty in estimating g, uncertainty in
estimating «, and inherent error in €. Again, the breakdown can be applied from Eq. 5.8 and
result in the same statement of an explicit model for the covariance of the generalized partisan
swing term, J;, which will typically be independent of the estimation uncertainty for B and & for
specifications in this style.

Third, the use of varying values for E[6°] is not required to generate a seats-votes curve

unless E|[6°] affects the covariance of hy |h;. As discussed above, the rank vector for any h° is
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sufficient to construct a seats-votes curve. When simulations are conducted for the observed
electoral conditions X, simulations have 1° = & on average. When shifted by §°, the 6° applies
uniformly to all simulated h? in the same fashion as the uniform constant swing method. Since
h° = h + E[6°] by construction, the expected fraction of seats won at 1° is the average rank of
the marginal district with 1 = h + E[6°] over simulations, divided by N. However, depending
on the specification, the magnitude of §° may change the expectation of each realization of any
given h7,. Many specifications for this effect will be explored later in this chapter, to examine

whether this can indeed affect the structure of the simulated seats-votes curve.

5.3.1.2 Alternative Model-Driven Seats-Votes Constructions

A model for h that can generate plausible elections in simulation is a critical concern for
seats-votes curves. Refinements of the Gelman and King (1994a) method, such as those
developed by Linzer (2012) or McGann et al. (2015, 2016), use substantively different models
of electoral structure, leading them to simulate k° in markedly different ways. For brevity, Linzer
(2012) will not be discussed at length here, since it incorporates no information about electoral
conditions, and instead jointly models turnout and vote share. It provides a useful technique
in estimating seats-votes curves for multiparty systems, where techniques for doing so are
rarer and more difficult to justify, and in cases where a stochastic model for both turnout and
vote share is desired. Its lack of predictive capability means that it is critically limited in the
analysis of candidate redistricting plans, however. A simpler post-hoc modeling strategy that
uses only information about vote shares and turnout is also available for two-party systems.
This technique is based on bootstrapping (Efron, 1982) and serves as a diagnostic method for

parametric prediction-capable seats-votes curve models.
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5.3.1.3 Modeling Swing as Hierarchical Deviation

In recent work, McGann et al. (2016) presents (and McGann et al. (2015) uses) a strategy
to construct seats-votes estimates in linear modeling framework similar to Gelman and King
(1994a). Their model, however has a substantially different take on how electoral variability
should be modeled in a seats-votes framework. McGann et al. estimate the deviation used for

simulations in a seats-votes framework directly:
h ~ N(XB + ah, T2) (5.13)

where 1 is the party vote share at some higher level of geography. The analyst has options
on how to best pick the aggregating units for h: McGann et al. (2016) suggest h be pooled
either over states or nationally, depending on the scale of analysis. In addition, h is pooled
over an entire redistricting decade, making the model as a whole fit a full set of Nt district-
years, with i then becoming a block-constant Nt vector of the aggregate vote shares for the
reference party in year t. As before, X contains information about the electoral system. Like
Gelman and King (1994a), McGann et al. (2016) suggests an ordinal incumbency fixed effect
and, depending on the way uncontested elections are handled before model fitting, a centered
ordinal fixed effect for contestedness by party. After estimating this model over the pooled
decade of data, simulated /h° are drawn directly from Eq. 5.13, possibly under counterfactual
electoral conditions X°.

Together, the direct modeling of h and accommodation of X° means the McGann method
can be compared to the Gelman-King method directly. Notably, McGann et al. (2016) does
not provide a direct comparison of their technique against the implementation in Gelman et al.
(2010)%8. In addition, the development of their method in McGann et al. (2016, ch. 3, Ap-

pendix 3B) does not provide the same kinds of model justification provided by Gelman and King

28This may be due to the fact that the program made by Gelman et al. (2010), uploaded to the R package index
in 2011, was removed in early 2015 for relying on deprecated functionality. | provided a patch to maintainers at the
IQSS in fall of 2015, but the patch was not merged. Is still unavailable from the Central R Archive Network, and the
source hosted by the IQSS website is unusable for current versions of R.
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(1994a). Discussing the aspects in which the techniques differ and comparing them empirically
may provide insight into the strengths and weaknesses of the two techniques and illustrate
where the derived quantities of interest may differ.

First, the variance of h° is modeled exactly as 2. This means observing h; provides
no additional information about h7|h; beyond the estimate of the mean and variance. Flatly,
uncertainty about what would happen is not reduced by knowing what did happen. This results
from the fact that there is no division of variance into estimation uncertainty (24) and inherent
electoral deviation (), and no modeling of the potential temporal autoregressive relationship
between subsequent elections outside of the incumbency variate. For this, the authors suggest
that decadal pooling rather than using an autoregressive model or a full panel design yields a
more robust yet tenable simplification of the complicated Gelman-King method.

This simplicity comes at a steep cost: since the model for h is indistinguishable from the
generator for h°, the i.i.d. covariance model of h applies to hy as well, for any time period dur-
ing the decade. Drawing new h° directly from Eq. 5.13 assumes that any magnitude of swing
is equally likely for any district at any time. Electoral conditions, such as contestedness, incum-
bency, or candidate quality have no effect on the variance of simulated vote shares in each
district like they do in the Gelman-King model. On its face, this seems exceedingly implausible,
but it remains to be demonstrated that it matters empirically.

On less technical grounds, the two methods express different fundamental conceptions of
“swing” in the contexts of a structural election model. McGann et al. include higher-level party
vote shares where Gelman-King use previous years’ vote shares. Holding electoral conditions
in X equal, electoral swing is modeled as random fluctuations in districts around the state
or national mean in that year. In contrast, the Gelman & King model takes “swing” to mean
the changes in district-level vote shares between elections, either counterfactual or observed.
While both approaches involve some sort of pooling over contiguous districting periods there is
no reason to believe that variance within an election around a group mean should correspond

to the variance between pairs of elections across time.
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5.3.1.4 Bootstrapping

Model-based approaches, such as Gelman and King (1994a) or McGann et al. (2016), are
desirable insofar as they stipulate real, contestable theories of how vote shares and electoral
swing may be understood. Less process-driven methods focus on modeling the distribution
of electoral results directly (Linzer, 2012). One novel technique | have developed in this vein
uses bootstrapping to simulate alternative plausible elections directly from observed results.
Bootstrapping is a data amplification technique that has been used extensively for model vali-
dation and sensitivity analysis (Efron, 1982; Efron and Hastie, 2016). Seats-votes curves are
inherently data-limited, since only one vector of h (and thus only one pair (11, 5)) occurs for each
election. Bootstrapping to generate plausible counterfactual elections, then, may provide a third
method against which the McGann and Gelman-King methods can compared.

To construct a bootstrapped seats-votes curve, electoral swings are simulated using a pair
of sequentially-observed elections (h; and h;_1). Vote share in the previous election is treated
as fixed, and alternative hy are constructed by resampling with replacement from the vector of
empirically-observed district-level swings, 6 = h; — h;_1. The resampled swing vector, J°, is
then added to the previous years’ results to generate hypothetical elections in time t. When

districts have equal turnout, this ensures:

(S

E[hf|h; 1] =E[h 1 +6°] =h; 1 +6=h; (5.14)

However, when districts have unequal turnout, this does not hold, since F; is a turnout-weighted
average of h; and 6° is drawn without respect to turnout.?® Since the full rank distribution for
any realization is available regardless of the value of /°, the elections can be analyzed like in
the examples at the head of Section 5.3.1.1. This method ensures that the simulated vote share
for each district, on average, will have the same dispersion as the overall distribution of swings.

In addition, it avoids placing a parametric model on the election outcomes. In a similar fashion

29This also occurs for linear models of h: if OLS is used, E[fz} may not be h, since all districts are weighted
equally. If WLS is used with weights proportional to turnout as recommended by Gelman et al. (2010), this holds.
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to the McGann et al. method discussed above, the variance of a district’s simulated vote shares
is independent of the political conditions within it, since the swings are sampled without respect
to this data. In addition, the bootstrap assigns swing without respect to potential inter-district
correlation. This method may also be used to resample for new districting plans. For any new
district composed of g pieces of old districts, weight g draws from the swing distribution by a
population variate (either raw population, eligible voters, registered voters, etc.) and add to the

weighted combination of observed h;.

5.4 Comparing Seats-Votes Curves

To get a sense of how different the resulting estimates are for these three methods, the
results of the three techniques are compared for California congressional districts and the na-
tional congressional seats-votes curve in 2014. The fitted curves for three methods are shown
for California in Fig. 16 and for the US as a whole in Fig. 18. The Gelman-King model specifi-
cation predicts the 2014 Democrat vote share using the 2012 Democrat vote share and political

conditions in the district:
h; = ah;_1 + Bo + Birincumbent 4- Bouncontested + v + € (5.15)

where “incumbent” is —1 if the district has an incumbent Republican candidate running for re-
election, 1 if the district has a Democratic candidate running for reelection, and 0 if no single
incumbent is running. Likewise, “uncontested” is —1 when a Republican runs uncontested, 1
when a Democrat runs uncontested, and 0 when the election is contested.>® Here, elections

below 1% or above 99% Democrat share of the two-party vote are considered effectively un-

30This model can get much more complex, using a state fixed effect and a hierarchical model over states when
fitting for the national seats-votes curve, but the naive model typically has an R2 of around .95, so many of the
additional covariates simply degrade the quality of the model by inducing collinearity or worsening its parsimony.
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contested. When district i is uncontested, its vote share is imputed from a sub regression on
the complete data.®"

In this case, the model is estimated using weighted least squares, with weights proportional
to turnout. This is mainly done to ensure that E[h] = / when all elections are contested, since
h is the turnout-weighted average of h. This also ensures that 7° generated in simulation are
comparable to h, conditional on an effective imputation of missing vote shares. For the the
event that a district’s turnout is unavailable, it is imputed from the available data. A side effect of
weighting by turnout is that any potential heteroskedasticity due to turnout like that Linzer (2012)
is concerned with is resolved. More broadly, heteroskedasticity in the national-level model is
likely to follow a significantly different form than that due to turnout alone. To conduct the
weighted least squares estimation, a diagonal matrix, T, is used that contains turnout in each
district. Then, v is a modeled as a heteroskedastic error term with variance Ac?T-1and € is
normal heteroskedastic with variance (1 — A)c?T~!. In this example, data from 2012 and 2014
are used, meaning counterfactual 2014 elections are drawn from the weighted modification of
Eqg. 5.8 that uses heteroskedastic independent swing rather than homoskedastic independent
swing.

In addition, a McGann-style model is fit by pooling elections in 2012 and 2014
h = By + B1h + Baincumbent + Bsuncontested + € (5.16)

with € being a normal, independent error term with variance ¢ and similar heteroskedastic
turnout variance weights T~1. Using the McGann strategy, the estimated seats-votes curve is
significantly different, depending on whether h is the statewide average vote share or the na-
tional average vote share. Using statewide vote share in the national model actually increased
the discrepancy between the McGann model and the other two models, tending to bias the

curve towards Republicans by almost ten seats over the entire curve. At the state level, the

31Sensitivity analyses were conducted to determine whether there is a strong impact depending on the location
of the cutoff and method of resolving uncontested elections. A subset of these explorations are presented in Section
6.2.
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choice made no difference. So, a consistent specification using the national Democrat vote
share is compared for both examples.®?

Finally, a bootstrapped seats-votes curve is constructed, where swings are resampled from:
6% ~{hy —h;_1} (5.17)

Simulated 2014 election results are then constructed by h? = 6° 4+ h;_;. In this case, the
bootstrap is unweighted, so all swings are equally likely to be chosen. Akin to the other methods
considered here, this results in a spatially-independent swing vector, since the swing at district
i is independent from the swing of any of its neighbors. This method also does not respect
potential spatial heterogeneity in swing, but a stratified bootstrapping approach might resolve
this concern. In addition, for the national curve, all swings, regardless of state, are pooled for
the national bootstrap. The bootstrap, in addition to the simulations for the Gelman-King and

McGann methods, are run 10, 000 times.

5.4.1 Example: California Congressional Districts in 2014

The example for the 2014 seats-votes curve estimate from California is shown in Figure 16.
The bands denote the space within the 5th and 95 simulation percentiles for the simulated seats-
votes distributions, which typically appear as point clouds along each rank as in the right side
of Figure 14. In terms of the lowest average discrepancy, the McGann and Bootstrap methods
agree most closely over the full range of values. In comparison, the median simulated election
from the Gelman-King method has Democrats winning more seats than either the McGann
model or the Bootstrap over the range of competitive elections, where 45 < h < .55. The

difference in median between the simulations (for either the McGann method or the bootstrap)

32Here, the use of hierarchical or spatial fixed effects has an impact on the national estimated seats-votes
curve, though it appears to be smaller than the impact of using the statewide average vote share in each year. State
fixed/pooled effects could be used in either linear modeling framework, and bootstrapping could be stratified by state.
Notably, using state fixed effects in addition to statewide means in each year induces unacceptable multicollinearity
in the design matrix, and so are not presented. More generally, McGann et al. (2016) provides no guidance on this
specification question.
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Figure 16. Three methods of estimating the seats-votes curve for California Congressional
districts in 2014. The top row is a pairwise comparison between two methods, and the bottom
row displays the difference in number of seats awarded as a function of statewide Democratic
vote share.

in this range varies between a one- to four-seat difference. Out of fifty-three seats, a four seat

difference is nearly 10%, and is a significant discrepancy.

While the middle 90% of simulations overlap over the entire domain for all simulations, the
medians of the bootstrap and the Gelman-King curves are not covered by each others’ confi-
dence intervals for “tightly” contested elections, where .48 < i < .52. In fact, the simulation
intervals almost diverge entirely at i = .5. This means that the expected share of the California
congressional delegation that Democrats can expect to win under bootstrapping would be ex-
ceedingly unlikely in the Gelman-King simulations, and vice versa. At i1 = .5, the Gelman-King

model would suggest democrats win four more seats, an excess seat share of almost 7%, than
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that estimated by the bootstrap model. This range is also the range of maximal disagreement
between the Gelman-King and McGann curves. Critically, disagreement is highest in the range
where many counterfactual advantage measures focus, suggesting these estimates may be
sensitive to the structure of the model used. In contrast, the McGann and Bootstrap methods
differ most strongly just below the electoral median, .4 < /i < .5. Even in this range, however,
the median simulations in either technique is within the middle 90% range of simulations.

In part, the divergence in median 5° of the Gelman-King and Bootstrap methods for com-
petitive elections is driven by narrower confidence bands around that range. Again, the largest
difference in 3 over h for the McGann-Gelman contrast and the Bootstrap-Gelman contrast is
four seats. But the simulation intervals are wider for the McGann method in that range, so it is
unsurprising that the median Gelman-King simulation remains firmly within the wider simulation
envelope for the McGann method.

Importantly, the variance of vote shares attained within each level set is not necessarily the
variance of each district, as is shown in the furthest right of Figure 17. In Fig. 17, the apparent
standard deviation over simulations is computed for three different marginalizations. On the left
is the standard deviation of h° in any given simulation. This is comparable to the deviation in
observed vote shares. On the right is the deviation of each district over all simulations. This
would be comparable to the deviation of k; for some district i if many elections were run from
the same conditions. On the right, the deviation of vote shares in each rank is provided, which

corresponds to the width of the seats-votes curve estimate within each level set.

All methods generate simulations with roughly comparable electoral deviation to the ob-
served election. Each election simulated in the Gelman-King method tends to be slightly less
noisy than the observed 2014 election. The bootstrap tends to be more noisy, and the McGann
method centers on the empirical variance, but the difference in all three methods is small in this
regard. For the heteroskedasticity in the right plot, Gelman-King method explicitly incorporates
heteroskedasticity due to turnout. Potential correlation in Zﬁ also reduces the magnitude of the

post-hoc univariate estimator of standard deviation.
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Figure 17. Distributions of variance within and between simulations used to generate Fig. 16.
The empirical mean is shown by the vertical line in the left plot. In the right plot, the bootstrap
variances are so tightly clustered around .061 that its kernel density is too tall to display on the
same scale.

Both the Gelman-King and McGann models are estimated using weighted least squares,
and this provides the McGann method the heteroskedasticity in /7 shown in the right plot of
Figure 17. In contrast, the districts in bootstrapped simulations tend to all have a standard
deviation of around .061. In the rank-deviation plot on the furthest right, the McGann and
Bootstrap curves both have long right tails, indicating some ranks are much wider than others.
However, the bootstrap also has a few very narrow ranks, with the narrowest occurring near

h = .36. The Gelman-King curve tends to be narrower than the McGann curve, and its widest

point is also narrower than the widest point in the other two curves.

5.4.2 Example: National Seats-Votes Curve in 2014

A second example, the national seats-votes curves, is shown in Figure 18. In this case, the
bootstrap is the closest to the Gelman-King curve, only coming close to divergence at extreme
average national Democratic vote. Both the Gelman-King and Bootstrap methods pick up on a
distinct undulation in the seats-votes curve present in the uniform partisan swing curve shown
in Fig. 12. That is, responsiveness is lower (the curve flattens slightly) as Democratic vote
share approaches .5 — in this case .44 < h < .51 — and then increases in responsiveness
again. This means that, in that range, Democrats tend to win less seats than Republicans for

every marginal increase in vote share. After they attain a majority of support, this reverses,
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meaning Democrats win more seats than proportionate. The shape of this undulation, common
in many seats-votes curves, is critical to many estimates of partisan advantage.

Counter to the other two methods, the McGann seats-votes curve has a nearly uniform re-
sponsiveness, around 2.2, over the entire domain. While the magnitude of the seat discrepancy
is larger in the national case, it is less than a half of the discrepancy in the California case in
terms of the size of the legislature. In addition, the shape of the discrepancy as a function of
h is different in this case, and is dominated by the undulation near 1 = .5. In aggregate, the
Bootstrap simulates a more favorable curve for Republicans than the other methods, in that
it indicates Republicans tend to win more seats with fewer votes than would be expected if
the curve were symmetric. The Gelman-King and McGann do not exhibit a clear directional

discrepancy towards or against either party.33

In terms of the variance profiles shown in Figure 19, the simulated elections tend to be much
noisier on average than the observed national 2014 congressional election. Every bootstrapped
election had a higher variance than the observed election; 99.2% of the McGann elections and
85.7% of the Gelman-King simulations did as well. This means that the conditional variance
reduction of the Gelman-King method is working as intended, since it tends to have lower
variance than the other methods. The right plot of district heteroskedasticity is actually very
similar between the California and national cases; the swings in California had only a slightly
larger deviation than the swings nationally, so bootstrapped district deviations converge quickly
to .056. Also like the California case, the districts in the Gelman-king simulations tend to have
lower deviation and the McGann simulations have higher district deviation with a long right tail.
This long right tail occurs in almost all curves’ rank standard deviation plots. This reflects the fact
that the vote shares covered by the low- and high-ranked districts is much wider than the width

of ranks near the middle of the domain. Notably, the bootstrap has the broadest rank-variance

33|t is important to reinforce this is in terms of the discrepancy in the predicted number of seats Democrats win
at a given national vote share, not a bias towards one party or another embedded in the model. In fact, all methods
provide similar estimates of the bias at median in this case. This may not be the case for other bias measures,
though.
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Figure 18. National Congressional seats-votes curve estimates for 2014, with plots of the
estimated seats votes curves in the first row and the discrepancy in the expected number of
seats won by Democrats given their average vote share at the bottom.

distribution; the Gelman-King and McGann methods both cluster tightly around their average
rank deviations, meaning the seats-votes curve estimates tend to have a more consistent width

than the bootstrapped curve.

Compared to the difference between the McGann et al. estimate discussed in the previous
section, the bootstrap estimates are somewhat closer to the McGann estimates over all quan-
tiles. If, as McGann et al. (2015) suggest, a simpler method of estimating seats-votes curves is
useful for post-hoc analysis, bootstrapping the seats-votes curves appears to provide a signif-
icantly simpler method that retains the same sense of “swing” used by other authors than the
series of regressions suggested by McGann et al. (2016). However, the bootstrap seats-votes

method cannot estimate the seats-votes curve for counterfactual electoral conditions, since
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Figure 19. Distributions of variance within and between simulations used to generate Fig. 16.
The empirical mean is shown by the vertical line in the left plot. In the right plot, the bootstrap
variances are so tightly clustered around .056 that its kernel density is too tall to display on the
same scale.

no information about electoral conditions other than outcomes are used in the technique. In
that case, McGann et al. (2015)’s technique still may prove a more efficient trade off between
simplicity and estimability, as long as the conceptual differences in the operationalization of
electoral swing is resolved or considered unimportant by the analyst.

One straightforward extension would be to introduce h;_; directly into the McGann model,
retaining the pooled estimate. The ability to prove predictions or results under counterfactuals is
critical for the analysis of candidate redistricting plans, a common use of seats-votes estimation
techniques, and the lack of apparent directional bias in either predictive method suggests both

may be used, with the McGann method preferred if simplicity is desired.

5.5 Concluding Remarks on Seats-Votes Specifications

Two existing seats-votes modeling frameworks were presented and one novel method dis-
cussed. The novel method is based around bootstrapping, and constructs simulated elections
by resampling the observed distribution of difference in vote share between years. In gen-
eral, the bootstrap method reproduced most strongly the Gelman-King model’'s estimates of
the seats-votes curve in the national case study and in California in 2014. Thus, where coun-
terfactual inference or prediction is necessary, we suggest using the Gelman-King model, and

where it is not required, using bootstrapping. In general, both of those methods had more ef-
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ficient simulation results than the method suggested by McGann et al. (2016). Although the
McGann method is marginally simpler to implement than the Gelman-King method, its slightly
different semantics and more simple counterfactual generation method make it less desirable
for this analysis. However, no existing public implementation of these methods are available, so
the bootstrapping implementation (as well as all other implementations of seats-votes modeling
frameworks) will be released as free software along with this dissertation.

Further, | note that the discrepancy between the modeling techniques tends to be highest
in the range where elections are most competitive, with / near .5. This means that most of the
observed electoral outcomes, which have an average vote share near .5 in many states, fall
within the range where the simple choice of specification may significantly affect the resulting
seats-votes curves. In all cases, this means that a rigorous defense of the actual primary model
specification, that for vote shares, should be conducted each time the seats-votes curve is
constructed. Lastly, the semantics of the model should be rigorously examined; the continuity
McGann et al. (2016) argues for is broken by the different model of swing. While they both
generate seats votes curves, it is unclear whether swing terms and counterfactuals that depend

on them are the same in the McGann specification as in a Gelman-King model.
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Chapter 6

ARE GENERALIZED UNIFORM PARTISAN SWINGS SPATIALLY REALISTIC?

The seats-votes curve estimation methods discussed in the previous section all share signif-
icant assumptions about how legislative elections operate. Critically, one longstanding assump-
tion in modeling elections focuses on the modeling of congressional elections as stationary
spatial processes where many independent electoral contests occur simultaneously. In con-
trast, many longstanding models of electoral outcomes suggest that swings should be modeled
as hierarchically dependent (Stokes, 1965). Recently, spatial multilevel modeling has come to
prominence as a method for accounting for the effect of spatial context on voting and partisan-
ship (Levendusky et al., 2008; Gelman et al., 2005; Durch and Stevenson, 2005). Some have
even suggested that spatial multilevel techniques are sufficient to predict the the bulk of con-
gressional and presidential elections, in addition to constructing simulations that comport well
with observed outcomes. This, as some have claimed recently, “solves” the problem of geogra-
phy and context in electoral modeling (Gelman, 2014). At the very least, multilevel models are
now a common general technique for controlling for some degree of spatial heterogeneity and
providing within-group dependence for spatial groups (Park et al., 2004; Hersh and Nall, 2015).
While this is often not framed explicitly in reasoning about elections as geosocial processes,
this evolving standard of practice indicates a gradual embrace of basic spatial reasoning about
context sensitivity that was essentially rejected out of hand in earlier times (King, 1996).

Indeed, the introduction of multilevel strategies in redistricting applications and electoral

modeling derives from the recognition discussed in Chapter 4 from Gelman and King (1990):

“[m]odeling districts with additional information, such as spatial correlation or co-
variates, if they were available, would probably yield more accurate estimates” (p.
277)

Despite this, models of explicit spatial correlation in election results or inter-year swing are not

as well recognized as the importance of controlling for heterogeneity. While the spatial reason-
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ing embedded in multilevel models engages with classical quantitative geographic concerns
about spatial heterogeneity, its treatment of spatial dependence and potential non-stationarity
is not as fluent. Classic spatial multilevel models hardly engage these concerns on their own
(Owen et al., 2015).

A pervasive justification of multilevel models in treating spatial heterogeneity is in the case
where a spatial fixed effect would be used to treat spatial groups of varying size (Gelman,
2006). By stipulating these spatial fixed effects as having a common underlying distribution,
groups with fewer members or noisier groups are shrunk towards the global average effect.
In the typical centered multilevel intercept model, this provides group means that are spatially
heterogeneous, divided into j = 1,2,..., ] groups, with the | x 1 group means «; distributed
normally around a single global intercept u. Letting an n x | dummy variable matrix A classify
n observations into | groups, the typical varying-intercept model for response Y and response-

level data X is stated:

Y ~ N(Aaj + XB,0?)
(6.1)
y~ N(‘M +Z7, TZ)
where o2 is the variance of the response-level component, 72 is the variance of the group-level
error component, Z is an group-level design matrix, v are the substantive effects unique to
the upper-level, and B are the substantive effects unique to the response level. This results in

a “spatially-varying intercept” model, where all observations 7 in unit j have a common group

effect. Stated in a single line, this becomes:
Y ~ N (i +AZy+ XB, 0> + AN T?) (6.2)

Notably, the covariance matrix of this model is non-diagonal: AA’ produces within-group cor-
relation due to its off-diagonal elements. This results in the response being correlated within

groups, but independent across groups.

No formal spatial specification test is available for these kinds of models. But, introducing

a state-level hierarchical component into the Gelman-King national seats-votes model for 2016
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Spatial Fixed Effects State Variance Components State VarCo, District SEM
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Figure 20. Shrinkage plot showing the band of the fixed effect estimates +2¢. Effects that
overlap with zero are colored black, and effects that do not are colored red. Each column is
one different specification to control for spatial heterogeneity.
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indicates that most states do not have significantly different distributions of swing, conditional
on the rest of the model. This is exemplified in the shrinkage plot in Figure 20, which compares
three different models for the 2016 congressional votes shares using incumbency, the 2014
congressional vote shares, and state-level effects. Contrasted in the figure are three specifi-
cations; a spatial fixed effect specification which simply includes each state, an uncorrelated
state variance components model in the vein of Browne et al. (2006); Leckie et al. (2014), and
state spatial autoregressive variance components model (Wolf, 2016). What becomes appar-
ent is that, even in the spatial fixed effect model which tends to exaggerate the magnitude of
difference between subgroups (Gelman, 2006), most states are not substantially different from
the common mean. When aspatial hierarchical shrinkage is introduced, more states become
indistinct. Finally, when allowing for the possibility that district vote shares might follow a spatial
autoregressive error model with a hierarchical state effect, states become even less distinct.3*
In addition, these substantially more complicated models do not yield significantly better pre-
dictions for hyy¢, S0 their utility in this context is dubious. Finally, in state-specific analyses,
these hierarchical components are unavailable anyway, so their introduction is irrelevant for
most deployments of seats-votes models. Unless a national (or super-state) structure is re-
tained, stratifying the model using state-level hierarchical effects is useless for processes that
occur within the state.

While this form of model is useful, many recent explorations of spatial structure in electoral
geography focus instead on the prospect of spatial nonstationarity in the electoral process.
Often, this is done by stating a model with hierarchical substantive effects, in addition to or
instead of hierarchical intercepts. In this case, some number of covariates, k = 1,2,...p, are

separated into | “local” covariates and g global covariates. Then, a model is specified with:

1
Y~ N(a+ ) XeABry + XeBe, o?) (6.3)
k

34This is somewhat unsurprising, as the prospect of spatial autocorrelation smooths the boundaries between
groups that multilevel modeling aims to leverage, regardless of the level at which the correlation process is admitted.
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Then, each By ; has :
By ~ N (i + Zgvi Zp,) (6.4)

where X is often shared over all k processes. This model structure generates f-
nonstationarity, since the estimates of 8 are unique to the group. This modeling structure has
been used to explore spatial non-stationarity in the electoral impacts of income (Gelman et al.,
2005), race (Hersh and Nall, 2015), and partisanship (Levendusky et al., 2008).

Spatially-nonstationary models with endogenous scales are also used in the analysis of
elections and voting behavior. In an attempt to handle the complex interplay between hetero-
geneity, dependence, and “alchemy” at issue in the ecological inference problem (Anselin, 2000;
Anselin and Cho, 2002), geographically weighted regression (GWR) techniques have been
used (Calvo and Escolar, 2003; Wing and Walker, 2010). Recent work using GWR to explore
smooth nonstationarity in political behavior or electoral dynamics is also promising (Crespin
etal.,, 2011; Clemens et al., 2015), since the formal treatment of nonstationarity by nested “geo-
in-geo” hierarchical is limited by the extreme heterogeneity in basic spatial enumeration units
available for social scientific research.

Centrally, the pervasive use of exogenous-boundary spatial multilevel models provides for
spatial dependence in a limited group-wise sense. In these cases, inter-observation correla-
tion is a matter of membership, not proximity or relation (Owen et al., 2015). Heterogeneity is
discrete, bounded, and its spatial structure is known a priori. Some marginal theoretical justifi-
cations for these strategies exist. Elections law and candidate contests are bound within states.
In addition, group-wise dependence in electoral outcomes may result from national- and state-
level coattails effects (Hogan, 2005, e.g.). However, state-specific coattails are quite weak, and
both coattails effects can be controlled for with dedicated covariates. Regardless, the formal
justification of multilevel structures in terms of substantive arguments about voting behavior and
electoral geography is not routine.

In contrast, spatial dependence in electoral outcomes, as well as spatial dependence in
inter-year electoral swing is empirically pervasive. To this end, explicit models of spatial de-

pendence have been employed in electoral analysis and voter behavior. Darmofal (2006) pro-
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vides a thorough discussion of spatial econometric praxis for questions in political science, and
Franzese Jr and Hays (2008, 2007) provide applications and review of the opportunities of ex-
plicit spatial reasoning for models in comparative politics. In an analysis of political participation,
Cho and Rudolph (2008) identifies endogenous feedback between neighboring areas while us-
ing a spatial group effect strategy to control for potential contextual impacts. In a similar vein,
Burnett and Lacombe (2012) conducts an econometric specification search for a demographic
model of vote choice at the county level, finding significant improvements when dependence
between counties is modeled with a local, small-scale spillover process embedded in a spatial
error or spatial Durbin error model.

In addition, Monogan (2013) analyzes the structure of immigration policy adoption in US
States with conditional autoregressive effects, and suggests these may provide further effec-
tive tools to analyze policy contagion (Monogan, 2012). With the advent of various multilevel
model specifications that incorporate simultaneous autoregressive spatial dependence and hi-
erarchical heterogeneity (Lacombe and Mcintyre, 2016; Dong and Harris, 2015; Wolf, 2016),
multilevel group-wise dependence and neighborly spatial dependence — implicated by spatial
Markov random fields (Besag, 1974) or simultaneous autoregressive processes (Anselin, 1988)
— can be modeled together. In fact, this has already been applied in the modeling of recent
British elections (Lacombe et al., 2014). Thus, the analysis of the impact of spatial dependence
on estimates of seats-votes curves, either through dependence in vote shares themselves or
through dependence in swing from year to year, may improve the validity of elections simulated

in seats-votes curve modeling.

6.1 Spatial Misspecification in Vote Share & Swing Models

However, these various specification changes largely do not buy any significant benefit in

the context of seats-votes modeling, since the rank distribution often remains the same. In spite

of this, the prospect of spatial correlation in swing or vote shares is both empirically justified and

theoretically interesting. If swing were correlated in space, then we might observe “pockets”
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of volatility, areas that all shift together towards or against the global trend. In addition, the
implicit relationship between last years’ vote and this years’ vote may be spatially-nonstationary,
justifying the use of local models. However, since no specification testing regime is available
yet to determine whether GWR is appropriate, this comparison is elided for a future project.
There are two clear ways to determine whether spatial dependence is a necessary concern
in models of h or §°. The first method is to examine the regression residuals for potential spa-
tial structure using classic tests for spatial misspecification. The second would be to examine
whether the introduction of a correlated model for h or ffi affects the rank distribution.®® In
Figure 21, the robust Lagrange Multiplier statistics to identify potential spatial misspecification
in model residuals (Anselin et al., 1996) are shown for each two-cycle Gelman-King model
specification in the national vote share model considered in Section 5.4. For assuredness,
each two-cycle or one-cycle model since 1992 is estimated under two different methods of re-
solving uncontested elections. On the left, only the districts that are contested in both t and
t — 1 for the two-cycle models or are contested in election t for the single-cycle models are
retained. On the right, uncontested elections are imputed using the first-order autoregressive
sub-regressive strategy detailed in Section 6.2. Significant robust LM statistics are shown in
red, and non-significant statistics are shown in black. If each two-cycle model is considered
independently, almost all models relating only the mutually-contested elections in each cycle
exhibit a significant robust LM test. This means that there is statistically significant spatial cor-
relation in the error term, even when admitting the potential for an endogenous spatial lag term
for the response. These statistics are large, and many also are significant under a conservative
Bonferroni correction. In contrast, the robust spatial lag statistic is not significant as consis-
tently, with only one significant statistic, that for contested elections in 2012. Thus, it is likely
that the direct model for vote shares is spatially misspecified, and could benefit from some type

of correlated error correction in the model for h.

35This exploration could be directly conducted with Geographically-Weighted Regression, even though it does
not have recourse to formal specification testing.
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Figure 21. Robust LM Error tests for national Gelman-King models since 1992. On the left, the
tests apply to a Gelman-King model with Democratic vote share censored to .25 and .75. On
the right, the diagnostics are computed for the AR(1) imputation suggested above.

6.1.1 Generating Spatially-Correlated Electoral Swing

Critically, introducing spatial patterning into 6° or h° opens up many potential model spec-
ifications. Correlation in either process can be specified independently. In theory, swing and
expected typical vote may differ in the strength of spatial patterning, and different models may
be required for either process. Here, | consider specifications with only a single autoregressive

term, not allowing for both correlated h and ¢.

First, a spatial lag model could be used for h, which would result in spatial patterning in
both h® and 4°:

h° = (I — pW)Th° + (I — pW)16° (6.5)

This could be achieved within a Gelman-King specification by estimating each submodel using

the lag specification and then treating the model artifacts in the same manner. Alternatively, a

model with endogenous lag only for the swing process can be stated:
h® = h° + (I — pW)16° (6.6)

In the McGann model, this would correspond to a spatial error model for the panel of congres-
sional districts. For the Gelman model, this requires specifying a correlation structure for §° at

the end of the modeling process.
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Then, a spatial error process for 6° may be useful. In that, the process becomes:
h° =h°+u+ (I—pW) e (6.7)

where 6° has now been broken into its constituent parts, y, the mean swing, and €, the random
fluctuations around the mean swing. Note that, in this specification, the expected swing is still
u, a useful property that will be discussed later.

Finally, the variance in Eq. 6.7 should be critically examined. Critically, if € has variance 72,
the apparent variance of each observation will be /arger than 72 if the autoregressive specifi-
cation in 6.7 is used. To ensure that spatial correlation exists without inflating the variance of
each district’'s outcomes, one can recast the specification in terms of the correlation matrix, R.

First, note that the covariance matrix of 6° under Eq. 6.7 is:

1

cov(5°) = [(I—pW)'(I —pW)] " 7> = (F'F)"'7? (6.8)

where 72 is simply o for the McGann model and (1 — A?)¢? for the Gelman-King specification.

In general, the diagonal of (F'F)~! is greater than one; this means the apparent simulation
variance of 47 for any district 7 will appear greater than the variance intended by 72

To prevent this, a separation strategy inspired by Barnard et al. (2000) is used. This strategy
separates the implied correlation matrix from (F’F)~! and the variance parameters intended for
the distribution. To do this, let diag(M) be the square matrix containing the diagonal of M and

zeros elsewhere. Then, the correlation matrix R corresponding to (F'F)~! is available using

the familiar formula:

(F'F)~diag ((P’F)_1> (6.9)

NI=
[N

R = diag ((P’P)_l)i

The Cholesky decomposition of R can then be used to draw random variates with correlation

governed by p and variance governed strictly by 2. Letting the Choleksy factorization be:
R = CrCh (6.10)
then,

0° = u+Cge (6.11)
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means that, marginalizing a single district i over many simulations:
var(6?) = var(e) = 1° (6.12)
Whereas, without this standardization,
var(6;) = var(e) * (I—“’F);i1 =72 % (1—“’F);l.1 (6.13)

with (1—"’F);i1 > 1. This apparent variance inflation is important for data generating processes
in simulation studies where control of variance is required for precise simulation design, but is
not a generally-applicable model specification due to its complexity.

Fortunately, for all of these specifications, the introduction of any spatial correlation does not
affect the relationship between the rank-vote and seats-votes curves. First, for the equivalence
to hold, it must be the case that the fraction of seats won at swing y is also the fraction of seats
won under no swing, plus the seats where a swing of size y flips the seat. Since yu is the same
for all districts, its does not affect the rank order of h®. So, the rank of the marginal district at
h° + u is the same as the rank of the district of 1° 4 0 nearest to the left side of the level set of
he + .

In Egs. 6.6 & 6.5, the net swing applied to all districts is not u, but (I — pW) !y, for some
value of p and mean swing . While the expected apparent swing due to this term depends on
both 1 and p, the resulting mean is still constant over districts since u is scalar. So, the marginal
district under swing y is still the district under no swing that sits below 1 + [(I — pW~1)u].

However, this does affect the expected value of 1° depending on p (holding all else constant)
so any simulation regime that requires h° to be fixed precisely must account for this discrepancy.
If E[6°] is not strictly constrained in models with endogenous h or 6°, the responsiveness of the
seats-votes curve necessarily changes. The discrepancy between the mean swing parameter,
i, and the expected swing, E[6°] drives this change; if E[6°|u] > u for some p, then the
apparent swing at that value of u will be larger than the specified y, and thus E[5°|h°] under
that mean swing will be larger than if p = 0 if any districts fall in the gap & + p and i + E[5°|u].

This reverses when E[6°|u] < u.
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Whether or not this should be “controlled” (or, indeed, whether the variance inflation and
heteroskedasticity induced by the error autoregressive specification) are largely questions of
experimental design, and are subjective in terms of what the analyst aims to discover. Plainly
speaking, | am interested in whether modeling places as “swinging together” or “swinging apart”
changes the substantive interpretation of the resulting seats-votes conclusions. Thus, | simply
admit outright that uncorrected endogenous h or §° necessarily increases responsiveness due
to its inflation of E[6°|u], since | view this as a constraint of the specification rather than a
substantively interesting trait. Instead, if effects show up in the moment-corrected specifications,
where E[6°|u] = u always and var(6°) = var(e) = T2 always, then the substantive question
might be evaluated: “does spatial dependence matter?” — not induced mean non-stationarity,

heteroskedasticity, or excess variance.

6.1.2 Correlated h or §° in Seats-Votes Model Specifications

Fortunately for the status quo of electoral modeling, the simulation of seats-votes curves un-
der these autoregressive/correlated specifications yields nearly identical seats-votes curves as
those that assume votes or swing is spatially independent. Thus, while there may be potential
spatial misspecification in the Gelman-King model (or many other models of vote shares at the
legislative level), the impact this misspecification has on the estimated seats-votes curve and
eventual quantities of interest appears to be quite slight.

Recalling the robust LM test results from Figure 21, most of the two-cycle models clearly
had significant correlation in their residuals. Thus, the 2014 election was selected for a close,
intensive simulation study. Across the specifications considered in Section 6.1.1, 10,000 real-
izations of h° were constructed for the previous example’s national seats-votes model for 2014.
Thus, in Figure 22, the distribution of simulated Democratic vote shares is plotted with respect
to the autoregressive parameter. As you move down the histogram matrix, the autoregressive
parameter increases, moving from modeling strong negative spatial autoregressive processes

to strong positive spatial autoregressive processes. At almost all levels in any of the specifica-
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tions, the distributions of simulated results, shown in grey pooled over all simulations, is very
close to the observed distribution, shown in red. Except for the case where h is modeled in
a mixed-regressive, spatial autoregressive specification, the distributions are nearly identical

across the whole range of the spatial autoregressive parameter.

Since the distributions of h° tend to appear to be the same as the distributions of observed
h, the rank-vote distributions (and thus the seat-vote distributions) are likely to be the same as
well. To examine, this, seats-votes curves are constructed for these simulated elections under
the spatially-correlated data generating processes. Then, a similar style of discrepancy-plot as
that shown in Figures 16 & 18 is made for each scenario. That is, over the entire range of party
vote share, the difference in the expected number of seats is computed. Thus, if the curves
for the spatial data generating processes are significantly different over a set of #° values than
that under the null, the discrepancy plot will provide both the extent and the magnitude at which
these plots differ. In addition, we can compare the overlap of quantiles in each level like done
between the three different types of seats-votes curve estimation strategies.

The raw discrepancy plot is shown in in Figure 23. Each row of the plot corresponds to a
simulation batch where the spatial autoregressive parameter is fixed to the same value across
specifications. The columns contain each of the four different specifications. The inner y axis
labels correspond to the raw number of seats difference between the seats-votes curves es-
timated from the null process and the spatial autoregressive process in that column. Thus,
a negative value indicates that the null seats-votes curve is below the spatial autoregressive
seats-votes curve at that level of 1° by that many seats. A positive value indicates the null
is above the spatial autoregressive estimate. Thus, regions of 1° where discrepancy is large
would be regions where the resulting estimates of partisan advantage would differ the most.

As is apparent from the distributional plots, the data generating specification with an endoge-
nous lag for the h vector is most distinct from the null of no spatial autoregressive effect in any
component. In general, this forces the mass of the vote distribution to the tails, which reduces

the total number of districts that can be flipped by the parties. Effectively, as the strength of
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Figure 22. Distributions of vote shares for various process specifications over a range of
autoregressive effect size. The autoregressive effect for 2, 000 realizations is shown on the
y-axis. The grey distribution is the distribution under the simulated data generating process,

and the red distribution is the observed vote share distribution for 2014.

120



d5Q aAIssalbalolne |eijeds sy} uey) sieas

aJow subisse ||nu ay} 1Byl 81eaIpul sanfeA aAllisod pue ‘qog aAIssalbalolne [eiieds ay) UBY] S10A JO [9A9] 1BY] 1B Sleas Jema) s1oipaid
dOQ [Inu 8y} a1eodlpul senjeAa aAllebap "SIxe x ayl uo a1oA Jeindod sy} JO [9A8] 81 1B UIM SleIoowsa( S1eas Jo Jaquinu pajoadxa

8y} Ul @ouJBYIp Byl SI |age]| A Jsuul 8y "sseooid Buneisusb elep ay) 1o} 0 Jo enjea ayj SI [8ge| A 18Ino 8y *,¢ 10 Y Jo} suoneoloads
anIssalbaioine [eneds Inoj ay) Jo sUo sassaldxa uwnjod yoe3 ‘syibualls 108)e aaissalbalolne pue sassadoid Buijeisushb

elep [eneds BulAieA JO SUOII09|o 10} PalBLIISS ‘471 0g Ul SOAIND SB10A-S]BaS [euoissalbuod [euoieu ay) Joj sjojd Aouedalosiq ‘gz a@inbi4

910A Wa(Q %

Q pale)aJio)

Q Jodug

00./ ovﬁo 0@.0 n»do 00.0 002 n»ﬁo On».o @do 00.0 00/ o»ﬁo 0@0 avdo 000 002 ovﬁo 0&0 @\co 00.0
_ _ Il 1 8.0- _ _ _ TFol- - _ _ Fo- , , 1 051- o
Ifq__{}}}_ljl - 00 \/\/{l\ F0 \\/\/l\\ -0 : .
- 8°0 - 0L - 0L 0 b
L i - 810~ : _ _ T e _ _ , & = | | T 08-
L 00 -Lil\u»f?/l\lu;}p‘i!:v\bﬁ L G -L?E L g \/I/l\ Lo o
F8°0 F€ - € og
I I £ 80~ [ FG L= § L 00 >\/|\ F05- o
-y [ ¢ 5L og U
SN 1 Y Wy g | NSO g g | " —— o ) O NN £ O
- 0.0 - 0.0 100 |- 0
T I [go | T+ 50 W Lso 3, w
— ; w”DI g H @m , . w“DI l\.\]/:fl\l\\:\k 5 e
: : 100 |- Lo
Ty I 139 g0 | TN 38 9 =
_ _ _ - 810~ _ _ _ T80~ _ _ _ - 80~ _ , , TG
1| S w4 1 (e w118 1 R B I I
- 80 - 80 - 80 S
e e [ e e | | e | i T
| g0 - 8°0 - 80 -Gl W
, _ il - 8.0~ i _ _ T 8°0- 111 , - 8°0- , , : TGl- |
——r 98— e 23 P M e 88 L~ T 10 e
- 80 - 80 - 80 FSL G
_ _ il - 80~ _ _ _ TSl ! _ _ F Gl _ , : el
J%..EISI-O.O -g.o.o -%{Eiﬁ.o.o I,/\/'.o o
L 80 FG'1 Gl F0C
_ _ _ - 8.0~ _ _ _ Tz : _ _ FGg- _ , , b0z |
If}ilzl 139 § 129 § 29 \/\/\ % 2
- 80 FGC FGC 02 o

121



autoregressive effect in the endogenous lag of h model becomes large, districts either become
wholly Republican or wholly Democrat, and the rank distribution flattens significantly. Many ties
at 1 and 435 result. This causes the seats-votes curve to flatten significantly, since fewer dis-
tricts are in the center of the 1° range, so the change in y must be smaller, too. Thus, even
at mild levels of an induced endogenous spatial autoregressive effect in h°, the maximum seat
discrepancy is around 6 seats. For seats that are “safe Democrat” on the left of the seats-votes
curve (where 1 ~ .25), positive p results in the null assigning more seats to Democrats than
would be assigned under the spatial autoregressive simulations. In addition, for the mode of
seats that are “safe Republican” on the right of the seats-votes curve (where /1 ~ .75), positive
spatial autoregressive effects in the endogenous h° specification results in the null assigning
fewer seats to the Democrats than the autoregressive process. That is, if h® is modeled even
with a weak spatial autoregressive effect, the seats-votes curve will be “flatter” than the null
curve if the spatial autoregressive effect is positive, and “steeper” than the null curve if the
spatial autoregressive effect is negative.

Regardless, the introduction of a non-zero spatial autoregressive effect in this specification
makes the seats-votes curve more linear, since the bimodality is flattened. Thus, if vote shares
were endogenously correlated in this manner, even minor changes in the way h were modeled
would affect anything depending on the seats-votes model. However, tests for model misspec-
ification suggested instead that the specification lay in the error term, J, so (strictly speaking),
this sensitivity is inapplicable here.

The discrepancy in all simulations tends to be lowest around the median, h1° = .5, so
bias measures that focus on the median will be robust to this discrepancy. This means that
measures like the median bonus & attainment gap discussed in Section 2.3 should be more
robust to dependence misspecification. In contrast, a measure like Observed Bonus, which
evaluates the curve at 1° and 1 — h° with h° = h;, may catch this discrepancy at its height.
And, the slight asymmetry in the discrepancy curve about .5 means that the under-prediction
on the left likely will not be balanced by the over-prediction on the right side of the median.

However, for all other specifications, the discrepancy in expected number of seats won by
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Democrats is marginal for all but the most extreme values of p. However, for the cases where
the shape of the discrepancy curve can be identified, it tends to remain the same over the
varying levels of autoregressive effect strength. Thus, when p = —.9 or when p = .7, the
resulting discrepancy between either the endogenous lag specification for the swing term 6° or
the nuisance dependence specification for 6° both result in similarly-shaped discrepancy curves
with similar magnitudes. In these scenarios (and all scenarios with p between these values) the
estimated discrepancy between the null is with £3 seats. The form holds approximately the
same for both specifications, with only the amplitude of the discrepancy curve affected by the
value of p. Practically speaking, this means that most commonly-encountered values of p,
between 0 and .7 or so, result in a maximum discrepancy of three seats between the null and
the autoregressive model. This discrepancy is quite small with respect to the total 435 seats
being assigned, and would not affect the resulting advantage estimates in a noticeable way.
In addition, none of the results for the correlated ¢ specification, which keeps the apparent
variance in simulation fixed to ¢ regardless of the value of p, differ from the null simulation
model by more than one seat.

The extent to which the change in covariance specification affects the width/height of quan-
tiles or the magnitude of the variance for level/vertical sets of the seats-votes curve is also
relevant. The width/height of the seats-votes curve contributes directly to the variance of rele-
vant advantage measures. Thus, if the autoregressive specifications change the dispersion of
the curve across its domain, it may affect the dispersion of the estimated advantage statistics.
Thus, the relative difference in standard deviation of 5° at each h° is reported Figure 24, with

the formula:
o (55) —o(53)
(5)
where kq pertains to the statistic k from the null process. Each set of 5; is constructed from
realizations that fall within a small search band around /°, like that discussed in detail of the
Texas example from Figure 15. While it does appear that the change in variance is non-random.

For the endogenous lag of h specification, the variance tends to inflate sharply around h° =

.5, with variance either deflating or staying nearly the same when outside of part of the vote

123



"lINU 8y} Japun uey} aaissalbaioine-Ajeneds usym uonnguisip Jaiybil e a1eaipul senjea aaljebau {|inu ay}

Japun ueyl 4o anissalbaloine [eneds ay) Japun (pasiadsip aiow "a°1) J9|je} aJe adojaaus uoie|NWIS S8}0A-S1eas ay] Jo sajjuadlad
3|pPpIW 3y} 1Byl 81B2IpUI SBN[BA BAIISO "SIXB X 8U} Ul UMOYS SJOA JO [9A8] Y} 1B S8JBYS 1BSS JO UOBIASP PJBPUBIS 8U} Ul 80UsIalIp
1usoJad aAljejal 8y} SI |age) A Jauul ay] ssed0.d Buijelousb erep ayi Joj d Jo anjea syl SI [8ge| A 18IN0 8y *.¢ 10 Y 40} suoneoljioads
anissalbaloine [eneds unoj 8y} Jo suo sassaldxd uwnjod yoeg ‘syibualis 108)e aaissalbaloine pue sassedoid Bunessusb eiep jeneds
Buifien Jo SU0I09|9 10} PalBWIISS ‘¢ L0 Ul SBAIND SB]0A-S1ESS [BUOISSa1BU0D [euoileu ay) Joj siojd Aouedalosip uoneinaq g ainbi4

9}0A Wa(Q %

O ¢S O 4O O O ¢ O 4O O O ¢ O 4O O O G0 O 4O o
. . . . . Z1°0- . . . . o . L . . o . . . . -
k//\.\/\//\\/\.\\;\/\\{fgl. 900~ F Wm F wﬁm i Mm 2

- 00°0 : [gg ©
-7¢ 7'z g0
L L 1 L 1 . L L 1 L 1 ND 1 L L L 1 L N.D 1 L L L 1 .q D|
A T < i e g SN N B
- 00°0 F9°0 L 90 Fyo
A WP af 355 [ Nt T £ Vet I-
1 L L L L D_\.O| 1 L L L L 1 L L L L QN.D L L L 1 L ] m.o c|_
- 60°0- [ 900 - 00°0 000 ©
au0 900 L 80°0 FGco W
o 00 [ e o L T e o T A i e o [T o
- 00°0 (999 000 o0 O
T W G L Y — T MW Jeo A YLV g
F 500~ . - 900~ -
3}/\5. 2. ?)%%ﬁ,\/\{/\ e «(\Lﬁé«{;% 000 ‘/\(;\2,}/»%?)3\))25\2 00 &
- G0°0 - 80°0 - 900 F10 o
_ _ _ _ O _ _ _ e — _ _ _ e — _ _ _ — o]
A A ! 00 [N NI AN 000 NG AT B8 a0 0
- 80°0 - 90°0 - 90°0 20 o
- 00°0 - 000 £ 00:0 F00 4
- 80°0 L 800 L 90°0 €0 3
\z\.(}\/}.\(/&l{/_«\(’)\/_\:‘gﬁ\,‘/\\ mmml \’b(gsx_'é. DD \/\,/\/\/\/\/_\(/%4\/_\,/\,\/\_/{“ m—um , : _ _ ; H MW n_u
- 80°0 F10 L0 (702
; : ; ; ; . ; : : ; O — : : ; g — _ _ ; — 00 |
x,\\\/r\,i><if>.,.<<<;i‘ 000 {.ﬁ.o {.e.o .r)l}//)\\\b\\ot G0 O
F 610 - 0€°0 L0l o

Q paie)aJdo) Q Jouig g ‘bopuz y ‘bopug

124



share distribution. Semantically, this means that the endogenous h specification increases the
range of ranks possible for a district that Democrats might barely win, meaning that that district
is much less likely to be pivotal (or nearly-pivotal) to a legislative majority, since its rank is
much more variable. This same general behavior occurs for the endogenous lag specification
for 6 and for the nuisance spatial autoregressive specification for §, albeit only manifesting
clearly when the autoregressive effect is very large. Otherwise, when p is not too large in these
specifications, the autoregressive specification tends to inflate the vertical width of the seats-
votes curve by under 10%, and also occasionally narrows the vertical width. In contrast, the
model with spatially-correlated ¢ that fixes the apparent variance tends to deflate the variance
with p is large and positive, and inflate the variance when p is large and negative. For most of
the realizations, though, the correlated model fluctuates around inflating/deflating the variance

by under 6%, a quite marginal change in vertical width.

6.2 Validating the Imputation Model

Uncontested elections pose a significant problem to post-hoc estimation of the seats-votes
curve and prediction. Critically, they cannot be treated simply as outliers, since they represent
substantively interesting parts of the process and contribute to any hypothetical seats-votes
curve. Dropping uncontested elections entirely may also bias estimates of partisan advantage
(Niemi and Fett, 1986; Tufte, 1973; Niemi and Deegan, 1978), since these districts are not
counted as “won” by any party.

In the dataset constructed for this dissertation from Kollman et al. (2016) and King (1994),
“truly” uncontested elections, where the two-party vote share is exactly zero or one, comprise
around 14% of all elections between 2016 and 1992. The distribution of these vote shares
is shown on the left of Figure 25. In addition, around a quarter of elections are “nominally
contested,” with candidates winning by more than 75% of the vote. This can be seen on the
left side of Fig. 25. Since 1992, republicans nominally contest many Democrat-held districts,

where .75 < h; < 1, but few Republican districts are nominally contested, with Democratic vote
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Figure 25. Distribution of Congressional district vote share for Democrats, pooled since 1992.

shares below 0 < h; < .25. The number of “fully” uncontested districts by the two parties is

roughly equal, though.

Uncontested elections are too common to ignore outright, so many techniques to handle
uncontested elections exist. One method common in seats-votes analysis is to estimate the
vote share for uncontested districts as if they were contested. Often, this is done using an
auxiliary regression or single imputation. McGann et al. (2016) use presidential election results
at the congressional district level to predict the baseline partisanship of a district in a panel. This
is motivated by the assumption that split ticket voting is rare, so congressional margins should
appear similar to presidential margins if all seats were contested. This strategy is a useful,
simple method that yields reasonably accurate results, as will be shown below. However, this
data augmentation approach is less useful than one that imputes directly from the available

data.

6.2.1 Common Imputation Strategies

To impute uncontested elections directly from the available data, Gelman and King (1994a)

use a single-imputation strategy under a first-order temporal autoregressive model. Uncon-

tested districts in a given year are imputed from the model fit to the available data in that year.

126



Two Three Four Five

1990s 43 11 6 0
2000s 48 13 7 3
2010s 35 6 0 0

Table 7. Count of congressional districts with uncontested runs of the target length in each
decade.

Since the Gelman-King specification relies on h; 1 to predict ¢ over a sequence of two-cycle
models, this imputation can take two forms in practice. One form uses only mutually-contested
districts, those that are contested in both both the current and the previous cycle. For the mu-
tual strategy, a model for election t is fit using districts that were contested in both f and t — 1,
meaning both k; and h;_4 are informative. Then, uncontested districts in ¢ are predicted as out-
of-sample cases. However, this approach loses efficiency with serially contested elections. If
an election has been uncontested for two periods, then the previous vote share does not reflect
the characteristics of the district when contested.

To remedy this, a recursive propagation strategy is available. This recognizes that an impu-
tation for + may require imputation for + — 1, which itself may require imputation for t — 2, and
so on. Thus, imputed values are propagated forward and used in the next time period. First, an
imputation is conducted for the first available time period using all available data. Then, the next
time period uses the full vector of h;_1, both imputed and observed, to fit a model for /;. Since
all h;_1 are either contested or imputed, all uncontested districts in /; have an informative ;4

value.

Serially-uncontested districts comprise a small portion of the dataset, as shown in 7. Out
of 5616 general congressional election contests in the contiguous US since 1992, 126 have
been uncontested by a major party for at least 2 sequential elections. This comprises just shy
of 2% of the total. In addition, this fraction tends to be relatively constant over the decades
since 1992. In the redistricting decade from 1992 to 2000, 43 districts went uncontested for two
sequential elections, again around 2%. In the period from 2002 to 2010, 48 went uncontested

for two sequential elections. Over the three Congressional elections since 2012, 35 districts
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have been uncontested in two sequential elections, around 2.5%. Notably, three districts were
contested by only one of the major parties during the 2000s redistricting decade. Alabama’s 6th
district, represented by Spencer Bacchus, was never contested by Democrats; Florida’s 17th
district, represented by Kendrick Meek, and Massachusetts’s 8th district, represented by Mike

Capuano, were never contested by Republicans in that decade.

6.2.2 Presidential Imputation is Slightly Superior

To compare the quality of the various imputation strategies, a k-fold crossvalidation was
conducted, and the results are shown below. In a set of test years, a fifth of all available h;
was sampled, censored to appear uncontested, and recovered using one of the three methods
discussed above; imputation from presidential results, mutually-contested imputation, and re-
cursive forward propagation. Since recursive imputation may be sensitive to the sequence of h;
drawn in the k-fold crossvalidation, 2000 replications of 5-fold crossvalidation were conducted,
resulting in around 10, 000 imputation passes for congresses since 1992.

For the mutually-contested and recursive forward propagation strategies, cases where F;
are available were randomly sampled and censored to appear uncontested. Periods immedi-
ately following a redistricting period were omitted, since they pose no difference between the
two approaches. This means that three periods, 1992, 2002, and 2012, are omitted from the

comparison. In both cases, the model used for imputation is

h; = ahy_1 + Bo + Brincumbency + € (6.14)

where the h;_; contains the raw vote shares in the mutually-contested case, but may contain
imputed values for the recursive forward propagation.

Using the presidential imputation strategy, periods immediately following redistrictings are
available. However, due to the limits of data availability for presidential elections by congres-
sional district, the comparison is restricted to congressional elections after 2004, using pres-

idential results since 2000. The imputation model also includes an incumbency variable and
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a year fixed effect. However, due to data availability restrictions, the presidential imputation
strategy is broken up into three distinct model sets. First, congressional elections from 2006 to
2010 are predicted using presidential election results from 2000, 2004, and 2008, meaning the

imputation model is stated:

h = Bo + A7y + Brincumbency + B2p2000 + B3P2004 + Ps5P2008 + € (6.15)

where h is the vector of contested district results pooled over 2006, 2008, and 2010, A is
the set of dummy variables classifying district-years into the year fixed effects vy, p; is the
presidential vote share in the congressional district in time ¢, and € is an independent and
identically-distributed error term. In this case as well, incumbency is an ordinal effect. For
congressional elections in 2012 and 2014, presidential vote shares from 2008 and 2012 are

used:

h = Bo + Ay + Brincumbency + Bapaoos + Bap2012 + € (6.16)

with h now being pooled over 2012 and 2014. Due to inter-censal redistrictings between 2012
and 2016, congressional elections in 2016 are imputed separately, using presidential election

results from 2008, 2012, and 2016:

hoo16 = Bo + Ay + Biincumbency + Bap2oos + B3p2012 + Bap2oie + € (6.17)

As in the recursive and mutually-contested imputation methods, a 5-fold crossvalidation strategy
is conducted with 10,000 passes for each time period. This results in a comparatively larger
number of replications for each congress, but the accuracy statistics in crossvalidation stabilize
quickly with the number of passes, so this difference in typical number of passes per congress
is not itself significant.

To accommodate the differing sets of data availability, imputation accuracy will be presented
both over all available years and in each election year. If an imputation strategy is not effective,
the out-of-sample prediction after censoring h;; will be far from the true h;;. In addition to
raw prediction accuracy, the classification accuracy is also analyzed. This ensures that an

imputation method produces likely vote shares and seat winners. The two forecast accuracy
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Presidential Recursive Mutual

Known % Vote (D)

0 2 4 6 8 10 2 4L 6 8 10 2 4 6 8 1
Imputed % Vote (D) Imputed % Vote (D) Imputed % Vote (D)

Figure 26. Imputations versus known vote shares over 10,000 crossvalidation passes

RMSE SMAPE FDWR FRWR Accuracy N Replications

Presidential 0.0544 0.0444 0.0307 0.0396 0.9297 4,550,000
Recursive 0.0645 0.0505 0.0422 0.0372 0.9207 4,627,037
Mutual 0.0833 0.0674 0.0494 0.0323 0.9182 4,627,037

Table 8. Summary of accuracy & precision for imputation over all available data. “FDWR”
stands for “False Democrat Win Rate”, and “FRWR” for “False Republican Win Rate.”

statistics, the symmetric mean absolute percent error (SMAPE) and root mean squared error

are defined for N observations in a forecast f and observed vector k:

1Y |f -k N(f k)2
SMAPE = N;ILI - IIQ'I RMSE — | 2L i = k)® ZN )
These measures are provided in Table 6.2.2, alongside the false party win rate, or the percent-
age of cases the imputed vote share suggested that the party wins when the observed vote
share indicates the party lost. This is computed for both Democrats and Republicans. Finally,
the “accuracy” is the percent of times the winner of the imputed election was the observed

winner. Finally, all this occurs over a K-fold cross-validation, so the number of cross-validated

predictions for each type is shown in the last column.

First, the scatterplot of the imputations is shown in Figure 26, and full results for the total
crossvalidation runs is shown in Table 6.2.2. Over all instances, the presidential imputation

method has significantly lower root mean square error and symmetric mean absolute percent-
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Figure 27. Root Mean Square Error and symmetric MAPE for the three imputation methods
over all Congresses since 1994. Circles represent elections where the crossvaldiation was
unavailable due to the lack of a predecessor election.

age error, followed closely by the recursive forward imputation. Finally, the mutually-contested

strategy consistently has the highest prediction error.

When slicing the imputations by congress, this trend also holds. The comparison of im-
putation accuracy by congress are shown in Figure 27. In general, the recursive and mutual
imputation strategies move in the same direction over congresses, with the recursive method
consistently dominating the mutually-contested strategy. For the range of Congresses available,
the presidential imputation strategy has lower error in all but the 110th and 111th Congress, in
2006 and 2008. The misclassification rates by congress are shown in Figure 28. There, the
presidential imputation strategy is almost always more accurate than the other two approaches,
with the recursive forward propagation typically misclassifying about as many seats as the
mutually-contested strategy. The misclassification rate for some elections, mainly elections
to the 104th and 112th Congresses, implies that around an eighth of the winners in elections to

that congress are not correctly predicted by the imputation methods.

The weakness of the mutually-contested strategy is also tangible when considering cross-
validation cases for districts within each congress. For example, the root mean square error for

each district in each congress is shown in Figure 6.2.2. In general, the presidential imputation
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Figure 28. Classification Error rates by Congress. Here again, circles represent elections
where the imputation method was unavailable.

Presidential Recursive Mutual
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Figure 29. Distribution of Root Mean Square Errors (RMSE) for each district in each Congress.

method is consistently more accurate for most districts in most congresses, but the recursive

imputation method fares nearly as well. The mutually-contested tends to have larger RMSE by

district as well.

This also holds for the percent of all correct classifications-per-district-year, but the dif-
ferences in classification accuracy between methods are all under a single percentage point.
Critically, around six percent of district-year outcomes are never classified correctly in any
imputation method. In addition, a contest is almost always classified correctly as a Demo-
crat/Republican win or is almost never classified correctly: between 93% and 98% of contests,
regardless of imputation method, are either correct 99% of the time or incorrect 99% of the

time.
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Thus, when presidential results are available, they tend to produce more accurate esti-
mates of observed vote share, and thus may provide more plausible hypothetical values for
uncontested elections. If presidential data is not available, recursive imputation is nearly as
effective. Both approaches have clear, sharp disadvantages, though. Estimating a hypothetical
contested vote share for uncontested elections using presidential returns at the congressional
district level suffers strongly from data availability, since it requires an augmenting. Using the
recursive forward-propagating method, while nearly as accurate, cannot be easily used for elec-
tions immediately following redistrictings, unless successor districts are identified. Regardless,
a choice between the two appears to be a lateral move: no appreciable gain in classification
or prediction accuracy is obtained from using one over another, although both have lower er-
ror than the mutually-contested imputation strategy. Likewise, it is also important to note that
the true “accuracy” of these methods are unobtainable, since the anticipated vote share for an

uncontested district if it were contested is an inherently counterfactual, unobservable quantity.

6.3 Conclusion

When considering the potential for spatial misspecification in the electoral models that drive
seats-votes constructs, it is likely that models for vote shares at the congressional level require
some form of correction for spatial dependence. However, this correction likely does not signif-
icantly impact the resulting model for the seats-votes curve if the “correct” treatment is in the
error term for the vote share model. Corrections for spatial heterogeneity only result in some
states with significantly-different vote share or swing distributions. These effect structures com-
plicate the model significantly while contributing little to its predictive performance or model
accuracy, and so likely do not constitute a useful innovation in their own right. In addition, since
many analyses (such as the novel ones conducted later in this dissertation) occur at the state
level, the use of a super-state hierarchy is moot.

If the correction for spatial dependence in the vote share model is of the mixed-regressive,
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spatial autoregressive form,® the shape of the estimated seats-votes curve, both its slope and
width, may change significantly. This would, in turn, impact the measures of partisan advan-
tage defined in §2.3 computed about those seats-votes curves. In addition, the assumption
of generalized uniform partisan swing, that change in vote shares over time can be efficiently
modeled by an independent and identically distributed random effect, is empirically unsound.
In truth, electoral swing is highly spatially patterned, while the distribution of swings in most
states are nearly identical. However, introducing a correction to this assumption does not signif-
icantly change the properties of the estimated seats-votes curves, unless spatial dependence
is quite strong. In that case, the exact specification of the spatial autoregressive structure for
the swing term is critical. If a class simultaneous autoregressive specification (either the lag or
error form) is used, the change can be detectable, even when the autoregressive effect is small.
However, when considering a novel variance-consistent specification in simulations, the magni-
tude of the autoregressive effect does not significantly change the estimated seats-votes curve
from that estimated under the null. Thus, it may be the case that heteroskedasticity induced by
introducing spatial autoregressive structures is truly driving the change in the two alternative
specifications for the partisan swing term.

More generally (and more directly), this dissertation suggests that spatial misspecification
in the vote models or counterfactual models driving seats-votes models may affect the resulting
estimate of the seats-votes curve. But, the size of the impact depends greatly on the model
specification. A classic econometric testing regime would suggest a specification that has no
large impact for most of the commonly-encountered spatial autoregressive effect sizes. In con-
trast, in other electoral data (for the United States Congress or abroad), the specification search
may settle on a different model or have a different spatial autoregressive effect strength. Thus,
this simulation-driven exploration of the impact of spatial effects in seats-votes models builds
intuition about a wide variety of the models discussed in the seats-votes modeling literature. In

general, it seems that seats-votes curve estimates should be robust to moderate spatial autore-

38also known as the “spatial lag” or “endogenous lag” form
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gressive effects or spatial misspecification in large samples if and only if the misspecification
is of a special form. This means a rigorous specification search should always be conducted,
since it is very likely that the underlying model requires a spatial correction, and this correction

may, depending on its form, significantly affect results.
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Chapter 7

LOCALIZING PARTISAN SYMMETRY MEASURES

Measures of partisan bias have long been used in attempting to characterize the fairness
of electoral systems. From the theory and measures discussed in Chapter 2, many different
analyses could be conducted, but all would statewide analyses. That is, all of the measures of
partisan bias in Chapter 2 work by first estimating a seats-votes model like those considered in
Chapter 5, simulating many elections at each partisan advantage measure’s reference position,
and then characterizing those simulations in some way. These models are estimated for the
entire state under study, and the bias measures refer to the statewide tilt of the congressional
districts. No individual district scores are available.

Thus, only the geometric measures of boundary manipulation provide “local” indications
of which districts may be gerrymandered. This is clear in popular and legal discussions at-
tempting to identify gerrymandering. Often, allegations about gerrymandering characterize the
overall slant of the districting plan, and then attempt to argue that specific oddly-shaped districts
generate that advantage. This pattern is present in many of the recent lawsuits and analyses
of gerrymandering in after the 2010 redistricting discussed in Section 2.1, but chiefly in the
Cooper v. Harris, League of Women Voters v. Detzner, and Whitford v. Gill cases.

However, the use of different standards of evidence to argue about the partisan advantage
as a whole and which districts generate this bias means that weirdly shaped districts might
not end up contributing significantly to any given statewide bias measure. While the analysts
presume that strangely-shaped districts drive the unexpectedly large bias measures, it might
be the case that other districts impact the measure more strongly, whose shapes are consid-
ered more regular or intelligible. Again, as discussed before, the mere presence of strange
boundaries does not indicate boundary manipulation, since human habitation and community
character does not necessarily admit regular polygonal tilings. But, intuitively speaking, many

of the districts singled out for legal review or popular reproach have strange boundaries. Thus,

136



strange shapes are neither necessary nor sufficient for partisan advantage, but they are what’s
available to most. As such, the use of boundary regularity is suspect, but this is not always
recognized. Regardless, shape measures are the most wide-spread “score” used to assess
how likely it is any individual district is gerrymandered, while bias scores at the state level are
used to identify statewide advantage.

In this sense, Chapters 7 and 8 will be about the forensics of gerrymandering; detecting
the potentially-illicit districts that impact statewide bias measures. This exhibits a local/global
divide, as currently no local measure of partisan advantage is available to assess districting
plans, whereas geometric measures are often only used in a local context. A “good” forensic,
then, should be a statistic with some sort of control for “significance” and should provide a stan-
dardized method to compare between states or across time. The significance filter should avoid
identifying a fixed fraction of bad districts, like a top-k percentile-based filter might. Instead, a
district should only be singled out as gerrymandered if its effect on plan-wide bias is both large
relative to its variance and is consistent over time. Below, | develop a method to define such a
statistic for any measure of statewide partisan bias using classic methods in model criticism.

| am interested in local measures of district impact for three reasons. First, | am interested in
examining the set of districts identified by these techniques, if they “work” so-to-speak. Whether
they “work” is not necessarily indicated by them singling out the same districts that have been
identified as gerrymandered by the legal system. This is for two reasons. First, the courts and
most analyses up to now have used the same inconsistent global/local measures, suggesting
that individual districts that impact statewide bias may not be the ones identified in the past.
Second, the impact measures may select an entirely different (but meaningfully-consistent) set
of districts. That is to say, the districts which courts have identified as gerrymandered (using
potentially flawed or inconsistent empirics) should not be used as the sole truth against which
these measures are assessed. If the impactful or influential districts have a “typology,” a con-
sistent interpretation or set of interpretations, then the intuition about these impact measures
can be built independently of whether the measures identify the same districts that the courts

or interest groups select. | am also interested in whether one class of these impact measures,
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those deriving from classical leverage measures of regression influence are distinct from an-
other class, those deriving from jackknife techniques. Critically, if the model-based measures of
district influence all agree, then it may be the case that the simplest way to create local scores
for district partisan impact is to analyze the source model’s leverage matrix. This would indicate
that the peculiarities of each bias measure are effectively moot when it comes to which districts
impact their values, since partisan impact would be a function of observation influence.

Further, | am interested in determining whether these impact measures relate to the geo-
metric measures of boundary manipulation. Since geometric measures are currently the most
common “local” district discriminant, the relationship between the measures of boundary manip-
ulation and impact on partisan bias is critical. Proponents of boundary manipulation measures
suggest they may identify districts that create advantage, but the arguments linking identified
boundary manipulation to advantage directly are weak and fiercely contested. It may be the
case that some districts with irregular boundaries do not significantly impact partisan advantage
in a state. It also may be the case that strangely-shaped districts do tend to impact partisan
bias in states. While aggregate arguments exist (Altman, 1998b, e.g.), the lack of a viable local
measure of partisan advantage has left the direct relationship unexamined.

Finally, | am interested in the distribution of effect sizes for its own sake. One question that
surfaces from interviews that will be discussed Chapter 9 is a trade-off: should practitioners
attempt to make each district as fair as possible versus making a plan fair in aggregate? Often,
respondents suggested that each district’s “fairness” was essentially its competitiveness, so this
question became about whether all districts should be competitive, or whether a congressional
delegation should avoid large majorities. Many did not consider the fact that having many
competitive districts may magnify the extent to which a states’ aggregate representation does
not reflect the partisan preferences of its electorate. Thus, | am curious as to the existence
of two types of plans with nonzero advantage: what | call “balanced” plans and “accumulative”
plans. Balanced plans are plans where district impact measures might cluster on both sides of
zero with large magnitudes. But, altogether, the plan is not significantly biased. Accumulative

plans would be plans where most districts have a small impact on statewide bias, but the bias
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is present nonetheless. This speaks to questions of district design and the way representation
might be balanced in states to achieve aggregate representativeness versus competitiveness

in each district.

7.1 Classical Leverage Measures for Seats-Votes Models

| suggest two ways to examine the impact individual districts have on the general partisan
bias scores. First, and most straightforward, the seats-votes models discussed in Chapter 5
tend to reduce to a standard linear regression (or weighted linear regression) to predict vote
shares for a reference party given some set of political or demographic covariates. Thus, ex-
amining the structure of the influence statistics for that model may indicate which districts are
playing an outsized role in defining the characteristics of the plan in aggregate. Influence anal-
ysis is a foundational subfield of model criticism (Carota et al., 1996), and is related to many
other styles of residual analysis in regression work (Atkinson and Riani, 2012; Chatterjee and
Hadi, 2009; Cook and Weisberg, 1982; Belsley et al., 2005) Typically, the analysis of influence
involves identifying or estimating some score for each of the observations that characterizes
how important observations are to a model. One measure relevant to linear models is an ob-
servations’ leverage. Formally, an observation’s leverage on a a linear model is a measure of
how far any given point i covariate vector, X;, is from the center of the point cloud in X-space. If
the point has high leverage, it means that the point represents part of the vector support of the
underlying information in X which few other observations in the dataset also span. Thus, the
“distance” from the remaining points means that the regression line of best fit will fit the point as
strongly informative. For general linear models, leverage is constructed through the hat matrix
for the given model specification (Hoaglin and Welsch, 1978).

Extending the analysis of Gelman-King models from the previous chapter, it is possible to
identify the hat matrix for any single model for a given election. Thus, it may be the case that
high-leverage districts are the districts that strongly affect the partisan advantage of a district.

Typically, h;; represents the ith element of the diagonal of the leverage (or hat) matrix, and
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corresponds to the “leverage” of observation i. For a linear regression with variance weight
matrix V, the hat matrix is:

H=X XV 1X)"x'v! (7.1)
Thus, for any of the model specifications in the Gelman-King seats-votes framework, the lever-
age of each years’ model can be computed and analyzed.

However, as often noted, high-leverage points are not necessarily influential, since their
removal may provide essentially the same estimated relationship between the response and
covariates. This idea of removal is critical to the idea of influence, which is a much larger,
informal concept in model criticism. A point is influential when its absence is “noticed,” for
some operational, formal definition of “notice.” Whether or not an observation’s absence is
“noticed” depends on the model property the analyst examines. Since influence is dependent
on the model property, many different kinds of influence measures exist, and arbitrary new ones
created through the focus on empirical influence functions (Mallows, 1975).

Explored initially in the first edition of Belsley et al. (2005) in 1980, commonly-used influence
measures are constructed focusing on a given model property. The difference-of-fits (DFFITS)
statistic is a diagnostic providing the standardized change in predictions for observation i when
X; is omitted from the regression. For a response vector y with elements y;, 1 = 1,2,..., N,
the difference-of-fits statistic for observation i is:

Vi — Y

where k(; is the statistic k from a model where observation i has been removed, whereas k is

DFFITS,; = (7.2)

from the model estimated with all observations. Substantively, this statistic provides the differ-
ence in the prediction of the fitted y; value when observation i is treated as an out-of-sample
prediction. Another commonly-used influence measure, the difference-of-betas (DFBETAS)

statistic, provides the extent to which the removal of 7 influences the estimate of :
(X'X)1Xle;

DFBETAS; = B — By = -
11

(7.3)

Here, ¢; is the residual for i in the full regression and X; again is the ith row of the design matrix

X.
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For the purposes of this dissertation, | focus on the Cook’s D, or distance statistic (Cook
and Weisberg, 1982). Cook’s D is a joint influence measure, describing the extent to which an

observation affects all p marginal effects in a given regression.

egei hii
o= 55 (i) 7

An observation that substantially changes the generating process for the election might be an

observation that also substantially affects the bias statistics derived from that process. Since
the bias statistic is insensitive to the substantive interpretation of a B effect in the Gelman-
King models for a given decade in a given state, the Cook’s Distance provides an effective
computationally-simple measure of overall influence an district may exert on the seats-votes
curve. Importantly, Cook’s D is a standardized distance with common rules-of-thumb on what
an extreme value is. While there is no formal distributional testing for the statistic per se, one
rule of thumb common in statistical practice is to consider an observation “influential” when it is
D; > 2. More generally, Cook’s distances that are markedly larger than the rest of the distances
in the set of observations should be considered suspect. Thus, we can not only examine the
high leverage districts in Gelman-King models, but also use the Cook’s D as a significance filter.
This avoids the issue with many of the common geometric forensics that have no significance
filter.

However, Cook’s D or h;; may not be consistent over time. This is magnified by the use of
two-cycle models like the Gelman-King specification. Since one model is fit in each year, the
leverage & residual (and the D) may be different or each district in each model. Thus, | will
examine whether or not Cook’s D or h;; fit the criteria outlined for our statistics above. While |
expect them to perform fine within a given year, there is no guarantee that the measures will be
able to characterize the influence a district has consistently over time. In addition, a full-decade
model (such as the one suggested by McGann et al. (2016) considered in Chapter 5) could be
used, since leverage and influence measures for some specifications of longitudinal models are

available (Tan et al., 2001). To hone discussion, | focus only on the Gelman-King models, but
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leverage and Cook’s D-style statistics could be identified for any parametric model specification

for h where leverage statistics are identified.
7.2 Local Measures of Partisan Impact: Jackknifing the Plans

Fortunately for the original authors of various deletion statistics, many of the parameters
of interest for influence analysis are available without having to estimate the global model and
N deletion models. This is primarily because the parameters of interest are related directly to
H, and each of the influence statistics can be sufficiently characterized as transformations of
full-model statistics and elements of the leverage matrix. Since most analysts are interested in
identifying the influence of X; on direct model properties like B, ¥;, or both, many analyses of
influence do not actually require the evaluation of the model with X; removed. And, while the
measures of leverage or Cook’s D are available to examine the influence districts have on the
regression underlying the seats-votes model, direct parameters of the vote model are not at
interest here.

In fact, the measures of partisan advantage from Chapter 2 are what the impact analysis
requires. They are not “direct parameters” of the vote share model, and have no convenient
expression in terms of the leverage matrix. Indeed, since they pertain to the seats-votes curve,
itself estimated from many sets of simulations from the model, characterizing the influence of
each district in X; on a given advantage measure would likely not have a formal expression.

However, the original intuition behind influence analysis is still available: which observa-
tions generate markedly different estimates when they are missing from the analysis? If this
can be computed, then their presence in the full ensemble of size N, conditional on the re-
maining N — 1 observations, can be estimated. This is the concept behind jackknife estimators,
suggested by Efron (1982). Jackknife estimators, conceptually, take a given estimate of in-
terest, 9, and compare it to the set of estimates é(i) constructed when each observation 7,
i =1,2,...,N, is removed. Jackknifing has a long history in statistical practice. Efron and

Gong (1983) demonstrate that the jackknife is related to the empirical influence function dis-
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cussed by Mallows (1975), where the “influence” of an observation is the empirical impact of its
removal directly on the quantity of interest.

Jackknifing is commonly-used to derive estimates of standard errors or confidence intervals
that are robust to collinearity or poor specification; however, they are much more broadly used
in machine learning contexts to improve or assess model sensitivity in chains of analyses. Here,
| propose to use a similar approach: by jackknifing the districting plan, we can identify which
districts significantly influence a given bias score, which is the final statistic obtained from a
chain of analysis. The removal of the single district and re-simulation of advantage, then, pro-
vides an estimate for how that district affects the entire analytical pipeline. If the district is not
influential, then its impact will not propagate. | call these district partisan impact statistics, or
simply district impact statistics.

Although they do not parcel out the fraction of a bias score that each district contributes
(Anselin, 1995), the local impact measures do allow the analyst to determine which the districts
impact statewide advantage. In addition, it allows for the filtering out of districts that have no
significant impact on advantage. It allows for the consistency of influence to be characterized
over time. The measures admit uncertainty in the estimate and a characterization of the “sig-
nificance” of the result using the statewide variance and jackknifed simulation variance. Most
importantly, the district impact statistics work directly in terms of the measure used to charac-
terize statewide bias. So, the impact measure for each district uses the same conceptual model
as the statewide bias estimate and its impact is estimated on the same terms. This is exactly
what is desired by policymakers when attempting to infer which districts drive the plan-wide
estimates of advantage. Thus, with these local statistics, we characterize the political impact of
each district in the plan in a manner that is consistent with the statewide estimate, resolving pre-
cisely the inconsistency of using partisan measures statewide but using geometric measures
locally/district-wise.

| characterize this influence directly using a deletion & re-estimation strategy, since the

impact cannot be stated in terms of the observation leverage for arbitrary bias statistics.
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Algorithm 3 Consider a partisan advantage statistic for a district plan with N districts in elec-
tion t, denoted b;. Let Bt be the point estimate of b; constructed from a set of L replications,
b = by, by, ...,b., each made over a batch of simulated elections in the N districts. Let the
observed conditions in election t be X;. Each element of b is constructed using the a simulation
algorithm A(X7 ), where X; is a scenario under which the bias will be evaluated. It may be true
that X; = X; but it is not necessary. Finally, let A(X{) involve a model of vote shares estimated
from the observed outcomes & electoral conditions in time t, M(h;, X;). A set of N influence

measures corresponding to each district can be constructed:

1. Estimate M (hy;), X)), the results from election t in N — 1 districts, having omitted
districti,i=1,2,...,N.

2. Construct the bias of the state plan as if district i were not included in the plan. This
involves L replications of elections in the N — 1 districts using simulation regime A(Xf(l.) ).

3. Store the set of L deletion bias statistics, by ;).

4. Increment i and return to step 1 until all districts have been evaluated.

This yields N sets of “deletion statistic simulation distributions,” by ;), each with L independent,

identically-distributed replications.

Given the “statewide” bias simulation distribution b; and each of the N deletion statistic
simulation distributions by ;), these distributions must be compared. First, however, note that
each b, is independent of other by for k,1 € {1,2,...,L}. This is because, in any one problem
configuration (statewide or deleting i), each realization from A(.) is independent from every
other realization, thus elements of b; are independent from one another. In addition, since
the data generating process does not change during the simulation runs, elements of b; must
be identically distributed. This ensures that, between elements in b; and elements in bt(i)
(or between elements of b,(;) and others in b;), i,j € {1,2,...,N}), there is no correlation
even though the data generating processes share at most N — 2 members. Conceptually, this
occurs because we analyze statistics generated from the model, not the models themselves;

these realizations are “strongly” independent, since the simulation regime is stateless between

144



replications. Further, since the model does not change during replications for a given jackknife
of i, b(; are identically distributed. In addition, b is unordered, since the replications from
A(XF) could occur in any order. Thus, analyzing b and a permutation of b yields the same
results. This means that the sets of b; and all N by ;) cannot be paired, so a specific set of
distributional analysis methods must be used instead.

Before proceeding, though, it is also important to reiterate that the analysis is not focused on
identifying which districts’ removal benefits Democrats or Republicans, i.e. shifts the distribution
of bias statistics left or right in absolute terms. Rather, given that statewide bias estimates may
advantage Democrats or Republicans, identifying which districts increase bias or decrease
bias is the more central concern. Thus, it is not the raw value of the deletion bias estimate that
matters, it is the position relative to the statewide estimate. If a district is removed and increases
bias, then the plan is more fair than it would be if that district were not present, regardless of the
winner of the seat or the tilt of the state as a whole. However, | will discuss districts at first brush
as moving the state more towards Democrats or Republicans, but whether these increase or
decrease bias depends on the statewide advantage estimate.

Further, it is important to note that this strategy does not reapportion the omitted individuals
back to the districting plan. At the district-level, it is reasonable to consider the impact of a
district to be some estimate of advantage of that particular spatial-social configuration of voters.
Thus, the fact that those voters are omitted and not redrawn into a new districting plan is
precisely the point of these influence statistics. The district, its candidate, and its voters each
exert an influence on the statewide advantage experienced by all. While sufficient controls
may be placed on candidate properties, it seems unlikely that sufficient ecological inference
can be conducted to construct population countefactuals more fine-grained than the shifts in
aggregate partisan support considered in Chapter 5 & 6. Regardless, the omission of the
district, its voters, and its candidate is intentional here, and the re-drawing of an N — 1 plan that

includes the voters omitted from the jackknife would obscure the point of this analysis.
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7.3 Interpreting and Comparing Impact Distributions

To enable the analysis of jackknifed impact distributions, three testing procedures are avail-
able. To ensure consistency over elections in a decade, the tests can be adapted in three ways.
First, one could test in each ¢ and only accept consistently-significant results using an N x T
multiple comparison correction. Second, one could simply pool b; over all t = 1,2,...,T in
a decade to provide a single omnibus statistic for each of the N districts for a pooled sample
of size T x L. Third, one could construct a stratified (or hierarchical) estimate, admitting that
the mean might be different in each ¢. This would pool the differences between statewide and
jackknife distributions in each time period and use an appropriate pooled estimate of variance.
Any method should yield consistent results, so long as the statewide and deletion distributions
are stable over t. | will only define the stratified and pooled forms of the effect size statistics

discussed in Section 7.3.3.
7.3.1 Nonparametric Difference in Distribution Tests

First, each set of realizations might be judged to be distinct from the state or from one an-
other using some kind of distributional ANOVA test. This can be done in many ways (Elliott and
Hynan, 2011), but | choose a standard Mann-Whitney U test between the statewide distribution
and each deletion distribution. | choose this instead of other types of nonparametric distribu-
tion tests (such as the Kruskal-Wallis) since | am only interested in determining whether each
deletion distribution is different from the statewide distribution, not whether each distribution
is distinct from one another. This means that there are only N direct comparisons instead of

N(N-1
all N1

pairwise comparisons accounted for by Kruskal-style nonparametric ANOVA, since
we are only concerned with identifying whether a district is distinct from the statewide distribu-
tion, not from every other distribution. Thus, multiple comparison corrections are still required,
but the Bonferroni correction is not as severely conservative in this case as it would be if all

pairwise comparisons were analyzed. In case studies using Q measures in S scenarios, | will
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use an N x T x § x Q correction, where N is the number of districts and T is the number of
decades. In most cases, significance is not marginal, so the choice of including a correction for

the number of scenarios or measures in the Bonferroni factor is not critical.
7.3.2 Binomial Sign Testing for Deletion Distributions

The binomial sign test is a method to determine whether or not a treatment shifts a sample
in a consistent direction. In this case, the removal of district i has a consistent effect if its
removal tends to benefit one party. This would allow the analyst to filter out which districts
have an inconsistent impact on a bias measure from those that consistently either increase
or decrease the statewide bias estimate. This can be done in a two-tail specification (simply
looking for “consistent influencers”) or can be done in a single-tail fashion (looking at whether
a specific district consistently increases bias). This is done first by computing the number of

realizations in b, ;) that are below the statewide point estimate:

L ~
”t(ig) = ;I (bt(i),l < bt) (75)

where 7 is the indicator function which is 1 when its argument is true and zero otherwise.
Then, n,(;<) is distributed binomially with population parameter n = L. Testing the undirected
hypothesis pair, that Hy : p;;y = .5 versus Ha : py(; # .5 provides a two-tailed test identifying
whether the removal of district i has a consistent influence on Ei in terms of the direction of
the effect. In concept, n,(;<)/L is the fraction of cases where the removal of district i benefits
Republicans, since | have designated Democrats as the reference party arbitrarily. When the
fraction of realizations benefiting Republicans relative to the statewide estimate is distinctly
smaller than .5, the removal of i benefits Republicans more than Democrats, and the opposite
when flipped. When pooling all samples over a decade, t = 1,2,..., T, then n ;<) is binomially
distributed with n = T x L, and is computed from all b;) pooled over the decade. The « level
for the pooled test under a Bonferroni correction in time ¢ is simply §;, since N comparisons are

made between the deletion distributions and the statewide distribution, each distribution having
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T x L observations. For the unpooled comparison strategy, the Bonferroni correction is 1

since T sets of N tests are conducted on samples of size L.

7.3.3 Effect Size Estimation for Deletion Distributions

In addition to sign-consistency, the effect of removing district i can be estimated directly.
Typical effect size estimators in the statistical literature can be adapted to this context, mod-
eling each by, by(;) as two distributions separated by a treatment, removing district i from the

districting plan. One estimate of the effect of removing district i from the plan (for each N)

would be:
PO
(i) — 5*
(7.6)
& \/(T(bt)2 + 0(byi))?
N 2

This estimator is a Cohen’s d-style effect estimate and also bears similarity to measures of
deletion residuals. In this case, it measures the difference in means between the statewide &
jackknifed distributions, and divides by an estimator of the shared deviation of the two distribu-

tions. A similar nonparametric estimator is suggested by Grissom and Kim (2012) as:

u,
Uy
i) = N(N 1) (7.7)

where Uy, is the Mann-Whitney U statistic comparing (b;, by;)). | will focus on the Cohen’s d-
style estimator for simplicity. Here, interpreting the effect size from the d estimate is done using
the typical rules-of-thumb common in statistical literature. | break down the difference using
three tiers of effect magnitude. A marginal effect is one between .25 and .5, a moderate effect
is one between .5 and 1, and an effect size greater than 1 is considered a large effect. The
sign of the d retains the original meaning, so that if the state is biased towards Democrats (b is

positive) then a negative d statistic indicates the district i increases the bias towards Democrats.
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7.4 Advantage Impact, Model Leverage, and Model Influence

First, | engage in a few case studies to examine the properties of the jackknife impact mea-
sures. Then, | examine whether or not these statistics relate well with each model’s Cook’s
D & leverage. In the next chapter, | will compare impact statistics directly to the geometric
measures, examining many potential multivariate relationships in exploratory regression & cor-
relation analyses. In all cases, the jackknife measures are constructed from P = 1000 repli-
cations of K = 1000 simulated elections. This yields a set of P statistics for each district, and
a set of P statistics for the full state, reflecting a full simulation load of 1000 x 1000 elections
in each state. In most cases where a point estimate is required for the deletion distribution,
the effect size estimate from Eq. 7.6 will be used. This means that any point estimate is an
expression of the district’'s impact relative to the statewide bias. Thus, even when statewide
bias is negative, a positive effect size indicates that the state becomes more Democratic when
the district is removed/more Republican when the district is present, conditional on the rest of
the districts in the plan. Thus, N + 1 sets of P jackknife impact statistics (as well as the N
difference-in-means point estimates) will be analyzed. In addition, N of the “classic” model
influence measures, such as the observation residual, leverage, and Cook’s D, are available.
Relationships between the impact measures and these other measures will be conducted using
the difference-in-means statistics, since the change in point estimate reflects the impact of the

deletion on the model.

7.4.1 General Properties about Impact Measures

| conducted preliminary study using the dataset developed in Chapter 3 for eleven states in
two decades: Arizona, California, lllinois, Michigan, New York, North Carolina, Ohio, Pennsylva-
nia, Texas, Washington, and Wisconsin in 2000 and 2010. | focus on two decades for California
and a single decade in Wisconsin in the following sections. In general, there is a strong nega-

tive relationship between impact measures and Democratic vote share in all cases and nearly
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all times, meaning that districts that are won by Republicans tend to benefit Republicans when
included in the districting plan. In some rare cases, this relationship is reversed, in that the
presence of districts won by Democrats actually benefits Republicans. In theory, this is possi-
ble, since measures like the efficiency gap or the observed bonus measure may catch districts
whose intent is to pack partisans. If packing is operant, then districts that pack are intended to
disadvantage the party that wins the district. So, a district won by Democrats whose deletion
strongly benefits Democrats indicates a district packing Democrats, but most districts benefit
the party that wins them.

In addition, there is a distinct difference between plans that are balanced versus plans
where most districts have marginal impact on an unbiased statewide measure. However, this
is highly contingent on the measure type. Some measures are strongly bimodal, as will be
discussed for California. The strongly-bimodal measures track the partisanship of the district.
However, these measures may be more or less separated into partisan clusters depending on
the decade under analysis. Thus, it does seem to be the case that plans can be characterized
as “balanced,” where many districts provide significant advantage but balance each other out
statewide, or “consistently neutral,” in that all districts have very small impact on statewide bias.
But, this characterization tends to be strongly influenced by the measure type, since some
measures are much more strongly bimodal than others under a given simulation scenario.

In addition, simulation scenarios strongly affect the impact statistics. Depending on whether
the summaries of impact are constructed from simulations under observed conditions or with no
incumbents, most districts shift from being “impactful” to having no clear impact. This highlights
the importance of controlling for incumbency in these analyses, but does not resolve the nor-
mative argument about whether it makes more sense for the analysis of advantage to be about
scenarios that are never experienced. | believe it makes sense to compare both scenarios,

the simulations under observed conditions and simulations about the no-incumbency elections
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(which never occur), but priority should be given to districts identified in the no-incumbent anal-

ysis.’

7.4.2 Case Study: California, 2000 & 2010

California’s congressional districting plan from 2000 was thoroughly-discussed in popular
literature as an incumbency-protecting gerrymander (Fan et al., 2015). Critique of the 2010
districting plan has been much less pointed, often suggesting the plan exhibits less bias. While
both plans were drawn by the same style of commission, changes in electoral politics in Califor-
nia may have changed the balance of power on the commission and its institutional culture. In
addition, the adoption of a so-called blanket or top-two primary, where the top two candidates
of any party get selected in the primary election to run in the general election, likely changes
the resulting measurement of the congressional districting plan. The blanket primary applies
to all elections under the 2010 plan and a traditional partisan primary applies to all elections
before 2000.

Thus, direct comparisons over the redistricting event cannot necessarily declare that the
commission’s new plan is solely responsible for the change in performance of the new system;
both rules changes and district line changes may have impacted the scores. While only a few
districts in California ever see the practical result of the blanket primary result in single-party
general elections—a single-party general election—these can be be treated as uncontested
elections in the same style as standard elections or the primary election can be used to assess
an effective two-party vote. In this analysis, the single-party general elections are treated as
uncontested, and the two-party contested vote share imputed according to the methods in
Section 6.2. | do not suggest that the change in structure from one plan to another is solely

caused by the new district lines.

37Many of the interviewees in Chapter 9 referred to incumbency when mentioning skepticism of partisan advan-
tage measures.
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Figure 30. Annotated scatterplots of the leverage for observations in each Gelman-King-style
model in California, from 2002 to 2016. The labels are the district number, and have been
jittered to improve visibility within each year.

7.4.2.1 Leverage

The leverage of each district in the various single- and two-cycle Gelman-King models of
California congressional districts is shown in Figure 30. In general, the observations with high
leverage do not persist over time. While some districts do have consistently large leverage
(such as district 40 in the latter decade), they often are not unusually large, in that they are
significantly larger than any other observations’ leverage. Districts 10 and 49 in 2002 have
exceedingly high leverage, but they immediately return to the fold for later years. Adding to the
fact that leverage cannot solely identify influence and no rules of thumb or statistical testing exist
for identifying unusually extreme values, leverage is ineffective at determining which districts

might be impactful.

7.4.2.2 Cook’s Distance

First, consider the distributions of Cook’s D in each year shown by Figure 31. Here, the
district numbers are plotted each year with the Cook’s distance on the y-axis. Thus, we see
that some districts consistently have large Cook’s distances in the first decade, such as district

20 (showing up as distinct in 2004, 2008, and 2010) and district 19 (showing up as distinct
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Figure 31. Annotated scatterplots of the Cook’s distance for each Gelman-King-style model in
California, from 2002 to 2016. For the 2000 decade plot, the axes have been truncated; district
19 in 2008 has a Cook’s distance of .74 and in 2010 of 8.19. The labels are the district number,
and have been jittered to improve visibility within each year.

in 2002, 2006, and extremely distinct in 2008 and 2010).38 The fact that the district returns
such a large margin for an open seat is likely what drives the large Cook’s distance in the
2010 model. District 20, immediately south of district 19 & containing parts of Kings, Kern, and
Fresno counties, was also a safe district for Democrats. It consistently returned a Democratic
representative, but typically with a much lower (sub 10%) margin when contested. Both districts
went uncontested a single time during the decade, with district 19 being considered “influential”
in 2008, when it was uncontested. In the second decade, some districts have consistently large
Cook’s distances, such as district 31 & district 21, but the districts with extreme Cook’s d values

tend to not persist over each year.>®

38District 19, which contained parts of Tuolumne, Mariposa, Madiera, Stanislaus, and Fresno counties, was
consistently won by Republicans during the 2000 decade, with Republicans winning with margins in the two-party
vote of around 15 percent when contested and was uncontested in 2008. Even when the Republican incumbent
(George Radanovich) retired in 2008, the district returned a 30 percent margin for the newcomer (Jeff Denham).
Electoral margin refers to the difference in vote shares between the winning and losing vote shares between the
largest two parties. Thus, a 30% margin reflects a two-party vote split around 65/35.

39 District 31 encompasses a portion of San Bernardino county near north-west Los Angeles. It was won by a
Republican incumbent (Gary Miller) in 2012 with a margin of 12%. The seat became open again in 2014, when a
Democrat won by a margin of 4% and won re-election in 2016 with a margin of around 15%. District 21 encompasses
much of the same area as the previous plans’ district 20 did. District 21 has been consistently represented by a
single Republican (David Valadao) who ran and won in the open contest in 2012 and returns a consistent margin of
around 14%.
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Describing any of these districts as “gerrymandered” based on their consistently large (but
not ever extreme) Cook’s distances seems premature. Further, the most extreme districts tend
to hold for only a single election. Sometimes, this single election is the election in which we
know the least about the district: when it is uncontested and h; imputed. Since we seek a
forensic that can characterize whether a district has a consistent impact over the decade, the
Cook’s distance of a district in two-cycle models is also too unstable to distinguish any districts

as influential over a decade.

7.4.2.3 Impact Measures

For analyzing the impact measures, | will step through three types of analyses outlined
in Section 7.3. The first is a nonparametric distributional difference test, designed to indicate
where and when the impact statistics differ from the statewide distribution. The second is to
identify when each district’s removal (or presence) specifically benefits one party. The final is a
measure of both the size and direction of impact when a district is removed. | also consider the
pooled and stratified forms of the effect estimate towards the end of the chapter.

To briefly recapitulate the five advantage statistics shown in Chapter 2 that are used in the

remainder of the chapter:

 The efficiency gap reflects the difference in parties’ “wasted votes” as a percentage of all
votes cast (Eq. 2.5).

- The simple efficiency gap is the difference from the observed 5 and / and the line with a
slope of 2 through (.5, .5), derived from the efficiency gap when all seats have identical
turnout (Eq. 2.6).

« The attainment gap reflects the expected smallest /i at which the party wins the smallest
feasible majority (Eq. 2.9).

» The bonus at median reflects the difference in expected seat share when parties both win

50% of the vote (Eq. 2.8).
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» The observed bonus reflects the difference in expected seat share received by Democrats
when they win /1 and the expected seat share received by Republicans if they were to win

i (Eq. 2.7).

Since these measures each reflect different types of advantage, they may consider different
districts as impactful or disagree about who benefits. This means that some measures may be
nonzero while others are indistinguishable from zero. In addition it may also mean that some
measures are negative (biased Republican) and others biased positive (towards Democrats) for
the same state. My concern is with the development of the jackknife localization method rather
than with the validation of these statewide statistics directly, so potential disagreement between
measures themselves is not at issue in this dissertation. However, disagreement about the
district impact does occur and is relevant to this analysis.

Exploratory distribution analysis and visualization for California is conducted in the chapter
appendix, 7.6. This includes both examining the distribution of each of the 53 districts’ impact
statistics with respect to the statewide distribution, and an examination of the relationship in the
effect estimate across measures. If further detail is desired about the structure and relationship
of these measures to one another (and the performance of statewide indices more broadly),
refer to this appendix.

Otherwise, let us proceed informed by a few general concepts. First, the relationship be-
tween the impact statistics’ effect size estimates indicates that the two decades tend to have
quite different distributional structure, with the 2000 plan having much more bimodal distribu-
tions than the 2010 plan. This indicates the 2000 plan was “balanced” around its average bias,
which tends towards Democrats in most measures and years. In contrast, the partisan separa-
tion is not as stark in the 2010 plan. Second, there is a clear positive moderate to strong rank
correlation in many years between measures. Almost all rank correlations between measures
(except for the attainment gap) had significant rank correlation. Further, the variance of district
realizations within a year tends to be quite stable. The jackknifed distributions tend to have

similar dispersion to the statewide distribution. This dispersion is more different between years
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than within any year, meaning that all of the jackknife distributions within a year are more similar
to one another than they tend to be to another years’ simulations. So, jackknife distributions
tend to fall quite close to the statewide distribution, exhibit similar dispersion within years, and

tend to concentrate into peaks that clearly benefit Democrats or Republicans.

7.4.2.4 Are the Jackknife Distributions Meaningfully Distinct from the Statewide Distribu-

tions?

For each jackknife distribution, | conduct a Mann-Whitney nonparametric distribution dom-
inance test to identify whether it is distinct from the distribution of statewide bias statistics.
The Mann-Whitney test examines the pair of distributions and indicates whether the two rank
distributions constructed from the source distributions are likely to share a common distribu-
tion. In Figure 32, the significance of a p-value at the .05 « level (with a Bonferroni correction)
for the Mann-Whitney dominance test is shown. A black cell indicates that the district had a
significantly-different distribution than the state in every year after correcting for multiple com-
parisons. What becomes immediately apparent is that the median bonus and the efficiency gap
recover every district as “distinct” from the statewide distribution when incumbents are used in
simulation. But, the measures disagree about which districts are distinct. Further, the incum-
bent simulations tend to identify more districts than the simulations without incumbents. This
illustrates a claim made in Gelman and King (1994a), that the partisan advantage of a district-
ing plan is strongly dependent on the structure of incumbency advantage in that state, and
that failure to control for incumbency may make partisan bias appear. Simulating the expected
advantage absent incumbency gives us one way to do this, but the measures thereof are inher-
ently unrealistic in the sense of McGhee (2014): the characterization of partisan advantage in
a never-realized “no incumbent” scenario may not reflect the experienced partisan advantages
that the system provides. Regardless, what this makes apparent is precisely the magnitude of
difference between simulations under observed conditions and simulations in the no incumbent

counterfactual.
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Figure 32. Significance results for the Bonferroni-corrected Mann-Whitney U distribution
dominance tests for California congressional district impact measures in the 2002-2010
congressional elections. If the cell is black, it indicates that district (marked on the horizontal
axis) had a significantly different deletion distribution than the statewide distribution for the
given statistic (marked on the vertical axis) under a Bonferroni correction factor
f=NxTxQxS=>53x5x5x 2. Measures suffixed with “(I)” are simulated with the
observed incumbency structure and measures suffixed with “(N)” are simulated with no
incumbents.

For the 2010 plan, the analogous significance diagram is shown in Figure 33. This test
set uses a smaller correction factor, since it entails only 3 years of elections (rather than 5).
In general, fewer districts are selected as significantly different from the statewide distribution
in the 2010 decade than the 2000 decade, which implies that the 2010 redistricting provides
a political advantage that is less sensitive to any individual district. Again, the no-incumbent
simulations tend to find fewer districts than the incumbent cases. District 21 appears particularly
egregious, selected by three measures as distinct in the incumbent simulation case and by two

measures in the no-incumbent case. More generally, it seems the jackknife measures do differ

substantially from the statewide distribution, so characterizing how they differ would be helpful.

7.4.2.5 Examining Influence Direction

To characterize how the jackknife distribution is different from the statewide distribution, |
focus first on the binomial sign test procedure outlined in Section 7.3.2. The results of the sign
test for the 2002-2010 congressional elections is shown in Figure 34, and for the 2012-2016

congressional elections is shown in Figure 35. In these figures, a cell is colored to correspond to
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Figure 33. Significance results for the Bonferroni-corrected Mann-Whitney U distribution
dominance tests for California congressional district impact measures in the 2012-2016
congressional elections. If the cell is black, it indicates that district (marked on the horizontal
axis) had a significantly different deletion distribution than the statewide distribution for the
given statistic (marked on the vertical axis) under a Bonferroni correction factor
f=NxTxQxS5=>53x3xb5x2,since there are only three observed elections since the
2010 redistricting. Measures suffixed with “(I)” are simulated with the observed incumbency
structure, and measures suffixed with “(N)” are simulated with no incumbents.
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Figure 34. Directionality results for the Bonferroni-corrected binomial sign tests for California
congressional district impact measures in the 2000-2010 districting plan. If the cell is white, it
indicates that the district did not consistently move the plan towards either party. If the cell is
red, the removal of the district shifted the advantage towards Republicans in every year & if
blue, Democrats. Inverting this partisan relationship would provide the impact of including the
district in the plan.

the districts’ consistent partisan impact. If a cell is white, the district has no consistent impact on
that statistic. If a cell is red, the district’s jackknife distribution is substantially more Republican
than the statewide distribution; if blue, the jackknife distribution is substantially more Democrat,
at a Bonferroni-corrected &« = .05 level. Thus, this characterizes how the district affects the
state when removed. The reverse of this relationship is the impact of the district’s inclusion
conditional on retaining the rest of the districts. In this sense, a district whose removal benefits
Democrats is one whose deletion distribution stochastically dominates the statewide distribution

and is also one whose presence benefits Republicans given the rest of the plan.
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In Figure 35, corresponding to the 2002-2010 elections, most districts are classified con-
sistently if they are classified at all. There are notable exceptions to this, however. The effi-
ciency gap differs from the rest on districts 8 & 9, finding their removal shifts the state towards
Democrats when all other measures find them negligible or shift-Republican. All measures clas-
sify district 23 as having an impact in the incumbency case, but disagree about the direction
of influence. The difference in reasoning about how each district affects the impact statistics
provides a useful way to understand how the measures operationalize advantage differently.

So, | discuss the 9th district in detail.

7.4.2.6 Digging Deeper Into Impact

Examining the 9th district during 2002-2010, the district was a strong Democratic district
with a notable incumbent, Barbara Lee. Critically, note that these directionality measures refer
to the deletion distribution; this means that the districts’ inclusion in the plan has the reverse
partisan effect. One might anticipate that a California delegation without Barbara Lee would
be a more Republican delegation, and so the inclusion of her district should benefit Democrats.
However, the efficiency gap impact statistic suggests instead that the inclusion of Barbara Lee’s
district wastes a significant amount of Democratic votes.

Recall that the efficiency gap from Equation 2.5 is driven by three factors: the total votes
cast, the lost vote cast for losers, and the excess vote cast for winners who do not need them.
The inclusion (removal) of any district can only increase (decrease) the first and increase (de-
crease) the two latter factors. The latter two factors will also apply to one party for each district,
since the winner will change the excess vote and the loser will change the lost vote. The
difference between a districts’ excess and lost vote provides the differential in that district (nu-
merator of Equation 2.5) and its turnout affects the denominator of Equation 2.5. Marginally,
the presence of a district won by Democrats will (on average) bias towards Democrats when
5 < h; < .75, since votes cast for losing Republicans outnumber the excess vote won by

Democrats. When h > .75, the presence of district benefits Republicans, since they cast
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fewer votes than excess Democrats waste in districts at this vote share range. Thus, Lee’s
district, with h; ~ .85 for the entire decade, typically has a differential benefiting Republicans
in simulations, since its simulated Democratic vote share lies mainly in the 80s. Put simply,
the efficiency gap suggests the district wastes too many Democratic votes, so Democrats are
better off without Lee’s district.

Further, in a state with a system-wide bias towards a party, the inclusion of a “neutral”
district (whose differential is zero) will reduce the statewide efficiency gap, since it increases
the denominator of Eq. 2.5 while keeping the numerator constant. Since California’s plan
during the 2000s exhibited a statewide Democratic bias, the presence of Lee’s district pulls the
efficiency gap towards Republicans with both its Republican vote waste differential and increase
in total vote. Thus, it is also a de-biasing district: its presence makes the plan more balanced
by reducing the statewide Democratic advantage.

In contrast, the attainment gap suggests that Lee’s district is a boon for Democrats, since it
provides a safe seat in the congressional delegation. When Democrats win a bare majority of
the California congressional delegation, the district tends to be a part of the majority. Thus, its
presence lowers the fraction of votes required to win a bare majority, and removing it drops a
safe Democratic seat in the typical minimal majority.*® Along similar lines, the removal of Lee’s
district benefits Republicans according to the observed bonus measure: if Democrats were to
win as many votes as the Republicans do statewide for congress, they still tend to win Barbara
Lee’s seat in simulations. So, its removal would harm Democrats during the tables-turned
counterfactual.

In addition, it is important to note district 23 during the 2000s. This district is selected by
all of the directional statistics as having an impact on the state, although measures disagree
whether its existence benefits Republicans or Democrats. Critically, district 23 was a highly
irregularly-shaped district, stretching in a thin strip along the coast from Ventura to north of

San Luis Obispo. That the district shows up as directionally-influential in all statistics is notable,

40Further, the attainment gap is likely influenced slightly by seat integrality. Dropping Lee’s district reduces the
number of districts by 1, but does not decrease the minimal majority, which is 27 in either the full or jackknifed case.
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especially since it is the only district to be selected by all of the measures in the incumbent sim-
ulation scenario. However, the district is not selected by any of the non-incumbent simulation
sets, meaning its partisan impact may be solely due to incumbent effects.

In light of this, measures are influenced by different types of districts. However, the effi-
ciency gap and the median bonus measures never disagree on their directional classifications
for districts in elections from 2002 to 2010: if a district is identified as having an impact with con-
sistent direction by both measures, they never disagree on the direction the jackknife impacts
the state. In addition, only one district identified by the median bonus statistic is not identified
by the efficiency gap. There is an even split of districts identified as shift-Democrat and shift-
Republican in most of the measures under the incumbent simulations, although the observed
bonus only identifies districts whose removal benefits Republicans. In the no-incumbent sim-
ulations, no one district is identified as directional by any two measures. The attainment gap,
simple efficiency gap, and observed bonus measures identify no districts as having a direc-
tional impact when incumbent effects are removed. Notably, the efficiency gap identifies some
districts as having a partisan impact under the no-incumbent case, and the direction of this
impact is the same as when incumbents are used in simulation. Since the impact is observed
regardless of incumbents, these districts confer a durable partisan advantage.

For the second decade shown in Figure 35, the picture is quite different. Many more shift-
Republican districts are identified. This means that the plan has more districts whose inclusion
benefits Democrats conditional on the rest of the plan. The attainment gap identifies these
types of districts exclusively, regardless of the incumbency controls. In addition, the median
bonus measure never identifies a California congressional district in the 2012-2016 elections
as directionally impactful, even though the Mann-Whitney tests suggest that some districts are
distinct from the statewide distribution.*'.

Notably (again) district 21 is a shift-Republican district in both incumbent and no incumbent

“This is likely because the removal increases the variance of the outcomes, which would cause the deletion
distribution increase its mass into extreme ranks of the pooled distribution against which the U test is constructed.
Thus, it is possible for two distributions to be distinct in rank sets but not directionally-different (i.e. a non-equality,
non-dominance relationship)
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Figure 35. Directionality results for the Bonferroni-corrected binomial sign tests for California
congressional district impact measures in the 2010-2020 districting plan. If the cell is white, it
indicates that the district did not consistently move the plan towards either party. If the cell is
red, the removal of the district shifted the advantage towards Republicans in every year & if
blue, Democrats. Inverting this partisan relationship would provide the impact of including the
district in the plan.

simulations. District 21 is Devin Nunes’s district, a reliably-Republican district with a margin of
around 15% (when contested). Its removal benefits Republicans, making the plan less biased
overall (since the statewide bias distribution indicates a bias towards Democrats in all statistics).
Alternatively, one can interpret its inclusion given the rest of the plan as benefiting Democrats.
Classifications of the district impact differ often between the efficiency gap and the observed
bonus measures; each district identified by the observed bonus measure as shift-Democrat is
identified by the efficiency gap as shift-Republican or no impact. In addition, the attainment
gap and efficiency gap again select some districts that have consistent impact on partisan
advantage in the state, regardless of the inclusion of incumbents. Like in the 2000s, these are
likely gerrymanders, since they strongly and consistently influence partisan advantage. Lastly,
only one district, district 51, is identified as shift-Democrat in the no incumbent simulations.
Since this is a safe Democrat (majority-minority) district, its inclusion tends to create a safe
Democratic district in simulations. This gives it a rather large number of wasted votes, picked
up by the efficiency gap. All the remaining districts identified in the no incumbent scenario are

shift-Republican, or identified as districts whose inclusion provides advantage to Democrats.
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7.4.2.7 Which Districts are Truly Beyond the Pale?

When it comes to the magnitude and direction of impact a district has on the system, | move
to consider the effect estimates. This presents a similar view to the binomial sign test, but now
characterizes both who benefits & how much they benefit. If the cell is colored, then the effect
is “larger than marginal,” so that |d| > .25. Then, effects with |d| > .5 are colored slightly
darker, and effects where |d| > 1 are darker still. | first consider each election year separately,
illustrating the patterns in each years’ impact estimates. Then, | will compute a pooled- and
stratified-effect estimator, which groups observations by decade and computes an effect over
the entire decade. The exact method by which this pooling or stratification is presented, and

then the pooled analyses conducted.

7.4.2.8 Yearly Impacts in California Since 2000

In the yearly analysis mode, a few things become clear about the effect size estimates.
These insights echo the conclusions from the nonparametric and sign-only analyses. The ef-
ficiency gap and bonus at median effectively take the same perspective on most districts in
most years, and the gist of the classification for each district provided by either measures is
the same in all cases. In addition, the measures also conform exactly to the partisan winner in
each district. Thus, reading the chart across in 2002 for either the efficiency gap measure or
the median bonus measure provides the losing party in that district. Since these are deletion
effects, the removal of the district benefits the opposing party; blue districts were districts won
by Republicans so their removal helps Democrats. In general, the classification provided by
the efficiency gap is strictly partisan, and nearly useless in terms of how the impact measure
“filters” a given district: most districts have consistently large effect sizes to be considered not
“marginal” within each year.

The attainment gap, though, appears to reflect something substantively different from the

other measures. The determination of its directional effects do not simply follow the winner in

163



the district. Some of the districts identified as shift-Republican for the efficiency gap/median
bonus are identified as shift-Democrat by the attainment gap, but not all are (e.g. districts
31,32); likewise, some shift-D districts for the efficiency gap/median bonus impact statistics are
shift-R for the attainment gap (e.g. districts 4,52), but not all (districts 19, 11). Notably (again)
the observed bonus measure tends to agree with the attainment gap impact estimate in most
cases, although the effect size is smaller. In the no-incumbent simulations (Figure 37), a similar
story holds: some effect estimates for the attainment gap are nearly the reversed estimates for
the efficiency gap/median bonus again, and some are not.

For the 2010 decade simulations shown in Figures 38 & 39, there tends to be slightly better
agreement between the attainment gap and efficiency gap, but the correspondence between
the efficiency gap and the median bonus breaks down. In addition, fewer districts have a
consistently-large effect; most districts (at some point) have a negligible impact measure. While
many districts are identified in the simulations under observed conditions, no districts are identi-
fied under no incumbent conditions for all years*? and one district is identified as having a large
but inconsistent impact (district 24, attainment gap). Regardless, depending on a persons’ cho-
sen measure of bias, the impact statistics provide a consistent directional characterization of a
district’'s impact on the partisan advantage of a districting plan over a decade. So, measures
tend to either be all shift-R, all shift-D, or fade between one color and white. It is rare for a
district to have a district be both shift-R and shift-D in one decade, but this occasionally does
happen (e.g. district 20). While each measure tends to be consistent over time, they are often
disagree with one another. Thus, the impact measures considered in this dissertation appear to
be internally consistent, repeatedly characterizing a district with respect to its own operational-
ization of advantage, but they are not externally consistent, agreeing on how districts impact a

plan across measures.

42 Although, considering only years where both h; and h;_; are available changes this. These are the elections
not immediately following a redistricting.
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7.4.2.9 A Grand Decadal Estimate of District Partisan Impact

To reduce the number of comparisons and make the conceptual picture clearer, | examine
a “grand” estimate of effect size. This provides a single estimate of district impact over the
entire decade, rather than an estimate in each year. | see two ways to construct this full-decade
estimate of district impact. One method is through pooling. The pooled estimate is of the same
form as the estimator in Eq. 7.6, with the statewide and deletion distributions pooled over all
years in a decade. This simply treats the T distributions with K replications of the deletion
statistic as if it were a single T x K distribution of statistics. Thus, the grand decadal means
and variances are used to compute a grand decadal effect. This ignores the fact that each
years’ mean (and districts’ impacts) are distinct, reducing the magnitude of the effect estimate.

In contrast, a stratified estimator takes into account the temporal differences while incorpo-
rating information together across years. Stratification acknowledges the fact that each year
may have a distinct mean, and that a consistent estimate of the effect size should be made
relative to that years’ mean (given an appropriate correction for the variance over years). One
such stratified estimator of effect size is a modification of Eq. 7.6 using within-year differences

and a stratified estimator of variance:
B ZtT(Bt - i’t(i))/T
S*

. - - (7.8)
) \/zt (0(br)? + o (by)2)

d(i)

° T 2T
This provides the overall effect of removing the district within a decade, accounting for the
fact that each years’ mean may not be equal. Essentially, it uses a grand mean of a districts’
difference-in-means for the entire decade, divided by the square root of the average pooled vari-
ance estimator from the standard Cohen’s d. Using this stratified “mean-of-differences” effect

size estimate, the stratified scores are perfectly linearly related to their unpooled counterparts,
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but the stratified effect sizes are more extreme, since the difference in each year's mean is
accounted for.*3

Thus, | present both the pooled and stratified effect size estimates for districts in the 2000
plan (Figure 40) and the 2010 plan (Figure 41). In this, it again becomes clear that the effi-
ciency gap and median bonus impact measures essentially recover all districts and the removal
(inclusion) of each district benefits the party that lost (won) the district in effectively all cases.
Again, the relationship between the attainment gap and efficiency gap is inconsistent. Regard-
less, the stratified/pooled method allows us to identify a few districts that are impactful on the
statewide scores. In the 2000s, district 19 again becomes a district-of-interest. The district, rep-
resented consistently by Republicans who win with margins at-or-above 30%, has an impact on
the statewide bias measure for more than one measure in both incumbent and no-incumbent
simulations, indicating it is impactful. In addition, district 20 is also identified as a potential
impact district, with two measures identifying it in no-incumbent simulations.

In the 2010s, districts 21, 40, and 44 become notable. Again identified as consensus im-
pactors in previous steps, these districts are further filtered out when they are identified by mul-
tiple measures regardless of pooled/stratified, incumbent/no-incumbent simulation structures.
District 21’s removal consistently benefits Democrats.** California’s 40th and 44th districts both
are marked as districts whose removal benefits Republicans.*® Thus, for nearly all measures,

the districts’ inclusion in the plan provides a strong benefit for Democrats, and their removal

43 A more involved method to do this comparison while capturing potential covariance between years would be to
model the temporal dimension hierarchically (Kruschke, 2013). This would induce further shrinkage on the stratified
estimate, likely placing it somewhere between the pooled and stratified values according to the variance of that
difference.

44Represented by Republican David Valadao, the district is one of the few districts that split between the con-
gressional and presidential vote in 2016 and 2012. The district returns reliable Democratic majorities in state and
national races, but Valadao won the open contest in 2012 with a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>