
International Journal of Research and Engineering
ISSN: 2348-7860 (O) | 2348-7852 (P) | Vol. 04 No. 0
Copyright © 2017 by authors and International Journal of Research and Engineering
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/.

Particle Swarm Optimization with CUDA
Somayeh Taherian Dehkordi

Department of Computer Engineering, Kerman Branch, Islamic Azad University

Abstract—In recent years, particles’ optimization algorithm has
highly been used as an effective method in solving complex and
difficult optimization problems. Since particles al
on recurring population and it can be very inefficient in terms of
the time required for implementation and speed to solve
optimization problems with large-scale including ones which need
a very large population to search in problem soluti
main reason for this issue is that this algorithm optimization
process requires a large number of function evaluations which
are usually run serially. This article aims to implement particles’
optimization algorithm in parallel on graphics pr
and to improve running efficiency and speed. The
implementation results on the graphics processor show that the
performance of this algorithm has greatly increased as to its
implementation in parallel and with change in kernel
implementation. In fact, in this study, implementation and
velocity evaluation of particles algorithm implementation in
parallel and based on CUDA framework has been investigated
and compared. Then, there have been efforts to improve
acceleration in this method in part and a new method will be
proposed in CUDA framework to improve acceleration in
particles algorithm and graphic processor setting

Keywords—Parallel processing; Evolutionary algorithms;
graphics processing unit(GPU); particle swarm optimization
(PSO)

I. INTRODUCTION
Evolutionary algorithms are considered as one of the most

effective and efficient methods to solve optimization
problems. The working method of evolutionary algorithms is
modeled and defined based on the evolution and natural
selection principles. In these algorithms, interactions between
creatures and biological activities related to evolution are used
to create computational algorithms which are able to calculate
the optimum of problems. The behavior of biomolecules and
transfer of inheritance from one generation to the next
generation in the genetic algorithm[1], the mass and collective
behavior of fish in the artificial fish algorithm[2], the escape
from predators and the rush to food sources in the Krill
algorithm[3], cooperation of spiders in social processes for
collective hunting in the social spider algorithm[4], the
behavior of a pack of wolves and their leadership hierarchy to
hunt animals in the gray wolf algorithm[5], migration patterns
of animals from an area of low water and gras
in food in the animal migration algorithm[6], the behavior and
illumination of fireflies to attract the opposite sex in the firefly
algorithm[7], the pollination of flowers and plants for survival
in the flower pollination algorithm[8], the proliferation and
competition of weeds for survival and their natural selection to
rush into bio-optimal areas in the invasive weed optimization
(IWO) algorithm[9], and hundreds of other cases are among
the cases which have been used to create evolution
algorithms, and solve optimization problems.

The particle swarm optimization (PSO) algorithm [10] is
an evolutionary algorithm with a swarm intelligence approach,
where each member of the group can move towards the

International Journal of Research and Engineering
7852 (P) | Vol. 04 No. 06 | June 2017 | PP. 177-183

Copyright © 2017 by authors and International Journal of Research and Engineering
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/. |

Particle Swarm Optimization with CUDA
Somayeh Taherian Dehkordi,Amid Khatibi Bardsiri

Department of Computer Engineering, Kerman Branch, Islamic Azad University
Kerman, Iran

In recent years, particles’ optimization algorithm has
highly been used as an effective method in solving complex and
difficult optimization problems. Since particles algorithm is based
on recurring population and it can be very inefficient in terms of
the time required for implementation and speed to solve

scale including ones which need
a very large population to search in problem solution space. The
main reason for this issue is that this algorithm optimization
process requires a large number of function evaluations which
are usually run serially. This article aims to implement particles’
optimization algorithm in parallel on graphics processing unit
and to improve running efficiency and speed. The
implementation results on the graphics processor show that the
performance of this algorithm has greatly increased as to its
implementation in parallel and with change in kernel

In fact, in this study, implementation and
velocity evaluation of particles algorithm implementation in
parallel and based on CUDA framework has been investigated
and compared. Then, there have been efforts to improve

nd a new method will be
proposed in CUDA framework to improve acceleration in

m and graphic processor setting.

Parallel processing; Evolutionary algorithms;
graphics processing unit(GPU); particle swarm optimization

Evolutionary algorithms are considered as one of the most
effective and efficient methods to solve optimization
problems. The working method of evolutionary algorithms is
modeled and defined based on the evolution and natural

iples. In these algorithms, interactions between
creatures and biological activities related to evolution are used
to create computational algorithms which are able to calculate
the optimum of problems. The behavior of biomolecules and

nce from one generation to the next
generation in the genetic algorithm[1], the mass and collective
behavior of fish in the artificial fish algorithm[2], the escape
from predators and the rush to food sources in the Krill

rs in social processes for
collective hunting in the social spider algorithm[4], the
behavior of a pack of wolves and their leadership hierarchy to
hunt animals in the gray wolf algorithm[5], migration patterns
of animals from an area of low water and grass to an area rich
in food in the animal migration algorithm[6], the behavior and
illumination of fireflies to attract the opposite sex in the firefly
algorithm[7], the pollination of flowers and plants for survival

he proliferation and
competition of weeds for survival and their natural selection to

optimal areas in the invasive weed optimization
(IWO) algorithm[9], and hundreds of other cases are among
the cases which have been used to create evolutionary
algorithms, and solve optimization problems.

The particle swarm optimization (PSO) algorithm [10] is
an evolutionary algorithm with a swarm intelligence approach,
where each member of the group can move towards the

optimum of problems with the aid of
these algorithms, a single component, alone, is less able to
solve the problem. But interacting with other members of the
group, especially with more competent members of the group,
who are responsible for leading the group, they ca
near the solutions of the problem. The particle swarm
optimization (PSO) algorithm was presented and modeled by
two social behavior psychologists through studying the group
behavior of birds for finding food. In this algorithm, each
member of the population has two components: speed and
position, which are updated in each iteration by the best
members and the movement history of the current member.
When facing with large populations or large
evolutionary algorithms such as: the PS
experience difficulties and need a lot of time to converge on
the optimal solution. Given that each member of the
population, by itself, can calculate its position with the aid of
the best global member and the best position, thus these
algorithms can be parallelized and accelerated. One of the
disadvantages of the PSO algorithm is the need for a large
population to converge to more accurate solutions of
optimization problems. In an optimization problem which is
modeled using an objective funct
dimensions of the problem increases, it is necessary to
consider the number of the population members proportionally
large enough, so that the entire search space of the objective
function can be searched to find the optimum of t
In more complex and multi-dimensional objective functions,
this process requires long execution time, which is
inappropriate and undesirable in many applications. One of the
methods to increase the speed of executing evolutionary
algorithms, such as: the PSO algorithm, is the use of
parallelization methods. And the parallel nature of the PSO
algorithm has made the structure of this algorithm ideal for
parallelization. There are various methods to parallelize and
increase the speed of the PSO alg
refer to grid computing and parallelization thread packages
specific to the main processor. Each of these methods has its
own disadvantages. For instance, in the grid computing
technology, the implementation costs and high comple
makes this parallelization method unavailable to the public. Or
in the thread parallelization method in the main processor, due
to the presence of frequent switches in different processes in
the main processor, this method does not have high
performance.

Contrary to the two said methods, NVIDIA company
which provides graphics processors, has recently offered a
parallelization platform called CUDA, in order to parallelize
complex computations in the multiple cores of a graphics
processor. The CUDA platform can be considered as a library
and an interface between the programmer and the graphics
hardware, which greatly reduces the complexity of parallel
computing, and puts various features and commands at the

This work is licensed under the Creative Commons Attribution International License (CC BY).

Department of Computer Engineering, Kerman Branch, Islamic Azad University

optimum of problems with the aid of other group members. In
these algorithms, a single component, alone, is less able to
solve the problem. But interacting with other members of the
group, especially with more competent members of the group,
who are responsible for leading the group, they can converge
near the solutions of the problem. The particle swarm
optimization (PSO) algorithm was presented and modeled by
two social behavior psychologists through studying the group
behavior of birds for finding food. In this algorithm, each

e population has two components: speed and
position, which are updated in each iteration by the best
members and the movement history of the current member.
When facing with large populations or large-scale problems,
evolutionary algorithms such as: the PSO algorithm,
experience difficulties and need a lot of time to converge on
the optimal solution. Given that each member of the
population, by itself, can calculate its position with the aid of
the best global member and the best position, thus these

thms can be parallelized and accelerated. One of the
disadvantages of the PSO algorithm is the need for a large
population to converge to more accurate solutions of
optimization problems. In an optimization problem which is
modeled using an objective function, if the complexity and
dimensions of the problem increases, it is necessary to
consider the number of the population members proportionally
large enough, so that the entire search space of the objective
function can be searched to find the optimum of the problem.

dimensional objective functions,
this process requires long execution time, which is
inappropriate and undesirable in many applications. One of the
methods to increase the speed of executing evolutionary

ch as: the PSO algorithm, is the use of
parallelization methods. And the parallel nature of the PSO
algorithm has made the structure of this algorithm ideal for
parallelization. There are various methods to parallelize and
increase the speed of the PSO algorithm, among which we can
refer to grid computing and parallelization thread packages
specific to the main processor. Each of these methods has its
own disadvantages. For instance, in the grid computing
technology, the implementation costs and high complexity
makes this parallelization method unavailable to the public. Or
in the thread parallelization method in the main processor, due
to the presence of frequent switches in different processes in
the main processor, this method does not have high

Contrary to the two said methods, NVIDIA company
which provides graphics processors, has recently offered a
parallelization platform called CUDA, in order to parallelize
complex computations in the multiple cores of a graphics

form can be considered as a library
and an interface between the programmer and the graphics
hardware, which greatly reduces the complexity of parallel
computing, and puts various features and commands at the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Research and Engineering

https://core.ac.uk/display/154060498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

178

IJRE | Vol. 04 No. 06 | June 2017

programmer’s disposal to perform the parallelization operation
[11].

In this paper, we try to use the parallel cores of the
graphics card processor, the number of which is far greater
than that of the main processor, in order to increase the speed
of the PSO algorithm. The architecture and structure of the
parallel cores of the graphics card processor allow each
particle to be implemented independently of other particles, by
one of the graphics card’s cores. In this method, each particle
searches part of the problem space in parallel with other
particles.

In the proposed method, particles are placed inside the
main memory in the form of a one-dimensional array, and this
structure is placed inside the graphics processor straight away.
The advantage of this method is a reduction in the number of
sequential switches between the main processor and graphics
processor for transferring the particles. In this method, each
particle is placed inside a processing core of the graphics
processor. Using this technique, the particles search the
problem space, in parallel. In this method, the particles do not
need to be placed in the main processor queue to be executed,
which reduces the particles’ search time. Compared with its
serial version, this parallel structure increases the acceleration
of the PSO algorithm. In the proposed method, to better search
the problem space, we add a new mechanism to the PSO
algorithm, in a way that if any particle is placed in the
undesirable space, the particle can jump from the current
location, and be transferred to a place with a higher chance of
finding the optimal solution. This mechanism can help the
accuracy of the proposed algorithm. In the proposed method,
using a series of standard functions called “benchmark
functions”, the speed and acceleration of the proposed
algorithm which is executable in the graphics processor, are
compared with the standard PSO executable in the main
processor. In this paper, first, we review the PSO algorithm
and the architecture of graphics processors, then, we will
introduce and evaluate the proposed method.
A. particle swarm optimization (PSO)

The PSO algorithm is an evolutionary algorithm of
optimization based on the laws of probability and the collective
behavior of organisms. The idea of the evolutionary algorithm
was introduced by Dr. Russell Eberhard; a computer scientist,
and Dr. James Kennedy; a social issues psychologist in
1995[12].

The PSO algorithm is modeled on the social and swarm
behavior of birds or a group of fish searching for food. In this
algorithm, the members of the population are modeled in the
form of particles, and these particles try to move towards areas
where more food is found, with the aid of their previous
information and the best position of other particles.

When observing the behavior of birds which fly in groups,
we can see the following two key behaviors [13]:
 Each particle has a velocity, whose value is determined

based on the population’s current speed and best position,
and the best previous position of the desired particle.

 The position of each particle is updated based on the current
position of the particle and its new velocity.
 According to Figure 1, a particle can move differently in

the search space of the problem, but it chooses a path which is
more in line with the outcome of the best global position and its
own best position [13]:

Fig. 1. The direction of motion of a particle

In this picture, Vi (t) and Vi (t+1) are the current and new
velocity vectors of the i-th particle, respectively, Xi(t) and
Xi(t+1) the current and new positions of the i-th particle,
respectively, pBesti(t) the best position that the i-th particle has
so far achieved, and gBest(t) the best position of all the
particles in the population. As shown in the picture, in order to
calculate Vector Xi(t+1), it is required to obtain the vector sum
of the two vectors: Xi(t) and Vi(t+1), according to Equation (1)
[13]:

Xi(t+1) =Xi(t) +Vi (t+1) (1)
The current velocity vector, the current position vector, the

best global particle, and the best history of the current particle
in the search space of the problem can be used to calculate the
new velocity in according with Equation (2) [13]:

Vi(t+1)=ω*Vi(t) +q1r1(pBesti(t)-Xi(t))+q2r2(gBest(t)-Xi(t))(2)
Where; ω is the inertia coefficient, q1 and q2 the learning

coefficients of the PSO algorithm, and r1 and r2 two random
numbers in the interval [0,1]. It has been proved that if the
speed of the particles is limited within a certain range, such as:
[-VMAX,VMAX], the convergence of the PSO algorithm will be
guaranteed.

It has been proved that if the values of ω, q1, q2 are chosen
correctly, the speed of the particles will fall within a specified
range, and there will be no need to limit the speed of the
particles. Typically, if the values of learning coefficients in the
PSO algorithm, are chosen from between 1.5 and 2, the
algorithm will act properly. The convergence of the PSO
algorithm is greatly dependent on the value of w, and it is better
to dynamically choose this value in each iteration. One of the
methods to choose the inertia coefficient is to reduce its value
repeatedly in each iteration within a certain range such as (0.0,
2.9) until it is finally converged to 0.2.

In other words, choosing a larger value for the inertia
coefficient in the early stages of the PSO algorithm, causes the
search space of the problem to be scanned properly, and its
smaller value in the final iterations causes the places around the
optimal solutions to be searched properly.

II. PARALLELISM IN GRAPHICS PROCESSOR
A graphics processing unit (GPU) can be considered as a

processor for graphics card to perform graphics operations and
render images. The number of cores is far greater in a graphics
processor than in the main processor, and the number of cores
sometimes reaches up to hundreds and thousands. The
architecture of graphics processors is in such a way that their
architecture has been mainly used to design the processing and
computing unit, and less focus has been put on the design of the
main and cache memories. Because the processing operations
performed in the graphics processor, are mainly simple but
high-volume processing operations, in which the arithmetic
logic unit (ALU) needs to be more developed than other units.
Instead of storing data in the temporary or cache memory, a
graphics processor tries to perform processing operations on
the data. Thus, its circuits are more needed to be designed for
computing, and are less needed to be used for data storage.

179

IJRE | Vol. 04 No. 06 | June 2017

Whereas, in the main processor, most of the circuits have been
prepared to design the hidden data storage unit, memory,
control unit, etc. [14]. Figure (2) shows the difference between
the hardware systems of a graphics processor and main
processor. As can be seen in this figure, the number of cores
used in the architecture of the graphics processor, is far greater
than the number of those used in the main processor. And
contrarily, the arithmetic logic unit (ALU) of the main
processor has been more developed than that of the graphics
processor, which is due to more complex calculations in the
main processor [15]:

Fig. 2. The difference between the architectures of the main processor and

graphics processor
By comparing the architectures of the main processor and

graphics processor, the following points can be found out [16]:
 The number of cores is much greater in the graphics processor than in

the main processor, which indicates that the architectures of the
graphics processor and main processor are appropriate for computation
on large and small data, respectively.

 The size of cores is smaller in the graphics processor than in the main
processor, which indicates that the graphics processor is optimized for
large but simple calculations, while the opposite is true in the main
processor.

 The control unit is larger in the main processor architecture than in the
graphics processor, which is due to the high complexity of the main
processor architecture compared with that of the graphics processor,
which needs its controlunit to be designed precisely, so that the main
processor can be controlled and managed properly.

 A large part of the main processor’s architecture has been allocated to
the cache memory architecture. Whereas the cache memory does not
play a very key role in the graphics processor, which is because each
core acts individually, and process switching rarely occurs between
different cores in the graphics processor. Thus the data are accessible
by the processor. But in the main processor, due to the small number
of cores, switching occurs frequently between processes, which
requires the intermediate data to be stored in a fast memory such as the
cache memory, so that in switching at the next stage, the process can
have access to its own data.

A. The parallel execution of programs in the graphics
processor
For execution on the graphics processor, each parallel

program is divided into the following two main parts:
• The Host Code (executable in the main processor; CPU)
• The Machine Code (executable in the graphics processor; GPU)

The host code is in fact the serial and nonparallel part of a
program code, which can only be executed in the main
processor. Whereas the machine code forms the parallel part of
the program code and is only executable in the graphics
processor. The program code may consist of several serial and
parallel parts, which are alternately repeated in the program
code. Figure 3 shows the synchronous execution of a program
in the CPU and GPU [17]:

Fig. 3. The parallel execution of a code in the GPU

In this picture, the main code is divided into two parts:
parallel (green) and serial (blue). And as shown in the picture,
first, the serial part is executed in the CPU, and then, the
parallel part is executed by both the CPU and GPU. And
eventually, the serial code is executed in the CPU. The
execution of serial and parallel parts can be done
synchronously or asynchronously. In case of the latter, a
synchronization process between the threads is necessary. For
instance, the parallel processing of data in the GPU, can be
done asynchronously by copying data from the CPU to the
GPU, or synchronously during the transfer of data and
information between the two processors.
B. Comparing the processing power of GPUs and CPUs

There are different criteria to measure the performance of
CPUs and GPUs, among which the two main criteria: the
computing power and data transfer bandwidth have been used
here. The computing power is typically calculated based on the
number of floating point operations that a processor can
execute per unit time, and is usually measured in giga-
operations per unit time, whose higher value is considered as a
good sign for the performance of a processor. Figure (4) shows
the number of floating point operations executed by two types
of NVIDIA’s graphics processors and two types of Intel's non-
graphics processors in the first 11 months of 2013. The analysis
of the graph shows that the increasing trend in the floating-
point arithmetic is much bigger in the graphics processors than
in main and non-graphics processors.

The results of investigations show that main processors’
ability to perform floating-point operations has not changed a
lot during a year, but the architecture of graphics processors,
with its enormous growth during this period, could strongly
increase their ability to perform floating-point arithmetic [17].

Fig. 4. Comparing the processing power of floating-point arithmetic in CPUs

and GPUs

Performing floating-point arithmetic by itself cannot
determine the performance of a processor. Because the
computing power of a processor is also greatly dependent on an
important factor; that is, memory bus bandwidth. Even if a
GPU has a greater power in floating-point arithmetic, but the
communication lines with the CPU are weak, it cannot enjoy
high efficiency. Because the high bandwidth between the CPU
memory and GPU memory, acts as a data transfer bridge, and
the greater its width is, the more data it can transfer between
the two processors during a certain period of time. Figure (5)
shows a comparison between the memory bandwidths used in
CPUs and GPUs and their cores between 2003 and 2013. This
chart shows the bandwidths of two GPUs and a CPU during a
period of 10 years. The analysis of the desired chart suggests

180

IJRE | Vol. 04 No. 06 | June 2017

that the sizes of computational bandwidths in GPUs, have had
the greatest growth possible:

Fig. 5. Comparing data transfer bandwidths in calculations used in CPUs and

GPUs
In 2007, NVIDIA Company which manufactures graphics

processors and cards, introduced the first version of a software
platform, called CUDA platform, for parallel programming
with the aid of the company's GPUs. The CUDA platform is a
software layer consisting of a series of library commands,
which make it difficult for programmers to use the GPU.
C. CUDA framework

Through this platform, programmers can develop programs
using common languages, especially Visual C++, for
parallelization and execution of complex algorithms. In
programming in the CUDA platform, a programmer needs to
have specialized information about the hardware of GPUs,
which makes programming in this platform a little difficult.
CUDA is not a programming language, but it is rather
considered as an interface between the programmer and GPU.
The CUDA platform only works on NVIDIA’s GPUs, and in
this sense, the development and transfer of these programs are
facing some difficulties. For programming in CUDA, it is
necessary to install the packs of this platform and new updates
of the GPU on the system, and add the path of CUDA
compilers to the integrated development environment (IDE). A
CUDA program is made up of two main parts; serial and
parallel, which are regularly and alternately transferred
between the CPU and GPU, and are executed [18]. The CUDA
platform uses the software units: thread, block, and grid, to
parallelize different data and algorithms. Each thread can be
executed on a core in parallel, or a series of threads can be
timed on a single core. The threads are kernel execution units,
in a way that each thread executes a version of kernel. Threads
are timed in larger units such as blocks, and a series of threads
are defined in a block, and are able to communicate with each
other with the aid of a shared memory. In case of substrate
change, the threads contained in a block, store their data block
in the local memory, so that they can perform their previous
parallel operations again. A grid is an execution unit to call the
kernels, and each kernel is executed by a grid which consists of
a series of blocks. There is also a key concept in CUDA called
the multiprocessing flow, which means a series of CUDA cores
serving a parallel process, which will be further explained in
what follows. Figure 6 shows the structures of a grid, block,
and a thread in two-dimensional forms in Image (a), and
several multiprocessing flows in CUDA in Image (b) [19]:

Fig. 6. The main components used in the CUDA platform

In a state where they are placed two-dimensionally inside
the blocks, the structures of threads have two ID numbers;
vertical and horizontal in the direction of each block. And these
thread numbers are only valid in a single block and are
considered to be local. With the aid of the intra-block
horizontal and vertical numbers of each thread, and horizontal
and vertical dimensions of each block, a unique number can be
provided to the threads belonging to a block, in a way that no
two threads in the flower of a grid have identical numbers. In
the blocks contained in a grid in the two-dimensional mode, the
situation is like that of two-dimensional threads. And each
block has two intra-grid numbers; unique and local. And with
the aid of the dimensions of a grid and the block number, the
unique number of the blocks of a grid can be calculated.
D. Maintaining the Integrity of the Specifications

The template is used to format your paper and style the text.
All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This
measurement and others are deliberate, using specifications that
anticipate your paper as one part of the entire proceedings, and
not as an independent document. Please do not revise any of
the current designations.

III. THE PROPOSED METHOD TO INCREASE THE SPEED THROUGH

PARALLELIZING THE PSO ALGORITHM
In order to find the optimum of problems, evolutionary

algorithms, such as the PSO algorithm, need a population of a
certain size to look for the global optimum of the objective
function in the search space. And if the shapes of these
functions are more complex, it is necessary to consider the
population size large enough, so that the entire search space of
the objective function can be searched to find the global
optimum. In the PSO algorithm, if the initial population size
(the size given by the problem) is small, the search space of the
problem will not be properly searched to find the optimum of
the problem. Hence, it is necessary to increase the population
size to cover the entire space of the problem. And in the
meantime, in order to prevent the proposed algorithm from
slowing, we execute it in parallel in the GPU through the
CUDA platform. Not any algorithm can be executed in parallel,
but it must rather have a structure and function, which can be
easily parallelized. The PSO algorithm is a population-based
algorithm, where each member of its population can search the
search space of the objective function to find the optimum, with
the aid of its best global member and the best history of its
motion. And this mechanism allows the PSO algorithm to be
executed in parallel. The proposed method to parallelize the
enhanced PSO algorithm has the following main stages:

181

IJRE | Vol. 04 No. 06 | June 2017

• The particles are encoded in the form of two vectors; the
velocity vector and position vector. Each part of the
position and velocity vectors is dedicated to a particle.

• The initial parameters of CUDA, including the number of
blocks and threads of each block, and the parameters of the
proposed algorithm, including the number of particles, and
the number of iterations, are initialized.

• The values of the position and velocity vectors of the
particles are randomly initialized.

• A proper memory is allocated for the velocity and position
vectors of the particles in CUDA.

• Copying the velocity and position vectors from the host
memory space to the machine’s global memory

• Executing a kernel, which has the parallelization code of the
proposed PSO algorithm. This kernel is executed by a series
of threads contained in a block.

• Sequential iteration of the kernel to change the position of
particles in the search space of the problem

• Updating the best global particle in each execution of the
kernel

• Transferring the best global particle from the machine’s
global memory to the host main memory

• Evaluating the runtime
• Releasing the memories used in the definition of the

velocity and position vectors of the particles.
In the method proposed to parallelize the PSO algorithm,

we can define two arrays: (V1
1, V2

1,….,VD
1, V1

n, V2
n, ….,VD

n)
and (x1

1, x2
1, …., xD

1, f1, x1
n, x2

n …, VD
n,fn), which store the

speed and position of all the particles in themselves, and then
using the cudaMalloc command, their required memory can be
allocated. In this structure of the desired vectors, n is the
number of particles, D the dimensions of the evaluation
function, fi the fit of the i-th particle, vj

i the velocity of the j-th
particle, and xj

i the position of the j-th particle.The position and
velocity vectors are equal to n×(D+1) and n×D, respectively.

Then the values of these two vectors are randomly
initialized in the main memory, and using the Cudamemcpy
command and Cudamemcpyhosttodevice switch, the values of
the two arrays are transferred from the host main memory to
the GPU global memory. Then, each thread executes a version
of the kernel, which contains the parallel commands of the
proposed algorithm to determine the new position of the
particles. To execute the kernel of changing the particle
positions, CUDA considers the number of threads to be equal
to the number of the initial population members. After
determining the position of each particle at the end of the
current iteration, it is necessary to calculate the best global
particle of the population by calling the second kernel, and then
update its position. In this situation, the previous kernel exits
from the memory of threads and takes action for the parallel
execution of the second kernel. To execute the kernel of
updating the position or updating the best global particle, each
thread obtains its unique ID number from Equation (3). And
through this ID number, it can gain access to cells i to i+D+1 of
the position vector and i+D of the velocity vector, which are in
the machine’s global memory.

i = blockIdx.x * blockDim.x + threadIdx.x (3)
After the completion of iteration, using the Cudamemcpy

command and Cudamemcpydevicetohost switch, the best
global particle algorithm, which is in the machine’s global
memory, is transferred into the host main memory, and is taken
to the outlet, and eventually, the memories used by CUDA, are
released. Figure (7) shows the pseudo-code of the proposed

method for the parallelization and acceleration of the PSO
algorithm.

Fig. 7. The pseudo-code of the proposed method in the acceleration of the

PSO algorithm
IV. ANALYSIS

To assess the accuracy and speed of convergence in
evolutionary algorithms, such as: the PSO algorithm, there are
mathematical functions called “benchmark functions”, which
are considered as the objective function of the problem. In this
objective functions, which represent an optimization problem,
finding the global minimum is the final goal of the desired
evolutionary algorithm. Table (1) shows a number of
benchmark functions, which are used to assess the accuracy
and speed of the proposed algorithm, along with the criteria and
values of variables, for which the function becomes minimum:

TABLE I. THE BENCHMARK FUNCTIONS USED IN THE SIMULATION
CRITERION Benchmark Function

= Sphere

= (100(−) + (− 1)) Rosenbrock

= 1 +
1

4000
− cos (

√
) Griewank

= 10 + (− 10cos (2) Rastrigin

Three-dimensional graphs for benchmark functions have
been shown in Figures (8), (9), (10), and (11):

Fig. 8. Sphere function

Fig. 9. Rosenbrock function

182

IJRE | Vol. 04 No. 06 | June 2017

Fig. 10. Griewank function

Fig. 11. Rastrigin function

In the second stage of the study, to improve the speed of the
proposed algorithm, it is necessary to implement it in parallel in
the CUDA platform, and determine the efficiency of the
algorithm by calculating the runtime of its serial and parallel
versions. The benchmark functions: Sphere, Rosenbrock, Three
Hump, Easom, Beale, Sum Squares, Griewank, and Rastrigin
are also used in this section, to assess the speed of the parallel
version relative to the serial version. The two important criteria:
runtime and acceleration are usually used in CUDA to assess
the efficiency of parallel algorithms. In Equation (4), the GPU
acceleration is defined as the CPU to GPU runtime ratio:

Speedup =

 (4)

Pieces of hardware including:
CPU: Intel i5-3337U CPU@1.80GHz,
4GB of RAM, and
GPU: GeForce 710M with 1GB of memory were used for

the simulation and implementations.
To calculate the acceleration of the proposed algorithm,

which is the same CPU to GPU runtime ratio, we consider the
initial population as the variable input of the problem, and add
to the number of its members, then calculate the acceleration
values successively. In this section, for each benchmark
function, we carried out 50 different tests in CUDA, and
calculated the runtime of the parallel bat and standard
algorithms, then we calculated the mean time, and used it to
calculate the average acceleration in each benchmark function.
In evolutionary algorithms, the population size plays an
important role in their accuracy and of course the speed of their
execution. And the greater the size of their initial population is,
the more the accuracy of the algorithm increases, and of course
the run time also increases, thus reducing the speed of the
algorithm. The average acceleration graph for populations with
sizes of 1024, 2048, 4096, and 8192, shows that the efficiency
of a GPU increases with the increased size of data, and the
increased size of data, or the same initial population, can
provide the proposed algorithm with an appropriate
acceleration.

Fig. 12. Increasing the acceleration by increasing the population size
Analyzing the graph of acceleration versus initial

population size shows that an increase in the population size
causes an increase in the runtime of the bat algorithm both in
the CPU and GPU. But the increase is much higher in the CPU
than in the GPU, which causes the CPU to GPU run time ratio
to constantly increase, in a way that it causes the acceleration
rate to have an ascending trend as the population increases. In
general, analyzing the simulation outputs and acceleration
results in different benchmark functions, shows that by
increasing the population size of particles as the input data of
the problem, the runtime constantly increases in the GPU and
CPU, in such a way that the runtime increase rate is much
greater in the CPU than in the GPU, which causes the CPU to
GPU runtime ratio to increase as the population size increases.
To put it in better words, the efficiency of a GPU shows itself
better, when our data are large enough.

V. CONCLUSION
The PSO algorithm is an evolutionary algorithm with a

swarm intelligence approach, where a collection of particles
can search the search space of the problem in parallel.
Nonetheless, by increasing the initial population size in the
PSO algorithm, its runtime increases too much. Therefore, in
this paper, we presented a parallelization method based on
CUDA, to improve the speed of the PSO algorithm. The results
of implementing the proposed method in the GPU using the
CUDA platform, show that an increase in the population size,
increases the runtime in the proposed algorithm and PSO
algorithm.

But, this increase is smaller in the GPU than in the CPU,
which causes an increase in the acceleration, which is the GPU
to CPU runtime ratio, as the population size increases. In future
studies, we are going to use the CUDA parallel computing
platform to accelerate other swarm intelligence algorithms, so
that the optimal solutions of a problem are calculated faster.

REFERENCES

[1] Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired
algorithms. Journal of Bionic Engineering, 7, S232-S237.

[2] Tsai, H. C., & Lin, Y. H. (2011). Modification of the fish swarm
algorithm with particle swarm optimization formulation and
communication behavior.Applied Soft Computing, 11(8), 5367-5374.

[3] Wang, G. G., Gandomi, A. H., & Alavi, A. H. (2014). Stud krill herd
algorithm. Neurocomputing, 128, 363-370.

[4] James, J. Q., & Li, V. O. (2015). A social spider algorithm for global
optimization. Applied Soft Computing, 30, 614-627.

[5] Emary, E., Yamany, W., Hassanien, A. E., & Snasel, V. (2015). Multi-
Objective Gray-Wolf Optimization for Attribute Reduction. Procedia
Computer Science, 65, 623-632.

[6] Li, X., Zhang, J., & Yin, M. (2014). Animal migration optimization: an
optimization algorithm inspired by animal migration behavior. Neural
Computing and Applications, 24(7-8), 1867-1877.

[7] Abdullah, A., Deris, S., Mohamad, M. S., & Hashim, S. Z. M. (2012). A
new hybrid firefly algorithm for complex and nonlinear problem.
In Distributed Computing and Artificial Intelligence (pp. 673-680).
Springer Berlin Heidelberg.

[8] Łukasik, S., & Kowalski, P. A. (2015). Study of flower pollination
algorithm for continuous optimization. In Intelligent Systems' 2014 (pp.
451-459). Springer International Publishing.

183

IJRE | Vol. 04 No. 06 | June 2017

[9] Ahmadi, M., & Mojallali, H. (2012). Chaotic invasive weed optimization
algorithm with application to parameter estimation of chaotic
systems.Chaos, Solitons & Fractals, 45(9), 1108-1120.

[10] Wang, G. G., Hossein Gandomi, A., Yang, X. S., & Hossein Alavi, A.
(2014). A novel improved accelerated particle swarm optimization
algorithm for global numerical optimization. Engineering
Computations, 31(7), 1198-1220.

[11] Harish, P., & Narayanan, P. J. (2007). Accelerating large graph
algorithms on the GPU using CUDA. In High performance computing–
HiPC 2007 (pp. 197-208). Springer Berlin Heidelberg.

[12] Chunming; D. Simon; Aug.2005, “A new particle swarm optimization
technique”, 18th International Confereces System Engineering,2
.ICSEng 2005 ,pp.164-169.

[13] Alam, S., Dobbie, G., Koh, Y. S., Riddle, P., & Rehman, S. U. (2014).
Research on particle swarm optimization based clustering: a systematic
review of literature and techniques. Swarm and Evolutionary
Computation,17, 1-13.

[14] Cheng, J., Grossman, M., & McKercher, T. (2014). Professional Cuda C
Programming. John Wiley & Sons.

[15] Nvidia, C. U. D. A. (2013). CUDA C Programming Guide 5.5. NVIDIA
Corporation, Jul.

[16] Verdonck, S., Meers, K., & Tuerlinckx, F. (2015). Efficient simulation
of diffusion-based choice RT models on CPU and GPU. Behavior
research methods, 1-15.

[17] Manconi, A., Manca, E., Moscatelli, M., Gnocchi, M., Orro, A.,
Armano, G., & Milanesi, L. (2015). G-CNV: a GPU-based tool for
preparing data to detect CNVs with read-depth methods. Frontiers in
bioengineering and biotechnology, 3.

[18] Kasim, H., March, V., Zhang, R., & See, S. (2008). Survey on parallel
programming model. In Network and Parallel Computing (pp. 266-275).
Springer Berlin Heidelberg.

[19] Mejía-Roa, E., Tabas-Madrid, D., Setoain, J., García, C., Tirado, F., &
Pascual-Montano, A. (2015). NMF-mGPU: non-negative matrix
factorization on multi-GP

