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Abstract 

This paper presents a comprehensive model of a 

motorcycle mounting system. The model presented herein 

consists of two main assemblies. The powertrain assembly and 

the swing-arm assembly are modeled as a six degree of freedom 

rigid bodies. The two assemblies are connected to each other 

using a shaft that is usually referred to as the coupler. The 

connection points on both assemblies are known.Unlike 

automobiles, motorcycle performance and handling is highly 

affected by the external disturbance. In addition to minimizing 

the shaking loads, the mounting system must be set up such that 

it also minimizes the external disturbance from the environment 

such as irregularities in the road profile and road bumps. This 

disturbance can be transmitted through the tire patch to the 

engine causing it to hit nearby components. The engine 

movement needs to be minimized due to space limitations 

surrounding the engine. In order to do so, these transmitted 

external loads must be minimized by the use of the mounting 

system. The load minimization process is achieved by selecting 

the optimum stiffness parameters, location and orientation of the 

mounting system that are supporting the engine. This goal is 

achieved by an optimization scheme that guarantees that the 

transmitted loads are minimized. An investigation will be done to 

explore the effect of different road profiles on the mount final 

geometrical shape.  
 

Keywords: Motorcycle mounts; Mount design; Engine 

mounts; Vibration isolation; Road loads 

 

1. Introduction 

In the paper presented herein, the effect of external 

loads on the mounting system is investigated. One of the main 

problems that engineers encounter in vibration isolation is the 

problem of motion isolation. This problem is seen in the case 

of external loads that are transmitted to the engine. These 

loads which are due to the irregularities of the road profile are 

transmitted to the frame through the tire patch.A periodic road 

profile will be investigated in this work. The main goal is to 

come up with an appropriate mounting system that minimizes 

the transmission of these externalloads. 

Since the powertrain represents the main lumped 

mass in a vehicle, it should be fixed on the frame using a 

resilient rubber mount. The mounting system is designed in a 

way that guarantees low vibration transmission from/into the 

engine. Internal loads and external loads or both are among 

the main source of vibration that should be considered. The 

shaking forces are generated due to the engine imbalanceand 

the external load could be periodic or non-periodic. The work 

presented herein considers both periodic and non-periodic 

road profiles.Fig.1, showsthe twelve degree of freedom model 

used in the study where the powertrain is connected to the 

swing-arm via the coupler shaft. The engine mount plays a 

major role in isolating the vibrations transmitted due to 

various loads and supporting the powertrain static weight. It is 

also used to fix the powertrain in place and prevent it from 

any sort of movement in the fore-aft, lateral and vertical 

directions. In order to come up with a proper mounting 

system, finding the mount characteristics only are not 

sufficient.  

 
Figure 1.Twelve DOF model  

Spiekermann, et al. (1985) discussed the issue of 

minimizing forces that are transmitted through the mounting 

system. These forces can be caused as a result of rotational 

imbalance and reciprocating masses.The design of engine 

mount has been addressed by Swanson et al. (1993). He 

suggested treating the mount orientation and stiffness as 

variables. Kim (1997) suggested lookingat the mount 

geometric properties as well. In the work presented herein, a 

shear (bush) mount which is made of rubber is used. This type 

of mounts is commonly used in passenger cars due to its low 

cost. These mounts may vary in shape depending on the 

specifications of the design. In the design process the 

geometry is parameterized to define the shape of the mount. 

The parameters are found by optimizing the minimum 

difference of the stiffness values and the desired stiffness 

values obtained from vibration analysis. The optimization 

process is done using a nonlinear finite element model that 

employs the nonlinear properties of rubber from which the 

mount is made off. Liu (2003) presents a method used in the 

optimization design of engine mounts. The constraint problem 

is solved using some of the known parameters such as engine 

center of gravity, mount stiffness rates and mount location 

and/or orientation.Courteille and Mortier(2005) present a new 

technique to find an optimized and robust solution for the 

mounting system. Multi objective algorithm (Pareto 

optimization) is used as a base to the multi objective robust 

optimization problem. The use of this technique enhances the 

vehicle isolation characteristics.Zhang and Richards(2006) 

presented a study of the dynamic analysis and parameter 

identification of a rubber isolator using Maxwell-Voigt model. 

In the study, they noticed the difference between the Voigt 

model which simply consists of a spring damper connected in 

parallel and the Maxwell-Voigt model which includes another 

spring and a damper connected in series the Maxwell model. 

This paper introduces a comprehensive twelve 

degree of freedom model for the motorcycle mounting system 

taking into consideration the effect of the road loads. Road 

loads are critical when designing a motorcycle mounting 
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system and this due to the nature of motorcycles and what it 

takes to achieve the best handling. This paper also introduces 

the concept of mount shape optimization in which the final 

mount shape depends on the stiffness values of the mounts in 

all three principal directions.   

The paper is organized as follows. Section 2 

discusses the dynamic analysis in which the engine mount is 

characterized. Section 3 explains the road loads and the road 

profiles. In this section, the external load transmitted to the 

engine through the tire patch is formulated. The optimization 

problem formulation is presented in section 4. The concept of 

shape optimization is presented in section 5. Section 6 and 

section 7 presents the numerical results and conclusions. 

 

2. Dynamic Analysis 
This section represents the equations of motion of the 

mounting system. Fig. 2, shows a schematic diagram of the 

powertrain, swing-arm, rear shock absorber and the coupler. 

The complete model used herein consists of two rigid bodies. 

The first rigid body represents a six degree of freedom model 

of the powertrain and the second rigid body represents another 

six degree of freedom model of the swing-arm. The 

connection between the two rigid bodies is done using a 

coupler shaft that is modeled as a spring-damper system with 

translational and rotational capabilities in the three coordinate 

directions. The rear shocks and the rear wheel are modeled as 

a spring-damper element. Fig. 3, shows a schematic diagram 

of the mount that will be used in the study presented herein. 

The model represented in Fig.3 is a simple Voigt model that 

consists of a rigid body that resembles the powertrain which is 

connecting to the frame using the mounting system. The 

stiffness k and the damper c represent a single D.O.F system 

with an equation of motion shown in Eq. (1).  

𝑀𝑥 +  𝐶𝑥 +  𝐾𝑥
= 𝐹𝑒𝑖𝜔𝑡                                                                                                 (1) 

In Eq. (1), M, C and K represent the system mass, 

damping and stiffness matrices respectively. F denotes the 

input force vector that can be caused be either the shaking 

force or the road load or both.x represents the displacement 

vector. The terms of the inertia matrix M of the powertrain are 

with respect of the global coordinate system. The engine 

mounts stiffness, location and orientation are presented in the 

mount local coordinate system. The mount parameters must 

be transformed using a transformation matrix to the global 

coordinate system. The mass matrix of the powertrain is 

represented in Eq. (2). 

 
 

 

Figure 2. Powertrain and swing-arm layout 

 

 

Figure 3.Schematic diagram of the mount model. 

𝑀𝑝 .𝑡 =

 
 
 
 
 
 
 

𝑚𝑒 0          0
0        𝑚𝑒            0
0        0       𝑚𝑒

0 𝑚𝑒𝑧𝑒 −𝑚𝑒𝑦𝑒
      −𝑚𝑒𝑧𝑒    0 𝑚𝑒𝑥𝑒

𝑚𝑒𝑦𝑒     −𝑚𝑒𝑥𝑒 0

0     −𝑚𝑒𝑧𝑒 𝑚𝑒𝑦𝑒

𝑚𝑒𝑧𝑒 0 −𝑚𝑒𝑥𝑒

−𝑚𝑒𝑦𝑒  𝑚𝑒𝑥𝑒 0

𝐼𝑥𝑥𝑒 −𝐼𝑥𝑦𝑒 −𝐼𝑥𝑧𝑒
−𝐼𝑥𝑦𝑒 𝐼𝑦𝑦𝑒 −𝐼𝑦𝑧𝑒

−𝐼𝑥𝑧𝑒 −𝐼𝑦𝑧𝑒 𝐼𝑧𝑧𝑒  
 
 
 
 
 
 

    2 

In Eq. (2), Mp.t is the mass of the powertrain assembly, (xe, ye, 

ze) is the location of the center of gravity of the powertrain 

with respect to the origin of the coordinate system and Ixxe, 

Iyye, Izze, … are the inertia of the powertrain with respect to the 

origin of the coordinate system. The stiffness and damping 

matrices of an individual mount expressed about its own 

coordinate system is given by Eqs. (3) and (4). 

𝑘𝑖
∗ =   

𝑘𝑥𝑖 0 0
0 𝑘𝑦𝑖 0

0 0 𝑘𝑧𝑖

                                                        (3) 

𝑐𝑖
∗ =   

𝑐𝑥𝑖 0 0
0 𝑐𝑦𝑖 0

0 0 𝑐𝑧𝑖

                                                          (4) 

A transformation matrix (A) is used in order to 

transfer both, the stiffness and damping matrices to the global 

coordinate system as follows:  

𝑘𝑖 =  𝐴𝑖
𝑇𝑘𝑖

∗𝐴𝑖and𝑐𝑖 =  𝐴𝑖
𝑇𝑐𝑖

𝑇𝐴𝑖  where 𝑐𝑖and𝑘𝑖  are the 

individual mount damping and stiffness matrices expressed in 

the global coordinate system. The matrix Ai is a 

transformation matrix which is a combination of the three 

different rotations 𝜃1, 𝜃2and𝜃3 about x, y and z axes with 

respect to the global coordinate system. 
𝐴𝑖

=  

 
 
 
 
 
𝐶𝜃2𝑖𝐶𝜃3𝑖 −𝐶𝜃1𝑖𝑆𝜃3𝑖 + 𝑆𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖 𝑆𝜃1𝑖𝑆𝜃3𝑖 + 𝐶𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖

𝐶𝜃2𝑖𝑆𝜃3𝑖 𝐶𝜃1𝑖𝐶𝜃3𝑖 + 𝑆𝜃1𝑖𝑆𝜃2𝑖𝑆𝜃3𝑖 𝑆𝜃1𝑖𝑆𝜃3𝑖 + 𝐶𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖

−𝑆𝜃2𝑖 𝑆𝜃1𝑖𝐶𝜃2𝑖 𝐶𝜃1𝑖𝐶𝜃2𝑖  
 
 
 
 

      (5) 

In Eq. (5) 𝐶𝜃𝑖 = 𝑐𝑜𝑠 𝜃𝑖 and𝑆𝜃𝑖 = 𝑠𝑖𝑛 𝜃𝑖 . 

The transformed damping and stiffness matrices are shown in 

Eq. (6)  

𝐶𝑒 =   
𝐶11 𝐶12

𝐶21 𝐶22

 , 𝐾𝑒

=   
𝐾11 𝐾12

𝐾21 𝐾22

                                                                 (6) 

𝐾11 =   𝑘𝑖  ,    𝐾12 =  − 𝑘𝑖𝑟 𝑖  , 𝐾21 =  𝐾12  
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𝐾22

=  − 𝑟 𝑖𝑘𝑖𝑟 𝑖                                                                                                               (7) 

𝐶11 =   𝑐𝑖  ,    𝐶12 =  − 𝑐𝑖𝑟 𝑖 , 𝐶21 =  𝐶12  

𝐶22

=  − 𝑟 𝑖𝑐𝑖𝑟 𝑖                                                                                                                (8) 

𝐾𝑒and𝐶𝑒represents the overall damping and stiffness matrices 

of the powertrain assembly shown in Eq. (6). 𝑟 𝑖represents the 

skew-symmetric matrix that corresponds to an individual 

mount position  𝑟𝑥𝑖 , 𝑟𝑦𝑖 , 𝑟𝑧𝑖  and it’s given by: 

𝑟 𝑖 =   

0 −𝑟𝑧𝑖 𝑟𝑦𝑖
𝑟𝑧𝑖 0 −𝑟𝑥𝑖

−𝑟𝑦𝑖 𝑟𝑥𝑖 0
                                   (9) 

A comprehensive twelve DOF model will be used to 

represent the engine mounting system. A coupler shaft is used 

to connect the powertrain assembly and the swing-arm 

assembly at a pivot point. This configuration is common in 

motorcycle applications and provides sufficient information to 

capture the isolation characteristics. This model is based on 

two rigid bodies, one is for the powertrain assembly and the 

other one is for the swing-arm assembly connected together 

using a coupler shaft. This model assumes that the frame is 

infinitely rigid. The equation of motion of the twelve DOF 

system is as follows: 

𝑀𝑋 +  𝐶𝑋 +  𝐾𝑋
= 𝐹𝑒𝑗𝜔𝑡                                                                                            (10) 

In Eq. (10), M, C and K are a 12 x 12 mass, damping and 

stiffness matrices respectively of the coupled swing-arm 

powertrain assembly. X is the displacement vector of the 

assembly which consists of the translational and rotational 

displacements. 𝑋 =   𝑥𝑠𝑎𝑦𝑠𝑎𝑧𝑠𝑎𝛼𝑠𝑎𝛽𝑠𝑎𝛾𝑠𝑎𝑥𝑒𝑦𝑒𝑧𝑒𝛼𝑒𝛽𝑒𝛾𝑒 
𝑇  

 The mass, stiffness and damping matrices 

representing the two rigid bodies, i.e. the powertrain and the 

swing-arm are constructed separately and then combined 

using the coupler shaft properties. The subscript ‘sa’ 

represents parameters related to the swing-arm and the 

subscript ‘e’ represents parameters related to the powertrain. 

To account for different orientations of the mounts, the 

stiffness and damping are compiled in the mount local 

coordinate system then transformed using the transformation 

matrix shown in Eq. (5). Eq. (5) consists of a set of rotational 

matrices about the three coordinates. Bryant angles, Euler 

angles or directional cosines could be used to construct the 

transformation matrix.   

𝑀 =   
𝑀𝑠𝑎 𝑍6

𝑍6 𝑀𝑒
                                                       (11) 

In Eq. (11), Z6 is 6x6 zero matrix and Msa and Me are 6x6 

swing-arm and powertrain inertia matrices. The stiffness and 

damping matrices of the assembly are defined as follows: 

𝐶 =   
𝐶𝑠𝑎 + 𝐶𝑐 −𝐶𝑐

−𝐶𝑐 𝐶𝑒 + 𝐶𝑐

                                        (12) 

𝐾 =   
𝐾𝑠𝑎 + 𝐾𝑐 −𝐾𝑐

−𝐾𝑐 𝐾𝑒 + 𝐾𝑐

                                              (13) 

In Eqs. (12)and (13), Ksa, Ke, Csaand Ce are 6x6 stiffness 

and damping matrices of the swing-arm and powertrain. 

Ksa and Csa are constructed that same way that Ke and Ce 

are constructed as shown in the previous section. Kc and 

Ccare 6x6 diagonal matrices that represent the stiffness 

and damping of the coupler that connects the swing-arm 

and powertrain. 

3. Road Loads 

The road loads are due to irregularities in the 

road profile which could be periodic or non-periodic. 

These road profiles are analyzed for a specific 

displacement functions in which the frequency content 

of the periodic profiles is determined using the Fourier 

series expansion of the displacement function. The 

frequency content for the non-periodic profiles is 

determined using the Fourier transform. Herein, the 

Fourier series coefficient and the frequency content are 

obtained using the Fast Fourier Transforms (FFT) 

presented in Chen (2001). The input force resulted from 

a certain road profile is determined using Eq. (14). 
𝐹𝑦 =

𝑘𝑥 + 𝑐𝑥                                                                             (14) In Eq. 

(14), Fy is the vertical component of the force that is 

transmitted through the tire patch due to the displacement x 

and the velocity 𝑥  as a result of the road profile change. k and 

c are the stiffness and damping of the rear wheel in the y-

direction. 

The continuous time Fourier series (CTFS) for a 

periodic road profile is represented as follows: 

                           𝑥 𝑡 

=   𝑐𝑚𝑒𝑗𝑚 𝜔𝑜 𝑡  ; 𝑤𝑒𝑟𝑒 𝜔𝑜

∞

𝑚= −∞

=  
2𝜋

𝑃
                                                            (15) 

cm represents the Fourier series coefficients and are 

determined using Eq.(16). 

                           𝑐𝑚

=  
1

𝑃
 𝑥 𝑡 𝑒−𝑗𝑚 𝜔𝑜 𝑡  𝑑𝑡                                            16 

𝑃
2 

−𝑃
2 

 

In the above equations P is the fundamental period of the 

displacement function x(t) that corresponds to the 

fundamental frequency ωo. On the other hand, the discrete 

time Fourier series (DTFS) is represented for the discredited 

displacement function as follows: 

                             𝑥 𝑛 = 𝑥 𝑛𝑇 

=   𝑐𝑚𝑑 𝑒𝑗𝑚 𝜔𝑜𝑛𝑇

𝑚= <𝑁>

                       (17) 

In Eq. (17)  𝜔𝑜 =  2𝜋/𝑁𝑇 and cmd are the Fourier series 

coefficients which are determined as  

                             𝑐𝑚𝑑

=  
1

𝑁
 𝑥 𝑛 𝑒−𝑗𝑚 𝜔𝑜𝑛𝑇

𝑁−1

𝑛=0

                                            (18) 

In Eqs. (17) and (18), ωo is the fundamental frequency and T 

is the sampling period. The DTFS coefficients can be 

determined using Eq. (19), if the a band limited displacement 

function x(t) and an appropriate sampling period T is chosen 

using FFT.   

𝑐𝑚𝑑 =  
𝑋 𝑚 

𝑁
                                                                          (19) 

In Eq. (19), X[m] is the FFT of x[n] and N is the number of 

terms of x[n] used to compute the FFT. 

The continuous time Fourier transform (CTFT) of the 

displacement function is given in Eq. (20) and the discrete 

time Fourier transform (DTFT) is given in Eq. (21). 
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                             𝑋 𝜔 

=   𝑥 𝑡 𝑒−𝑗𝜔𝑡 𝑑𝑡                                                (20)

∞

−∞

 

                            𝑋𝑑 𝜔 

=   𝑥 𝑛𝑇 𝑒−𝑗𝜔𝑛𝑇                                          (21)

∞

𝑛=−∞

 

In the above equations, X(ω) is the spectrum of x(t) which can 

used for periodic and non-periodic displacement functions.  

Fast Fourier transform (FFT) is employed herein to 

analyze the road input for which the displacement profile is 

known as a function of time as shown in Fig. 4. For these 

inputs, the road load is modeled as shown in Eq. (14). The 

model presented in Eq. (14) is a simplistic model that holds in 

the cases where no slip is present. FFT is used to obtain the 

frequency spectrum for the road profile. Truncation of the 

spectrum and the time history are shown in Figs. 5 and 6 

respectively which are used to reconstruct the road profile 

shows the accuracy of the truncated model. This truncated 

spectrum is used to solve for the steady state displacement.    

 
Figure 4.Road Profile. 

 
Figure 5.Magnitude Spectrum. 

 

 
Figure 6.Reconstructed Time Plot. 

 
4. Optimization Problem 

This section presents the formulation of the 

optimization problem. The mount optimization is highly non-

linear. Multiple runs are done to avoid premature convergence 

to local minima and multiple starting points were used. The 

optimization problem for is perused using the Sequential 

Quadratic Programming (SQP) techniquepresented in 

Rao(2009). The objective function that is used in this work is 

the weighted sum of the transmitted force through the 

individual mount. The transmitted forces through the mounts 

are due to the irregularities in the rood profile and road 

bumps. The force𝑓𝑖  transmitted to the frame through the 

individual mount is given as follows: 

𝑓𝑖 =   −𝑘𝑖
∗𝑘𝑖

∗𝑟 𝑖  
𝑋𝑡𝑖

𝑋𝑟𝑖
                                                       (22) 

In Eq. (22), 𝑋𝑡𝑖and𝑋𝑟𝑖   represents the translational and 

rotational displacement at the center of gravity of the 

powertrain as result of the shaking load. 𝑘𝑖
∗is the local 

stiffness matrix for the individual mount and 𝑟 𝑖  is the skew 

symmetric from the position vector of the individual mount  

represented in Eq. (9). The objective 𝑓𝑤 function is assembled 

by summing the Euclidean norm of the individual force 

transmitted through each mount.  

                            𝑓𝑤

=   𝜆𝑗
𝑗

  𝑓𝑖 

𝑖

                                                  (23) 

In Eq. (23), 𝜆𝑖  is the weighting parameter that corresponds to 

different loading conditions.  

 Deflection constraint is added to the optimization 

problem which dictates the maximum allowable engine 

weight. The static deflection Xst at the origin of the global 

coordinate system is computed as: 

𝑋𝑠𝑡

=  𝐾−1𝐹𝑠𝑡                                                                                                                 (24) 

In Eq. (24), Fst is the static load acting on the system.  

The engine mount optimization problem can be stated as 

follows: 

𝑀𝑖𝑛 𝑓𝑤   𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖                                                                                                            (25) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗  𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖  ≤ 0    𝑗 = 1, … , 𝑁 

In Eq. (25), the mount stiffness, location and orientation 
 𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖  are the design variables that are subjected to a total 

of N number of constraints 𝑔𝑗 . The constraints that are used in 

the above problem consist of bounds constraints on the engine 

mount stiffness, constraints on the mount location based on 
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the available space, constraints on the mount orientation that 

is dictated by symmetry and finally a constraint on the 

deflection of the center of gravity of the powertrain due to the 

static weight of the powertrain. The objective function fw is 

defined in Eq. (23). Both fw and 𝑔𝑗  are functions of the design 

variables  𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖 . 
5. Shape Optimization 

The geometric dimensions of the isomeric mount 

shown in Fig. 7 are determined via a parametric study. These 

optimum values for the dimensions are chosen such that a 

complete discerption of the mount is achieved. The mount 

final shape is determined by minimizing the difference 

between the mount stiffness values obtained from the dynamic 

analysis performed in the previous section and the mount 

stiffness values based on its geometry which can be found 

from the finite element analysis. The objective function that is 

employed herein is described in Eq. (26) must satisfy 

alongside with the bound on the design variables the condition 

described in Eq. (27), where xi is the i
th

 design variable and n 

is the number of the design variables stated in Kim (1997). 

𝜓 = 𝑤𝑡 1  𝑘𝑥 −  𝑘𝑥
𝑑𝑒𝑠  2 +  𝑤𝑡 2  𝑘𝑦 −  𝑘𝑦

𝑑𝑒𝑠  
2

+  𝑤𝑡 3  𝑘𝑧 −  𝑘𝑧
𝑑𝑒𝑠  2        (26) 

𝑥𝑖
𝑚𝑖𝑛  ≤  𝑥𝑖  ≤  𝑥𝑖

𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖
= 1, … , 𝑛                                                                         (27) 

In Eq. (26), 𝑤𝑡(𝑖) is the weighting function that corresponds 

to the stiffness in the i
th

direction. The superscript ‘des’ 

indicates the desired stiffness that is obtained from the 

dynamic analysis ofthe mounting system, meanwhile the 

design parameters selected will determine the stiffness values 

for the geometry that is obtained from the nonlinear finite 

element analysis. The process of determining the design 

variables is expensive and time consuming, therefore in order 

to reduce the number of function evaluations, the least 

effective stiffness could be dropped from the objective 

function 𝜓. 

 
Figure 7. Schematic of a rubber mount 

Figure 7, shows the actual geometry of an engine 

mount that is used in cars along with its defining parameters. 

This mount is a bush type that is made of rubber. There are a 

total of six parameters that dictates the shape of the mount in 

which four are used as the design variables 

namely𝑡𝑠 , 𝑡𝑧 , 𝑡𝑟and 𝜃. The other two parameters  𝑟𝑖and𝑟𝑜  are 

constants. These design variables affects the mount stiffness 

directly. The weighting function that is used in the objective 

function could be used to take into account the importance of 

the stiffness in a particular direction. The dynamic analysis is 

done for a motorcycle powertrain in which is supported by 

four isomeric mounts. The connection between the powertrain 

and the swing-arm are taken into consideration generating a 

twelve DOF system. The exciting force is due to the internal 

shaking force at 4000 rpm and the road load presented in Fig. 

4.  

In this work, the stiffness values are obtained using a 

nonlinear finite element analysis. The geometry shown in Fig. 

7 is used to generate a mesh for the analysis. The optimization 

is carried out using ANSYS. Solid 186 is the element that has 

been used for this purpose. Appropriate boundary conditions 

has been applied to the model which is assumed to exhibit 

small deflections, for this reason the Mooney Rivlin model is 

sufficient to describe the fully incompressible hyperelastic 

material behavior of rubber presented by Kim (1997) and 

Rivlin,(1992). The Mooney Rivlin model of the strain energy 

is expressed as: 

𝑈
=  𝐶10 𝐼1 −  3 
+ 𝐶01 𝐼2 −  3                                                                    (28) 

I1 and I2 are the first and second strain invariants. The 

coefficients C10 and C01 are determined from the uniaxial 

tension test. The rubber that is used in this work is carbon 

black filled natural rubber. The values of the coefficients are:  

C10 = 0.03622 and C01 = -0.00335. 

All the design variables must satisfy the design range 

which could be considered as inequality constraints that 

dictates the lower and upper bound of these variables. Each 

one of these ranges that specify the upper and lower limit of 

the design variables are considered as inequality constraints 

and are incorporated in the finite element optimizer. The static 

deflection that is due to the static weight of the engine is 

measured along the axis of gravity.  

                           𝛿

=   
𝐹𝑔

𝑘
                                                                            (29) 

Fgrepresents the static weight of the engine due to 

gravity and k represents the stiffness in the gravity direction. 

6. Numerical Example 

The mounting system presented in this example 

consists of four identical circular cross section elastomeric 

mounts with symmetry constraints. Two of the engine mounts 

are at the front of the powertrain assembly and the other two 

are located at the rear of the powertrain assembly as shown in 

Fig. 8. A loss factor of 0.3 and dynamic to static stiffness ratio 

of 1.2 has been used for all the mounts. The powertrain and 

the swing-arm data is given in Table 1. The swing-arm is 

connected to the frame using two shock absorbers which are 

inclined by an angle of 47
o
 with respect to the horizontal axis. 

The shock absorber exhibits an axial stiffness and damping of 

45 lb/in and 4.4 lb-s/in respectively. The stiffness of the 

coupler used in the example is 42655 lb/in in the x and y 

direction and 658252 lb/in along the z axis. The rotational 

stiffness values is 682493 lb-in/rad about the x and y axes. 

The rotational stiffness about the z axis is zero. 

In this example, the force transmitted through the 

engine mounts due to both the shaking force at 4000 rpm and 

the road loads described in the profile shown in Fig. 4, are 

used to formulate the objective function shown in Eq. (23). 

The design vector contains the individual mount stiffness, 

orientation and position. Lower and upper bound for the 

design variables are listed in Table 2. Deflection constraints 
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on the powertrain are considered due to the static and dynamic 

loads. The static constraints which are placed on the 

deflection of the powertrain are as follows: 

 𝑈𝑠𝑡   ≤  𝑈𝑚𝑎𝑥  30  

In Eq. (30), Ust represents the static deflection of the 

powertrain at its C.G. due to the static load and Umaxrepresents 

the maximum allowable deflection due to the static load. For 

this example 𝑈𝑚𝑎𝑥 =   0.025"0.05"0.025"0.5𝑜0.5𝑜0.5𝑜 . An 

additional constraint is placed on the maximum displacement 

at the mount location in the y direction of 0.05 in to prevent 

premature snubbing.  The shaking force at 4000 rpm and the 

static load vector due to the engine weight are given by Eq. 

(31) and Eq. (32) respectively.  

 
 

 

Figure 8. Mount System Layout 

 

𝐹𝑠
=   0 0 0 0 0 0 3278 7720 0 0 0 303.8 𝑇                                                           (31) 

𝐹𝑠𝑡

=   −45 − 95 0 0 0 0 0
− 250 0 0 0 0 𝑇                                                      (32) 

The optimization problem is done using the SQP 

technique that employs a function to minimize the value of the 

objective function. Once the operation is over, the design 

vector that corresponds to the optimum value of the objective 

function is known. These results are shown in Table 3. The 

second part of the problem starts by setting the objective 

function described in Eq. (26) to minimize the difference 

between the desired stiffness values obtained from the first 

optimization done through the dynamic analysis and the 

stiffness values obtained from the geometric shape of the 

mount.Since the stiffness of the steel plates is higher than the 

mount stiffness, the constraints are moved from the plate 

holes directly into the mount surface as shown in Fig 9. The 

boundary conditions are applied by constraining the 

displacement of the surface of the mount in all directions.The 

results of the shape optimization process are shown in Table 

4. The shape optimization takes into account the range of the 

design variables that acts like lower and upper bounds. These 

bounds are shown in Eq. (33) and the starting shape of the 

mount and the optimized shapes are shown in Figs. 10 and 11.  

0.3 ≤  𝑡𝑟  ≤ 0.59 

0.3 ≤  𝑡𝑠  
≤ 1.5                                                                              (33) 

0.5 ≤  𝑡𝑧  ≤ 1.77  
−𝜋

18 ≤  𝜃 ≤  −𝜋
6  

 The mount stiffness that is used in the design vector 

in the optimization problem is the dynamic stiffness. The 

elastomeric parameters of the engine mount can be 

determined using the dynamic stiffness which is obtained 

from the optimization problem. The dynamic stiffness of the 

elastomeric mount is defined in Eq. (34). 

𝐾𝑑𝑦𝑛 =   𝐾 ′2 +  𝐾 ′′2                                                         (34) 

In Eq. (34), Kdyn is the dynamic stiffness of the mount, 

𝐾 ′and𝐾 ′′ are the real and complex components of the dynamic 

stiffness. The ratio of the dynamic stiffness, Kdyn, to the static 

stiffness Kst, is known as the dynamic-to-static stiffness ratio 

and is always greater than one. Another parameter that is used 

to characterize the engine mount is the loss factor. The loss 

factor is defined in Eq. (35) and is used to provide a measure 

of damping.  

                                      𝛽 = 𝑡𝑎𝑛𝛿

=  
𝐾 ′′

𝐾 ′
                                                         (35) 

The damping coefficient, c, of an elastomeric mount is 

defined in Eq. (36) 

                                     𝑐

=  
𝛽 𝑘𝑠𝑡

𝜔
                                                                   (36) 

In Eq. (36), 𝜔 is the input excitation frequency. The higherthe 

dynamic-to-static stiffness ratio, resulting in a higher dynamic 

stiffness. However, sincethe frequency range of interest for 

this study is small, the frequency dependence of stiffnesshas 

been ignored. This is because the mount optimization is 

performed at a specific cruisingspeed (4000 rpm), and the 

proving ground test-track road load yields high amplitude, 

lowfrequency loads. 

 
Figure 9.Front View Showing the Boundary Conditions 
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Figure 10: (a) Isometric View of the Initial Geometry, (b) 

Front View of the Initial Geometry 

 

 
Figure 11: (a) Isometric View of the Optimized Geometry, (b) 

Front View of the Optimized Geometry 

 

 

 

Table 1: Swing-arm and Powertrain Data with Respect to 

Local C.G. 

 

 

 

 

 

 

 

 

Table 2: Bounds for Design Variables 

 

    Min. Max. 

Mount Stiffness (x,y) 
lb/in 

100 5000 

Mount Stiffness (z) 500 15000 

Orientation Angles deg. 0 50 

 

Table 3: MatLab Optimization Results. 

 

  
Load 

Transmitted 
Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 540.77 4750 
475

0 
2400 

Optimized 

Design 
244.74 1618 

161

8 
15000 

 

Table 4: Parameter Optimization Results 

  

 

Initial 

Optimize

d 

Target 

Stiffness 

Design θ 6.021 5.923   

Variables (rad) 

tr (in) 0.591 0.454   

ts (in) 0.787 0.965   

tz (in) 1.378 1.430   

Stiffness 

(klb/in) 

kx 3.411 1.6192 1.618 

ky 9.183 1.6185 1.618 

kz 1.852 15.085 15 

Obj. Function ψ 

233.3

1 0.0072   

 

7. Conclusion 

 The final shape of a shear (bush) type engine mount 

has been achieved through the process of parameterization of 

the engine mount geometrical properties utilizing a nonlinear 

finite element analysis. Phase one of the design was done 

using the SQP method provided by MatLab built in function 

in order to find the target stiffness values. In this phase 

multiple initial guess have been used in order to ensure that 

the optimum value of the objective function is a global 

minima and not local. This problem is due to the fact that the 

engine mount optimization problem is nonlinear and local 

minimum values of the objective function are quite possible. 

As it can be seen from the results shown in figs. 6 and 7, the 

optimum mount shape is acceptable and can be considered as 

the final shape. The stiffness values that are obtained from the 

shape optimization process are very close to the target 

stiffness values obtained from the dynamic analysis. The final 

shape is acceptable and can be used in real mount design 

situations. It is worth mentioning that this approach is 

applicable to any type of engine mounts.  
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