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ABSTRACT

Probiotics are live microorganisms that when administered in adequate amounts confer a health benefit
to the host. However, to accomplish this positive influence on Human health, probiotics should survive to
the passage through the upper digestive tract in large numbers to unsure a desired beneficial effect in the
host. Several encapsulation methods have been used to protect probiotics. Alginate is the most used
biopolymer in the production of these systems, although its performance is totally dependent of its
structure and chemical characteristics. In this work, alginates with different molecular weights and
different mannuronic and guluronic acid residues ratio (M/G ratio) were used in the encapsulation of
Lactococcus lactis spp. cremoris (LLC) aiming the protection of this probiotic bacteria against the harsh
conditions of digestion. Alginate-based beads were produced using an external gelation process
(extrusion technique) where variables regarding the processing conditions and alginate chemical char-
acteristics were studied to assess their relevance in this process aiming the most efficient encapsulation
system. The most important variables influencing the size of alginate beads were the alginate concen-
tration, alginate type (M/G ratio and molecular weight) and the nozzle diameter. Beads with sizes ranged
between 1.9 and 3.0 mm were produced using different alginates. Fourier transform infrared (FTIR)
spectroscopy showed relevant differences between beads produced proving the impact of different M/G
ratios in the beads’ chemical structure. In general, low molecular weight and low M/G ratio alginate
(Protanal LFR5/60) proved to produce the most well organized (according to SEM analyses), less
permeable (pore diameter of 2.52 nm) and stronger alginate beads, moreover molecular weight and M/G
ratio proved to be an important variable on the protection of probiotics against the harsh conditions of
digestion. Produced beads proved to be efficient in the protection of probiotics (i.e. high viability), with
the best performance presented by the medium and low molecular weight alginates.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

substances; blocking of pathogenic bacterial cells adhesion sites;
nutrient competition and production; degradation of toxins and

Nowadays, probiotics are live microorganisms that when
administered in adequate amounts confer a health benefit to the
host, being these recognized in several countries (Food and
Agriculture Organization of the United Nations/World Health
Organization, 2001). Probiotics are able to induce a positive effect
on Human health, such as: the production of pathogen inhibitory
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toxin receptors; and the modulation of the immune responses
(Prakash, Tomaro-Duchesneau, Saha, & Cantor, 2011). Probiotics
have already presented some positive effects on human health,
such as: the reduction of the expression of some biomarkers
responsible for colonic cancer; treatment and prevention of acute
diarrhoea in children; prevention of an initial attack of pouchitis,
maintaining remission of ulcerative colitis; to alleviate symptoms
in persons with functional abdominal pain; improve lactose
digestion and reduce symptoms related to lactose intolerance; and
to reduce the risk of necrotizing enterocolitis (Aureli et al., 2011;
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Sullivan & Nord, 2005).

However, to accomplish this positive influence on Human
health, probiotics should survive to the passage through the upper
digestive tract in large numbers to ensure a desired beneficial ef-
fects in the host (Gilliland, 1989). The minimum number of viable
cells suggested to achieve the benefits mentioned before is in the
range of 108-10° viable cells per day/dose (Hou, Lin, Wang, & Tzen,
2003; Doleyres & Lacroix, 2005). Considering the limitations of free
probiotics survival during digestion, microencapsulation is gener-
ally seen as a simple and efficient solution to improve probiotics
survival during this process. The most common techniques used in
the encapsulation of probiotics are extrusion, emulsification and
spray-drying (Kailasapathy, 2009; Tripathi & Giri, 2014). Extrusion
has been the most used technique on the microencapsulation of
probiotics, due to its simplicity of operation, good performance of
the process in a laboratorial environment, lower cost, and assur-
ance of a high cell viability (de Vos, Faas, Spasojevic, & Sikkema,
2010). An important issue in probiotics encapsulation is the size
of the produced capsules, because of its influence in probiotics
protection and into alterations on food eating sensation, changing
the organoleptic properties of foods. The main variables that in-
fluence the capsules' size in extrusion technique are: the concen-
tration of the polymer and cross-linker solutions; the flow-rate of
the dropping solution; the distance from the needle to the cross-
link solution; and the nozzle size (Brun-Graeppi et al. 2011). To
create the main structure of these capsules, divalent calcium ions
(Ca®*) are commonly used, although other ions can also be applied
(Tam et al., 2011). Regarding the different polymers used, alginate is
the most applied material to capsules formation, due to its low
price, facility to gel formation and biocompatibility (Chen, Wang,
Sanchez-Soto, Schiraldi, & a, 2012; Klein, Stock, & Vorlop, 1983,
pp. 86—91; Quong, Neufeld, Skjak-Braek, & Poncelet, 1998; Smidsrd
& Skjak-Brae, 1990; Tanaka & Matsumura, 1983). Alginate is a
polysaccharide extracted from brown algae and is composed of
randomly 1—4 linked B-p-mannuronic acid and a-L-guluronic acid,
M blocks and G blocks, respectively (Smidsrd & Skjak-Brae, 1990).
Alginate composition changes depending of its molecular weight
(MW) and the ratio between M and G blocks (M/G ratio), that leads
to alginates with different characteristics when crosslinked with
calcium ions. More specifically, G blocks have more affinity to cal-
cium ions than M blocks. These characteristics are able to influence
the structure of the capsule, thus creating different capsules
considering their permeability to low molecular weight com-
pounds. In one hand, alginates with a higher M/G ratio are capable
to create more permeable alginate gel matrices (Khanna, Moya,
Opara, & Brey, 2010) and in the other hand alginates with a lower
M/G ratio lead to stronger structures due to the bigger affinity of the
G blocks with calcium ions, compared to M blocks (Sarmento,
Ribeiro, Veiga, Ferreira, & Neufeld, 2007). As mentioned before
alginate has been used in several works to protect probiotics using
different alginates (Barbosa & Teixeira, 2016; Smidsrd & Skjak-Brae,
1990). However, in general these works do not focus in using
different types of alginate. Even so, Mandal, Puniya, and Singh
(2006) studied how alginate concentration could influence the
survival of Lactobacillus casei NCDC-298, concluding that the sur-
vival increased proportionally with alginate's concentration. There
are some works where alginates with different characteristics are
used although the structures produced are not applied in probiotics
protection (Bajpai & Sharma, 2004; Klein et al., 1983, pp. 86—91).
Therefore, there is a lack of information about which alginate
characteristics (MW and M/G ratio) suits better the protection of
probiotics considering the harsh conditions of digestion.

This work evaluates how the different variables during extru-
sion influenced beads' size and how alginates with different mo-
lecular weight and M/G ratio influence the beads’ size, porosity, and

their capacity to protect probiotics against the harsh conditions of
digestion.

2. Methods and materials
2.1. Materials

Sodium alginate Protanal CR8133 (M/G = 65/35,
MW = 90-180 kDa), Protanal CR8223 (M/G = 65/35,
MW = 250-350 kDa) and Protanal LFR5/60 (M/G = 30/70,
MW = 20—-60 kDa) were kindly given by FMC BioPolymer (Brussels,
Belgium) and presented a viscosity for a 1% solution at 20 °C and at
30 rpm of 39 mPa s, 326 mPa s and 7 mPa s, respectively, measured
with a rotational viscometer (Model ELV-8, Viscometers U.K. Ltd,
London, U.K.). Calcium chloride (CaCl;) was purchased from Pan-
reac (Barcelona, Spain). M17 broth was purchased from Oxoid
(Hampshire, England). M17 agar was purchased from Merck
(Munich, Germany). Potassium chloride (KCl), monopotassium
phosphate (KH,;PO4), sodium bicarbonate (NaHCO3), sodium chlo-
ride (NaCl), magnesium chloride hexahydrate (MgCly(H20)g),
ammonium carbonate ((NH4);CO3), calcium chloride dihydrate
(CaCly(H20)7), sulfuric acid (HySO4), i-lactic acid (C3HgO3),
hydrogen chloride (HCl), sodium citrate (Na3CgHs07), phosphate-
buffered saline (PBS), were purchased from Sigma-Aldrich (St.
Louis, USA). To perform the gastrointestinal simulations pepsin
(from porcine, car n° SLBL2143V, 3616 U.mg~!), pancreatin (from
porcine, cat n° SLBL3953V, 6.1 U.mg~!) and bile salts (from porcine,
cat n° SLBK9078V, 164 mM) were purchased from Sigma-Aldrich.
The probiotic used in this work, Lactococcus lactis ssp. cremoris SK
110 (LLC), was obtained from Nizo (Nizo Food Research, Ede, The
Netherlands).

2.2. Preparation of alginate beads by external extrusion

Alginate beads production were studied based on two experi-
mental designs where external and internal parameters were
evaluated separately (see section 2.12 Statistical analysis). Briefly, a
volume of 10 mL of alginate solution (with the concentration tested
in each experiment), was dropped in 90 mL of a solution of CaCl,,
with different concentrations. After that the alginate solution was
transferred to a syringe, and dropwise, with the help of a syringe
pump, at different flow rates, through needles with different di-
ameters, into the CaCl, solution that was placed at variable dis-
tances, and magnetically stirred (with different stirring speeds).
After the sodium alginate solution had been extruded into the CaCl,
solution, the solution continued to be magnetically stirred for
20 min, in order to allow alginate beads to harden. Afterwards, the
alginate beads were recovered by a sieve and used as it or freeze-
dried.

In Experiment a), external variables were studied such as: flow
rate (1,3 and 5 mL min~ '), needle-CaCl, solution distance (1, 5 and
10 cm) and the stirring speed (60, 100 and 300 rpm). The following
internal parameters were maintained: 2% (w/v) of sodium alginate
Protanal CR8133 solution, a 0.8 mm needle diameter and a
0.1 mol.L~! CaCl, solution. In Experiment b), internal variables were
studied such as: needle diameter (0.3; 0.6 and 0.9 mm), alginate
Protanal CR8133 concentration (1, 2 and 3% w/v) and CaCl, con-
centration (0.25, 0.5 and 1 mol.L~!). For Experiment b) and c) the
following conditions were maintained: 300 rpm, 1 mL min~' and
1 cm of distance. To the last test, where the three different alginates
were tested, the conditions used were: 0.3 mm needle diameter, a
1 mol.L~! CaCl, concentration and a 1% (w/v) of sodium alginate
solution was used in order to guarantee the spherical shape and
uniformity of the beads, being the other variables maintained as
referred before.
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2.3. Size measurement

Diameter measurements were performed through microscopy
with a 4x or 10x magnification (Olympus BX51). Pictures of the
samples covered at least 40% of the beads, being Image ] software
for size measurement.

2.4. Fourier transform infrared (FTIR) spectroscopy

FTIR analyses were carried out with a Thermo Nicolet 6700
spectrometer (Thermo Scientific, Waltham, MA, USA) in the
wavenumber region of 600—4000 cm~! using 16 scans for each
sample. The beads were freeze-dried prior to FTIR measurements.

2.5. Scanning electron microscopy

Morphological analysis was performed in an Ultra-high resolu-
tion Field Emission Gun Scanning Electron Microscopy (FEG-SEM),
NOVA 200 Nano SEM, FEI Company. Secondary electron images
were performed with an acceleration voltage of 10 kV. Samples
were covered with a very thin film (10 nm) of Au-Pd (80-20 wt %),
using a high resolution sputter coater, 208HR Cressington Com-
pany, coupled to a MTM-20 Cressington High Resolution Thickness
Controller.

2.6. Brunauer-emmett-teller method (BET) and barret-joyner-
halenda method (BJH) analyses

Samples were previously degassed using a vacuum line, at 25 °C
(overnight). To measure the specific surface area, pore volume and
average pore diameter the BET and BJH method analyses were
performed using low temperature N2 adsorption-desorption
analysis (Autosorb iQ Station 2, Quantachrome Instruments).

2.7. Energy-dispersive X-ray spectroscopy

Alginate beads were characterized using a desktop scanning
electron microscope (SEM) coupled with energy-dispersive X-ray
spectroscopy (EDS) analysis (Phenom ProX with EDS detector
(Phenom-World BV, Netherlands)). All results were acquired using
the ProSuite software integrated with Phenom Element Identifi-
cation software, allowed for the quantification of the concentration
of the elements present in the alginate beads, expressed in either
weight or atomic concentration.

The different freeze dried samples of beads were added to
aluminium pin stubs with electrically conductive carbon adhesive
tape (PELCO Tabs™), with the excess of freeze dried beads removed
using compressed air. Samples were captured without coating. The
aluminium pin stub was then placed inside a Phenom Standard
Sample Holder, and at least 3 different areas for each sample were
analysed for elemental composition. EDS analysis were conducted
with an intensity point of 15 kV (Ayarza, Coello, & Nakamatsu,
2017; Cadena, 2016).

2.8. Bacterial growth and preparation of cell suspensions

The cultures of probiotic bacteria Lactococcus lactis subsp. cre-
moris (LLC) were cultured and propagated, overnight, in M17 broth
at 30 °C under anaerobic conditions. The bacteria were collected by
centrifugation at 2000g for 5 min, and washed in PBS (pH 7.4). A
mixture of bacteria suspended in PBS solution was prepared for
each experiment.

2.9. Probiotics encapsulation

After section 2.2, the parameters and procedure for LLC encap-
sulation was performed by using a volume of 9 mL of sterile alginate
solution (1% w/v), combined with 1 mL of cells + PBS, previously
prepared, and 90 mL of a sterile 0.25 mol.L~! solution of CaCl,. The
other conditions were: 1 mL min~! of flow rate; 300 rpm for the
stirring speed; 1 cm for the needle-CaCl; solution distance; 0.4 mm
of needle diameter; and a stirring/hardening time of 20 min.

2.10. Bacterial viability quantification

The bacterial viability was determined through the viable
counts of the entrapped bacteria in the beads. For that the produced
beads were re-suspended and stirred in 50 mL of sodium citrate
(0.1% w/v) during 10 min, in order to achieve their total destruction,
after which the sample was retrieved, diluted and plated in M17
agar. The quantification of the number of entrapped cells was
determined through plate count using M17 agar (incubated in
aerobic conditions at 30 °C, during 24 h).

2.11. Harmonized in vitro digestion

The in vitro digestion was conducted using a gastrointestinal
simulation test based on the protocol presented by Minekus et al.
(2014) with some modifications. The solutions used were Simu-
lated Salivary Fluid (SSF), Simulated Gastric Fluid (SGF) and Simu-
lated Intestinal Fluid (SIF). These solutions were warmed-up at
37 °C before the beginning of the experiment.

The first step was the introduction of a 5 g sample (5 g of wet
beads) in a 50 mL Falcon with 4 mL of SSF. This mixture was
incubated for 2 min at 37 °C (all the incubation steps are performed
at this temperature and shaking conditions). The next step was to
add 8 mL of SGF and a volume of porcine pepsin in water (an exact
volume to achieve a 2000 U.mL™! in the final mixture), adjusting
the pH to 3 (using an HCl 1 molL™! solution). The mixture was
incubated during 2 h. After this, an exact volume of pancreatin
suspension to achieve a 200 U.mL™! in the final mixture, an exact
volume of bile solution to achieve a final concentration of
10 mmol.L~! and 8 mL of SIF were added. Falcons were incubated
during 2 h and sampling was performed each 30 min during the
gastric and intestinal simulation. All the experiments were per-
formed in triplicate.

2.12. Statistical analysis

The statistical technique Experimental Design (Industrial DOE)
was used for the study of variables affecting the beads size with a
two-level factorial design with a central point (11 runs). The stan-
dardized effects were carried out using Pareto's charts, considering
p < 0.05 statistically significant. The software Statistica 7.0 (Statsoft,
Inc., Tulsa, OK, USA) was used for all statistical analysis.

3. Results/discussion
3.1. Beads production by external gelation

The beads’ size produced by the extrusion technique depends on
several variables. To understand which variables influenced the size
of beads, different conditions were tested. The range used for these
variables was selected from previously published studies (Albertini
et al., 2010; Krasaekoopt, Bhandari, & Deeth, 2004).

3.1.1. Influence of external variables - experiment a)
In the first set of experiments, the external variables (flow rate,



PE. Ramos et al. / Food Hydrocolloids 77 (2018) 8—16 1

needle-CaCl, solution distance and the stirring speed) of the sys-
tem were studied in order to understand how they affect the for-
mation of alginate beads. The standardized effect estimate
(absolute value) showed that the variables: needle-CaCl;, solution
distance (3.79) and flow rate (3.15) influenced positively the size of
the beads; but the variable stirring rate did not (—0.184) (p = 0.05;
MS Residual 0.0358). Fig. 1a shows the influence of different vari-
ables in the size of alginate beads (the stirring rate was not include
once it does not present a presents significant statistically effect on
the size of the beads). The smaller beads were formed with lower
flow rates and smaller needle-CaCl;, solution distance, leading to
the formation of beads with a size of 2.670 + 0.186 mm. Higher flow
rates produced bigger beads, that is explained by the flow rate and
the rate at which the droplets fall down (Klokk & Melvik, 2002). A
higher flow rate leads to bigger drops before they are drop-off,
although this fact depends on the polymer viscosity. At lower vis-
cosities this fact might not be noticed although with a 1% (w/v) of
alginate the viscosity is high enough to create these differences.
Higher needle-CaCl; distances will influence the diving of the drop
into the calcium solution and thus will highly influence the alginate
drop structure. This factor will lead to a less organized bead,
allowing a bigger penetration of calcium ions and consequently
beads with higher sizes (Kobaslija & McQuade, 2006).

3.1.2. Influence of internal variables - experiment b)

Once the effect of external variables on the beads size was
determined, internal variables were studied (needle diameter,
alginate concentration and CaCl, concentration), being the results
presented in Fig. 1 b. The standardized effect estimate (absolute
value) showed that the variables: needle diameter (26.52) and
alginate concentration (2.73) were influencing positively the size of
alginate beads. At the same time, results showed that the CaCl,
concentration variable does not affect the size of the beads (0.28).
The CaCl; concentration might not significantly influence the size
of the beads due to an excess of CaCl, mass used (p = 0.05; MS
Residual 0.0337). Therefore, the CaCl, concentration variable was
not considered in Fig. 1b. The needle diameter variable was the
most influencing variable on the size of the beads, being the
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smallest beads obtained with a needle diameter of 0.3 mm (1% (w/
v) alginate solution, 1 molL~! of CaCly), with a size of
1.940 + 0.094 mm. These results were expected considering that
the size of the drops created, that corresponds approximately to the
beads’ final size, are influenced directly by the needle diameter
(Thu, Bruheim, Espevik, & Skj, 1996; Thu, Bruheim, Espevik,
Smidsred, 1996). Higher alginate concentrations will also create
bigger beads, due to the higher viscosity of the polymer solution
that will originate bigger drops (Thu, Bruheim, Espevik, & Skj, 1996;
Thu, Bruheim, Espevik, Smidsred, 1996; Zhang, Zhang, &
McClements, 2016).

3.1.3. Influence of the alginate type

To understand how different alginates would influence beads
size, the alginate LFR5/60, CR8223 and CR8133 were used for beads
production using the same conditions. The results showed that the
average diameter of the beads produced were: for alginate LFR5/
60—2.26 + 0.11 mm, alginate CR8223—2.00 + 0.02 mm and alginate
CR8133—-1.99 + 0.02 mm. According to these results is clear that a
high G content alginate, even with a low molecular weight, is able
to create larger beads in comparison with low G content alginates.
In general, bigger molecules will create bigger beads. The lower size
molecules (low molecular weight) of alginate allow an easy con-
struction and fitting of a higher mass of molecules, thus creating
beads with smaller sizes. However, it is important to mention that
in this case the higher and medium molecular weight alginates had
a low G content and the smaller molecular weight alginate had a
high G content, which might justify these results. High G content
alginates, in a media with an excess of calcium ions, are able to
create more interactions between molecules and because of that
create bigger and stronger net gels (Klokk & Melvik, 2002). These
characteristics will allow a higher swelling and because of that a
bigger bead's diameters which justify that a low molecular weight
alginate is able to create bigger beads. Another fact is that beads
produced using alginate CR8223 and CR8133 presented the same
diameter, although they have different molecular weight and vis-
cosity values, although they present the same M/G ratio. This fact
implies that there is a strong relation between beads size and M/G
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Fig. 1. Size of alginate beads as function of a) the flow rate and needle-CaCl; solution distance and b) sodium alginate concentration and needle diameter (only the parameters with

statistical influence were considered to create this figures).
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ratio.

Nevertheless, to a full understanding of the influence of the
molecular weight and M/G ratio on the beads properties, other
alginate's types should be used to study the influence of each var-
iable in the beads' size.

3.2. Alginate and alginate beads FTIR analyses

Fig. 2 presents the FTIR spectra of the different samples of
alginate powder and alginate beads. It is possible to identify at
1590 cm~! and 1400 cm~! the stretching vibrations of the COO~
group, characteristic of an alginate structure (Fig. 2a) (Shi, Alves, &
Mano, 2007; Tam et al.,, 2005). The differences in M/G ratio of
alginate are identified in FTIR analyses where generally mannur-
onic acid units have a band at approximately 815 cm™' (Fertah,
Belfkira, & Dahmane, 2014). This pick can be identified in Fig. 2b
in both powder samples (CR8223 and CR 8133). In the other hand,
in Fig. 2c it is possible to identify that no peak at 815 cm™~! appears
but is possible to identify another peak at 808 cm~ . This fact is
related to the low amount of M residues in the LFR5/60 alginate,
since is the one with highest G content. There are other picks that
can suggest a higher presence of G residues, such as the peaks at
1320 cm~! and 1130 cm™! (Fig. 2d and e) (Sartori, Finch, Ralph, &
Gilding, 1997). The samples representing the alginate beads have
similar results comparing with the powder results, although some
differences can be identified. The peak at ~3340 cm ™! (representing
O-H stretching), Fig. 2f, increased its intensity in all beads samples
comparing with the powder samples, that can be justified by the
presence of water. Other important difference between beads and
powder samples are the peak at ~1610 cm™! (Fig. 2g) that also
presents an higher intensity in beads samples, due to the substi-
tution of sodium ions for calcium ions resulting on a change of the
charge density of carboxyl groups (Sartori et al., 1997). Another
interesting fact about this intensity increase, in ~1610 cm™! peak, is
that comparing the beads spectra is clear that the alginate LFR5/60
had a higher increase than the beads produced using other types of
alginate. These results can be justified by the biggest amount of G
residues in this sample creating because of this samples with an
higher content of calcium and so a bigger impact in these peaks.
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3.3. Energy-dispersive X-ray spectroscopy (EDS)

Sodium alginates is the sodium salt of alginic acid that is
chemically constituted by carbon, hydrogen, sodium and oxygen
elements (CgHgNaO7) (Thu, Bruheim, Espevik, & Skj, 1996; Thu,
Bruheim, Espevik, Smidsred, 1996). Alginate is constituted by glu-
curonic acid and mannuronic acid both with the same chemical
constitution of CgH1907 but with different structural conformations
(Draget, Stokke, Yuguchi, Urakawa, & Kajiwara, 2000). EDS analysis
showed that alginate beads were mainly constituted by oxygen,
calcium, chlorine and carbon, existing also a small percentage of
sodium. The constitution of the beads produced with different al-
ginates is presented in Table 1.

Table 1 shows that beads produced by alginates CR8133 and CR
8223 are very similar considering their chemical composition, be-
ing the most relevant difference the presence of sodium in the
CR8223 beads. These results were expected considering that these
alginates had the same M/G ratio (65/35) which created, per mass
of alginate beads, similar composition of the presented elements.

The most relevant differences are in the results of alginate beads
prepared with LFR 5/60 in comparison with the other experiments.
According to Table 1, LFR5/60 sample had the lower concentrations
of oxygen and carbon, but at the same time showed higher con-
centrations of chlorine and calcium. The lower molecular weight of
LFR 5/60 alginate allows the creation of larger beads, as discussed
before in sections 3.1.3 and in 3.3, leading to beads with a higher
entrapment capacity of calcium chloride solution. This fact results
in higher concentrations of chlorine and calcium in the freeze dried
beads, as shown in Table 1. The highest concentration of calcium
was obtained for the LFR 5/60 beads in the FTIR analysis (section

Table 1

Constitution of the alginate beads obtained from the different types of alginate.
Samples CR8133 beads CR8223 beads LFR5/60 beads
Element (Weight %) (Weight %) (Weight %)
Oxygen 45.923 + 1.548 44.750 + 6.276 36.213 + 5.088
Carbon 27.373 £ 0318 25.700 + 4.235 16.207 + 3.478
Chlorine 15.830 + 1.419 16.380 + 2.868 28.870 + 7.069
Calcium 10.873 + 0.688 12.183 + 4.150 18.100 + 1.395
Sodium — 0.987 + 1.709 0.613 + 0.172

L

Alginate LFR5/60 powder

Alginate LFR5/60 beads

900

1400

1900 400

Wavenumber (¢cm!)

Fig. 2. FTIR spectra of the alginate samples in the form of powder and in the form of beads.
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3.2). The low concentration of sodium and higher concentration of
calcium and chlorine obtained are justified by the sodium ions
(Na™) substitution for calcium ions (Ca®"), that occurs upon gela-
tion of the alginate beads (Santos, Wei, Cho, & Kriven, 2013).

As mentioned before the alginate solution was extruded drop-
wise to a calcium chloride in excess, which leads to a higher
quantity of calcium chloride solution inside the alginate beads,
resulting in a higher concentration of chlorine (Table 1).

3.4. Beads morphology

Fig. 3 shows the different beads produced by extrusion with
alginate CR 8113, CR 8223 and LFR5/60. The alginate beads pre-
sented spherical or spheroidal morphology, although they had
shrunken, producing irregular structures after freeze drying. This
fact was already mentioned in other works where it was mentioned
that low concentrations of alginate (lower than 5%) would create
spherical beads that when dried could shrink (Kusuktham,
Prasertgul, & Srinun, 2014). Low concentrations of alginate
created a low concentration of carboxyl groups on the surface of the

bead that during a drying process leads to a partial collapse of the
structure, leading to the shrinkage of the beads’ surface
(Kusuktham et al., 2014). In Fig. 3 (A, D and G) it is possible to
observe that the particles shrunken after the freeze drying process,
changing from their normal shape to the presented form. The beads
present a relatively smooth surface, analysing the results from a
closer perspective in Fig. 3B, E and 3H. However, some differences
can be identified from a cross section representation, in Fig. 3C, F
and 3I. Alginate LFR5/60 (Fig. 3I) presents a more compact struc-
ture, creating less and smaller porous, comparing with the other
alginate beads. These results can be justified by the low molecular
weight of alginate LFR5/60 and also by its high content of G resi-
dues. The low molecular weight allows a better organization of the
beads structure, creating a less porous bead. Alginate hydrogels are
created due to its capacity to connect with Ca**, by the formation of
ionic bridges between G blocks and calcium ions (Smidsrd & Skjak-
Brae, 1990). Alginate and CaCl; are able to create strong structures,
due to the consecutive position of G blocks on alginate that will
create cavities to calcium ions to connect, being each ion able to
connect to 4 different G residues. This model describes the

Fig. 3. SEM micrographs from the different beads produced with alginate CR8113 (A, B and C), alginate CR8223 (D, E and F) and alginate LFR5/60 (G, H and I). All are presented with
an entire bead (A, D and G), a surface analysis (B, E and H) and a cross section representation (C, F and I).
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Table 2
Surface area, pore volume and pore diameter of beads.

Alginate Surface area Pore volume Pore diameter
(m?[g) (m’[g) (nm)

CR 8113 21.8 0.055 3.94

CR 8223 36.1 0.068 3.94

LFR5/60 13.7 0.034 2.52

ionotropic gelation of alginate and is known as the “egg box” model
(Draget et al., 2000; Thu, Bruheim, Espevik, & Skj, 1996; Thu,
Bruheim, Espevik, Smidsred, 1996). Therefore, alginate LFR5/60
has characteristics that allow the creation of more connections of
alginate with calcium, originating a less porous structure.

3.5. Surface area, pore volume and pore diameter analyses

The results about the area, volume and pore diameter of the
different alginate beads, presented in Table 2, show relevant dif-
ferences. It is important to notice that the beads produced by the
alginates with medium and high molecular weight (CR8113 and
CR8223, respectively) produced the biggest surface areas, volumes
and pore diameters. In the other hand, the alginate with the lowest
molecular weight and with a high G content (LFR5/60) produced
the beads with smaller surface area, volume and pore diameter. As
discussed before these results are justified by the more organized
structure produced by the latest, with more connection points
between alginate and calcium ions. The results presented in Table 2
are in accordance with other works that refer a surface area of
10—350 m?/g for alginate beads (Mihara et al., 2016), a pore volume
of 0.02 cm?/g and a pore diameter around 2.5-15 nm (Singh &
Preeti, 2015).

3.6. Viability of free and encapsulated LLC bacteria

To understand how alginate beads would behave considering
LLC protection during digestion, a gastrointestinal simulation was
performed. Initially their capacity to retain the LLC bacteria without
releasing them was assessed. The results showed that there was no
release of the bacteria in the stomach simulated phase. Therefore,
in the subsequent experiment, the bacterial release from the cap-
sules was not taken into account (an initial bacteria concentration

Stomach phase: Simulated
Gastric Fluid (SGF)

of 8 log CFU was encapsulated to perform these tests). Fig. 4 shows
the viability of bacteria under gastrointestinal simulation. It is clear
that free LLC bacteria is not be able to survive to the tested condi-
tions and that during the first hour of stomach's simulation all free
bacteria lost their viability. These facts are in accordance with other
works where in a short period of time happens a total death of the
free  probiotics (Cook, Tzortzis, Charalampopoulos, &
Khutoryanskiy, 2011; Garcia-Ceja, Mani-Lépez, Palou, & Lopez-
Malo, 2015; Gbassi, Vandamme, Ennahar, & Marchioni, 2009; lyer,
Phillips, & Kailasapathy, 2005; Krasaekoopt et al., 2004; Lee, Cha,
& Park, 2004; Sohail, Turner, Coombes, Bostrom, & Bhandari,
2011). When encapsulation was used for probiotic protection it
was evident a significant increase of the encapsulated bacteria
viability, when compared with free bacteria. Equally, other works
proved the efficiency of alginate beads produced by extrusion for
probiotic protection (Albertini et al., 2010; Amine et al., 2014;
Chandramouli, Kailasapathy, Peiris, & Jones, 2004; Corbo,
Bevilacqua, Gallo, Speranza, & Sinigaglia, 2013; Krasaekoopt et al.,
2004; Lee & Heo, 2000; Liserre, Ré, & Franco, 2007; Martoni
et al.,, 2007; Muthukumarasamy, Allan-wojtas, & Holley, 2006).

Fig. 4 shows a constant decrease on LLC viability during time, in
all tested systems. The beads produced with alginate CR8133 and
LFR5/60 showed to be the best protection of the LCC bacteria, being
the values of cell viability with beads produced with these two
alginates statistically equivalent (p < 0.05). For the beads produced
with alginate CR8223 a substantial loss of LLC viability is observed
during the experiment, up to 120 min (end of stomach simulation).
This difference might be related to the high molecular weight of
this type of alginate (250—350 kDa comparing with LFR5/60 -
20—60 kDa and CR8133 - 90—180 kDa) that benefited the formation
of aless organized and more porous structure, as it is possible to see
in Table 2 and Fig. 4. The molecular weight influences the porosity
of the microcapsules created, being responsible for a higher
permeability that leads to a higher contact of LLC with the outside
medium. This phenomenon will be responsible for the decrease of
LLC viability in that experiment, once it facilitates the diffusion of
the simulated stomach phase into the beads and therefore the
contact of probiotics with harsh conditions.

During beads preparation, polymers with a low molecular
weight generally originate more organized structures which are
therefore stronger and less porous (Drury, Dennis, & Mooney, 2004;
Leung, Nielsen, Trau, & Timmins, 2010). Alginates CR8133 and

Intestinal phase: and Simulated
Intestinal Fluid (SIF)
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Fig. 4. Viability of free and microencapsulated LLC under a gastrointestinal simulation.
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LFR5/60, which have relatively low molecular weights, showed no
relevant differences on their performance for LLC viability protec-
tion. However, some differences were expected considering the
difference between these two forms regarding their molecular
weight and their M/G ratio. It would be expected that LFR5/60
presented the best protection of LLC viability because of its lower
pore diameter (2.52 nm) in comparison with alginate CR8133
(3.94 nm). Apparently this was not sufficient to reveal a statistically
different behaviour concerning LLC viability.

However, other facts might influence these results such as local
buffering created by the beads. This phenomenon leads to the in-
crease of pH inside the bead which originates a reduction of the
negative impact of the medium in LLC viability (Cook et al., 2013).
This fact might justify that beads with different porosities, pro-
duced with different alginates (CR8133 and LFR5/60), are able to
present the same level of LLC protection to the harsh conditions of
digestion. Another important factor that might be discussed is
beads' size and its influence in LLC protection, considering that
generally bigger beads are able to perform a better protection of
probiotics. Although, comparing the beads produced with alginate
CR8133 and LFR5/60, with average diameter of 1.99 + 0.02 mm and
2.26 + 0.11 mm, respectively, results proved that in this case the
beads’ size did not influenced the protection of LLC, considering
that the biggest bead did not presented the best protection.

4. Conclusions

The variables that most influenced the beads' size in the
extrusion technique were the alginate concentration, alginate type
(molecular weight and M/G ratio) and the nozzle diameter. These
variables are directly correlated with the size of the produced
beads. Alginate's characteristics such as the molecular weight and
M/G ratio, demonstrated to have a positive impact in order to
accomplish a system able to protect probiotics from the harsh
conditions of digestion. It is important to refer that strong differ-
ences were achieved in the protection of probiotics in tests where
the only difference was the molecular weight and/or M/G ratio of
the alginates used. Therefore, alginate LFR5/60, a low molecular
weight and high G content alginate, showed to produce the biggest,
strongest and best suitable beads for probiotics protection in a
digestive system.
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