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a b s t r a c t

The study of multiple effects of a number of variables, and the
assessment of the corresponding environmental risks, may require
the adoption of suitable multivariate models when the variables at
play are dependent, as it often happens in environmental studies.
In this work, the flood risks in a given region are investigated,
in order to identify specific spatial sub-regions (clusters) where
the floods show a similar behavior with respect to suitable (mul-
tivariate) criteria. The reason of the work is three-fold, and the
outcomes have deep implications in the hydrological practice:
(i) such a regionalization (as it is called in hydrology) may provide
useful indications for deciding which gauge stations have a similar
(stochastic) behavior; (ii) the spatial clustering may represent a
valuable tool for investigating ungauged basins present in a given
‘‘homogeneous’’ Region; (iii) the estimate of extreme design values
may be improved by using all the observations collected in a cluster
(instead of only single-station data). For this purpose, a Copula-
based Agglomerative Hierarchical Clustering algorithm – a key tool
in geosciences for the analysis of the dependence information – is
proposed. The procedure is illustrated via a case study involving
the Po river basin, the largest Italian one. A comparison with
a previous attempt to cluster the gauge stations present in the
same spatial region is also carried out. The sub-regions picked
out by the clustering procedure outlined here agree with previous
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results obtained via heuristic hydrological and meteorological rea-
sonings, and identify spatial areas characterized by similar flood
regimes.

1. Introduction

The impact of extreme events such as floods, droughts and tropical cyclones, can be due to a single
climate orweather variable being in an extreme state, butmore often it is the result of a combination of
variables not all of which are necessarily extreme (Leonard et al., 2014). The combination of variables
or events that may yield extreme impacts is usually referred to as a compound event: in particular,
in IPCC (2012, page 118), it is stressed that ‘‘impacts on the physical environment are often the result
of compound events’’. As such, the study of correlation and dependence may be helpful to improve
the knowledge of the occurrence of extremes and their impact on our societies, although ‘‘much of the
analysis of changes of extremes has, up to now, focused on individual extremes of a single variable’’
(ibidem, page 118). Thus, in order to be prepared to face up to possible future climatic challenges, we
need to understand the interactions between extreme events (and even not necessarily extreme ones)
and other natural hazards (Vahedifard et al., 2016; Zscheischler and Seneviratne, 2017). As discussed
in Leonard et al. (2014), any given compound event depends upon the nature and the number of the
physical variables at play, as well as on the range of spatial and temporal scales, and the strength of
dependence between processes. Thus, by its very nature, the study of compound (extreme) events is
a tricky and complex task, that requires specific methodologies to be dealt with.

Recently, copula models are gaining ground in geo- and environmental-sciences, since engineers
and practitioners need flexible theoretical frameworks to handle the diversity of the interplaying
variables (see, for instance, Salvadori et al., 2007 and references therein, for an extensive discussion on
both theoretical and practical aspects of the mathematical theory of extremes and the opportunities
offered by copulas inmany applied contexts). Shortly, a multivariate copula is the restriction of a joint
cumulative distribution function over [0, 1]d withUniformmargins. Thanks to copulas, the behavior of
a compound event can be conveniently decomposed into the marginal effects, given by the individual
variables, and the linkage effects, as described by the copula uniquely associated with the involved
(continuous) variables. As underlined in Guthke and Bárdossy (2017), besides taking into account
non-Gaussianity, the main advantage of copula-based methods to treat geostatistical problems is the
‘‘descriptive power and standardized interpretability’’.

Here, we are mainly interested in hydrological issues, and more specifically in flood risks: these
may potentially cause fatalities, displacement of people, damage the environment, severely com-
promise the economic development, and undermine the economic activities (as underlined in the
Directive 2007/60/EC of The European Parliament and The Council, 2007). According to the framework
proposed in Salvadori et al. (2016) (inspired by the previously cited Directive), flood risks should
require: (a) the development of suitable hazard scenarios that takes into account the multivariate
nature of a flood event; (b) the estimation of the probabilistic occurrence of the above scenarios.
Both aspects have been considered in Salvadori et al. (2016), where variousmethodologies have been
analyzed and discussed. Furthermore, a related aspect of interest is to determine the interdependen-
cies among different flood risks across regions. In fact, as reported in Jongman et al. (2014), recent
major flood disasters have shown that extreme events can affect multiple regions/countries simul-
taneously, which puts high pressure on trans-regional risk-reduction and risk-transfer mechanisms.
The determination of suitable regions that are affected simultaneously by extreme events has a great
impact in hydrological practice. In fact, the design of water engineering works like urban sewers may
require the evaluation of the flood quantile for a Return Period T equal to 5 or 10 years. The design
of levees, or water detention basins, usually requires 100- or 200-year flood quantiles, and for dams
1000-year or larger flood quantiles. These values refer to Italian engineering practice: see Chow et al.
(1988, page 419) for general indications about the design Return Periods of water-control structures.
As indicated by Benson (1962) and also De Michele and Rosso (2001), reliable quantile estimates



3

can be obtained for Return Periods T = 2N , where N denotes the length of the annual flood series.
Thus, when the time series are too short, it is not always possible to use at-site data to evaluate the
quantiles of interest for assigned frequency or Return Period. Empirically, Regionalization Techniques,
including Clustering procedures, are used in hydrology, to substitute ‘‘space for time’’, in order to pool
together a group of watersheds with sufficient ‘‘homogeneity’’ in the flood generating mechanisms,
which may then represent a homogeneous region or pooling-group. Several approaches have been
developed, based on the analysis of the ‘‘similarity’’ between sites involving catchment attributes
like physiographic characteristics, seasonality, and at-site flood statistics (see Ramachandra Rao and
Srinivas, 2008). These techniques allow to cope with two main problems: (1) the paucity, or, more
frequently, the total absence, of data at the site of interest (the ungauged site problem); (2) the
reliability of design estimates involving the calculation of the design quantiles for large Return Periods
(say, 100–1000 years)—see De Michele and Rosso (2001).

It is worth stressing that these techniques have almost exclusively focused on the Flood Peak as
the variable of interest for design purposes (i.e., a univariate approach), even if other variables – like,
e.g., the Flood Volume – may play a significant role in the determination of flood hazards.

Here, we show how a clustering procedure could be implemented in order to model how flood
risks may be interconnected in a given region. The proposedmethodology is grounded on the concept
of Hazard Scenarios, as developed in Salvadori et al. (2016), and some novel insights in copula-based
clustering algorithms (for a description of the general framework, see Di Lascio et al., 2017). The final
output of the cluster algorithm shows how (concurrent) flood events, characterized by a number of
physical variables (like Flood Peak and FloodVolume),may be interrelatedwithin a given geographical
area. This might identify possible regions where risk managers and policy managers should adopt a
cross-border strategy to mitigate and prevent the hydrological risks.

The paper is organized as follows. Section 2 outlines the general methodology. Section 3 illustrates
the case study and the clustering procedures adopted. In Section 4 the results are discussed, and a
comparison with previous (univariate) outcomes is presented. Finally, some conclusions are given in
Section 5.

2. The methodology

The concept of compound event emphasizes themultivariate aspect of environmental risks, arising
from the joint occurrence of multiple hazards or the interaction of several variables ruling a single
phenomenon. As such, the identification of ‘‘similar’’ contributing events requires the use of non-
standard techniques, in order to reflect the degree of dependence between variables or events. In this
section, a novel clustering approach is proposed, based on a suitable multivariate similarity measure.

Usually, cluster analysis plays an important role in extracting information from a set of different
observations that can be interpreted, in a model-based setting, as realizations of a given stochastic
model/process related to different random objects. Clustering methods may also be used to perform
an analysis of the dependence information, which is a key tool in geosciences (and, in particular, in
hydrology) in order to understand the relationships between different variables.

In general, most algorithms require the choice of a similarity (proximity) measure between the ob-
jects. Within the time series framework, for instance, clustering procedures may use the information
about the trends and/or similar sub-patterns (Caiado et al., 2015; Maharaj, 2000), or may consider
a Pearson-correlation based distance metric. In this latter case, recent studies have underlined that
classical correlation measures are often inadequate to capture the actual dependence structure
between individual risk factors, especially in a financial and environmental context (see, among
others, Embrechts et al., 2002; Poulin et al., 2007; Salvadori and De Michele, 2010; Salvadori and De
Michele, 2011). As such, several investigations have been carried out exploiting tools from extreme-
value analysis (see, for instance, De Luca and Zuccolotto, 2011; Durante et al., 2014, 2015; Mornet
et al., 2016). Within the class of model-based clustering methods, copula-based algorithms (see,
e.g., Di Lascio et al., 2017, and references therein) use the copula information to derive the specific
criterion that determines the clustering composition. For an alternative copula-based approach, useful
for identifying ‘‘similar/compatible’’ hydrological basins (in a broad sense), see Grimaldi et al. (2016).

Adopting a general setting, in the following we consider a set P = {P1, . . . , Pd} of occurrences
of a random Phenomenon (e.g., floods) observed at d > 1 different sites (e.g., gauge stations). Each
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occurrence is characterized by a set of p different variables (typically dependent on one another):
for instance, a flood can be described by the triple Peak–Volume–Duration. For each ith site, the
occurrences are observed at times 1, . . . , ti. Formally, we denote by (xi1, . . . , xip) the data observed at
the ith site, with i = 1, . . . , d, where

xij = (x1ij, . . . , x
ti
ij ) (1)

is the observed time series related to the jth variable (j = 1, . . . , p) at times 1, . . . , ti.
Following a model-based approach, we assume that, for i = 1, . . . , d, the behavior of Pi can be

represented by a random vector Xi = (Xi1, . . . , Xip), whose joint probability distribution function Fi
can be expressed in the form (via Sklar’s Theorem Sklar, 1959)

Fi = Ci(Fi1, . . . , Fip), (2)

where Fij is the univariate probability distribution function of the jth variable (j = 1, . . . , p) observed
at the ith site, and Ci is the copula associated with the phenomenon at the same site.

Remark 2.1. In this setting, the observations (xi1, . . . , xip) in (1) are considered as independent
realizations from the model (2), and the copula Ci can be directly derived via a rank transforma-
tion (Genest and Favre, 2007). Otherwise, onemay first filter the original time series (e.g., for removing
trends and seasonality effects), and then investigate the dependence among the resulting residuals.
This procedure is described in its full generality in Patton (2012), and is applied to cluster analysis
in Durante et al. (2014, 2015), among others.

In the sequel, a clustering procedure, based on a suitably defined similarity criterion, is used in
order to identify a partition of P into non-empty and non-overlapping subsets, exploiting the fact
that the dependence between the random phenomena P1, . . . , Pd can be expressed in terms of the
(d × p)-dimensional copula of the vector (X1, . . . ,Xd): viz., such a copula models the dependence
between the p variables associated with the d gauge stations.

Such a procedure can be implemented via two main steps.

1. First, define a dissimilaritymeasurebetween the ith and the kth site as ameasure of the deviation
of their 2p-dimensional copula from the co-monotonicity copula

M2p(u) = min{u1, . . ., u2p}, (3)

i.e., the Fréchet–Hoeffding upper-bound (Nelsen, 2006), which models the comonotone de-
pendence between the variables at play. Here, the copula Cik, associated with the pair of sites
(Pi, Pk), can be estimated from the available data either parametrically (by properly choosing a
suitable family) or non-parametrically (via the empirical copula, or related smoothed versions).

2. Secondly, classical clustering techniques can be applied to the dissimilarity matrix defined
above. In this work, we adopt an Agglomerative Hierarchical approach, where each observation
initially forms a cluster, and then pairs of clusters are merged at each step of the algorithm
(see Hastie et al., 2009; Ward Jr, 1963).

Concerning the first step, two copula-based dissimilarity measures are outlined in the sequel,
grounded on the notion of Hazard Scenario (shortly, HS) recently formalized in Salvadori et al. (2016),
and briefly recalled below.

Let X = (X1, . . . , Xm) be a m-dimensional random vector describing the phenomenon of interest,
with joint distribution function F (respectively, joint survival function F∗), and let x ∈ Rm. We
denote by Fi (respectively, F∗

i ) the distribution (respectively, survival) function associated with Xi
(i = 1, . . . , m), and by C (respectively, C∗) the copula (respectively, survival copula) associated with
X. In turn, by virtue of Sklar’s Theorem, F = C(F1, . . . , Fm) and F∗

= C∗(F∗

1 , . . . , F∗
m).

The Kendall distribution function KC of X (see, e.g., Barbe et al., 1996; Genest and Rivest, 1993)
is the (univariate) distribution function of the random variable C(U), where U = (U1, . . . ,Um) with
Ui = Fi(Xi), viz.

KC(t) = P(C(U1, . . . ,Um) ≤ t), (4)
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Fig. 1. The shape (shaded region) of a bivariate ANDHSS∧

u1=F1(x1),u2=F2(x2)
(left), and a bivariate Kendall HSSK

t=C(u1=F1(x1),u2=F2(x2))
(right) in the copula domain—see text.

with t ∈ [0, 1]. This function also appears in Genest and Rivest (2001) and Nelsen et al. (2001) as
a Multivariate Probability Integral Transform. Eq. (4) yields the probability that the random vector U
belongs to the region of [0, 1]m identified by the inequality C(u) ≤ t .

Below, the two Hazard Scenarios used in the sequel are defined: here, x ∈ Rm and u =

(F1(x1), . . . , Fm(xm)), i.e. the image of x in the copula domain [0, 1]m via the Probability Integral
Transform.

‘‘AND’’ scenario S∧. Am-dimensional AND HS is given by the region

S∧

x =

m⋂
i=1

(R × · · · × (xi, +∞) × · · · × R), (5)

and the associated probability is

P
(
X ∈ S∧

x
)

= C∗(F∗

1 (x1), . . . , F
∗

m(xm)). (6)

For the realization of the event {X ∈ S∧
x } it is necessary that all the variablesXi’s, with i = 1, . . . , m,

exceed the corresponding thresholds xi’s. The shape of a bivariate ANDHS is illustrated in Fig. 1-left
in the copula domain.

‘‘Kendall’’ scenario SK. Let t = F(x) = C(u), and let Lt be the related level set (also called critical
layer). Am-dimensional Kendall HS is given by the region

SK
t = {y ∈ Rm

: F(y) > t} = {y ∈ Rm
: C(F1(y1), . . . , Fm(ym)) > t}, (7)

and the associated probability is

P
(
X ∈ SK

t

)
= 1 − KC(t). (8)

A bivariate Kendall HS is illustrated in Fig. 1-right in the copula domain. Roughly speaking, SK
t

is the region ‘‘exceeding’’ Lt : it is in this very sense that Lt may represent a critical multivariate
threshold.

Inspired by the previous definitions, we can now introduce the following dissimilarity measures
between two phenomena/sites Pi and Pk, associated with the p-dimensional random vectors Xi and
Xk, whose 2p-dimensional copula is Cik.
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‘‘AND’’ dissimilarity measure σ∧

ik . It is given by

σ∧

ik (Cik) =

∫ b

a

(
(1 − t) − C∗

ik(1 − t, . . . , 1 − t)
)2 dt (9)

for suitable a and b, with 0 ≤ a < b ≤ 1 (see below). If we denote by

x(t) = (F−1
i1 (t), . . . , F−1

ip (t), F−1
k1 (t), . . . , F−1

kp (t)) (10)

the 2p-dimensional vector of univariate quantiles of order t associatedwith all the components
of Xi and Xk, then it follows that σ∧

ik (Cik) is a L2-type distance between the probability of
occurrence of a HS of type S∧

x(t) under the co-monotonicity copula M2p (equal to 1 − t) and
under the copula Cik (equal to C∗

ik(1 − t, . . . , 1 − t)).
In the case p = 1, Cik is a bivariate copula. Let (X+

i ,X+

k ) be a pair of one-dimensional random
vectors whose copula is M2: the dissimilarity measure can then be expressed as

σ∧

ik (Cik) =

∫ b

a

(
(1 − t) − C∗

ik(1 − t, 1 − t)
)2 dt

=

∫ b

a

(
P

(
(X+

i ,X+

k ) ∈ S∧

(F−1
i (t),F−1

k (t))

)
− P

(
(Xi,Xk) ∈ S∧

(F−1
i (t),F−1

k (t))

))2

dt

=

∫ b

a
(t − Cik(t, t))2dt,

since (see also Fig. 1-left)

P
(
(Xi,Xk) ∈ S∧

(F−1
i (t),F−1

k (t))

)
= 1 − 2t + Cik(t, t).

In general, it follows that σ∧

ik (C) = 0 if C is the co-monotonicity copula M, and for all pairs
(i, k), i, k = 1, . . . , d, i ̸= k, 0 ≤ σ∧

ik (C) ≤ σ∧

ik (W2p) for all copulas C, where the upper bound
corresponds to the limiting case when the integrable function

W2p(u) = max

{ 2p∑
i=1

ui − 2p + 1, 0

}
, (11)

i.e. the Fréchet–Hoeffding lower bound (Nelsen, 2006) (which is not a copula for p > 1), is used
in Eq. (9) in place of C∗.
‘‘Kendall’’ dissimilarity measure σK

ik . It is given by

σK
ik (Cik) =

∫ b

a

(
(1 − t) − (1 − KCik (t))

)2 dt (12)

for suitable a and b, with 0 ≤ a < b ≤ 1 (see below), where KCik denotes the Kendall
distribution function associated with the copula Cik. If x(t) denotes the vector in (10), which
identifies a Kendall HS via the critical layer Lt=F(xt ), then it follows that σK

ik (Cik) is a L2-type
distance between the probability of occurrence of a HS of type SK

t under the co-monotonicity
copulaM2p (equal to 1 − t) and under the copula Cik (equal to 1 − KCik (t)).
In view of the properties of the Kendall function K (Nelsen et al., 2003), it holds that KC(t) ≥ t
for all t ∈ [0, 1] and all copulas C, with KC(t) = t for all t ∈ [0, 1] only if C = M. Thus, σK

ik = 0
if Cik is the co-monotonicity copula M2p, and 0 ≤ σK

ik (Cik) ≤ L, a fixed constant, that is attained
when in Eq. (12) we set KC(t) = 1 for all t ∈ [0, 1], which corresponds to the Kendall function
associated with the Fréchet–Hoeffding lower bound W2 in the case p = 1.

In the following, we aremainly concernedwith extreme risks such that the largest values of a time
series correspond to the most risky situations. Therefore, in (9) and (12), we set a = 0.5 and b = 1,
i.e. we focus on the upper-right tail/orthant of the joint distributions of interest.
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Table 1
Geographical information concerning the gauge stations recorded in the Po river basin. The coordinates are referred to the
UTM system zone 32N. Also shown is the temporal span of each time series, and the number of available flood episodes—see
text.

# Station River Easting (m) Northing (m) Elevation (m a.s.l.) Period (years) Size

1 Capriolo Oglio 571648.60 5054257.50 136.5 1937–2002 262
2 Ponte Briolo Brembo 545836.90 5061366.50 230.0 1940–2002 502
3 Fuentes Adda 531934.80 5111550.90 198.0 1923–2000 331
4 Lavello Adda 533891.00 5070252.50 194.9 1946–2002 221
5 Miorina Ticino 473271.11 5061682.41 189.9 1923–1993 296
6 Tavagnasco Dora Baltea 407931.10 5043839.00 265.0 1928–2008 337
7 Lanzo SturaLanzo 381321.50 5013761.50 446.9 1930–2008 390
8 San Martino Chisone 364479.80 4971478.00 400.0 1937–2008 163
9 Moncalieri Po 395976.00 4984080.00 212.5 1928–1992 299

10 Farigliano Tanaro 412684.10 4928921.50 235.0 1942–2008 328
11 Montecastello Tanaro 475186.00 4977273.00 79.5 1943–2008 305
12 Serravalle Scrivia 488819.80 4951838.00 195.9 1931–2008 218
13 Ponte Bacchello Secchia 657402.00 4957027.00 21.5 1942–2007 362
14 Bomporto Panaro 662026.00 4954877.00 18.4 1923–2007 397
15 Piacenza Po 555446.00 4990114.00 42.2 1924–2007 558
16 Cremona Po 578307.00 4997855.00 34.3 1972–2007 217
17 Boretto Po 623258.00 4973892.00 20.0 1943–2007 400
18 Roncocorrente Po 635742.66 4990362.55 15.3 1924–1988 431
19 Borgoforte Po 638617.00 4989721.00 14.6 1924–2007 533
20 Pontelagoscuro Po 705774.00 4973904.00 8.5 1923–2007 509

3. The case study

In this section, we analyze flood data recorded at d = 20 gauge stations spread across the Po
river basin (see Table 1), located in Northern Italy: Fig. 2 shows the geographical area and the sites
of interest. The Po river is the largest Italian basin, covering an area of 74,000 km2 (70,000 km2 in
Italy, 4,000 km2 in Switzerland and France), characterized by a main river length of 650 km. The Po
river basin is a strategic area for the Italian economy, producing 40% of the national Gross Domestic
Product, with a population of more than 16 Millions people. Water uses concern industrial activities
(principally, the electricity sector, with 48% of the national hydroelectric production, and 31% of the
thermo-electric production), agriculture, livestock, and inland navigation. As a consequence, floods
may provoke serious harms and detriments.

The time series investigated in the following consist of discharge measurements observed, at a
daily scale, at the d gauge stations of interest. Overall, the observations cover the period 1923–2008,
although some series may start after 1923, and/or end before 2008: viz., only a partial temporal
overlapping is present (see Table 1).

As is typical in hydrology, here we consider a flood as an episode during which the discharge
is larger than a given threshold, as recommended by the guidelines of the Watershed Council (AA.
VV., 2011). Specifically, each episode is characterized by two variables: the Flood Peak Q (in m3/s),
and the Flood Volume V (in 106 m3). According to the Run Method (Yevjevich, 1967; Zelenhasić and
Salvai, 1987), a traditional procedure used in hydrology to extract flood episodes from a time series,
a flood can be identified as follows: (i) it starts when the discharge exceeds a given threshold, and
(ii) it ends when the discharge falls short of the threshold for at least ∆ time units. As a discharge
threshold, in the following the so-called ‘‘Q300’’ is used: this denotes an Alarm-threshold according to
the guidelines of the Watershed Council, and corresponds to the discharge value that is not exceeded
for 300 days in a year (practically, the empirical quantile of the annual discharge series of order
300/365 ≈ 82%), assuming suitable stationarity conditions of the considered flood processes. The
reason for choosing such a threshold is twofold, and represents a valuable compromise between
hydrological and statistical needs: on the one hand, it gives the possibility to extract extreme floods
(the most interesting ones); on the other hand, the size of the flood samples is sufficiently large for
carrying out a proper statistical analysis (see Table 1).
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Fig. 2. Map of the Po river basin, and locations of the gauge stations of interest—see text and Table 1.

Finally, in order to guarantee the physical independence of successive floods episodes (as gener-
ated by different meteorological events), here ∆ is set equal to 3 days, according to the information
provided by theMeteo Office. In order to investigate the possible presence of serial dependence in the
time series, the autocorrelation function is used, as well as the Box–Pierce and the Ljung–Box tests,
in order to check the null hypothesis of independence in the given time series. Here, 20 stations are
considered, each associated with two data bases (flood Peak and flood Volume), for a total amount
of 40 time series. The results indicate that the null hypothesis of (serial) independence cannot be
rejected in 36 out of 40 series separately for each variable (the p-values are much larger than 10%),
while in one case (involving the station of Tavagnasco) both the p-values are smaller than 5%, but
larger than 1%. In the remaining case (involving the station of Bomporto), the p-value associated with
the Volume data is larger than 1%, while the one associated with the Peak data is smaller than 1%.
Note that, upstream the Bomporto gauge station, a water detention basin was built in 1999. This may
represent an anthropogenic disruption that may have affected the discharges collected at Bomporto,
and could explain the serial dependence observed for the Peak time series. However, for the sake of
completeness, in order not to discard information concerning the important river basin of Panaro, the
series related to the station of Bomporto are kept anyway in our study.

Using the same notation as in Section 2, hereinafter we consider the time series of the flood events
Pi, with i = 1, . . . , 20: these consist of the pairs (xi1, xi2) representing the Flood Peak Q and the Flood
Volume V observed at the ith site. Each series has length ti.

In order to perform the cluster analysis, a suitable dissimilarity matrix is computed by using all the
pairwise information from the flood events Pi’s. In particular, we focus on two cases:

1. both the Peak and the Volume are considered for each flood episode;
2. only the Peak is considered for each flood episode.

In the following, we provide detailed explanations concerning the former case, since the latter can
be treated analogously.

As a preliminary step for the clustering investigation, for each pair (Pi, Pk), with i, k ∈ {1, . . . , 20},
i ̸= k, the observations of the pairs (Q , V )’s are identified and selected in such a way that all of the
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occurrence dates of the floods events at the ith and the kth site fall within the same time period:
shortly, we only consider temporally concurrent episodes. Here, driven by specific meteo-hydrological
indications provided by the Meteo Office, we empirically set the temporal interval for potential
overlap equal to 5 days: this choice identifies flood episodes generated by the same meteorological
event over the Po river basin, acting at (short) different times at (close) spatially separated sites.

The procedure for calculating the dissimilarity matrix between P1, . . . , P20, as based on the AND
HS approach, is outlined below.

Algorithm 3.1 (Dissimilarity Matrix Based on the AND HS). For each i, k ∈ {1, . . . , 20}, i ̸= k, proceed
as follows.

1. Extract the observations of concurrent episodes, as given by the time series

(xi1, xi2, xk1, xk2)s,

with s = 1, . . . , sik: here, sik is the size of the sample of temporally matching pairs.
2. Test the independence between (xi1, xi2) and (xk1, xk2) according to the procedure described in

Genest and Rémillard (2004).
3. If the independence assumption is rejected (at a given significance level α), then set

σ̂∧

ik =

∫ b=1

a=0.5

(
(1 − t) − Ĉ∗

ik(1 − t, 1 − t, 1 − t, 1 − t)
)2

dt,

where Ĉ∗
ik is an estimate of the 4-dimensional empirical survival copula associated with the

observations.
4. Otherwise, set

σ̂∧

ik =

∫ b=1

a=0.5

(
(1 − t) − Π∗

4 (1 − t, 1 − t, 1 − t, 1 − t)
)2 dt

=

∫ b=1

a=0.5

(
(1 − t) − (1 − t)4

)2
dt ≈ 0.0366753,

whereΠ∗

4 is the 4-dimensional survival version of the Independence Copula, modeling the joint
behavior of independent variables.

Remark 3.1. In the present case study, the level of the independence test is fixed to α = 10%. In the
case p = 1, when only one variable is associated with each flood event, Step 2 is replaced by a test of
independence based on the estimated Kendall τ (Genest and Favre, 2007). Moreover, if the number
of concurrent events extracted from the original time series is less than 2, then the assumption of
independent events is (reasonably) used by default.

Similarly, the computation of the dissimilarity matrix based on the Kendall HS approach can be
carried out as outlined below.

Algorithm3.2 (DissimilarityMatrix Based on the Kendall HS). For each i, k ∈ {1, . . . , 20}, i ̸= k, proceed
as follows.

1. Extract the observations of concurrent episodes as in Algorithm 3.1.
2. Test the independence as in Algorithm 3.1.
3. If the independence assumption is rejected (at a given significance level α), then set

σ̂K
ik =

∫ b=1

a=0.5

(
(1 − t) − (1 − K̂Cik (t))

)2
dt,

where K̂Cik is the estimate of the Kendall function of Cik calculated according to the procedure
outlined in Barbe et al. (1996).
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4. Otherwise, set

σ̂K
ik =

∫ b=1

a=0.5

(
(1 − t) − (1 − KΠ4 (t))

)2 dt

=

∫ b=1

a=0.5

(
(1 − t) −

(
1 − t

3∑
i=0

logi(1/t)
i!

))2

dt ≈ 0.0412593,

where KΠ4 is the Kendall function of the 4-dimensional Independence Copula calculated using
(McNeil and Nešlehová, 2009, Proposition 4.5).

Finally, as anticipated above, Agglomerative Hierarchical Clustering with average-linkage method
for computing distances between each cluster (which usually represents a good compromise between
single- and complete-linkage) can be applied directly to the dissimilaritymatrix. This proceduremaybe
represented by a two-dimensional diagram known as a dendrogram, which illustrates the aggregation
made at each stage of the process. In standard agglomerative clustering, partitions are achieved by
selecting one of the solutions in the nested sequence of clusterings forming the hierarchy, i.e. by
cutting the dendrogram at the specific level of aggregation (viz., the Height on the vertical axis), so
that clusters below that height are distant from each other by at least that amount. The dendrograms
obtained from hierarchical clustering applied to Flood data are shown in Figs. 3 and 6.

The proposed algorithms have been implemented bymeans of the software R (R Core Team, 2017);
in particular, the functions available in theR ‘‘copula’’-package (Yan, 2007; Kojadinovic andYan, 2010)
were used for the estimation of the copula (and related quantities) associated with the phenomena of
interest, and to carry out multivariate independence tests based on the empirical copula process.

4. Results and discussion

In the following, we first discuss the results related to a bivariate approach involving both the
variables Flood Peak and Flood Volume (see Section 4.1). Here, aggregations into 3- and 4-clusters
are presented, since these represent ‘‘natural’’ choices. In fact, on the one hand, such partitions are
the ones suggested by the structure of the dendrograms shown in Fig. 3, which statistically indicate
(even visually) the plausibility of such aggregations. On the other hand, these clusters also make
sense from a hydrological point of view, e.g. distinguishing between Alpine and Apennine fluvial
regimes. In particular, eventually this way of data pooling makes a distinction between different
precipitation forcings (rainfall, snow) and hydrological flow contributions (rainfall-runoff, snow
melting, groundwater flow) occurring in the considered river sites, which affect and control the
dynamics of floods.

Then, in Section 4.2, a historical (univariate) contrast will be presented by considering the variable
Flood Peak only, and comparing the clustering of several Po river basin stations previously outlined
in De Michele and Rosso (2002) with the one resulting from the AND and Kendall approaches
proposed in this work.

The outcomes of the cluster analyses discussed in this section represent an innovative contribution
concerning the regionalization issues mentioned in the introduction. For instance, the new informa-
tion regarding the joint dynamics of Flood Peak and Flood Volume (gained via the multivariate clus-
tering approach outlined here)may provide new, useful guidance for evaluating several (multivariate)
design quantiles of interest in ungauged sites, a problem of utmost relevance in practical applications.
However, this latter issue is outside the scope of the present paper, and is left for future works.

4.1. Flood peak and volume

The results are commented, and are shown in Figs. 4–5.

• [3-cluster, AND & Kendall: Fig. 4] In this case, the AND and Kendall criteria yield the same
cluster solution: viz., a macro-cluster grouping the central Alpine stations 1–5 (viz., Capriolo,
Ponte Briolo, Fuentes, Lavello, and Miorina), located in Lombardia region, the western Alpine
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Fig. 3. Flood Peak and Volume. Dendrogram showing average-linkage clustering of flood data based on the AND (top) and
the Kendall (bottom) dissimilarity measure—see text. The labels on the horizontal axis correspond to the stations’ reference
numbers (see Table 1) and are placed according to the aggregation process. In both cases, the cut of the dendrogram
corresponding to the 3- and 4-group solution is indicated by the dashed and dotted lines, respectively.

stations 7–11 (with the exception of Tavagnasco (6) alone), located in Piedmont region, and
themain stream stations 15–20 (viz., Piacenza, Cremona, Boretto, Borgoforte, Roncorrente, and
Pontelagoscuro), whereas stations 12–14 (viz., Serravalle, Ponte Bacchello and Bomporto)make
a cluster, which we denominate ‘‘Apennine’’ cluster, since these sites belong to the Apennine
part of the Po river basin.
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Fig. 4. Flood Peak & Volume. Map of 3-cluster aggregation as extracted from the dendrograms shown in Fig. 3 concerning the
AND dissimilarity measure approach and the Kendall one—see text. The clusters are indicated by using different markers and
colors. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this article.)

• [4-cluster, AND: Fig. 5 (top)] This case is similar to the 3-cluster solution presented above, but
a Piedmont sub-cluster is now identified (stations 7–8): the different behavior of the Central
and the Western Alpine stations could be explained by the (occasional) regional dissimilarity
of the meteorological events generating the corresponding floods.

• [4-cluster, Kendall: Fig. 5 (bottom)] In this case, a cluster is identified including the sites
located in central Alpine region (1–5) and those located along themain stream (15–20), station
6 is a cluster alone, stations 7–11make kind of awestern Alpine cluster, and lastly the Apennine
cluster is identified (stations 12–14).

As a general comment, the following important outcomes are evident.

• An Apennine cluster is always well identified (stations 12–14). From a hydrological point of
view (i.e., in terms of the corresponding fluvial regimes), this may represent an interesting
upshot of the clustering strategies outlined in this work, identifying an Apennine dynamics
different from the Alpine one.

• The stations located in the Central Alps (1–5) are always clustered together with the sites
15–20, on the middle-final part of the Po river main stream: again, this has a clear hydrological
meaning, since the Alpine basins mainly influence the behavior of the sites located along the
main stream.

• Station 6 (Tavagnasco), in the Piedmont Alpine region, always forms a cluster alone: apparently,
this station has a peculiar hydrological regime (see also the discussion in Section 4.2).

• While the 3-cluster solutions under the AND and the Kendall criteria are identical, in the
4-cluster case the Kendall approach identifies a Piedmont Alpine cluster ‘‘larger’’ than in the
AND case: viz., all the stations 7–11 instead of only the stations 7–8. As above, the identification
of such a cluster, showing a behavior different from the one of the Central Alpine stations, could
be supported by meteorological considerations concerning the different etiology of floods.
From a hydrological point of view, this may represent an interesting result, since the AND
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Fig. 5. Flood Peak & Volume. Maps of 4-cluster aggregation as extracted from the dendrograms shown in Fig. 3 concerning the
AND dissimilarity measure approach (top) and the Kendall one (bottom)—see text. The clusters are indicated by using different
markers and colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

and the Kendall approaches are based on different Hazard Scenarios (see Fig. 1), i.e. different
mechanisms/dynamics of aggregation, a feature that may not be (or become) evident using a
too coarse and rough 3-cluster partition.

As an external criterion for the evaluation of the clustering results we may consider a measure
of internal cohesion and between-cluster separation, using only the geospatial features of the data.
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Fig. 6. Flood Peak. Dendrogram showing average-linkage clustering of flood data based on the AND (top) and the Kendall
(bottom) dissimilarity measure—see text. The labels on the horizontal axis correspond to the stations’ reference numbers (see
Table 1) and are placed according to the aggregation process. The cut of the dendrogram corresponding to the 6-cluster solution
is indicated by the dashed line.

Specifically, for each clustering solution derived from the hierarchical structures in Figs. 3 and 6, we
look at the ratio,Wb, of the within-cluster to the between-cluster dispersion, defined in terms of sums
of squares, computed using the geographical information (Easting, Northing and Elevation) reported
in Table 1. Such index decreases monotonically as the number of clusters k increases, but a drastic
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Fig. 7. The index Wb(k) = W (k)/B(k) vs. the number of clusters k, where W (k) is the total within-cluster sum of squares
around the cluster means and B(k) is the between-cluster sum of squares, computed by using geographical coordinates of the
corresponding cluster members. The graphs ofWb(k) are obtained from hierarchical clustering of Flood Peak and Volume data
(see Fig. 3) with AND (solid line) and Kendall (dashed line) dissimilaritymeasure (top), and hierarchical clustering of Flood Peak
data (see Fig. 6) with AND (solid line) and Kendall (dashed line) approach (bottom).

change in the graph structure (e.g., an elbow shape) may indicate an appropriate number of groups.
As can be seen from Fig. 7 (top), the graph of Wb related to the dendrograms in Fig. 3 identifies the
four-cluster solution as a valuable choice, since k = 4 corresponds to the value beyond which the
decrease ofWb flattens markedly for both dissimilarity approaches.



16

4.2. Comparison with previous literature

In order to compare our results with those present in literature, here we compare the outcomes
obtained considering the variable Flood Peak with those outlined in De Michele and Rosso (2002),
where a clustering of discharge stations located in the Po river basinwas attempted considering (i) the
maximumannual Flood Peak as the variable of interest, and (ii) a combination of seasonality indices of
flood and precipitation occurrences, and the statistical scale invariance of Flood Peak with respect to
the basin area, as aggregation criteria. However, note that the database considered by DeMichele and
Rosso (2002) is different from the present one, in terms of (a) the variable of interest (in De Michele
and Rosso (2002), it is the annual maximum Flood Peak), and (b) the number of sites considered (57
sites in DeMichele and Rosso (2002), with drainage area ranging from10 to 2500 km2, not accounting
for those located along the main stream, instead of the 20 sites used here, with at least 20 years of
observations).

In De Michele and Rosso (2002), four distinct ‘‘homogenous’’ Regions (an analogous of the notion
of cluster) were identified – two in the Alps, and two in the Apennines, intended as geographical
regions – according to seasonality indices and the scale invariant behavior of floodswith respect to the
basin area. In particular (see also Table 1 and Fig. 2): (A) Region A, or Central Alps and Prealps, which
includes the Po sub-basins fromChiese to Sesia river basins; (B) Region B, orWestern Alps and Prealps,
fromDora Baltea river to Rio Grana; (C) Region C, or North-Western Apennines and Tyrrhenian basins,
which include the Po sub-basins from Scrivia river basin to Taro river basins, and in addition Ligurian
basins with outlet to the Tyrrhenian sea; (D) Region D, or North-Eastern Apennines, from Parma to
Panaro river basin. Furthermore, a ‘‘Transition Zone’’ was identified, represented by the Tanaro river
basin, a catchment where the sites have characteristics similar to (two, or more) neighboring clusters.

According to themap drawn by DeMichele and Rosso (2002), the 20 sites considered in this study
are spread as follows:

• Region A includes the sites 1–5,
• Region B includes the sites 6–9,
• Region C includes the site 12,
• Region D includes the sites 13–14, and
• the Transition Zone includes sites 10–11.

The dendrograms presented in Fig. 6, concerning the Flood Peak variable only, and the AND and
Kendall approaches, show that two well-separated groups can be distinguished in both cases, while
several smaller sub-clusters are also evident. At a finer level of aggregation, it can be seen that a
6-cluster solution is a feasible one; this is also confirmed by the graph of Wb against the number
of clusters (see Fig. 7 (bottom)), which is practically constant from k = 6 onwards. The resulting
partitions are presented in Fig. 8, yielding the same AND and Kendall clusters.

Interestingly enough, the eventual configuration is quite close to the one outlined in De Michele
and Rosso (2002): as above, the behavior of site 6 (Tavagnasco) makes an exception, showing a
dynamics different from the one of the other closest sites located in the Piedmont region, viz. sites
7–9. Moreover, sites 10–11 (Farigliano and Montecastello, also belonging to the Piedmont region) are
assigned a behavior different from the one of sites 7–9 located in the same region, which agrees with
the distinction between Region B and the Transition Zone made in De Michele and Rosso (2002).
It should be point out that such agreement is not trivial and is particularly remarkable, since the
variable considered (i.e., discharge) is not the same in the two studies, being sampled at different
time resolutions (annual (maximum) and daily).

5. Conclusions

In this work, inspired by the EU Directive 2007/60/EC on the assessment and the management of
flood risks, we investigated the concurrence of flood episodes in a given region, in order to identify
common patterns of flood dynamics: this represents an essential information for the evaluation of
the potential threatening of flood occurrences. In particular, each flood event has been considered
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Fig. 8. Flood Peak. Map of 6-cluster solution as extracted from the dendrograms shown in Fig. 6, for the AND and the Kendall
dissimilarity measure approach—see text. The clusters are indicated by using different markers and colors. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

as a multivariate object characterized by a number of physical variables, like Flood Peak and Flood
Volume.

The methodology proposed aims at identifying spatial sub-regions characterized by similar flood
regimes, by taking into account the interaction between the variables at play. It is grounded on the
concept of Hazard Scenarios (namely, the AND and the Kendall ones), and a Copula-based Agglomer-
ative Hierarchical Clustering approach, thus representing an innovative contribution concerning the
regionalization problem, of utmost importance in hydrological applications. The procedure has been
applied to 20 gauge stations spread across the Po river basin (the largest Italian one), a strategic area
for Italian economy.

The analyses outlined in this work comprise both the bivariate approach, where the joint behavior
of the variables Flood Peak and Flood Volume is considered, and the univariate case (where only the
Flood Peak is used), the latter approach being useful for comparing the corresponding outcomes with
those present in literature. The clusters detected by the proposed algorithms seem to adequately cap-
ture the distinction between different meteorological forcings and hydrological flow contributions,
although the dissimilarity measure adopted is obtained via two different approaches. As outlined in
Section 4.1, the integration of Flood Peak and Flood Volume informationmay provide amore compre-
hensive picture of flood dynamics and threatening with respect to univariate approaches/scenarios
focusing the attention on one variable only (as in Section 4.2), with obvious advantages in terms of
flood risk assessment—e.g. for the estimate of design quantiles in ungauged basins. Thismay represent
a progress over, e.g., the past work by De Michele and Rosso (2002), and provide a promising and
valuable investigation tool to identify possible regions where risk and water managers should adopt
a cross-border strategy to mitigate and prevent the hydrological risks.

Notably, the methodology proposed is a general one, and could also be applied to other kind of
environmental events of interest, like droughts or heat waves.
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