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ABSTRACT

In this paper we analyze a conjugated transient heat transfer problem consisting of a nuclear reactor’s
fuel rod and its intrinsic coolant channel. Our analysis is made possible through a computer code
being developed at the Instituto de Engenharia Nuclear (IEN/CNEN). This code is meant to study
the temperature behavior in fuel rods which exhibit deviation from their ideal conditions, that is, rods
in which the cladding is deformed or the fuel is dislocated. It is also designed to avoid the use of the
computationally expensive Navier-Stokes equations. For these reasons, its physical model has as basis
a three-dimensional fuel rod coupled to a one-dimensional coolant channel, which are discretized using
the finite element method. Intending to study accidental conditions in which the coolant (light water)
transcends its saturation temperature, turning into vapor, a homogeneous mixture is used to represent
the two-phase flow, and so the coolant channel’s energy equation is described using enthalpy. Owing to
the fact that temperature and enthalpy are used in the physical model, it became impractical to generate
a fully coupled method for solving the pertinent equations. Thus, the conjugated heat transfer problem is
solved in a segregated manner through the implementation of an iterative method. Finally, as study cases
for this paper we present analyses concerning the behavior of the hottest fuel rod in a Pressurized Water
Reactor during a shutdown wherein the residual heat removal system is lost (loss of the reactor’s coolant
pumps). These studies contemplate cases in which the fuel rod’s geometry is ideal or curved. Analyses are
also performed for two circumstances of positioning of the fuel inside the rod: concentric and eccentric.

1. INTRODUCTION

This study is part of an ongoing project at the Instituto de Engenharia Nuclear (IEN/CNEN)
for thermo-hydraulic calculations on fuel rods of nuclear reactors. In the present work, we
are concerned with the temperature behavior in fuel rods under unideal conditions, such
as rods that have deformed cladding or dislocated fuel.

To analyze rods under the aforementioned conditions, a three-dimensional (3D) model is
required. However, to keep the computational cost reasonable, it is sensible to avoid the
use of the Navier-Stokes equations. Thus, we have chosen a physical model based on a 3D
fuel rod coupled to a one-dimensional (1D) coolant channel.

Also aiming to study accidental conditions in which the coolant (light water) transcends
its saturation temperature, turning into vapor, a homogeneous mixture is used to represent
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Nomenclature

A Area (m)

a Height (m)

Cκ
Isobaric or Isochoric
specific heat (J kg−1 ◦C−1)

h Specific enthalpy (J kg−1)

k
Thermal conductivity
(W m−1 ◦C−1)

ṁ Mass flow rate (kg s−1)

p Pressure (Pa)

P Perimeter (m)

q′
Linear heat generation
rate (W m−1)

q′′′
Volumetric heat
generation rate (W m−3)

r Radius (m)

S Surface

t Time (s)

T Temperature (◦C)

V Volume (m3)

z Direction z

α Void fraction

ρ Density (kg m−3)

Subscripts
0 of reference

c of the cladding

ci
of the inner surface of
the cladding

cn of the coolant channel

co
of the outer surface of
the cladding

f of the fuel

fo
of the outer surface of
the fuel

f of saturated liquid

fr of the fuel rod

g of the gap

g of saturated vapor

in of the channel’s inlet

m
of the homogeneous
mixture

max maximum value

med mean value

s after shutdown

ss of steady state

sat of saturation

w
of the outer surface of
the fuel rod

the two-phase flow (liquid-vapor) of a single component, and so the coolant channel’s
energy equation is described using enthalpy.

Because our model uses temperature and enthalpy, the development of a fully coupled
method for solving the pertinent equations became impractical. Therefore, the iterative
method we called “internal iterations” was implemented, in which the conjugated heat
transfer problem is solved in a segregated manner.

In the following sections we briefly describe the remaining attributes of the physical model
adopted, the various correlations employed to estimate the thermal-hydraulic aspects of
our problem, the methods used for the numerical discretization of the pertinent equations
and the so called “internal iterations”.

We also discuss about how the developed program was verified and present case studies
in which the behavior of the hottest fuel rod in a Pressurized Water Reactor (PWR) is
analyzed during a shutdown wherein the residual heat removal system is lost (loss of the
reactor’s coolant pumps). These studies contemplate cases in which the condition of the
fuel rod’s geometry is ideal or curved. Analysis are also performed for two circumstances
of positioning of the fuel inside the rod: concentric and eccentric.

2. PHYSICAL MODEL

The three-dimensional transient heat conduction in the fuel rod is represented in this work
by the variational formulation shown below:

∫
Vfr

ϕρCκ
∂T

∂t
dVfr +

∫
Vfr

k~∇T · ~∇ϕ dVfr =
∫
Vfr

ϕq′′′ dVfr −
∫
Sfr

ϕq′′dSfr (1)
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While, for the coolant channel’s one-dimensional transient heat convection, it is employed
the following differential form:

ρAcn
∂h

∂t
+ ṁ

∂h

∂z
=
∫
Pw

q′′dPw (2)

Equation (1) must be solved for each one of the components that constitute the fuel rod,
which, essentially, are: fuel (UO2), gap (filled with helium gas) and cladding (Zircalloy-
4). The properties of these components, except for the densities (ρf = 10 963 kg m−3,
ρg = 0.1785 kg m−3 and ρc = 6440 kg m−3), are considered in this paper to be temperature
dependent. The same is true for the properties of the coolant, with the exception of the
density in the two-phase regime, that is given by equation (3).

ρm = αρg + (1− α) ρf (3)

Regarding the components of the rod, we make use of the correlations recommended by
the International Atomic Energy Agency (IAEA) [1] for the isobaric specific heat of UO2
[1, p. 25]; and for the thermal conductivity of UO2 [1, p. 89] and Zircaloy-4 [1, p. 249]. For
the isobaric specific heat of Zircaloy-4 the correlation of Zimmerer [2] (as presented in
[3, p. 1542]) is used. We also use correlations indicated by the IAEA [4] for the isochoric
specific heat [4, p. 172] and the thermal conductivity [4, p. 173] of the helium gas.

Concerning the coolant, the routines of the code NBSNRCE [5] are used for most of its
properties, the only exception being its enthalpy, which is provided by the IAPWS-IF97
[6], the Industrial Formulation 1997 from the International Association for the Properties
of Water and Steam (IAPWS).

In this paper we consider the power of nuclear reactors under two circumstances: at
nominal operation (steady state) and after the shutdown. The volumetric heat generation
rate at steady state is given by equation (4):

q′′′
f (z) = q′

max0

πr2
f

cos
(
πz

afr

)
(4)

As to the reactor’s power after the shutdown, it essentially arises from fissions by delayed
neutrons and the decay of fission products and actinides. Equation (5) [7, p. 65] is used o
estimate the contribution of the former:

Q̇ = Q̇0 [0.0625 exp(0.0124ts) + 0.9375 exp(960ts)] (5)

The power derived from the decay of fission products and actinides is obtained from the
fit presented in [8, p. 138] for the ANS standard (ANS FP + 239U + 239Np decay power
curve).
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The mass flow rate of the coolant is considered to be constant at normal operation whereas,
in the shutdown, its behavior is dictated by equation (6), a fit for the data of Bordelon [9]
relating to a typical pump of a Westinghouse’s PWR.

ṁ

ṁ0
= 1

2 exp
[
−4

(
ts

1000.91

)0.85]
+ 1

2 exp(−0.06ts0.73) (6)

As for the regimes of heat transfer contemplated in our studies, those of most importance
are the single-phase forced convection and the flow boiling. The correlation of Dittus-
Boelter/McAdams [10, 11] (as presented in [8, p. 567]) is used for the heat transfer in
single-phase forced convection and the correlation of Chen [12] (as presented in [8, p. 752-
755]) is adopted for the flow boiling heat transfer.

The critical heat flux, one of the most important phenomenon to be assessed, as its
occurrence can irreversibly damage the fuel rod and even lead to its meltdown, was
observed in our work to arise in the form of Dryout, which we assess with the correlation
of Bowring [13] (as presented in [8, p. 781-782]).

The remaining simplifications adopted in our physical model, which are borne by equations
(1) and (2), are: the fuel rod does not undergo thermal expansion; all the thermal energy
generated by the rod is obtained in its fuel; there is no fluid motion in the gap and thus
the heat transfer occurs in it only by conduction; no energy comes from reactions in
the coolant channel; work due to the pressure gradient is small and can be ignored; the
viscous-dissipation do not affect the thermal energy of the system; the axial conduction in
the coolant can be disregarded; there is no mass or heat exchange between channels; and
the cross-sectional area of the channel is constant.

2.1. Unideal Conditions

Besides a fuel rod with eccentric fuel, aiming to analyze the consequences of a possible
irregularity in the manufacturing process of the fuel rod, we will also investigate the effects
of an arbitrary curvature in the heat conduction of the rod.

Assuming a curvature in the x-direction over the entire fuel rod, represented by the
longitudinal cut shown in Fig. 1, and approximating this deformation through circumference
arcs, we obtained equation (7).

Figure 1: Curved fuel rod (longitudinal cut)

Note: Reduced rod, height equals to five times the diameter (1:77).
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δcur =
(a2

vc − 4δ 2
−|max

8δ−|max

)2

− z2 + zavc

1/2

−
a2
vc − 4δ 2

−|max
8δ−|max

(7)

where δ−|max is the maximum deformation
(
δ−|max

)
, which occurs at half height of the rod.

In order to model the deformation, equation (7) is applied to the mesh of the rod with the
use of: x = xa + δcur, where xa is the former value of the x coordinate.

3. NUMERICAL MODEL

In our numerical model, we employ the finite element method for the spatial discretization
of the dimensionless forms of equations (1) (fuel rod) and (2) (coolant channel). The
Galerkin method, tetrahedral elements and linear base functions are adopted for the rod,
whereas the least-squares method, linear elements and base functions are used for the
channel. The discretization with respect to time, concerning both equations, is acquired
through the Crank-Nicolson method.

Taking the average in each element for the physical properties of the rod’s materials, the
density of the coolant, the heat flux and the heat generation we reach the matrices for
the fuel rod and the coolant channel. The matrix found for the rod is solved using the
conjugate gradient method, in which the Jacobi preconditionner is applied [14]. Meanwhile,
the matrix found for the channel is solved employing the Thomas algorithm.

4. INTERNAL ITERATIONS

The first step in the “internal iterations” is to evaluate the heat flux between the fuel rod
and the coolant channel. Due to the rod possessing a three-dimensional discretization and
the channel a one-dimensional, we use a structured grid as a mesh for the outer surface
of the rod, produced by the means of the software GiD R© [15], so to make sure that all
nodes in any distinct height of the rod are connected to one node in the channel (Fig. 2),
simplifying the calculation of the heat flux.

The most suitable experimental correlation (Dittus-Boelter/McAdams’ or Chen’s), accord-
ing to the heat transfer regime contemplated at the instant analyzed, is used to obtain the
heat flux. Its integral throughout the rod’s perimeter is calculated by the means of the
trapezium rule.

Since the equations are segregated due to the use of temperature for the rod and enthalpy
for the coolant, the heat flux is calculated considering the thermal distribution of the
previous time step (in reality the heat flux distribution achieved in the prior time step is
employed, since it is already calculated considering the former thermal distribution).

Equations (1) and (2) are solved using the values found for the heat flux, then the
distributions of temperature in the rod, enthalpy in the coolant and heat flux between
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Figure 2: Discretization of the fuel rod and the coolant channel

them at the beginning and the end of this process are compared. If these distributions
show a lower relative percentage difference than a pre-stipulated value, the code progresses
to the next time step. Otherwise, the heat flux and the physical properties are recalculated
using mean values for temperature and enthalpy, and the energy equations are solved
again. The advance for the next time step only happens if enthalpy, temperature and heat
flux reach equilibrium.

5. VERIFICATION AND VALIDATION

A series of tests were conducted in order to verify the developed program, among which
were mesh convergence, convergence towards the steady state of simulations with different
initial conditions of temperature and comparison of its results with those of an analytical
solution for said state.

The iterative method adopted, “internal iterations”, was verified by comparing results
obtained through the developed program with those of a previous version of itself in which
a fully coupled method was employed to solve the transient heat transfer restricted to the
subcooled regime.

All the aforementioned tests provided great results, indicating no problems in the imple-
mentation of the program or the “internal iterations”.

To verify and validate our findings in the flow boiling regime, we compared results provided
by our code to those from the work of Krepper [16] and the experiment of Bartolomej [17]
(as presented in [16, p. 723]).

The work of Krepper consists in the implementation of models for the subcooled boiling
regime in the CFX R© [18] software from ANSYS c© with the purpose of investigating the
capability of the computational fluid dynamics in contributing to the project of fuel
assemblies, with emphasis in the improvement of heat flux and the prevention of critical
heat flux.
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As validation case Krepper made a simulation using data from an experiment of Bartolomej,
which consists in an ascendant water flux through a heated tube with length of 2.0 m
and diameter of 15.4 · 10−3 m. In addition, the experiment had an uniform heat flux of
5.7 · 105 W m−2, mass flow rate of 900.0 kg s−1 m−2 and 4.5 · 106 Pa of pressure. Krepper
also adopted a two-dimensional cylindrical geometry and an input temperature 58.2 K
below the saturation temperature of the coolant (light water), so that the equilibrium
quality would be zero at 1.75 m of the tube’s height.

To use the works of Krepper and Bartolomej for verification and validation, we adapted
the parameters of the described problem into variables suitable for our code, that is,
we modeled a coolant channel with the same hydraulic diameter as the heated tube of
Bartolomej, and a fuel rod with a uniform heat generation rate that supplies the same
heat flux.

We compared our findings for this problem with the data provided in [16] — extracted
through digitalization, using the program Origin R© [19] of OriginLab c©, and converted to
the Celsius scale — by the means of Fig. 3, which consists of a graph for the temperatures
in the coolant, and in the surfaces of the fuel rod and the tube.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
195

215

235

255

275

Tw (Bartolomej) Tb (Bartolomej) Tw (Krepper) Tb (Krepper)
Tw (This paper) Tb (This paper) Tsat (257.44 ◦C)

z (m)

T
(◦C)

Figure 3: Temperatures of the validation case through the works of [16] and
[17] (Data obtained from [16] with superimposed results)

As can be seen, our results for the temperature of the coolant are in agreement with the
experimental data and the findings of Krepper. As for those concerning the temperature
in the surface of the rod, they are underestimated at the beginning of boiling regime and
overestimated at its end. Nonetheless the modeling applied in this work can reasonably
represent the true behavior of the addressed phenomena, allowing us to satisfactorily
conclude the verification and validation of the developed program.
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6. CASE STUDIES

As case studies for this paper we analyze the shutdown transient of a PWR’s hottest fuel
rod in which the residual heat removal system is lost (loss of the reactor’s coolant pumps),
which means we concern ourselves with the heat transfer between the fuel rod and the
coolant channel in the coastdown transient of the pumps. In these studies we contemplate
not only a fuel rod with ideal conditions, that is, a rod with concentric fuel and perfect
cladding (case called Ideal), but also rods with dislocated fuel (case Eccentric), and curved
(case Curved).

The parameters of the reactor used in the studies are those from the Seabrook Station
PWR, obtained form [8, p. 971-972] and presented in Table 1.

Table 1: Parameters of the Seabrook Station PWR (Data obtained from [8,
p. 971-972])

Parameter Value

p(Pa) 15.51 · 106

Tin(◦C) 293.1

ṁ(kg s−1) 0.335

q′
max(W m−1) 44.62 · 103

afr(m) 3.658

Parameter Value

p(m) 12.6 · 10−3

rf (m) 4.096 · 10−3

rci(m) 4.178 · 10−3

rco(m) 4.75 · 10−3

As for the meshes used, we adopted one for rods with concentric fuel, and another for the
rod with eccentric fuel, both produced by the means of the software GID and described
by the parameters found in Table 2.

Table 2: Characteristics of the meshes used for the fuel rods studied

Parameter
Fuel Condition

Concentric Eccentric

Divisions in the
Height

100 100

Elements 627 743 628 535
in the Fuel 455 894 456 295
in the Gap 49 235 48 661
in the Cladding 122 614 123 579
in the Outer
Surface

16 000 16 000

Parameter
Fuel Condition

Concentric Eccentric

Divisions in the
Diameter

80 80

Nodes 110 576 110 761
in the Fuel 81 464 81 551
in the Gap 16 372 16 283
in the Cladding 28 900 29 087
in the Outer
Surface

8080 8080

The results will be presented through graphs relating to the spatial distribution and the
temporal evolution of temperature in the fuel rod and the coolant channel, and enthalpy in
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the channel. Special attention is given to four places in the rod: inner and outer surfaces
of the cladding, outer surface of the fuel and center of the fuel. The results concerning
surfaces are examined by the means of averages on their perimeters.

For rods with eccentric fuel, we consider six other places that are outlined in Fig. 4. These
places comprehend positions in the direction in which the displacement occurs, and are
further designated by the symbols d and e, that represent, respectively, the orientation
favorable (right side) and opposite (left side) to the offset.

Tcoe

Tcie

Tfoe Tfod

Tcid

Tcod

Figure 4: Representation of the additional locations of interest on an
eccentric fuel rod

Finally, we point out that isolated the studies lose relevance, since it is due to the differences
between them that their true value is revealed. For this reason, except for a few cases of
interest, the results will be presented through comparisons with the case concerning the
ideal fuel rod.

6.1. Fuel Rods with Concentric and Eccentric Fuel

An ideal fuel rod of the Seabrook Station PWR has a gap with thickness of 0.082 · 10−3 m.
For the case in which we analyze the heat transfer in a rod with eccentric fuel (case
Eccentric), we designed the fuel of said rod with a displacement of 0.07 · 10−3 m in
the positive orientation of the x-axis, maximum value with which we were capable of
generating a mesh using the adopted program for this purpose (GID). The fuel rod
obtained, represented by Fig. 5, was called with eccentric fuel and in this section we will
present the results achieved by its analysis compared to those of the ideal rod (case Ideal).

Fig. 6 shows the spatial distributions of temperature on the outer surface of the cladding
(mean value) at the steady state of cases Ideal and Eccentric, as well as the spatial
distributions of interest Tcod

and Tcoe referring only to the latter.

As we can see, the fuel’s eccentricity causes the temperature distribution on the side of the
cladding favorable to the offset to be a higher than the distribution on the opposite side.
It is also apparent that the mean distributions of both cases overlap. The same manner is
seen in the spatial temperature distributions on the inner surface of the cladding, with the
difference between the distributions being only slightly more pronounced.

As for the temperature distributions on the outer surface of the fuel, the behavior reverses,
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0.07 · 10−3m

Figure 5: Rod with eccentric fuel
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Figure 6: Spatial distribution of temperature in the outer surface of the
cladding at steady state (cases Ideal and Eccentric)

with Tfee
being greater than Tfed

, Fig. 7, and its average in the perimeter being no longer
equal to that of the ideal case.

We can attribute the aforementioned inversion, as well as the very existence of a difference
between the distributions at the sides, to the fact that heat transfer between fuel and
cladding is greater the smaller the gap thickness. This happens due to the filling of the
gap by helium gas, as the gas sustains a much lower heat transfer than the UO2 and
Zircaloy-4, behaving in the form of a thermal resistance.

For a better appreciation of the temperature behavior in view of the fuel’s displacement,
we present the Figures 8 and 9, produced by means of the GID software, consisting of
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Figure 7: Spatial distribution of temperature in the outer surface of the fuel
at steady state (cases Ideal and Eccentric)

transversal cuts1 at half height of the spatial temperature distributions throughout the
fuel rod, its cladding and its radius (only in the direction of displacement).

Concentric Eccentric

T
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p
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u
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Figure 8: Transversal cuts of temperature distribution at steady state and
half height (cases Ideal and Eccentric)

We can note from Figure 8 that, unlike the ideal case, the maximum temperature in the
rod with eccentric fuel does not occur at its center line, nor does it coincide with the
center line of the fuel, presenting a displacement from the middle of the rod proportional
to the dislocation of the fuel, but in the opposite direction.

Completing the steady-state analysis, in Fig. 9, referring to the cladding of the cases

1we call transversal cuts of those that cross selected heights of the fuel rod in the radial direction
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Figure 9: Transversal cuts of temperature distribution in the cladding at
steady state and half height (cases Ideal and Eccentric)

investigated in this section, we observe how higher temperature levels occur in the lateral
favorable to the fuel’s displacement in the case Eccentric. Condition which, as mentioned,
is associated with a more intense heat flow due to the greater proximity between cladding
and fuel.

In regard to the coastdown transient of the pumps, in both simulations the Dryout
phenomenon appears at the same height of the rod (0.43 afr) and at a very short time
difference, respectively 365.52 s and 365.45 s, as shown by the temporal evolution of the
coolant’s enthalpy at the height in which the Dryout occurs, Fig. 10.

0 50 100 150 200 250 300 350 4001.3 · 106

1.5 · 106

1.7 · 106

1.9 · 106

2.1 · 106

2.3 · 106

2.5 · 106

2.7 · 106

h (Ideal) PSMP (23.57 s; 1.38 · 106 J kg−1) Dryout (365.52 s) hf (1.63 · 106 J kg−1)
h (Eccentric) PSMP (22.89 s; 1.38 · 106 J kg−1) Dryout (365.45 s) hg (2.60 · 106 J kg−1)

ts (s)

h
(J kg−1)

Figure 10: Temporal evolution of the coolant’s enthalpy at the height in
which the Dryout occurs (cases Ideal and Eccentric)

The characteristic of the temperature on the cladding’s outer surface being different for

INAC 2017, Belo Horizonte, MG, Brazil.



each side of the rod with eccentric fuel, with the side favorable to the fuel’s dislocation
showing higher temperature levels than those of the ideal case, led us to believe that a
more intense heat flux would appear and, as consequence, the condition of critical heat
flux would be anticipated. However, although there is difference between the temperatures
and the fluxes on said sides, Figures 11 and 12, it barely affects the occurrence of Dryout.
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340
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350

Tcoe (Eccentric) Tcomed
(Eccentric) Tcod
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x = 0 (200.39 s) Tsat (344.86 ◦C) Dryout (365.52 s)

ts (s)

T
(◦C)

344.7

345.2

345.7

T

T
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Figure 11: Temporal evolution of the cladding’s outer surface temperature at
the height in which the Dryout occurs (cases Ideal and Eccentric)

0 50 100 150 200 250 300 350 4005.0 · 103

1.0 · 104

1.5 · 104

2.0 · 104

2.5 · 104

3.0 · 104

3.5 · 104

4.0 · 104

4.5 · 104

5.0 · 104

q′′
e (Eccentric) q′′

med (Eccentric) q′′
d (Eccentric) q′′

med (Ideal)
ONB (188.32 s) OSV (198.10 s) x = 0 (200.39 s) Dryout (365.52 s)
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q′′

(W m−2)

Figure 12: Temporal evolution of heat flux between rod and channel at the
height in which the Dryout occurs (cases Ideal and Eccentric)
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Knowing that the Dryout has a strong dependence on the flow quality, which increases
rapidly shortly before the Dryout appears, and is maximum at the height where it happens.
We can reason that the similarity between both cases in regard to the conjunctures in which
the Dryout occurs derives from the lack of spatial variation in flow quality throughout the
perimeter of the rod, due to the one-dimensional model of the channel.

Also shown in Fig. 10 is the post-shutdown minimum point (PSMP), that represents the
moment, at the analyzed height, in which the removal of heat by the inertia of the pumps
is no longer sufficient to cool the channel, that is, at this instant the “production” of heat
in the fuel rod and the removal by the coolant channel equalize in the height in question
and henceforward the temperatures tend to increase.

In Figures 11 and 12, we can also see the transition points between the regimes of heat
transfer discussed in section (2.) and, as consequence, relate the improvement of heat
flow to the PSB regime as well as the stability of temperature on the outer surface of the
cladding to the SNB regime.

Finally, in order to complete this case study, we provide Figures 13a and 13b, which serve
as a representation for the temporal evolution of temperature in the rod with eccentric fuel
generated by means of longitudinal and transversal cuts in said rod at selected instants. It
is important to note that the height of the rod is reduced in the longitudinal cuts, so the
temperature distribution in them should be contemplated considering the deformation in
the direction affected.

ts = 0 s ts = 6.9 s ts = 0 s ts = 6.9 s

Temperature

Figure 13a: Longitudinal and transversal cuts of temperature distribution in
the rod with eccentric fuel at selected instants

Note: Reduced rod, height equals to five times the diameter (1:77).
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ts = 94.8 s ts = 164.2 s ts = 365.5 s ts = 94.8 s ts = 164.2 s ts = 365.5 s

Temperature

Figure 13b: Longitudinal and transversal cuts of temperature distribution in
the rod with eccentric fuel at selected instants

Note: Reduced rod, height equals to five times the diameter (1:77).

Through Figures 13a and 13b we can see that the displacement in the temperature
distributions shown in the steady state propagates throughout the simulation. We also
notice how the temperature in the fuel rod decreases rapidly after the shutdown of the
reactor begins, even though its pumps are also turned off. Subsequently we observe how
the temperature begin to rise in the upper part of the rod, process that spreads to the lower
part until the moment in which the Dryout condition is reached, finishing our simulation.

6.2. Ideal and Curved Rods with Concentric Fuels

The spacing between the outer surface of the rod and the extremity of the coolant channel
is of 1.55 · 10−3 m, Fig. 14. For the study corresponding to this section we modeled a fuel
rod with concentric fuel and maximum deformation (δ−|max) of approximately one-third
of the referred space, 0.5 · 10−3 m (case Curved), and compared the achieved results with
those from the ideal fuel rod (case Ideal).

By the means of the obtained data, we verified that the applied curvature exerts an
inexpressive influence on the temperature distribution of the fuel rod, assertion corroborated
not only by the fact that cases Ideal and Curved presented the same conditions of
Dryout (365.52 s, 0.43 avc), but especially for the low percentage difference between the
temperatures of both cases, less than 4.0 · 10−2 %. Evaluation performed considering each
of the 110 761 nodes that constitute the mesh used (in both cases the same mesh is used,
the difference being the deformation applied for the curved case using equation (7)), and
three instants: when the steady state is reached, when the Dryout occurs, and just about
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1.55 · 10−3m

Figure 14: Representation of a fuel rod with its coolant channel

half the time interval between said moments.

The only difference between the Ideal and the Curved cases, as shown by the longitudinal
cuts shown in Fig. 152, is the curvature itself.

SS ts = (181.9± 0.2) s Dryout

Ideal Curved Ideal Curved Ideal Curved

Temperature Temperature Temperature

Figure 15: Longitudinal cuts of temperature distribution in the rods of the
cases Ideal and Curved at selected instants

Note: Reduced rod, height equals to five times the diameter (1:77).

2the uncertainty of 0.2 s seen in this image derives from fact that, with the exception of the moments
in which the steady state is reached and Dryout occurs, we cannot compare the exact same time instant
of both cases, due to how the temperature data of the entire mesh is recorded
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Although the curvature applied to the rod is very small in comparison to its height, it
is reasonable to assume that the conformity exhibited by the analyzed cases is mainly
related to the limitations imputed to the code by the 1D modeling of the coolant channel,
since it renders the reproduction of radial asymmetries in the channel unfeasible.

7. CONCLUSIONS

In this study we saw how the eccentricity of a fuel rod’s fuel causes higher temperatures to
emerge on the side of the cladding to which the fuel dislocates. A condition that inverses
in the fuel, with the increase of temperature happening in the opposite direction of the
displacement.

No significant effect was observed on the fuel rod temperature distribution due to the
curvature analyzed, with the percentage difference in temperature, compared to the results
from the ideal rod, being less than 4.0 · 10−2 %.

We conclude that the temperature variation in the case with eccentric fuel occurs due to
the gap presenting itself as a “resistance” to the heat transfer between fuel and cladding.
We also assume that the lack of change in the case of the curved rod, compared to the
ideal case, can be associated with the 1D model of the coolant channel.

Regarding the shutdown transient, in which the residual heat removal system is lost (loss
of the reactor’s coolant pumps), all simulations presented the phenomenon of Dryout at
the same height of the fuel rod and at similar instants of time. We conclude that this
similarity is essentially associated with the high dependence of the CHF on the flow quality,
and with the fact that, due to our 1D modeling, the flow quality distribution is identical
in all cases.

In the reactor’s shutdown we contemplated the temperature behavior in the studied fuel
rods, from its rapid decrease at the beginning of the transient, through its increase in the
upper parts of the rods, which propagates to the lower parts, until the condition of Dryout
occurs. We also observed the reproduction, at all steps of the simulations, of the effects
caused by the eccentricity of the fuel.

Finally, we condescend with the fact that the physical simplifications we adopted to
describe the phenomenon discussed, the heat transfer in fuel rods, have caused restrictions
to our studies, mainly the 1D modeling of the coolant channel. Nevertheless, this work has
gathered opportune results, revealing circumstances of interest on the problem investigated,
thus contributing to its knowledge.
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