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Abstract— In this paper we present an android mobile 
application that allows user to keep track of food products 
and grocery items bought during each grocery shopping 
along with its nutrient information. This application allows 
user to get nutrient information of products and grocery by 
just taking a photo. Product matching is performed using 
SURF feature detection followed by FLANN feature 
matching. We extract the table from the nutrient fact table 
image using concepts of erosion, dilation and contour 
detection. Classifying the grocery is done using Object 
Categorization through the concepts of Bag of Words (BOW) 
and SVM machine learning. This application includes three 
main subsystems: client (Android), server (Node.js) and 
image processing (OpenCV). 
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I. INTRODUCTION 
 According to sources from WHO around the world, 
170 million children are underweight while 20 million 
children’s suffer from overweight. Poor nutrition has caused 
nearly half (45%) of deaths in children under five each year. 
Moreover at least 300 million adults are clinically obese. 
Undernutrition as the name indicates is caused when people 
intake foods that do not have enough nutrients to keep them 
healthy whereas over-nutrition is the opposite caused due to 
increased consumption of energy-dense nutrient poor foods. 
Both of these causes health risks causing chronic diseases like 
heart disease, delayed physical and mental development etc. 
This clearly indicates that nutrition must be given greater 
attention in discussions about health, whether in rich societies 
or the developing world. Eating the right food in terms of 
quantity and quality is more important. Therefore, food 
recognition is emerging as an important research topic in 
object recognition because of the demand for better dietary 
assessment tools to combat under-nutrition and over-nutrition. 
 

Various researches have been carried out in the field 
of nutritional management using computer vision. Researchers 
from Carnegie Mellon University have presented a paper on 
recognizing the foods from videos of people eating in 
restaurants which is recorded from a web camera [1]. Based on 
the results, the average calorie and nutrients consumed by 
people are estimated. Maruyama et al. [2] presented a method 
to classify food images by updating the model of Bayesian 
network incrementally after investigating a “food log” system.  Yang et al. [3] proposed a food recognition by calculating pairwise statistics between local features computed over a soft 

pixel level segmentation of the image into eight ingredient 
types. 
 

The proposed system that we demonstrate in this 
paper aims at developing a mobile and server vision-based 
nutrition management system for smartphone users using the 
concepts of image processing. This system makes use of 
many of the concepts of image processing such as table 
extraction, SURF feature detection and FLANN matching 
and object categorization using Bag of Words and SVM 
machine learning. 

 
From client's or user’s viewpoint, the application 

offers these two main features. First, it allows the user to 
store a library of his/her often purchased grocery items. 
During item addition the user takes a photo of the product 
followed by its barcode and “Nutrients Facts” label which is 
present in the package. The nutrient fact table image is sent to 
an OCR web service which extracts the nutrient information 
as a string. This string is then matched using a string 
matching program to obtain individual nutrient’s information 
(Calorie, carbohydrates etc.). This data will be stored in a 
cloud database for future access. Next time the user 
purchases the same item he/she can find calorie and nutrition 
info by just taking the photo of the product. The app will 
recognize each existing item and list the corresponding 
calories and macro nutrient information to help the user plan 
a healthier lifestyle. The second feature allows the user to get 
nutrient information of grocery items (non products) like 
tomato, potato etc. by taking a photo of the item. In the 
following sections, we will explain in detail the 
implementation of the application with a main focus on the 
image processing algorithms employed. 

 
II. SYSTEM ARCHITECTURE AND USER INTERFACE  A.  System Architecture 
 The application makes use of the smartphone camera capabilities to capture the image of the grocery item or the product image and its nutrition fact table (NFT). After uploading the image, we use the image processing and cloud technology to process, analyse and store the useful information obtained. A client-server architecture is best suited for this type of application. We have used an Android smartphone as a client, and Node.js for the server. The image processing is done using OpenCV. Parse is the cloud database provider.  
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 Fig. 1 System setup of the grocery shopping assist application  The cloud database acts as a server providing storage 
and retrieval services to the client. (Fig 1). Images taken 
by the phone is sent to the server running server script, as 
a byte stream. On the server side we make use of the 
popular OpenCV library to perform various operations on 
the image. The image uploads folder can be accessed by 
both server to store input images and by image processing 
server to process the image. After the information is 
extracted successfully we store the same in the cloud 
database. 

 
B.  User Interface  After the user opens the app and logs in to his account, the user interface for scanning contains four buttons as shown in the figure below (Fig. 2).  

 Fig. 2 User Interface of android application 
 
1) Product button: This button allows user to take a photo of a product item and upload to the server.  2) Barcode button: If the photo of the uploaded product is 

new to user library, he needs to scan the barcode of the product item. Barcode is unique to each product and acts 
like a primary key in the cloud database.  3) NFT button: After scanning the barcode, user take the 
NFT photo using this button and uploads to the server. 

4) Grocery button: This button allows user to take a photo of a grocery item and upload to the server. 
 

III. FEATURE MATCHING PRODUCT IMAGES 
 The user can scan a food product by taking a clear photo of it and uploading to the server. The image is uploaded to the server and saved in  

“/uploads/user_products/userId/” folder which contains all the 
product images taken by the user “userId”. The node.js server 
calls the Feature Matching OpenCV program to find the 
similar image in the library. SURF feature detection is 
performed on the input image and the samples in user library 
to extract prominent features and their descriptor. We then 
perform a loop through all the sample images to find the best 
match using FLANN matcher as shown in the FFBD diagram 
below (Fig. 3). The program outputs a message as not found if 
similar image isn’t found in user library else it outputs the 
similar sample image name. Here, in this section we assume 
that the image of the food product was already uploaded by 
the user previously and is present in the user library.  

  
Fig. 3 Functional Flow Block Diagram for Feature matching sample images 

 
A.  SURF Feature Extraction 
 

Speeded Up Robust Features (SURF) is a local 
feature detector and descriptor that can be used for tasks such 
as object recognition or classification. It is partly inspired by 
the scale-invariant feature transform (SIFT) descriptor. The 
standard version of SURF is several times faster than SIFT 
and is more robust against different image transformations 
than SIFT. Object detection using SURF is scale and rotation 
invariant which makes it very powerful. The algorithm has 
three main parts: interest point detection; local neighbourhood 
description; and matching. Square-shaped filters are used as 
an approximation of Gaussian smoothing. The descriptor 
provides a unique and robust description of an image feature 
by describing the intensity distribution of the pixels within the 
neighbourhood of the point of interest [4]. The features or 
point of interest detected using SURF on a food product is 
shown in the Fig. 4.a. By comparing the descriptors obtained 
from different images, matching pairs can be found. 
 
B.  FLANN Feature Matching 
 This matching is optimised by using Fast 
Approximate Nearest Neighbour Search (FLANN) based 
matcher. It contains a collection of algorithms optimized for fast nearest neighbour search in large datasets and for high 
dimensional features [5]. It works faster than Brute Force Matcher for large datasets. We find two nearest matches using 
knn match algorithm (k=2). It finds the 2 best matches for 
each descriptor in query with the descriptors in sample images as shown in Fig.4.b.      
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 Fig. 4.a Features detected Fig. 4.b Descriptors matched 
 

 Fig. 4.c Features matching on user library images 
 

We match the input image with each image in user 
library as shown in Fig. 4.c. The program outputs the name of 
the sample image which has the maximum matching features 
(min features to be matched is dependent on resolution of 
image, here we consider it to be 35). The server then fetches 
the nutrient information for that product from the Parse cloud 
database and sends to the client android phone. 
 

IV. EXTRACTING TABLE FROM NFT 
 The user scans the barcode followed by photo of the 
nutrient fact table (NFT) when he gets a message that the 
product image which he took was not found in his user library. 
The reason the user scans barcode is because it is unique to 
each product and acts like a primary key in the Parse cloud 
database. The NFT image is uploaded to the server and saved 
in “/uploads/nft_images/” folder. The node.js server calls the 
NFT OpenCV program to crop the image to extract only the 
table. The table is later sent to an OCR web service which 
extracts the nutrient information as a string. This string is then 
matched using a regex string matching program to obtain 
individual nutrient’s information (Calorie, carbohydrates etc.). 
The nutrient information is sent back to the client and also 
stored in Parse cloud for future use. 

 
 
 

 Fig. 5 Functional Flow Block Diagram for NFT processing  

A.  Thresholding 
 

The NFT OpenCV program first converts the image 
to binary by applying a threshold. Since the image may be 
subjected to different lighting conditions in different areas 
(varying illumination) we go for adaptive thresholding. Using 
a global value as threshold value may not be good in 
conditions where image has different lighting conditions in 
different areas. In that case, we go for adaptive thresholding. 
So we get different thresholds for different regions of the 
same image and thereby giving us better results. Fig. 6 shows 
the output of adaptive thresholding on NFT image. 

 

  Fig. 6 Adaptive thresholding to convert RGB image to binary  B.  Erosion and Dilation 
 

We obtain horizontal and vertical projections of the 
table by applying morphology operations – erosion and 
dilation [6]. The kernel (structuring element) slides through 
the image. Erosion function erodes away the boundaries of 
foreground object. In erosion a pixel in the original image 
(either 1 or 0) will be considered 1 only if all the pixels under 
the kernel is 1, otherwise it is eroded (made 0). Dilation is just 
opposite of erosion. Here, a pixel element is ‘1’ if at least one 
pixel under the kernel is ‘1’. Erosion removes white noises, 
but it also shrinks our object. So we dilate it after the noise is 
gone to increase our object area. We use a horizontal rectangle 
kernel to extract horizontal projection and vertical rectangle 
kernel to extract only vertical projections. The projections 
obtained are shown in Fig. 7. 

 Fig. 7 NFT image with vertical and horizontal projections  C.  Contour Detection 
 A mask is created by combining (OR operation) both horizontal and vertical projections. We apply the mask on the table and then detect contours of the table. Contours gives the 
boundary, which is then cropped to extract only table as output image. Fig. 8 shows these steps.  
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 Fig. 8 Contour detection and table extraction 
 

V. OBJECT CATEGORIZATION OF GROCERY 
 The user scans a grocery item by taking a photo of it 
and uploading to the server. The image is uploaded to the 
server and saved in “/uploads/grocery_images/” folder. The 
node.js server calls the Object Categorization OpenCV 
program to find the similar image in the grocery train library. 

 

 Fig. 9 Functional Flow Block Diagram of classifying grocery in Object Categorization program 
 

The Object categorization program takes input 
grocery image and compares its features (words) with features 
of the train images in the grocery library using the concept of 
Bag of Words (BOW) and SVM Machine learning [7]. The 
training set of images contains all possible classes. Here 
classes are all possible groceries and class names are the 
grocery name. For the demonstration we have considered three 
classes of grocery – Tomato, Onion and Potato. 
 
A.  Building Vocabulary 
 

We can use the bag of words model for object 
categorization by constructing a large vocabulary of many 
visual words and represent each image as a histogram of the 
frequency words that are in the image [8]. The figure (Fig. 10) 
illustrates this idea. First, we need to build a visual dictionary 
or vocabulary. 
 
Vocabulary for the training set containing all classes is 
computed by taking a large set of training images and 
extracting descriptors (using SURF) [4] and clustering the set 
of descriptors (using k-means algorithm) of 1000 clusters (here 

k = 1000). Clustering is grouping a set of objects in such a 
way that objects in the same group (called a cluster) are more 
similar to each other than to those in other groups (clusters). 
The cluster centers act as our vocabulary’s visual words. 
 
B.  Computing Group Histograms 
 

In the second step, we need to scour the training set 
again to compute group histograms (the responses to the 
vocabulary). For each training image, we represent it using 
our bag of words model in the following manner. First we 
extract descriptors from the image around detected keypoints. 
Next, for each descriptor extracted we compute its nearest 
neighbour in the vocabulary. Finally, we build a histogram of 
length k where the i’th value is the frequency of the i’th 
vocabulary word [8]. This part requires vocabulary computed. 
We group the histograms of the same class as a labelled 
training data, where the label is the class name (grocery 
name). We make use OpenMP multi-threading to make the 
calculation parallel, and hence faster on multi-core machines, 
thereby reducing the execution time significantly. 

 Fig. 10 Bag of words – representing object as histograms of words occurrences  C.  Training SVM 
 

In the third step we start training the Support vector 
machine (SVM). SVM is a technique for building an optimal 
binary (2-class) classifier. In other words, given labelled 
training data (supervised learning), the algorithm outputs an 
optimal hyperplane which categorizes new input example 
image i.e. the class which the input image belongs to. For a 
linearly separable set of 2D-points, the image has two types of 
data, red and blue. We can see that there exists multiple lines 
that offer a solution to the problem (Fig. 11.a). We need to 
find the best line among these solutions. A line is bad if it 
passes too close to the points because it will be noise sensitive 
and it will not generalize correctly. Therefore, our goal should 
be to find the line passing as far as possible from all points. 
Because there can be noise in the incoming data, this data 
should not affect the classification accuracy. Taking a farthest 
line will provide more immunity against noise [10]. The 
operation of the SVM algorithm is to find the hyperplane that 
gives the largest minimum distance (margin) to the training 
examples. So to find this Decision Boundary, we do not need 
all the training data, we just need the ones which are close to 
the opposite group. In our image in Fig 10.b, they are the one 
blue filled circle and two red filled squares. We can call them 
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Support Vectors and the lines passing through them are called 
Support Planes. They are adequate for finding our decision 
boundary [10]. Here in the figure (Fig 11.b) first two 
hyperplanes are found which best represents the data. The 
decision boundary is defined to be midway between these 
hyperplanes. 

 Fig. 11.a Multiple hyperplanes Fig. 11.b Optimal hyperplane 
 SVM builds a binary (2-class) classifier while we 
need multi-class classifier as we have 3 classes. We will train 
the 2-class SVM in a 1-vs-all kind of way. Meaning we train 
an SVM that can say "yes" or "no" when choosing between 
one class and the rest of the classes, hence 1-vs-all. SVM also 
needs a labelled training data. During building of labelled 
training data (sample histograms along with the labels) for 
each of the classes, we put in the positive samples and mark 
the labels with ‘1’, and then put the rest of the samples and 
label them with ‘0’ [9]. In order to reduce the execution time 
for future runs, the vocabulary and histograms for the training 
images are computed during the first run are stored in a 
YAML file and read from it directly during the future runs. 
We also use OpenMP multi-threading to run the loop parallel. 
 
D. Testing SVM for Prediction 
 

In the last step, given an input image, we represent it 
using our bag of words model as in the second step to build a 
histogram. We predict the response for the input image with 
classifiers obtained from training. The output class is the class 
of the classifier for which the output decision function value 
(signed distance to margin) is minimum. When the program 
gets an image it runs the classifier and gives the right class i.e. 
the grocery name as output. Note that this program will output 
a class name, no matter what the input image is. The server 
then fetches the nutrient information for that grocery from the 
Parse cloud database and sends to the client android phone. 
 VI. CONCLUSION 
 

Giving attention to the nutrient information of the 
food products is very important to prevent under-nutrition and 
over-nutrition in a human being. Therefore food recognition 
has become an important research topic in object recognition. 
In this paper we presented a way in which an android mobile 
application can allow users to keep track of nutrient 
information of the food products and grocery items bought 
during each grocery shopping. We made use of some of the 
important topics of image processing in building the 
application. This system has numerous potential applications. 
We could combine this application with a checklist system to 
remind users of the items they have to buy. This application 
could likewise track the client's shopping habits and make diet 
recommendations, hence prevent certain diseases, for 
example, obesity and diabetes. 
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