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Abstract—In recent years, particles’ optimization algorithm has 
highly been used as an effective method in solving complex and 
difficult optimization problems. Since particles al
on recurring population and it can be very inefficient in terms of 
the time required for implementation and speed to solve 
optimization problems with large-scale including ones which need 
a very large population to search in problem soluti
main reason for this issue is that this algorithm optimization 
process requires a large number of function evaluations which 
are usually run serially. This article aims to implement particles’ 
optimization algorithm in parallel on graphics pr
and to improve running efficiency and speed. The 
implementation results on the graphics processor show that the 
performance of this algorithm has greatly increased as to its 
implementation in parallel and with change in kernel 
implementation. In fact, in this study, implementation and 
velocity evaluation of particles algorithm implementation in 
parallel and based on CUDA framework has been investigated 
and compared. Then, there have been efforts to improve 
acceleration in this method in part and a new method will be 
proposed in CUDA framework to improve acceleration in 
particles algorithm and graphic processor setting
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I.  INTRODUCTION  
Evolutionary algorithms are considered as one of the most 

effective and efficient methods to solve optimization 
problems. The working method of evolutionary algorithms is 
modeled and defined based on the evolution and natural 
selection principles. In these algorithms, interactions between 
creatures and biological activities related to evolution are used 
to create computational algorithms which are able to calculate 
the optimum of problems. The behavior of biomolecules and 
transfer of inheritance from one generation to the next 
generation in the genetic algorithm[1], the mass and collective 
behavior of fish in the artificial fish algorithm[2], the escape 
from predators and the rush to food sources in the Krill 
algorithm[3], cooperation of spiders in social processes for 
collective hunting in the social spider algorithm[4], the 
behavior of a pack of wolves and their leadership hierarchy to 
hunt animals in the gray wolf algorithm[5], migration patterns 
of animals from an area of low water and gras
in food in the animal migration algorithm[6], the behavior and 
illumination of fireflies to attract the opposite sex in the firefly 
algorithm[7], the pollination of flowers and plants for survival 
in the flower pollination algorithm[8], the proliferation and 
competition of weeds for survival and their natural selection to 
rush into bio-optimal areas in the invasive weed optimization 
(IWO) algorithm[9], and hundreds of other cases are among 
the cases which have been used to create evolution
algorithms, and solve optimization problems. 

The particle swarm optimization (PSO) algorithm [10] is 
an evolutionary algorithm with a swarm intelligence approach, 
where each member of the group can move towards the 
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collective hunting in the social spider algorithm[4], the 
behavior of a pack of wolves and their leadership hierarchy to 
hunt animals in the gray wolf algorithm[5], migration patterns 
of animals from an area of low water and grass to an area rich 
in food in the animal migration algorithm[6], the behavior and 
illumination of fireflies to attract the opposite sex in the firefly 
algorithm[7], the pollination of flowers and plants for survival 

he proliferation and 
competition of weeds for survival and their natural selection to 

optimal areas in the invasive weed optimization 
(IWO) algorithm[9], and hundreds of other cases are among 
the cases which have been used to create evolutionary 
algorithms, and solve optimization problems.  

The particle swarm optimization (PSO) algorithm [10] is 
an evolutionary algorithm with a swarm intelligence approach, 
where each member of the group can move towards the 

optimum of problems with the aid of 
these algorithms, a single component, alone, is less able to 
solve the problem. But interacting with other members of the 
group, especially with more competent members of the group, 
who are responsible for leading the group, they ca
near the solutions of the problem. The particle swarm 
optimization (PSO) algorithm was presented and modeled by 
two social behavior psychologists through studying the group 
behavior of birds for finding food. In this algorithm, each 
member of the population has two components: speed and 
position, which are updated in each iteration by the best 
members and the movement history of the current member. 
When facing with large populations or large
evolutionary algorithms such as: the PS
experience difficulties and need a lot of time to converge on 
the optimal solution. Given that each member of the 
population, by itself, can calculate its position with the aid of 
the best global member and the best position, thus these 
algorithms can be parallelized and accelerated. One of the 
disadvantages of the PSO algorithm is the need for a large 
population to converge to more accurate solutions of 
optimization problems. In an optimization problem which is 
modeled using an objective funct
dimensions of the problem increases, it is necessary to 
consider the number of the population members proportionally 
large enough, so that the entire search space of the objective 
function can be searched to find the optimum of t
In more complex and multi-dimensional objective functions, 
this process requires long execution time, which is 
inappropriate and undesirable in many applications. One of the 
methods to increase the speed of executing evolutionary 
algorithms, such as: the PSO algorithm, is the use of 
parallelization methods. And the parallel nature of the PSO 
algorithm has made the structure of this algorithm ideal for 
parallelization. There are various methods to parallelize and 
increase the speed of the PSO alg
refer to grid computing and parallelization thread packages 
specific to the main processor. Each of these methods has its 
own disadvantages. For instance, in the grid computing 
technology, the implementation costs and high comple
makes this parallelization method unavailable to the public. Or 
in the thread parallelization method in the main processor, due 
to the presence of frequent switches in different processes in 
the main processor, this method does not have high 
performance.  

Contrary to the two said methods, NVIDIA company 
which provides graphics processors, has recently offered a 
parallelization platform called CUDA, in order to parallelize 
complex computations in the multiple cores of a graphics 
processor. The CUDA platform can be considered as a library 
and an interface between the programmer and the graphics 
hardware, which greatly reduces the complexity of parallel 
computing, and puts various features and commands at the 
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programmer’s disposal to perform the parallelization operation 
[11]. 

In this paper, we try to use the parallel cores of the 
graphics card processor, the number of which is far greater 
than that of the main processor, in order to increase the speed 
of the PSO algorithm. The architecture and structure of the 
parallel cores of the graphics card processor allow each 
particle to be implemented independently of other particles, by 
one of the graphics card’s cores. In this method, each particle 
searches part of the problem space in parallel with other 
particles.  

In the proposed method, particles are placed inside the 
main memory in the form of a one-dimensional array, and this 
structure is placed inside the graphics processor straight away. 
The advantage of this method is a reduction in the number of 
sequential switches between the main processor and graphics 
processor for transferring the particles. In this method, each 
particle is placed inside a processing core of the graphics 
processor. Using this technique, the particles search the 
problem space, in parallel. In this method, the particles do not 
need to be placed in the main processor queue to be executed, 
which reduces the particles’ search time. Compared with its 
serial version, this parallel structure increases the acceleration 
of the PSO algorithm. In the proposed method, to better search 
the problem space, we add a new mechanism to the PSO 
algorithm, in a way that if any particle is placed in the 
undesirable space, the particle can jump from the current 
location, and be transferred to a place with a higher chance of 
finding the optimal solution. This mechanism can help the 
accuracy of the proposed algorithm. In the proposed method, 
using a series of standard functions called “benchmark 
functions”, the speed and acceleration of the proposed 
algorithm which is executable in the graphics processor, are 
compared with the standard PSO executable in the main 
processor. In this paper, first, we review the PSO algorithm 
and the architecture of graphics processors, then, we will 
introduce and evaluate the proposed method. 
A. particle swarm optimization (PSO) 

The PSO algorithm is an evolutionary algorithm of 
optimization based on the laws of probability and the collective 
behavior of organisms. The idea of the evolutionary algorithm 
was introduced by Dr. Russell Eberhard; a computer scientist, 
and Dr. James Kennedy; a social issues psychologist in 
1995[12]. 

The PSO algorithm is modeled on the social and swarm 
behavior of birds or a group of fish searching for food. In this 
algorithm, the members of the population are modeled in the 
form of particles, and these particles try to move towards areas 
where more food is found, with the aid of their previous 
information and the best position of other particles.  

When observing the behavior of birds which fly in groups, 
we can see the following two key behaviors [13]: 
  Each particle has a velocity, whose value is determined 

based on the population’s current speed and best position, 
and the best previous position of the desired particle. 

 The position of each particle is updated based on the current 
position of the particle and its new velocity. 
 According to Figure 1, a particle can move differently in 

the search space of the problem, but it chooses a path which is 
more in line with the outcome of the best global position and its 
own best position [13]: 

 
Fig. 1. The direction of motion of a particle 

In this picture, Vi (t) and Vi (t+1) are the current and new 
velocity vectors of the i-th particle, respectively, Xi(t) and                   
Xi(t+1) the current and new positions of the i-th particle, 
respectively, pBesti(t) the best position that the i-th particle has 
so far achieved, and gBest(t) the best position of all the 
particles in the population. As shown in the picture, in order to 
calculate Vector Xi(t+1), it is required to obtain the vector sum 
of the two vectors: Xi(t) and Vi(t+1), according to Equation (1) 
[13]:  

Xi(t+1) =Xi(t) +Vi (t+1)                                 (1) 
The current velocity vector, the current position vector, the 

best global particle, and the best history of the current particle 
in the search space of the problem can be used to calculate the 
new velocity in according with Equation (2) [13]: 

Vi(t+1)=ω*Vi(t) +q1r1(pBesti(t)-Xi(t))+q2r2(gBest(t)-Xi(t))(2) 
Where; ω is the inertia coefficient, q1 and q2 the learning 

coefficients of the PSO algorithm, and r1 and r2 two random 
numbers in the interval [0,1]. It has been proved that if the 
speed of the particles is limited within a certain range, such as: 
[-VMAX,VMAX], the convergence of the PSO algorithm will be 
guaranteed.  

It has been proved that if the values of ω, q1, q2 are chosen 
correctly, the speed of the particles will fall within a specified 
range, and there will be no need to limit the speed of the 
particles. Typically, if the values of learning coefficients in the 
PSO algorithm, are chosen from between 1.5 and 2, the 
algorithm will act properly. The convergence of the PSO 
algorithm is greatly dependent on the value of w, and it is better 
to dynamically choose this value in each iteration. One of the 
methods to choose the inertia coefficient is to reduce its value 
repeatedly in each iteration within a certain range such as (0.0, 
2.9) until it is finally converged to 0.2.  

In other words, choosing a larger value for the inertia 
coefficient in the early stages of the PSO algorithm, causes the 
search space of the problem to be scanned properly, and its 
smaller value in the final iterations causes the places around the 
optimal solutions to be searched properly. 

II. PARALLELISM IN GRAPHICS PROCESSOR 
A graphics processing unit (GPU) can be considered as a 

processor for graphics card to perform graphics operations and 
render images. The number of cores is far greater in a graphics 
processor than in the main processor, and the number of cores 
sometimes reaches up to hundreds and thousands. The 
architecture of graphics processors is in such a way that their 
architecture has been mainly used to design the processing and 
computing unit, and less focus has been put on the design of the 
main and cache memories. Because the processing operations 
performed in the graphics processor, are mainly simple but 
high-volume processing operations, in which the arithmetic 
logic unit (ALU) needs to be more developed than other units. 
Instead of storing data in the temporary or cache memory, a 
graphics processor tries to perform processing operations on 
the data. Thus, its circuits are more needed to be designed for 
computing, and are less needed to be used for data storage. 



179 
 

 

IJRE | Vol. 04 No. 06 | June 2017 

Whereas, in the main processor, most of the circuits have been 
prepared to design the hidden data storage unit, memory, 
control unit, etc. [14]. Figure (2) shows the difference between 
the hardware systems of a graphics processor and main 
processor. As can be seen in this figure, the number of cores 
used in the architecture of the graphics processor, is far greater 
than the number of those used in the main processor. And 
contrarily, the arithmetic logic unit (ALU) of the main 
processor has been more developed than that of the graphics 
processor, which is due to more complex calculations in the 
main processor [15]: 

 
Fig. 2. The difference between the architectures of the main processor and 

graphics processor 
By comparing the architectures of the main processor and 

graphics processor, the following points can be found out [16]: 
 The number of cores is much greater in the graphics processor than in 

the main processor, which indicates that the architectures of the 
graphics processor and main processor are appropriate for computation 
on large and small data, respectively. 
 

 The size of cores is smaller in the graphics processor than in the main 
processor, which indicates that the graphics processor is optimized for 
large but simple calculations, while the opposite is true in the main 
processor. 

 

 

 The control unit is larger in the main processor architecture than in the 
graphics processor, which is due to the high complexity of the main 
processor architecture compared with that of the graphics processor, 
which needs its controlunit to be designed precisely, so that the main 
processor can be controlled and managed properly. 

 A large part of the main processor’s architecture has been allocated to 
the cache memory architecture. Whereas the cache memory does not 
play a very key role in the graphics processor, which is because each 
core acts individually, and process switching rarely occurs between 
different cores in the graphics processor. Thus the data are accessible 
by the processor. But in the main processor, due to the small number 
of cores, switching occurs frequently between processes, which 
requires the intermediate data to be stored in a fast memory such as the 
cache memory, so that in switching at the next stage, the process can 
have access to its own data. 

A. The parallel execution of programs in the graphics 
processor  
For execution on the graphics processor, each parallel 

program is divided into the following two main parts: 
• The Host Code (executable in the main processor; CPU) 
• The Machine Code (executable in the graphics processor; GPU) 

The host code is in fact the serial and nonparallel part of a 
program code, which can only be executed in the main 
processor. Whereas the machine code forms the parallel part of 
the program code and is only executable in the graphics 
processor. The program code may consist of several serial and 
parallel parts, which are alternately repeated in the program 
code. Figure 3 shows the synchronous execution of a program 
in the CPU and GPU [17]: 

 
Fig. 3. The parallel execution of a code in the GPU 

In this picture, the main code is divided into two parts: 
parallel (green) and serial (blue). And as shown in the picture, 
first, the serial part is executed in the CPU, and then, the 
parallel part is executed by both the CPU and GPU. And 
eventually, the serial code is executed in the CPU. The 
execution of serial and parallel parts can be done 
synchronously or asynchronously. In case of the latter, a 
synchronization process between the threads is necessary. For 
instance, the parallel processing of data in the GPU, can be 
done asynchronously by copying data from the CPU to the 
GPU, or synchronously during the transfer of data and 
information between the two processors. 
B. Comparing the processing power of GPUs and CPUs  

There are different criteria to measure the performance of 
CPUs and GPUs, among which the two main criteria: the 
computing power and data transfer bandwidth have been used 
here. The computing power is typically calculated based on the 
number of floating point operations that a processor can 
execute per unit time, and is usually measured in  giga-
operations per unit time, whose higher value is considered as a 
good sign for the performance of a processor. Figure (4) shows 
the number of floating point operations executed by two types 
of NVIDIA’s graphics processors and two types of Intel's non-
graphics processors in the first 11 months of 2013. The analysis 
of the graph shows that the increasing trend in the floating-
point arithmetic is much bigger in the graphics processors than 
in main and non-graphics processors.  

The results of investigations show that main processors’ 
ability to perform floating-point operations has not changed a 
lot during a year, but the architecture of graphics processors, 
with its enormous growth during this period, could strongly 
increase their ability to perform floating-point arithmetic [17]. 

 

 
Fig. 4. Comparing the processing power of floating-point arithmetic in CPUs 

and GPUs 
 

Performing floating-point arithmetic by itself cannot 
determine the performance of a processor. Because the 
computing power of a processor is also greatly dependent on an 
important factor; that is, memory bus bandwidth. Even if a 
GPU has a greater power in floating-point arithmetic, but the 
communication lines with the CPU are weak, it cannot enjoy 
high efficiency. Because the high bandwidth between the CPU 
memory and GPU memory, acts as a data transfer bridge, and 
the greater its width is, the more data it can transfer between 
the two processors during a certain period of time. Figure (5) 
shows a comparison between the memory bandwidths used in 
CPUs and GPUs and their cores between 2003 and 2013. This 
chart shows the bandwidths of two GPUs and a CPU during a 
period of 10 years. The analysis of the desired chart suggests 
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that the sizes of computational bandwidths in GPUs, have had 
the greatest growth possible:   

 

 
Fig. 5. Comparing data transfer bandwidths in calculations used in CPUs and 

GPUs 
In 2007, NVIDIA Company which manufactures graphics 

processors and cards, introduced the first version of a software 
platform, called CUDA platform, for parallel programming 
with the aid of the company's GPUs. The CUDA platform is a 
software layer consisting of a series of library commands, 
which make it difficult for programmers to use the GPU. 
C. CUDA framework 

Through this platform, programmers can develop programs 
using common languages, especially Visual C++, for 
parallelization and execution of complex algorithms. In 
programming in the CUDA platform, a programmer needs to 
have specialized information about the hardware of GPUs, 
which makes programming in this platform a little difficult. 
CUDA is not a programming language, but it is rather 
considered as an interface between the programmer and GPU. 
The CUDA platform only works on NVIDIA’s GPUs, and in 
this sense, the development and transfer of these programs are 
facing some difficulties. For programming in CUDA, it is 
necessary to install the packs of this platform and new updates 
of the GPU on the system, and add the path of CUDA 
compilers to the integrated development environment (IDE). A 
CUDA program is made up of two main parts; serial and 
parallel, which are regularly and alternately transferred 
between the CPU and GPU, and are executed [18]. The CUDA 
platform uses the software units: thread, block, and grid, to 
parallelize different data and algorithms. Each thread can be 
executed on a core in parallel, or a series of threads can be 
timed on a single core. The threads are kernel execution units, 
in a way that each thread executes a version of kernel. Threads 
are timed in larger units such as blocks, and a series of threads 
are defined in a block, and are able to communicate with each 
other with the aid of a shared memory. In case of substrate 
change, the threads contained in a block, store their data block 
in the local memory, so that they can perform their previous 
parallel operations again. A grid is an execution unit to call the 
kernels, and each kernel is executed by a grid which consists of 
a series of blocks. There is also a key concept in CUDA called 
the multiprocessing flow, which means a series of CUDA cores 
serving a parallel process, which will be further explained in 
what follows. Figure 6 shows the structures of a grid, block, 
and a thread in two-dimensional forms in Image (a), and 
several multiprocessing flows in CUDA in Image (b) [19]: 

 

 
Fig. 6. The main components used in the CUDA platform 

In a state where they are placed two-dimensionally inside 
the blocks, the structures of threads have two ID numbers; 
vertical and horizontal in the direction of each block. And these 
thread numbers are only valid in a single block and are 
considered to be local. With the aid of the intra-block 
horizontal and vertical numbers of each thread, and horizontal 
and vertical dimensions of each block, a unique number can be 
provided to the threads belonging to a block, in a way that no 
two threads in the flower of a grid have identical numbers.  In 
the blocks contained in a grid in the two-dimensional mode, the 
situation is like that of two-dimensional threads. And each 
block has two intra-grid numbers; unique and local. And with 
the aid of the dimensions of a grid and the block number, the 
unique number of the blocks of a grid can be calculated. 
D. Maintaining the Integrity of the Specifications 

The template is used to format your paper and style the text. 
All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications that 
anticipate your paper as one part of the entire proceedings, and 
not as an independent document. Please do not revise any of 
the current designations. 

III. THE PROPOSED METHOD TO INCREASE THE SPEED THROUGH 

PARALLELIZING THE PSO ALGORITHM  
In order to find the optimum of problems, evolutionary 

algorithms, such as the PSO algorithm, need a population of a 
certain size to look for the global optimum of the objective 
function in the search space. And if the shapes of these 
functions are more complex, it is necessary to consider the 
population size large enough, so that the entire search space of 
the objective function can be searched to find the global 
optimum. In the PSO algorithm, if the initial population size 
(the size given by the problem) is small, the search space of the 
problem will not be properly searched to find the optimum of 
the problem. Hence, it is necessary to increase the population 
size to cover the entire space of the problem. And in the 
meantime, in order to prevent the proposed algorithm from 
slowing, we execute it in parallel in the GPU through the 
CUDA platform. Not any algorithm can be executed in parallel, 
but it must rather have a structure and function, which can be 
easily parallelized. The PSO algorithm is a population-based 
algorithm, where each member of its population can search the 
search space of the objective function to find the optimum, with 
the aid of its best global member and the best history of its 
motion. And this mechanism allows the PSO algorithm to be 
executed in parallel. The proposed method to parallelize the 
enhanced PSO algorithm has the following main stages: 
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• The particles are encoded in the form of two vectors; the 
velocity vector and position vector. Each part of the 
position and velocity vectors is dedicated to a particle. 

• The initial parameters of CUDA, including the number of 
blocks and threads of each block, and the parameters of the 
proposed algorithm, including the number of particles, and 
the number of iterations, are initialized. 

• The values of the position and velocity vectors of the 
particles are randomly initialized. 

• A proper memory is allocated for the velocity and position 
vectors of the particles in CUDA. 

• Copying the velocity and position vectors from the host 
memory space to the machine’s global memory 

• Executing a kernel, which has the parallelization code of the 
proposed PSO algorithm. This kernel is executed by a series 
of threads contained in a block. 

• Sequential iteration of the kernel to change the position of 
particles in the search space of the problem 

• Updating the best global particle in each execution of the 
kernel 

• Transferring the best global particle from the machine’s 
global memory to the host main memory  

• Evaluating the runtime 
• Releasing the memories used in the definition of the 

velocity and position vectors of the particles. 
In the method proposed to parallelize the PSO algorithm, 

we can define two arrays: (V1
1, V2

1,….,VD
1, V1

n, V2
n, ….,VD

n) 
and (x1

1, x2
1, …., xD

1, f1, x1
n, x2

n …, VD
n,fn), which store the 

speed and position of all the particles in themselves, and then 
using the cudaMalloc command, their required memory can be 
allocated. In this structure of the desired vectors, n is the 
number of particles, D the dimensions of the evaluation 
function, fi the fit of the i-th particle, vj

i the velocity of the j-th 
particle, and xj

i the position of the j-th particle.The position and 
velocity vectors are equal to n×(D+1) and n×D, respectively.  

Then the values of these two vectors are randomly 
initialized in the main memory, and using the Cudamemcpy 
command and Cudamemcpyhosttodevice switch, the values of 
the two arrays are transferred from the host main memory to 
the GPU global memory. Then, each thread executes a version 
of the kernel, which contains the parallel commands of the 
proposed algorithm to determine the new position of the 
particles. To execute the kernel of changing the particle 
positions, CUDA considers the number of threads to be equal 
to the number of the initial population members. After 
determining the position of each particle at the end of the 
current iteration, it is necessary to calculate the best global 
particle of the population by calling the second kernel, and then 
update its position. In this situation, the previous kernel exits 
from the memory of threads and takes action for the parallel 
execution of the second kernel. To execute the kernel of 
updating the position or updating the best global particle, each 
thread obtains its unique ID number from Equation (3). And 
through this ID number, it can gain access to cells i to i+D+1 of 
the position vector and i+D of the velocity vector, which are in 
the machine’s global memory. 

i = blockIdx.x * blockDim.x + threadIdx.x         (3) 
After the completion of iteration, using the Cudamemcpy 

command and Cudamemcpydevicetohost switch, the best 
global particle algorithm, which is in the machine’s global 
memory, is transferred into the host main memory, and is taken 
to the outlet, and eventually, the memories used by CUDA, are 
released. Figure (7) shows the pseudo-code of the proposed 

method for the parallelization and acceleration of the PSO 
algorithm. 

 
Fig. 7. The pseudo-code of the proposed method in the acceleration of the 

PSO algorithm 
IV. ANALYSIS 

To assess the accuracy and speed of convergence in 
evolutionary algorithms, such as: the PSO algorithm, there are 
mathematical functions called “benchmark functions”, which 
are considered as the objective function of the problem. In this 
objective functions, which represent an optimization problem, 
finding the global minimum is the final goal of the desired 
evolutionary algorithm. Table (1) shows a number of 
benchmark functions, which are used to assess the accuracy 
and speed of the proposed algorithm, along with the criteria and 
values of variables, for which the function becomes minimum: 

TABLE I.   THE BENCHMARK FUNCTIONS USED IN THE SIMULATION 
CRITERION Benchmark Function 

݂ = ෍ ௜ݔ
ଶ

௡

௜ୀଵ

 Sphere 

݂ = ෍(100(ݔ௜ାଵ − ௜ݔ
ଶ)ଶ

௡ିଵ

௜ୀଵ

+ ௜ݔ) − 1)ଶ) Rosenbrock 

݂ = 1 +
1

4000
෍ ௜ݔ

ଶ

௡

௜ୀଵ

− ෑ cos (
௜ݔ

√݅
)

௡

௜ୀଵ

 Griewank 

݂ = 10݊ + ෍(ݔ௜
ଶ

௡

௜ୀଵ

− 10cos (2ݔߨ௜) Rastrigin 

 

Three-dimensional graphs for benchmark functions have 
been shown in Figures (8), (9), (10), and (11):  

 
Fig. 8. Sphere function 

 
Fig. 9. Rosenbrock function 
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Fig. 10. Griewank function 

 
Fig. 11. Rastrigin function 

In the second stage of the study, to improve the speed of the 
proposed algorithm, it is necessary to implement it in parallel in 
the CUDA platform, and determine the efficiency of the 
algorithm by calculating the runtime of its serial and parallel 
versions. The benchmark functions: Sphere, Rosenbrock, Three 
Hump, Easom, Beale, Sum Squares, Griewank, and Rastrigin 
are also used in this section, to assess the speed of the parallel 
version relative to the serial version. The two important criteria: 
runtime and acceleration are usually used in CUDA to assess 
the efficiency of parallel algorithms. In Equation (4), the GPU 
acceleration is defined as the CPU to GPU runtime ratio:  

 

Speedup =
ோ௨௡௧௜௠௘ ஼௉௎   
ோ௨௡௧௜௠௘ ீ௉௎                      (4) 

 

Pieces of hardware including:          
CPU: Intel i5-3337U CPU@1.80GHz,  
4GB of RAM,                           and  
GPU: GeForce 710M with 1GB of memory were used for 

the simulation and implementations.   
To calculate the acceleration of the proposed algorithm, 

which is the same CPU to GPU runtime ratio, we consider the 
initial population as the variable input of the problem, and add 
to the number of its members, then calculate the acceleration 
values successively. In this section, for each benchmark 
function, we carried out 50 different tests in CUDA, and 
calculated the runtime of the parallel bat and standard 
algorithms, then we calculated the mean time, and used it to 
calculate the average acceleration in each benchmark function. 
In evolutionary algorithms, the population size plays an 
important role in their accuracy and of course the speed of their 
execution. And the greater the size of their initial population is, 
the more the accuracy of the algorithm increases, and of course 
the run time also increases, thus reducing the speed of the 
algorithm. The average acceleration graph for populations with 
sizes of 1024, 2048, 4096, and 8192, shows that the efficiency 
of a GPU increases with the increased size of data, and the 
increased size of data, or the same initial population, can 
provide the proposed algorithm with an appropriate 
acceleration.  

 
Fig. 12. Increasing the acceleration by increasing the population size 
Analyzing the graph of acceleration versus initial 

population size shows that an increase in the population size 
causes an increase in the runtime of the bat algorithm both in 
the CPU and GPU. But the increase is much higher in the CPU 
than in the GPU, which causes the CPU to GPU run time ratio 
to constantly increase, in a way that it causes the acceleration 
rate to have an ascending trend as the population increases. In 
general, analyzing the simulation outputs and acceleration 
results in different benchmark functions, shows that by 
increasing the population size of particles as the input data of 
the problem, the runtime constantly increases in the GPU and 
CPU, in such a way that the runtime increase rate is much 
greater in the CPU than in the GPU, which causes the CPU to 
GPU runtime ratio to increase as the population size increases. 
To put it in better words, the efficiency of a GPU shows itself 
better, when our data are large enough. 

V. CONCLUSION 
The PSO algorithm is an evolutionary algorithm with a 

swarm intelligence approach, where a collection of particles 
can search the search space of the problem in parallel. 
Nonetheless, by increasing the initial population size in the 
PSO algorithm, its runtime increases too much. Therefore, in 
this paper, we presented a parallelization method based on 
CUDA, to improve the speed of the PSO algorithm. The results 
of implementing the proposed method in the GPU using the 
CUDA platform, show that an increase in the population size, 
increases the runtime in the proposed algorithm and PSO 
algorithm.  

But, this increase is smaller in the GPU than in the CPU, 
which causes an increase in the acceleration, which is the GPU 
to CPU runtime ratio, as the population size increases. In future 
studies, we are going to use the CUDA parallel computing 
platform to accelerate other swarm intelligence algorithms, so 
that the optimal solutions of a problem are calculated faster. 
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