
International Journal of Research and Engineering ISSN: 2348-7860 (O) | 2348-7852 (P) | Vol. 04 No. 03 | March 2017 | PP. 77-81 http://digital.ijre.org/index.php/int_j_res_eng/article/view/261 Copyright © 2016 by authors and International Journal of Research and Engineering This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/. |

Grocery Shopping Assistant Using OpenCV
Author(s): Deekshith R. Shetty, Avinash D., Abhiram Uppoor, Divya Jennifer Dsouza Affiliation: Dept. of Computer Science Engineering, NMAMIT, Nitte, Karnataka, India

Abstract— In this paper we present an android mobile
application that allows user to keep track of food products
and grocery items bought during each grocery shopping
along with its nutrient information. This application allows
user to get nutrient information of products and grocery by
just taking a photo. Product matching is performed using
SURF feature detection followed by FLANN feature
matching. We extract the table from the nutrient fact table
image using concepts of erosion, dilation and contour
detection. Classifying the grocery is done using Object
Categorization through the concepts of Bag of Words (BOW)
and SVM machine learning. This application includes three
main subsystems: client (Android), server (Node.js) and
image processing (OpenCV).

Keywords— OpenCV, SURF Feature Detection, FLANN Feature Matching, Erosion, Dilation, Contour detection, Object Categorization, Bag of Words, SVM Machine Learning, Android

I. INTRODUCTION
 According to sources from WHO around the world,
170 million children are underweight while 20 million
children’s suffer from overweight. Poor nutrition has caused
nearly half (45%) of deaths in children under five each year.
Moreover at least 300 million adults are clinically obese.
Undernutrition as the name indicates is caused when people
intake foods that do not have enough nutrients to keep them
healthy whereas over-nutrition is the opposite caused due to
increased consumption of energy-dense nutrient poor foods.
Both of these causes health risks causing chronic diseases like
heart disease, delayed physical and mental development etc.
This clearly indicates that nutrition must be given greater
attention in discussions about health, whether in rich societies
or the developing world. Eating the right food in terms of
quantity and quality is more important. Therefore, food
recognition is emerging as an important research topic in
object recognition because of the demand for better dietary
assessment tools to combat under-nutrition and over-nutrition.

Various researches have been carried out in the field
of nutritional management using computer vision. Researchers
from Carnegie Mellon University have presented a paper on
recognizing the foods from videos of people eating in
restaurants which is recorded from a web camera [1]. Based on
the results, the average calorie and nutrients consumed by
people are estimated. Maruyama et al. [2] presented a method
to classify food images by updating the model of Bayesian
network incrementally after investigating a “food log” system. Yang et al. [3] proposed a food recognition by calculating pairwise statistics between local features computed over a soft

pixel level segmentation of the image into eight ingredient
types.

The proposed system that we demonstrate in this
paper aims at developing a mobile and server vision-based
nutrition management system for smartphone users using the
concepts of image processing. This system makes use of
many of the concepts of image processing such as table
extraction, SURF feature detection and FLANN matching
and object categorization using Bag of Words and SVM
machine learning.

From client's or user’s viewpoint, the application

offers these two main features. First, it allows the user to
store a library of his/her often purchased grocery items.
During item addition the user takes a photo of the product
followed by its barcode and “Nutrients Facts” label which is
present in the package. The nutrient fact table image is sent to
an OCR web service which extracts the nutrient information
as a string. This string is then matched using a string
matching program to obtain individual nutrient’s information
(Calorie, carbohydrates etc.). This data will be stored in a
cloud database for future access. Next time the user
purchases the same item he/she can find calorie and nutrition
info by just taking the photo of the product. The app will
recognize each existing item and list the corresponding
calories and macro nutrient information to help the user plan
a healthier lifestyle. The second feature allows the user to get
nutrient information of grocery items (non products) like
tomato, potato etc. by taking a photo of the item. In the
following sections, we will explain in detail the
implementation of the application with a main focus on the
image processing algorithms employed.

II. SYSTEM ARCHITECTURE AND USER INTERFACE A. System Architecture
 The application makes use of the smartphone camera capabilities to capture the image of the grocery item or the product image and its nutrition fact table (NFT). After uploading the image, we use the image processing and cloud technology to process, analyse and store the useful information obtained. A client-server architecture is best suited for this type of application. We have used an Android smartphone as a client, and Node.js for the server. The image processing is done using OpenCV. Parse is the cloud database provider.

78

IJRE | Vol. 04 No. 03 | March 2017

 Fig. 1 System setup of the grocery shopping assist application The cloud database acts as a server providing storage
and retrieval services to the client. (Fig 1). Images taken
by the phone is sent to the server running server script, as
a byte stream. On the server side we make use of the
popular OpenCV library to perform various operations on
the image. The image uploads folder can be accessed by
both server to store input images and by image processing
server to process the image. After the information is
extracted successfully we store the same in the cloud
database.

B. User Interface After the user opens the app and logs in to his account, the user interface for scanning contains four buttons as shown in the figure below (Fig. 2).

 Fig. 2 User Interface of android application

1) Product button: This button allows user to take a photo of a product item and upload to the server. 2) Barcode button: If the photo of the uploaded product is

new to user library, he needs to scan the barcode of the product item. Barcode is unique to each product and acts
like a primary key in the cloud database. 3) NFT button: After scanning the barcode, user take the
NFT photo using this button and uploads to the server.

4) Grocery button: This button allows user to take a photo of a grocery item and upload to the server.

III. FEATURE MATCHING PRODUCT IMAGES
 The user can scan a food product by taking a clear photo of it and uploading to the server. The image is uploaded to the server and saved in

“/uploads/user_products/userId/” folder which contains all the
product images taken by the user “userId”. The node.js server
calls the Feature Matching OpenCV program to find the
similar image in the library. SURF feature detection is
performed on the input image and the samples in user library
to extract prominent features and their descriptor. We then
perform a loop through all the sample images to find the best
match using FLANN matcher as shown in the FFBD diagram
below (Fig. 3). The program outputs a message as not found if
similar image isn’t found in user library else it outputs the
similar sample image name. Here, in this section we assume
that the image of the food product was already uploaded by
the user previously and is present in the user library.

Fig. 3 Functional Flow Block Diagram for Feature matching sample images

A. SURF Feature Extraction

Speeded Up Robust Features (SURF) is a local
feature detector and descriptor that can be used for tasks such
as object recognition or classification. It is partly inspired by
the scale-invariant feature transform (SIFT) descriptor. The
standard version of SURF is several times faster than SIFT
and is more robust against different image transformations
than SIFT. Object detection using SURF is scale and rotation
invariant which makes it very powerful. The algorithm has
three main parts: interest point detection; local neighbourhood
description; and matching. Square-shaped filters are used as
an approximation of Gaussian smoothing. The descriptor
provides a unique and robust description of an image feature
by describing the intensity distribution of the pixels within the
neighbourhood of the point of interest [4]. The features or
point of interest detected using SURF on a food product is
shown in the Fig. 4.a. By comparing the descriptors obtained
from different images, matching pairs can be found.

B. FLANN Feature Matching
 This matching is optimised by using Fast
Approximate Nearest Neighbour Search (FLANN) based
matcher. It contains a collection of algorithms optimized for fast nearest neighbour search in large datasets and for high
dimensional features [5]. It works faster than Brute Force Matcher for large datasets. We find two nearest matches using
knn match algorithm (k=2). It finds the 2 best matches for
each descriptor in query with the descriptors in sample images as shown in Fig.4.b.

79

IJRE | Vol. 04 No. 03 | March 2017

 Fig. 4.a Features detected Fig. 4.b Descriptors matched

 Fig. 4.c Features matching on user library images

We match the input image with each image in user
library as shown in Fig. 4.c. The program outputs the name of
the sample image which has the maximum matching features
(min features to be matched is dependent on resolution of
image, here we consider it to be 35). The server then fetches
the nutrient information for that product from the Parse cloud
database and sends to the client android phone.

IV. EXTRACTING TABLE FROM NFT
 The user scans the barcode followed by photo of the
nutrient fact table (NFT) when he gets a message that the
product image which he took was not found in his user library.
The reason the user scans barcode is because it is unique to
each product and acts like a primary key in the Parse cloud
database. The NFT image is uploaded to the server and saved
in “/uploads/nft_images/” folder. The node.js server calls the
NFT OpenCV program to crop the image to extract only the
table. The table is later sent to an OCR web service which
extracts the nutrient information as a string. This string is then
matched using a regex string matching program to obtain
individual nutrient’s information (Calorie, carbohydrates etc.).
The nutrient information is sent back to the client and also
stored in Parse cloud for future use.

 Fig. 5 Functional Flow Block Diagram for NFT processing

A. Thresholding

The NFT OpenCV program first converts the image
to binary by applying a threshold. Since the image may be
subjected to different lighting conditions in different areas
(varying illumination) we go for adaptive thresholding. Using
a global value as threshold value may not be good in
conditions where image has different lighting conditions in
different areas. In that case, we go for adaptive thresholding.
So we get different thresholds for different regions of the
same image and thereby giving us better results. Fig. 6 shows
the output of adaptive thresholding on NFT image.

 Fig. 6 Adaptive thresholding to convert RGB image to binary B. Erosion and Dilation

We obtain horizontal and vertical projections of the
table by applying morphology operations – erosion and
dilation [6]. The kernel (structuring element) slides through
the image. Erosion function erodes away the boundaries of
foreground object. In erosion a pixel in the original image
(either 1 or 0) will be considered 1 only if all the pixels under
the kernel is 1, otherwise it is eroded (made 0). Dilation is just
opposite of erosion. Here, a pixel element is ‘1’ if at least one
pixel under the kernel is ‘1’. Erosion removes white noises,
but it also shrinks our object. So we dilate it after the noise is
gone to increase our object area. We use a horizontal rectangle
kernel to extract horizontal projection and vertical rectangle
kernel to extract only vertical projections. The projections
obtained are shown in Fig. 7.

 Fig. 7 NFT image with vertical and horizontal projections C. Contour Detection
 A mask is created by combining (OR operation) both horizontal and vertical projections. We apply the mask on the table and then detect contours of the table. Contours gives the
boundary, which is then cropped to extract only table as output image. Fig. 8 shows these steps.

80

IJRE | Vol. 04 No. 03 | March 2017

 Fig. 8 Contour detection and table extraction

V. OBJECT CATEGORIZATION OF GROCERY
 The user scans a grocery item by taking a photo of it
and uploading to the server. The image is uploaded to the
server and saved in “/uploads/grocery_images/” folder. The
node.js server calls the Object Categorization OpenCV
program to find the similar image in the grocery train library.

 Fig. 9 Functional Flow Block Diagram of classifying grocery in Object Categorization program

The Object categorization program takes input
grocery image and compares its features (words) with features
of the train images in the grocery library using the concept of
Bag of Words (BOW) and SVM Machine learning [7]. The
training set of images contains all possible classes. Here
classes are all possible groceries and class names are the
grocery name. For the demonstration we have considered three
classes of grocery – Tomato, Onion and Potato.

A. Building Vocabulary

We can use the bag of words model for object
categorization by constructing a large vocabulary of many
visual words and represent each image as a histogram of the
frequency words that are in the image [8]. The figure (Fig. 10)
illustrates this idea. First, we need to build a visual dictionary
or vocabulary.

Vocabulary for the training set containing all classes is
computed by taking a large set of training images and
extracting descriptors (using SURF) [4] and clustering the set
of descriptors (using k-means algorithm) of 1000 clusters (here

k = 1000). Clustering is grouping a set of objects in such a
way that objects in the same group (called a cluster) are more
similar to each other than to those in other groups (clusters).
The cluster centers act as our vocabulary’s visual words.

B. Computing Group Histograms

In the second step, we need to scour the training set
again to compute group histograms (the responses to the
vocabulary). For each training image, we represent it using
our bag of words model in the following manner. First we
extract descriptors from the image around detected keypoints.
Next, for each descriptor extracted we compute its nearest
neighbour in the vocabulary. Finally, we build a histogram of
length k where the i’th value is the frequency of the i’th
vocabulary word [8]. This part requires vocabulary computed.
We group the histograms of the same class as a labelled
training data, where the label is the class name (grocery
name). We make use OpenMP multi-threading to make the
calculation parallel, and hence faster on multi-core machines,
thereby reducing the execution time significantly.

 Fig. 10 Bag of words – representing object as histograms of words occurrences C. Training SVM

In the third step we start training the Support vector
machine (SVM). SVM is a technique for building an optimal
binary (2-class) classifier. In other words, given labelled
training data (supervised learning), the algorithm outputs an
optimal hyperplane which categorizes new input example
image i.e. the class which the input image belongs to. For a
linearly separable set of 2D-points, the image has two types of
data, red and blue. We can see that there exists multiple lines
that offer a solution to the problem (Fig. 11.a). We need to
find the best line among these solutions. A line is bad if it
passes too close to the points because it will be noise sensitive
and it will not generalize correctly. Therefore, our goal should
be to find the line passing as far as possible from all points.
Because there can be noise in the incoming data, this data
should not affect the classification accuracy. Taking a farthest
line will provide more immunity against noise [10]. The
operation of the SVM algorithm is to find the hyperplane that
gives the largest minimum distance (margin) to the training
examples. So to find this Decision Boundary, we do not need
all the training data, we just need the ones which are close to
the opposite group. In our image in Fig 10.b, they are the one
blue filled circle and two red filled squares. We can call them

81

IJRE | Vol. 04 No. 03 | March 2017
Support Vectors and the lines passing through them are called
Support Planes. They are adequate for finding our decision
boundary [10]. Here in the figure (Fig 11.b) first two
hyperplanes are found which best represents the data. The
decision boundary is defined to be midway between these
hyperplanes.

 Fig. 11.a Multiple hyperplanes Fig. 11.b Optimal hyperplane
 SVM builds a binary (2-class) classifier while we
need multi-class classifier as we have 3 classes. We will train
the 2-class SVM in a 1-vs-all kind of way. Meaning we train
an SVM that can say "yes" or "no" when choosing between
one class and the rest of the classes, hence 1-vs-all. SVM also
needs a labelled training data. During building of labelled
training data (sample histograms along with the labels) for
each of the classes, we put in the positive samples and mark
the labels with ‘1’, and then put the rest of the samples and
label them with ‘0’ [9]. In order to reduce the execution time
for future runs, the vocabulary and histograms for the training
images are computed during the first run are stored in a
YAML file and read from it directly during the future runs.
We also use OpenMP multi-threading to run the loop parallel.

D. Testing SVM for Prediction

In the last step, given an input image, we represent it
using our bag of words model as in the second step to build a
histogram. We predict the response for the input image with
classifiers obtained from training. The output class is the class
of the classifier for which the output decision function value
(signed distance to margin) is minimum. When the program
gets an image it runs the classifier and gives the right class i.e.
the grocery name as output. Note that this program will output
a class name, no matter what the input image is. The server
then fetches the nutrient information for that grocery from the
Parse cloud database and sends to the client android phone.
 VI. CONCLUSION

Giving attention to the nutrient information of the
food products is very important to prevent under-nutrition and
over-nutrition in a human being. Therefore food recognition
has become an important research topic in object recognition.
In this paper we presented a way in which an android mobile
application can allow users to keep track of nutrient
information of the food products and grocery items bought
during each grocery shopping. We made use of some of the
important topics of image processing in building the
application. This system has numerous potential applications.
We could combine this application with a checklist system to
remind users of the items they have to buy. This application
could likewise track the client's shopping habits and make diet
recommendations, hence prevent certain diseases, for
example, obesity and diabetes.

REFERENCES [1] Wen Wu, Jie Yang, "Fast food recognition from videos of eating for
calorie estimation," IEEE International Conference on Multimedia and
Expo, July 2009. [2] Maruyama, Y. de Silva, G.C. Yamasaki, T. Aizawa K, "Personalization of food image analysis," Virtual Systems and
Multimedia (VSMM), Oct 2010. [3] Shulin Yang, Mei Chen, Pomerleau, D, Sukthankar, R., "Food
recognition using statistics of pairwise local features," IEEE Computer Vision and Pattern Recognition (CVPR), pp.2249-2256, 13-18 June
2010. [4] H. Bay, A. Ess, T. Tuytelaars, L. van Gool, “Speeded-up Robust Features (SURF)”, Computer Vision and Image Understanding (CVIU), June 2008. [5] Marius Muja and David G. Lowe, "Fast Approximate Nearest
Neighbors with Automatic Algorithm Configuration", in International
Conference on Computer Vision Theory and Applications (VISAPP'09), 2009. [6] Vladimir Kulyukin, “Vision-Based Localization and Text
Chunking of Nutrition Fact Tables on Android Smartphones”, Utah State University, Logan, UT, USA.

[7] G. Csurka, C. Dance, L. Fan, J. Willamowski and C. Bray,
“Visual categorization with bags of keypoints”, in ECCV Workshop on Statistical Learning in Computer Vision, 2004. [8] Bag of Words Models for visual categorization, [Online]. Available:
http://gilscvblog.com/2013/08/23/bag-of-words-models-for-visual-
categorization/

 [9] A simple object classifier with Bag of Words using OpenCV, [Online].
Available: http://www.morethantechnical.com/2011/08/25/a-simple-object-classifier-with-bag-of-words-using-opencv-2-3-w-code/ [10] Machine learning – OpenCV python tutorials [Online]. Available:
http://opencv-python-
tutroals.readthedocs.org/en/latest/py_tutorials/py_ml/py_table_of _contents_ml/py_table_of_contents_ml.html

