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Abstract: Novel fluorescent 4,5-diarylimidazolyl-phenylalanines 3a-d were prepared by 

reaction of N-tert-butyloxycarbonyl-4-formylphenylalanine methyl ester and appropriate 

(hetero)aromatic diones. The photophysical properties of these new unnatural amino acids 

were evaluated by UV-Vis absorption and fluorescence spectroscopy in solvents of different 

character and aqueous mixtures with acetonitrile. They were evaluated as novel amino acid 

based fluorimetric chemosensors for ions through spectrophotometric and spectrofluorimetric 

titrations with biologically and analytically important anions and cations such as F-, OH-, 

Cu2+ and Fe3+. The results indicate that there was a strong interaction through the donor N, O 

and S atoms at the side chain, especially for 4,5-di(furan-2’-yl)imidazolyl-phenylalanine 3a 

and 4,5-di(thiophen-2’-yl)imidazolyl-phenylalanine 3b with Cu2+ and Fe3+, in a 1:1 complex 

stoichiometry. The photophysical and metal ion sensing properties of these amino acids 

suggest that they can be suitable for incorporation into chemosensory peptidic frameworks. 

 

1. Introduction 

 

Optical sensing based on colorimetric and fluorimetric probes is a very appealing topic of 

research, considering the large number of chromo/fluorophores available and the simple 

instrumentation required (when using colorimetric probes), and the low detection limits 

(when using fluorescence probes) [1]. Hence, the design of novel organic fluorophores that 

can be used in biomolecule labelling and chemosensing of organic and inorganic molecules 

involved in biological pathways is worth exploring [2]. The development of probes 

containing binding sites capable of sensing anions and cations, preferably in aqueous media, 

is a very active area within the chemical sensing field [3]. Imidazole derivatives are known as 

neutral binding groups for anions [4], and the coordination ability of the imidazole group 

depends on the acidity of the NH proton that can be modulated by suitable substituents such 
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as heteroaromatic rings like thiophene, pyrrole or furan. On the other hand, the two nitrogen 

atoms in imidazole enable the coordination of metal cations by this five-membered 

heterocycle [5]. 2,4,5-Triarylimidazoles have found application in materials sciences for their 

interesting optoelectronic properties that can be tuned by careful selection of substituents at 

positions 2, 4 and 5: replacement of the aryl group by an heterocyclic group results in larger 

π-conjugated systems with improved optical properties for application in two-photon 

absorption applications, two-photon fluorescence microscopy, high density storage and 3D 

microfabrication, nonlinear optics, OLEDs, and chemosensors [6]. 2,4,5-Triarylimidazoles 

have also been applied in medicinal chemistry, for example as ligands for Ru(II) and Pt(II) 

complexes, as probes of DNA structure or new therapeutic agents due to their capacity to 

bind or interact with DNA [7].  

Synthetically modified amino acids are useful for the preparation of intrinsically labelled 

peptides with tailored properties such as increased fluorescence, conformational rigidity, and 

metal complexation ability, among others. Recent examples in the literature refer the use of 

fluorescent unnatural amino acids in studies of molecular flexibility and protein folding, 

substrate binding activity of proteins, antigenicity or enzymatic activity, targeting peptides 

for molecular imaging, peptidomimetics biological activity and protein engineering [8]. 

Metallic cations can be complexed through N, O and S donor atoms in amino acids, at the 

main and side chains, and in aromatic heterocycles, whereas anion coordination, based on 

hydrogen bonding and electrostatic interactions, can arise from amino acid side and main 

chain OH and NH groups, or from NH groups in heterocycles [9]. Therefore, the insertion of 

suitable heterocyclic systems at the side chain of natural amino acids can add extra 

functionality to the resulting amino acid, bearing a metal ion chelating site for stable complex 

formation and subsequent incorporation into a peptide. 

Given these facts, our current research interests include the synthesis and characterization of 

unnatural amino acids bearing fluorescent oxygen, nitrogen and sulphur heterocycles [10], 

imidazole and benz-X-azole derivatives with interesting optical properties [11] and 

innovative heterocyclic colorimetric/fluorimetric chemosensors for anions and cations based 

on amino acid moieties [12]. To the best of our knowledge, this is the first report on the 

synthesis of 2,4,5-triaryl-imidazole derivatives combined with an amino acid core, the 

evaluation of the photophysical properties in different solvents and the chemosensing ability 

in the presence of anions and cations.  
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2. Experimental 

 

2.1. Synthesis general 

All melting points were measured on a Stuart SMP3 melting point apparatus. TLC analyses 

were carried out on 0.25 mm thick precoated silica plates (Merck Fertigplatten Kieselgel 

60F254) and spots were visualised under UV light. Chromatography on silica gel was carried 

out on Merck Kieselgel (230-240 mesh).  IR spectra were determined on a BOMEM MB 104 

spectrophotometer using KBr discs. NMR spectra were obtained on a Bruker Avance III 400 

at an operating frequency of 400 MHz for 1H and 100.6 MHz for 13C using the solvent peak 

as internal reference at 25 ºC. All chemical shifts are given in ppm using δH Me4Si = 0 ppm as 

reference. Assignments were supported by spin decoupling-double resonance and 

bidimensional heteronuclear correlation techniques. Low and high resolution mass spectra 

were obtained at ‘‘C.A.C.T.I. Unidad de Espectrometria de Masas’’ at the University of 

Vigo, Spain. Commercially available reagents 2a-d were purchased from Sigma–Aldrich, 

ACROS, or TCI and used as received. Compound 1 was synthesised as reported elsewhere 

[13]. 

 

2.2. General procedure for the synthesis of imidazolyl-phenylalanines 3a-d 

N-tert-Butyloxycarbonyl-4-formylphenylalanine methyl ester 1 (1 equiv) and the appropriate 

dione 2 (1 equiv) were dissolved in acetic acid (5 mL/mmol) in the presence of ammonium 

acetate (20 equiv) and heated at reflux for 2 hours. After cooling, the mixture was poured 

over crushed ice and extracted with ethyl acetate (3 x 5 mL). After drying the organic layer 

over anhydrous MgSO4, the solvent was removed in a rotary evaporator and a solid was 

obtained. The crude solid was purified by column chromatography, using mixtures of 

dichloromethane and methanol of increasing polarity as eluent. 

 

2.2.1. N-acetyl-4-(4’,5’-di(furan-2’’-yl)imidazol-2’-yl) phenylalanine methyl ester (3a). 

Starting from aldehyde 1 (0.050 g, 0.163  10-3 mol) and 1,2-di(furan-2-yl)ethane-1,2-dione 

2a (0.031 g, 0.163  10-3 mol), compound 3a was isolated as an orange solid (0.035 g, 0.084 

 10-3 mol, 42%). mp = 209.8-210.7 ºC. IR (KBr 1%, cm-1):  = 3340, 3078, 2928, 1737, 

1691, 1633, 1596, 1526, 1518, 1437, 1389, 1368, 1322, 1291, 1256, 1220, 1166, 1109, 1086, 

1059, 1029, 994, 971, 920, 854, 813, 796, 772, 684. 1H NMR (400 MHz, CDCl3):   = 1.99 

(s, 3H, CH3 Ac), 3.06-3.20 (m, 2H, -CH2), 3.72 (s, 3H, OCH3), 4.85-4.88 (m, 1H, -H), 
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6.11 (d, J 7.6 Hz, 1H, NH Ac), 6.53 (dd, J 3.6 and 1.8 Hz, 2H, 2  H4’’), 6.99 (d, J 3.6 Hz, 

2H, 2   H3’’), 7.14 (d, J 8.0 Hz, 2H, H2 and H6), 7.50 (d, J 1.8 Hz, 2H, 2  H5’’), 7.84 (d, J 

8.0 Hz, 2H, H3 and H5). 13C NMR (100.6 MHz, CDCl3):  = 23.07 (CH3 Ac), 37.72 (-CH2), 

52.43 (OCH3), 53.16 (-C), 107.80 (C3’’), 111.76 (C4’’), 125.81 (C3 and C5), 127.24 (C4’ 

or C5’), 127.87 (C4’or C5’), 129.69 (C2 and C6), 130.28 (C4), 137.20 (C1), 141.54 (C5’’), 

145.83 (C2’) 155.33 (C2’’), 169.89 (C=O Ac), 171.90 (C=O ester). UV/Vis (ethanol, nm): 

max (log ) = 317 (4.21). MS m/z (ESI, %): 420 ([M+H]+, 100). HRMS: m/z (ESI) calcd for 

C23H22N3O5 420.15606; found 420.15508.  

 

2.2.2. N-acetyl-4-(4’,5’-di(thiophen-2’’-yl)imidazol-2’-yl) phenylalanine methyl ester  

(3b). Starting from aldehyde 1 (0.050 g, 0.162  10-3 mol) and 1,2-di(thiophen-2-yl)ethane-

1,2-dione 2b (0.036 g, 0.162  10-3 mol), compound 3b was isolated as a yellow solid (0.038 

g, 0.084  10-3 mol, 45%). mp = 215.9-217.0 ºC. IR (KBr 1%, cm-1):  = 3431, 3146, 2977, 

1711, 1655, 1596, 1534, 1513, 1446, 1419, 1391, 1366, 1332, 1259, 1195, 1168, 1120, 1060, 

1020, 994, 959, 939, 912, 892, 871, 817, 735, 695, 646, 613. 1H NMR (400 MHz, DMSO-

d6):   = 1.79 (s, 3H, CH3 Ac), 2.88-3.07 (m, 2H, -CH2), 3.59 (s, 3H, OCH3), 4.47-4.52 (m, 

1H, -H), 7.00 (dd, J 5.2 and 3.6 Hz, 1H, H4’’), 7.15 (dd, J 3.6 and 0.8 Hz, 1H, H3’’), 7.20 

(dd, J 4.2 and 3.6 Hz, 2H, H4’’’), 7.31 (d, J 8.4 Hz, 2H, H2 and H6), 7.40-7.42 (m, 2H, H5’’ 

and H3’’’), 7.69 (d, J 5.2 and 1.2 Hz, 1H, H5’’’), 7.93 (d, J 8.4 Hz, 2H, H3 and H5), 8.36 (d, 

J 8.0 Hz, 1H, NH Ac), 12.80 (br s, 1H, NH). 13C NMR (100.6 MHz, DMSO-d6):  = 22.23 

(CH3 Ac), 36.57 (-CH2), 51.84 (OCH3), 53.43 (-C), 120.60 (C4’ or C5’), 123.39 (C3’’), 

124.84 (C3’’’), 125.23 (C3 and C5), 127.31 (C4’’), 127.40 (C5’’’), 127.59 (C4’’’), 128.09 

(C4), 128.41 (C5’’), 129.43 (C2 and C6), 130.79 (C2’’’), 133.55 (C4’ or C5’), 137.45 (C2’’), 

137.83 (C1), 145.66 (C2’), 169.35 (C=O Ac), 172.13 (C=O ester). UV/Vis (ethanol, nm): 

max (log ) = 313 (4.21). MS m/z (ESI, %): 452 ([M+H]+, 100). HRMS: m/z (ESI) calcd for 

C23H22N3O3S2 452.10911; found 452.10971.  

 

2.2.3. N-acetyl-4-(4’,5’-diphenyl-imidazol-2’-yl) phenylalanine methyl ester (3c). Starting 

from aldehyde 1 (0.049 g, 0.160  10-3 mol) and 1,2-diphenylethane-1,2-dione 2c (0.033 g, 

0.160  10-3 mol), compound 3c was isolated as an orange solid (0.025 g, 0.057  10-3 mol, 

44%). mp = 203.1-204.2 ºC. IR (KBr 1%, cm-1):  = 3320, 3178, 3028, 1837, 1751, 1633, 

1596, 1525, 1418, 1382, 1368, 1300, 1290, 1254, 1222, 1166, 1100, 1085, 1059, 1029, 994, 
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970, 923, 855, 812, 796, 772, 683. 1H NMR (400 MHz, DMSO-d6):   = 1.80 (s, 3H, CH3 

Ac), 2.88-3.07 (m, 2H, -CH2), 3.60 (s, 3H, OCH3), 4.47-4.52 (m, 1H, -H), 7.19-7.49 (m, 

8H, 2xPh), 7.48 (d, J 7.8 Hz, 2H, H2 and H6), 7.98 (d, J 7.8 Hz, 2H, H3 and H5), 8.36 (d, J 

7.6 Hz, 1H, NH Ac), 12.62 (br s, 1H, NH). 13C NMR (100.6 MHz, DMSO-d6):  = 22.23 

(CH3 Ac), 36.58 (-CH2), 51.83 (OCH3), 53.47 (-C), 125.11 (C3 and C5), 126.50 (C4’’), 

127.05 (C3’’ and C5’’), 127.69 (C4’ or C5’), 127.74 (C4’’’), 128.17 (C2’’ and C6’’), 128.39 

(C2 and C6), 128.65 (C3’’’ and C5’’’), 128.71 (C4), 129.36 (C2’’’ and C6’’’), 131.07 (C1’’), 

135.17 (1’’’), 137.03 (C4’ or C5’), 137.40 (C1), 145.44 (C2’), 169.35 (C=O Ac), 172.16 

(C=O ester). UV/Vis (ethanol, nm): max (log ) = 304 (4.28). MS m/z (ESI, %): 440 

([M+H]+, 100). HRMS: m/z (ESI) calcd for C27H26N3O3 440.19687; found 440.19628. 

2.2.4. N-acetyl-4-(4’,5’-di(pyridin-2’’-yl)imidazol-2’-yl) phenylalanine methyl ester (3d). 

Starting from aldehyde 1 (0.020 g, 0.066  10-3 mol) and 1,2-di(pyridin-2-yl)ethane-1,2-

dione 2d (0.014 g, 0.066  10-3 mol), compound 3d was isolated as an orange solid (0.020 g, 

0.045  10-3 mol, 44%). mp = 123.9-124.7 ºC. IR (KBr 1%, cm-1):  = 3351, 3068, 2918, 

1764, 1691, 1632, 1526, 1509, 1437, 1365, 1320, 1293, 1256, 1166, 1109, 1086, 1049, 1019, 

991, 920, 853, 812, 796, 772, 684. 1H NMR (400 MHz, CDCl3):   = 1.96 (s, 3H, CH3 Ac), 

3.04-3.17 (m, 2H, -CH2), 3.69 (s, 3H, OCH3), 4.83-4.88 (m, 1H, -H), 6.04 (d, J 7.6 Hz, 

1H, NH Ac), 7.11-7.14 (m, 2H, 2  H5’’), 7.13 (d, J 8.0, 2H, H2 and H6), 7.72 (t, J 7.3 Hz, 

2H, 2  H4’’), 8.02 (d, J 7.3 Hz, 2H, 2  H3’’), 8.44-8.46 (m, 2H, H3 and H5), 8.64 (d, J 4.0 

Hz, 2H, 2  H6’’). 13C NMR (100.6 MHz, CDCl3):  = 23.16 (CH3 Ac), 37.79 (-CH2), 52.44 

(OCH3), 53.14 (-C), 122.59 (C3’’), 123.37 (C3 and C5), 126.46 (C5’’), 127.88 (C4), 127.95 

(C4’ and C5’), 129.64 (C2 and C6), 137.38 (C1), 138.52 (C4’’), 146.64 (C6’’), 147.32 

(C2’’), 149.13 (C2’), 169.75 (C=O Ac), 171.91 (C=O ester). UV/Vis (ethanol, nm): max (log 

) = 307 (4.25). MS m/z (ESI, %): 442 ([M+H]+, 100). HRMS: m/z (ESI) calcd for 

C25H24N5O3 442.18737; found 442.18648. 

 

2.3. Spectrophotometric and spectrofluorimetric titrations and chemosensing studies for 

imidazolyl-phenylalanines 3a-d 

UV–visible absorption spectra (200–700 nm) were obtained using a Shimadzu UV/2501PC 

spectrophotometer. Fluorescence spectra were collected using a FluoroMax-4 

spectrofluorometer. Organic solvents used in the spectroscopic studies were of spectroscopic 

grade. Relative fluorescence quantum yields were calculated using 9,10-diphenylanthracene 
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as standard (ΦF = 0.95 in ethanol) [14]. The linearity of the absorption versus concentration 

was checked within the used concentration.  

Solutions of imidazolyl-phenylalanines 3a-d (ca. 1.0 × 10-5 to 1.0 × 10-6 M) and of the ions 

under study (ca. 1.0 × 10-1 to 1.0 × 10-3 M) (in the form of hydrated tetrafluorborate salts for 

Cu+, Ag+, Pd2+ and Co2+, hydrated perchlorate salts for K+, Cd2+, Ca2+, Fe3+, Fe2+, Cr3+, Cu2+, 

Ni2+, Cs+, Na+, Hg2+, Pb2+, Zn2+ and hydrated tetrabutylammonium salts for CH3COO-, F-, Cl-

, Br-, I-, ClO4
-, CN-, NO3

-, BzO- and OH-) were prepared in UV-grade acetonitrile or 

acetonitrile/water (80:20). Titration of the compounds with the several ions was performed by 

the sequential addition of ion stock solution to the phenylalanine solution, in a 10 mm path 

length quartz cuvette and emission spectra were measured by excitation at the wavelength of 

maximum absorption for each compound, with a 2 nm slit. The association constants and the 

binding stoichiometry were obtained with HypSpec software. 

 

 

3. Results and discussion 

 

3.1. Synthesis of 4,5-diarylimidazolyl-phenylalanines 3a-d 

Novel 4,5-diarylimidazolyl-phenylalanines 3a-d were synthesised by reaction of N-tert-

butyloxycarbonyl-4-formylphenylalanine methyl ester 1 with the appropriate aromatic dione 

2a-d, through a Radziszewski reaction in the presence of ammonium acetate in acetic acid at 

reflux for 2 hours [15]. The pure compounds were isolated, after chromatography, in 

moderate yield (42-45%) and were characterized by the usual spectroscopic techniques. The 

acidic reaction media yielded the N-acetylated form of the amino acids, by substitution of the 

starting N-tert-butyloxycarbonyl (Boc) group (Scheme 1, Table 1). The synthesized amino 

acids are L-amino acids as the precursor 1 had L-configuration and no evidence was found for 

the loss of the integrity of the chiral centre in these reaction conditions by NMR. 
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Scheme. Synthesis of 4,5-diarylimidazolyl-phenylalanines 3a-d. 

 

Table 1. Yields, UV-visible absorption and fluorescence data for 4,5-diarylimidazolyl-

phenylalanines 3a-d in absolute ethanol ([3a-d]= 10-6-10-5 M). 

 

3.2. Photophysical study of 4,5-diarylimidazolyl-phenylalanines 3a-d 

The photophysical properties of phenylalanines 3a-d were evaluated and the UV-vis 

absorption and fluorescence spectra of degassed 10-6-10-5 M solutions in absolute ethanol 

were measured (Table 1). Compounds 3a-d displayed absorption and emission maxima at 

longer wavelengths (λabs and λem, respectively), when compared with the unsubstituted 

phenylalanine in the same solvent (λabs = 258 nm and λem= 280 nm), a fact related to the 

Compound 
Yield 

(%) 

UV/Vis  Fluorescence 

λabs (nm) log ε λem  (nm) 

Stokes’ 

shift (nm) 

Stokes’ 

shift (cm-1) 
ΦF 

3a 42 317 4.21 405 88 6854 0.72 

3b 45 313 4.21 420 107 8139 0.26 

3c 44 304 4.28 382 78 6717 0.42 

3d 44 307 4.25 426 119 9099 0.14 
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nature of the pendant groups which resulted in extended intramolecular electron 

delocalization and a higher push-pull character of the whole system. In fact, the position of 

the red shifted absorption bands were clearly dependent on the electron donor strength of the 

(hetero) aromatic group at positions 4 and 5 of the imidazole: for 3a, bearing a phenyl group 

(the least electron donor), the absorption band was centred at 304 nm. On changing to 

electron-deficient pyridyl-derivative (3d), the absorption maximum suffered a very slight 

bathochromic shift to 307 nm, whereas when heterocyclic electron donors such as furan (3a) 

or thiophene (3b) were present, the red shift was larger to 317 and 313 nm, respectively. 4,5-

Diarylimidazolyl-phenylalanines 3a-d showed modest to high relative fluorescence quantum 

yields, between 0.14 (3d) and 0.72 (3a), and displayed large Stokes’ shifts. A large Stokes’ 

shift is an interesting characteristic for a fluorescent probe that allows an improved separation 

of the light inherent to the matrix and the light dispersed by the sample. 

Considering the results obtained in ethanol, the photophysical properties of phenyalanines 

3a-d were evaluated in other organic solvents of different character. The solvents tested were 

acetonitrile, dimethylsulfoxide, dichloromethane and diethyl ether, as examples of solvents 

with different polarity and proticity, with π* values by Kamlet and Taft [16]. The collected 

data revealed similar wavelengths of maximum absorption and emission and the fluorescence 

quantum yield did not vary significantly (Table 2). The overall trend revealed that 

phenylalanine 3a with furyl pendants was the most fluorescent (with ΦF in the range 0.64-

0.77) whereas phenylalanine 3b bearing thienyl pendants displayed the largest Stokes’ shifts 

(between 105-109 nm).  

 

Table 2. UV-visible absorption and emission data for 4,5-diarylimidazolyl-phenylalanines 

3a-d in organic solvents of different character, with π* values by Kamlet and Taft [16]. 

Cpd. 

 

Solvent 

(π*) 

UV/Vis  Fluorescence 

λabs log ε λem 
Stokes’ 

shift ( nm) 

Stokes’ 

shift ( cm-1) 
ΦF 

3a 

Diethyl ether (0.27) 313 4.23 401 88 7011 0.76 

EtOH (0.54) 317 4.21 405 88 6854 0.72 

ACN (0.75) 317 4.24 413 96 7333 0.77 

DCM (0.82) 324 4.21 410 86 6474 0.64 
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As the chemosensing study towards different ions was carried out in acetonitrile and 

acetonitrile/water (80:20), the absorption and emission spectra of 4,5-diarylimidazolyl-

phenylalanines 3a-d were also measured in these mixtures at different pH (10-6-10-5 M 

solution). Buffer systems used were sodium acetate 0.1 M/acetic acid 0.1 M for pH= 4, 

potassium hydrogenphosphate 0.1 M/sodium hydroxide 0.1 M for pH= 7 and sodium 

hydrogencarbonate 0.05 M/sodium hydroxide 0.1 M for pH= 10. For every compound, there 

was a bathochromic shift of both wavelengths of maximum absorption and emission on going 

from acidic to basic pH, probably indicative of a certain degree of deprotonation at the 

imidazole NH which in turn lead to a higher charge density at the heterocycle that could be 

delocalised through the system (Figure 1, for phenylalanine 3b as representative example). 

However, the increase in pH was accompanied by a decrease of the relative fluorescence 

quantum yields (except for phenylalanine 3d which was practically non fluorescent in 

aqueous solution (Table 3).  

DMSO (1.00) 317 4.26 409 92 7096 0.64 

3b 

Diethyl ether (0.27) 312 4.23 419 107 8185 0.29 

EtOH (0.54) 313 4.21 420 107 8139 0.26 

ACN (0.75) 313 4.28 422 109 8252 0.30 

DCM (0.82) 318 4.25 423 105 7806 0.26 

DMSO (1.00) 320 4.29 428 108 7886 0.14 

3c 

Diethyl ether (0.27) 309 4.27 383 74 6253 0.44 

EtOH (0.54) 304 4.28 382 78 6717 0.42 

ACN (0.75) 305 4.30 383 78 6677 0.46 

DCM (0.82) 309 4.27 383 74 6253 0.43 

DMSO (1.00) 312 4.31 391 79 6476 0.20 

3d 

Diethyl ether (0.27) 306 4.25 388 82 6907 0.10 

EtOH (0.54) 307 4.25 426 119 9099 0.14 

ACN (0.75) 305 4.25 398 93 7661 0.14 

DCM (0.82) 307 4.25 394 87 7193 0.14 

DMSO (1.00) 310 4.25 399 89 7092 0.13 
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Figure 1. Normalised fluorescence spectra of 4,5-di(thiophen-2’-yl)imidazolyl-phenylalanine 

3b in ACN (__) and ACN/H2O (80:20) buffered at pH= 4 in (...),  pH= 7 (- - -) and  pH= 10 (---) 

([3b]= 6.7  10-6 M). 

 

Table 3. UV-visible absorption and emission data for 4,5-diarylimidazolyl-phenylalanines 

3a-d in ACN/H2O (80:20) buffered at different pH ([3a-d]= 10-6-10-5 M). 

Compound pH 

UV/Vis  Fluorescence 

λmax (nm) log ε λmax  (nm) 

Stokes’ 

shift (nm) 

Stokes’ 

shift (cm-1) 
ΦF 

3a 

4 312 4.22 410 98 7661 0.75 

7 324 4.23 416 92 6826 0.62 

10 329 4.21 422 93 6698 0.55 

3b 

4 310 4.23 442 132 9634 0.25 

7 325 4.23 455 130 8791 0.20 

10 330 4.23 462 132 8658 0.18 

3c 

4 295 4.27 396 101 8646 0.46 

7 305 4.29 408 103 8277 0.35 

10 318 4.26 428 110 8082 0.23 

3d 

4 300 4.26 415 115 9237 0.02 

7 305 4.25 400 96 7895 0.05 

10 309 4.25 397 86 7174 0.04 



 11 

3.3. Spectrofluorimetric titrations of 4,5-diarylimidazolyl-phenylalanines 3a-d with ions  

The modification of phenylalanine through the introduction of extra UV-absorbing and 

fluorescent heterocycles at its side chain was expected to provide additional binding sites for 

a variety of ions through the heterocycle donor atoms, as well as improved photophysical 

properties for the chemosensing studies. It was also intended to assess the influence of the 

structure in the chemosensing ability of anions and cations.  

Evaluation of new 4,5-diarylimidazolyl-phenylalanines 3a-d as fluorimetric chemosensors 

was carried out by performing spectrophotometric and spectrofluorimetric titrations in ACN 

and ACN/H2O (80:20), in the presence of organic and inorganic anions, and of alkaline, 

alkaline-earth and transition metal cations (AcO-, F-, Cl-, Br-, I-, ClO4
-, CN-, NO3

-, BzO-, OH- 

H2PO4
-, HSO4

-, Na+, K+, Cs+, Ag+, Cu+, Cu2+, Ca2+, Cd2+, Co2+, Pb2+, Pd2+, Ni2+, Hg2+, Zn2+, 

Fe2+, Fe3+ and Cr3+), with biological, environmental and analytical relevance. 

A preliminary test was carried out by addition of up to 100 equiv of each ion to the solutions 

of phenylalanines 3a-d. No noticeable changes occurred in the colour of the solutions but 

significant changes were visible in the fluorescence intensity upon interaction with some 

ions, such as Cu2+, Fe3+, F- and OH-. 

Therefore, spectrofluorimetric titrations of phenylalanines 3a-d in acetonitrile with Cu2+, 

Fe3+, F- and OH- were carried out. With Cu2+ a decrease of the fluorescence intensity (a 

chelation enhanced quenching effect, CHEQ) was observed with a complete fluorescence 

quenching. In Figure 2A, as representative example, is shown the spectrofluorimetric titration 

of phenylalanine 3a with Cu2+, where the drastic effect of cation complexation is evident in 

the band of maximum emission centred at 317 nm, with 10 equiv of cation being sufficient 

for the complete quenching (Figure 2A). The quenching effect in the presence of Cu2+ can be 

attributed to an energy transfer quenching of the * emissive state through low-lying metal-

centered unfilled d-orbitals [5e]. This result suggests the involvement of the metal ion with 

donor atoms, the N from the imidazole and the O or S from the pendant furan or thiophene. 

With regard to the other ions, with Fe3+ a pronounced CHEQ effect was also observed after 

ion addition (with 15 equiv), accompanied by a red shift of the emission band, whereas with 

F- and OH- an incomplete quenching of fluorescence (ca. 70%, about 20 equiv to achieve the 

plateau) was seen. In Figures 2 B, C and D are shown the spectrofluorimetric titrations of 

phenylalanine 3a with Fe3+, F- and OH-, respectively. These anions also induced a quenching 

of the fluorescence band that could be ascribed to a proton transfer process that yields the 

deprotonated probe [5b]. 
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As for 4,5-diarylimidazolyl-phenylalanines 3b-d, the spectrofluorimetric titrations in 

acetonitrile with Fe3+ resulted in a complete quenching with the addition of 180, 280 and 0.35 

metal equiv, respectively. Also, titration with both anions induced a similar incomplete 

fluorescence quenching after addition of 10 equiv of F- or OH- (of about 75% for 3b, 45 % 

for 3c and 40% for 3d). Overall, 4,5-di(furan-2’-yl)imidazolyl-phenylalanine 3a and 4,5-

di(thiophen-2’-yl)imidazolyl-phenylalanine 3b were the most sensitive towards Cu2+ and 

Fe3+, with phenylalanine 3a being the most interesting candidate as chemosensor due to the 

higher fluorescence quantum yield, which is important for maximization of response to 

analyte in the analysis of very dilute samples. On the other hand, the very low original 

fluorescence of 4,5-di(pyridin-2’-yl)imidazolyl-phenylalanine 3d precluded its application as 

a fluorimetric chemosensor, although it was extremely sensitive to Cu2+ and Fe3+ with 

complete quenching after addition of 1.5 and 0.35 equiv of metal, respectively. 

 

 

 

Figure 2. Fluorimetric titrations of 4,5-di(furan-2’-yl)imidazolyl-phenylalanine 3a with Cu2+ 

(A), Fe3+ (B), F- (C) and OH- (D) in acetonitrile [λexc 3a = 317 nm, [3a]= 7.2  10-6 M, the 

cations in the form of perchlorate salts and the anions in the form of tetrabutylammonium 

salts]. Inset: normalised emission at 413 nm as a function of added ion equivalents.  
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Having in mind practical applications of compounds 3a-d in aqueous media, the 

chemosensory ability was also evaluated in mixtures of acetonitrile and water in varying 

proportions. The best results, considering a compromise of fluorescence intensity and 

compound solubility, were obtained in acetonitrile/H2O (80:20, v/v). The study of the same 

ions described before in organic aqueous solution lead to lower detection sensitivity since it 

was necessary to increase the number of equivalents of cation to obtain a similar quenching 

response, and the fluorescence was not affected in the case of the interaction with F-and OH-. 

In the case of Cu2+ and Fe3+, higher sensitivity was obtained for the latter cation in aqueous 

acetonitrile. In Figure 3, it is compared the behaviour of phenylalanines 3a-b with Fe3+ in 

ACN and ACN/H2O (80:20) and in Figure 4 it is presented the interaction between 

phenylalanines 3c-d with Fe3+ in ACN and ACN/H2O (80:20). In all cases, the interaction 

with Fe3+ resulted in a red shift of the emission band and for phenylalanine 3b the initial 

amount of cation added caused an increase of the fluorescence intensity (a chelation 

enhancement of fluorescence, CHEF effect) which reverted to the quenching as the addition 

continued. 

 

 

 

Figure 3. Fluorimetric titrations of 4,5-di(furan-2’-yl)imidazolyl-phenylalanine 3a with Fe3+ 

in ACN (A) and with Fe3+ in ACN/H2O (80:20, pH 7) (B), and 4,5-di(thiophen-2’-

yl)imidazolyl-phenylalanine 3b with Fe3+ in ACN (C) and with Fe3+ in ACN/H2O (80:20, pH 

7) (D), [λexc 3a = 317 nm, [3a]= 7.2  10-6 M; λexc 3b = 313 nm, [3b]= 6.7  10-6 M, the cation 
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in the form of perchlorate salt]. Inset: normalised emission at the wavelength of maximum 

emission as a function of added ion equivalents. 

 

 

 

Figure 4. Fluorimetric titrations of 4,5-diphenylimidazolyl-phenylalanine 3c with Fe3+ in 

ACN (A) and with Fe3+ in ACN/H2O (80:20, pH 7) (B), and 4,5-di(pyridin-2’-yl)imidazolyl-

phenylalanine 3d with Fe3+ in ACN (C) and with Fe3+ in ACN/H2O (80:20, pH 7) (D), [λexc 

3c,d = 305 nm, [3c]= [3d]= 6.8  10-6 M, the cation in the form of perchlorate salt]. Inset: 

normalised emission at the wavelength of maximum emission as a function of added ion 

equivalents. 

 

Previous studies suggested that the free amino acid terminals did not influence significantly 

the coordination and that it should preferably occur through the heteroatoms at the side chain 

of the amino acid [12e]. Also, our previous work in synthetic fluorescent amino acids 

indicated that these amino acids maintain their sensing ability when incorporated into small 

sequences and, therefore, the resulting peptides displayed sensing ability as well [9a].  

 

3.4. 1H NMR titrations for compound 3b 

In order to elucidate the binding mode, 1H NMR titrations were carried out in DMSO-d6 for 

compound 3b with F- and Cu2+, as representative examples, due to insolubility of compound 
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3b in deuterated acetonitrile in the required concentration. These titrations revealed that the 

coordination site involved the imidazole and thiophene, as the signals for these two moieties 

were more altered upon anion/cation addition (Figures 5 and 6). The signal of the imidazole 

NH appearing downfield suggested high acidity and strong hydrogen-bonding ability. In 

more detail, upon addition of F- only 1 equiv of the ion to ensure complete deprotonation of 

the imidazole NH and both thiophene rings become equivalent and only one set of proton 

signals was visible. Deprotonation caused an increase in the electron density in the imidazole 

ring, which in turn induced a shielding effect on the neighbouring thiophene and phenyl rings 

owing to through-bond effects. With increasing amounts of F-, the thiophene protons H3’’, 

H4’’ and H5’’ shifted upfield as well the phenylalanine protons H2 and H6. The acetyl NH 

was only disturbed after addition of 5 up to 15 equiv of F- shifting downfield and becoming 

broader (Figure 5). Although not shown in the figure, one triplet appeared at lower field 

(16.5 ppm) suggesting the formation of HF2
- ion, thus providing additional confirmation of 

the deprotonation of the imidazole NH [5d,e,f]. 

 

 

 

Figure 5. Partial 1H NMR spectra of compound 3b (1.7 x 10-2 M) in DMSO-d6 in the absence 

(a) and the presence of 1.0 (b), 2.0 (c), 3.0 (d), 5.0 (e) and 15.0 (f) equivalents of F- (in the 

form of its tetrabutylammonium salt). 
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As for the titration with Cu2+, there was a considerable broadening of the proton signals, as 

expected, but similar tendencies were seen in the chemical shifts. Upon addition of only 0.5 

equiv of Cu2+, the imidazole NH significantly broadened while the thiophene protons 

coalesced into only one set of proton signals. With increasing addition of the cation, these 

protons shifted upfield, but to a lesser extent when compared to the titration with F- (Figure 

6).  

Based on the results of the spectrofluorimetric and 1H NMR titrations, a coordination scheme 

can be proposed involving the amino acid side chain: the observed chemical shifts are 

tentatively ascribed to preferential interaction between the anion/cation with one of the 

imidazole nitrogens and the heteroatom of the pendant heterocyclic moiety (Figures 5 and 6). 

 

 

 

Figure 6. Partial 1H NMR spectra of compound 3b (1.7 x 10-2 M) in DMSO-d6 in the absence 

(a) and the presence of 0.5 (b), 1.0 (c), 2.0 (d), and 5.0 (e) equivalents of Cu2+ (in the form of 

its perchlorate salt). 

 

The binding stoichiometry of 4,5-diarylimidazolyl-phenylalanines 3a-d with selected 

anions/cations and the binding affinity were calculated by HypSpec software from the 

a) 0 equiv 
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spectrofluorimetric titrations in acetonitrile and aqueous acetonitrile, suggesting a 1:1 

ligand:anion/metal cation stoichiometry (Table 4).  

 

Table 4. Logarithmic association constants (log Kass) for the interaction of 4,5-

diarylimidazolyl-phenylalanines 3a-d with several anions/cations in acetonitrile (L:M or L:A 

stoichiometry suggested from HypSpec is 1:1). 

Ligand Ion 
log Kass  

(ACN) 

log Kass  

(ACN/H2O 80:20) 

3a Cu2+ 10.31 ± 0.07 ----- 

Fe3+ 11.07 ± 0.08 8.38 ± 0.01 

Hg2+ 10.23 ± 0.02 9.17 ± 0.03 

Pd2+ 10.17 ± 0.09 ----- 

F- 9.24 ± 0.11 ----- 

3b Cu2+ 11.5 ± 0.23 ----- 

Fe3+ 11.3 ± 0.12 7.42 ± 0.09 

Hg2+ 10.9 ± 0.34 ----- 

Pd2+ 11.8 ± 0.41 ----- 

F- 7.74 ± 0.31 ----- 

3c Cu2+ 12.09 ± 0.53 ----- 

Fe3+ 12.31 ± 0.09 8.25 ± 0.12 

Hg2+ 10.27 ± 0.05 ----- 

Pd2+ 10.44 ± 0.15 ----- 

F- 10.08 ± 0.21 ----- 

3d Cu2+ 12.25 ± 0.04 ----- 

Fe3+ 12.92 ± 0.14 9.12 ± 0.02 

Hg2+ 11.88 ± 0.03 ----- 

Pd2+ 11.48 ± 0.07 ----- 

F- 9.44 ± 0.08 ----- 

 

 

The 1:1 stoichiometry of the complex formed between probes 3a-d and Cu2+ was confirmed 

by spectrofluorimetry by the method of continuous variation and the Job’s plot for the 
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interaction between 3a and 3b (as representative examples) and the divalent cation is shown 

in Figure 7.  

 

 

 

Figure 7. Job’s plot for the interaction of 3a (A) and 3b (B) with Cu2+, in the form of 

perchlorate salt, as determined by spectrofluorimetry in acetonitrile at 413 nm for 3a ([3a] + 

[Cu2+] = 1.0 x 10-5 M) and 422 nm for 3b ([3b] + [Cu2+] = 1.0 x 10-5 M). 

 

In summary, the advantages of using such unnatural amino acids as sensory units, when 

compared to natural amino acids, for example, are as follows: the extra heteroatoms at the 

side chain can exert a cooperative effect for a more efficient binding process and the overall 

sensing ability; they show enhanced optical response as compounds 3a-c are much more 

fluorescent than tryptophan (the most fluorescent natural amino acid with a fluorescence 

quantum yield of 0.14). This allows higher detection sensitivity, thus lowering detection and 

quantification limits. Nevertheless, compound 3d has the same fluorescence quantum yield as 

tryptophan but it displays longer wavelengths of absorption (excitation) and fluorescence, 

which is useful for certain biological applications; their intrinsic biological nature and their 

potential for use in a variety of biological assays based on fluorescence spectroscopy. 

 

4. Conclusions 

The novel 4,5-diarylimidazolyl-phenylalanines 3a-d displayed modest to excellent 

fluorescence quantum yields (ΦF = 0.64-0.77 for 3a; ΦF = 0.14-0.30 for 3b; ΦF = 0.20-0.46 

and for 3c ΦF = 0.02-0.14) and large Stokes’ shifts (between 86 and 119 nm or 6253 and 

9099 cm-1) in organic solvents of different character. 4,5-Di(furan-2’-yl)imidazolyl-

phenylalanine 3a displayed the highest relative fluorescence yield in all the solvents and 

aqueous mixtures. Through spectrofluorimetric titrations with several ions it was found that 

phenylalanines 3a-d showed high sensitivity and ability to interact with Cu2+ and Fe3+ in 
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ACN but this sensitivity decreased in ACN/H2O (80:20). The derivatives containing the five-

membered heterocycles 3a (furan) and 3b (thiophene) required less equivalents to show a 

complete fluorescence quenching, when compared to derivatives 3c-d, which can be related 

to the effect of the electron donor oxygen and sulphur atoms on the overall complexation 

ability. Due to their emissive character and their cation sensing properties, these heterocyclic 

amino acids could find application as useful building blocks for peptides with extra 

functionality due to their UV-active/fluorescent chromophore and complexing capability. 
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