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ABSTRACT 
 
This work presents the approach of a mobile dose prediction system for NPP emergencies with nuclear material                 
release. The objective is to provide extra support to field teams decisions when plant information systems are not                  
available. However, predicting doses due to atmospheric dispersion of radionuclide generally requires execution             
of complex and computationally intensive physical models. In order to allow such predictions to be made by                 
using limited computational resources such as mobile phones, it is proposed the use of artificial neural networks                 
(ANN) previously trained (offline) with data generated by precise simulations using the NPP atmospheric              
dispersion system. Typical situations for each postulated accident and respective source terms, as well as a wide                 
range of meteorological conditions have been considered. As a first step, several ANN architectures have been                
investigated in order to evaluate their ability for dose prediction in hypothetical scenarios in the vicinity of                 
CNAAA Brazilian NPP, in Angra dos Reis, Brazil. As a result, good generalization and a correlation coefficient                 
of 0.99 was achieved for a validation data set (untrained patterns). Then, selected ANNs have been coded in Java                   
programming language to run as an Android application aimed to plot the spatial dose distribution into a map.In                  
this paper, the general architecture of the proposed system is described; numerical results and comparisons               
between investigated ANN architectures are discussed; performance and limitations of running the Application             
into a commercial mobile phone are evaluated and possible improvements and future works are pointed. 
 
Keywords: Dose prediction, Atmospheric dispersion of radionuclide, Mobile, Smartphone,         
Artificial neural network, Nuclear emergency, Android. 
 
 

1. INTRODUCTION 
 
The prediction of spatial dose distribution due to an atmospheric dispersion of radionuclide is              
key to support decision makers guiding people and environment protection during a Nuclear             
Power Plant (NPP) emergency with radioactive material release. Such task involves           
simulation of complex and computationally expensive physical models, such as: source term            
prediction, wind field calculations, plume dispersion, radionuclide deposition and equivalent          
doses prediction. The quality of such simulations depends on how realistic and refined are the               
computational models. However, to achieve the adequate quality, powerful computers are           
required. 

In this work, we propose an approach aimed to give extra support to emergency field               
teams when the communication with the NPP information systems is not available. The idea              
is to provide handheld approximate prediction of spatial dose distribution based on typical             
accident situations (plant status, release paths and inventory) and current meteorological           
conditions. To overcome the need for huge computational efforts, allowing systems execution            
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on limited resources hardware, such as mobile phones, the precise dedicated NPP atmospheric             
dispersion system is substituted by a set of Artificial Neural Networks (ANN) (Hayking,             
1999) previously trained. 

The ANNs are trained offline, using data generated by precise realistic simulations            
using the NPP atmospheric dispersion system. Then, trained ANNs are integrated into an             
Android application, allowing it to run on commercial mobile phones.  

The main objectives of this work are the following:  

i) describe the general system's architecture and functionalities; 

ii) evaluate the efficiency of different ANNs architectures in learning and its 
accuracy in dose prediction; 

iii) investigate appropriated training dataset selection and preprocessing; 

iv) evaluate the performance of running the proposed system as an Android            
application on a commercial mobile phone. 

To accomplish that, several ANN architectures have been investigated in order to            
evaluate its efficiency in learning and accuracy in the prediction. Selection and preprocessing             
of an appropriate training dataset has also been studied. Once trained, selected ANNs were              
integrated into the mobile dose prediction Android application and their performance were            
evaluated.  

The remainder of this paper is organized as follow. Section 2 presents related works              
and contextualization. Section 3 describes the process of dose prediction and the NPP             
atmospheric dispersion system used in this work. An overview of the proposed approach is              
described on section 4. Section 5 details the development and evaluation of several ANN              
architectures and their integration on an Android application. Finally, concluding remarks are            
presented in section 6. 

 
 

2. RELATED WORKS AND CONTEXTUALIZATION 
 
In this section is focused on contextualizing two main features proposed in this work, which                             
are: i) use of ANNs in radiation and atmospheric dispersion prediction; and ii) mobile support                             
systems for NNP emergency. Some important works about these issues are, therefore,                       
comment  here. 
 
2.1.  ANNs  in  radiation prediction and atmospheric dispersion modeling 
 
Nowadays, a wide variety of ANN applications are found in almost all fields of knowledge,                             
including nuclear engineering. This section, however, has the focus on ANN applications on                         
radiation  predictions  and  atmospheric  dispersion modeling. 

Timonin and Savelieva (2005) applied General Regression Neural Networks (GRNN)          
for spatial predictions of radioactivity, concluding that GRNN is a promising tool for             
automatic spatial prediction of radioactivity in both routine and emergency situations. 



Mól et al (2011) also applied a GRNN for dose prediction in the area of the Argonauta                                 
research reactor located at Instituto de Engenharia Nuclear/CNEN (Brazil). In this work,                       
prediction  was done  as  a  function of reactor operating power and spatial position (x, x). 

Sarwat and Helal (2013) proposed the use of a GRNN for estimating radiation workers              
internal dose. They pointed to GRNNs as good ANN for continuous functions mapping and              
concluded that they have good possibilities in the proposed application. 

Cao et al (2010) applied ANN in prediction of short-term concentration distributions            
of aerosols released from point sources. He concluded that the performance of the neural              
network model was comparable or better than predictions from two Gaussian-based puff            
models. 

Lauret et al (2013), investigated the use of ANN in atmospheric gas dispersion             
concluding that the stationary ANN model gave good agreement with CFD software with the              
advantage of faster processing. 

Hossain (2014) applied ANN to predict concentration of carbon monoxide and           
particulate matters in urban atmospheres using field meteorological and traffic data. The            
conclusion was that ANN models based on both meteorological and traffic variables are             
capable of resolving patterns of pollutant dispersion to the atmosphere for different cities. 

 
2.2. Mobile support systems for NNP emergency  
 
Mobile monitoring systems as well as mobile communication systems are widely used by             
emergency teams. However, the use of mobile apparatus such as smart-phones to run decision              
support systems is still uncommon. 

Silva et all 2013 developed a system to support first responders to deal with              
radiological emergencies using cognitive task analysis techniques. According to the authors,           
the main benefits are the overall control of the response, more instantaneous updates of              
information, and their verification, and agility to conduct the response. 

Maybe until now, decision support systems based on smart-phones are underutilized in            
nuclear industry, however, due to the exponential evolution of such "mobile computers",            
authors believe it will grow very fast and sooner. 

 
 

3. DOSE PREDICTION AND THE NPP ATMOSPHERIC DISPERSION SYSTEM 
 
Dose prediction due to atmospheric dispersion of NPP releases are made by means of              
dedicated systems (Atmospheric Dispersion Systems - ADS), comprised by complex physical           
models which generally run on powerful computers. 

This work considers, as reference, the ADS used in Brazilian CNAAA NPP (SCA, a              
Portuguese abbreviation meaning Environmental Control System). The SCA is basically          
comprised by 4 modules: i) Source Term prediction module; ii) Wind Field module; iii)              
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Plume Dispersion and dose calculation module; iv) Plume Projection module. Figure 1 shows             
a simplified schematic diagram of SCA. 

 

 
 

Figure 1. Schematic diagram of the ADS used in this work 
 
The Source Term module receives information about the NPP status (including           

monitored process variables, accident diagnosis and inventory) and calculates the amount and            
rate of nuclear material released (source term). The Wind Field module uses topographical             
and meteorological information to produce a divergent-free wind field. Then, the Plume            
Dispersion module uses the outputs of Source Term and Wind Field modules to simulate the               
plume dispersion and calculate equivalent doses. The Plume Projection module makes           
projections of the plume dispersion for 1 and 2 hours after accident start. 
 
 
 

4. THE MOBILE DOSE PREDICTION SYSTEM 
 
The proposed mobile approach for dose prediction is primarily designed for standalone            
operation, in other words, it must be able to work without any network connection. The               
system must give an approximate spatial dose distribution considering the following           
information: 

i) current accident (previously identified): variable as input; 

ii) meteorological conditions: variable as input; 

iii) time after accident starts: variable as input; 

To accomplish that, a set of ANNs is developed and trained, for each postulated              
accident, considering a wide range of meteorological conditions. The training dataset is            
generated by simulations using the precise NPP ADS, shown in Figure 1.  

4.1. The ANN architecture 
 
In order to enhance performance in the learning process, 4 ANN have been used for each                
postulated accident. Each one is applied for a specific range of wind direction (North-ANN,              
South-ANN, East-ANN and West-ANN). Figure 2 shows the scope of prediction of each one.              
The doted rectangle limits the area of training data, while the angle marked in bold black lines                 
defines the range of wind directions preferable to the specific ANN. For example, the              



North-ANN is trained with dose distribution in the upper part of the map and its scope of                 
application is for winds which directions range from 315o to 45o (OBS: the North axis is the                 
0o direction and the angles increase clockwise). 

 
Figure 2 - Scope of prediction of each ANN: a) North-ANN; b) South-ANN; c) East-ANN and d)                 
West-ANN 

 
Each ANN is trained to predict doses based on spatial position (X, Y) and              

meteorological conditions. Many meteorological conditions could be used as input, such as: i)             
wind velocity; ii) wind direction; iii) wind stability; iv) temperature; v) temperature gradient;             
vi) rainfall index; among others. Similarly, several possible outputs could be used: i)             
equivalent doses; ii) effective doses; iii) dose rates etc. However, in this work a reduced set is                 
used to illustrate and validate our approach. As a preliminary investigation, the variables in              
Table 2 have been used as ANN inputs/outputs.  

 

Table 1 - ANN inputs and output. 

 
Inputs 

Wind velocity 
Wind direction 
Position X 
Position Y 

Output Dose rate 
 

Figure 3 shows the ANN approach proposed. According to the identified accident and             
the wind direction, the control module decides which ANN will be applied. Then, the inputs               
are passed to the ANN chosen and it is fired, producing the predicted dose rate as output. 



 

Figure 3 - The ANN approach 

Note that a single dose rate is output. In order to reconstruct the spatial dose               
distribution, the ANN must be executed many times (one execution for each spatial position). 

4.2. The mobile dose prediction application 

At the present stage of our research, we are focused in evaluating the accuracy of the                
prediction and the performance/limitation of running such system on commercial          
smart-phones. To accomplish that, a simple Android based prototype have been developed,            
comprising basically one view, in which user can input the current accident and             
meteorological information and visualize, as output, the dose distribution map. As input,  
the user must choose: 

i) the accident in course; 

ii) the kind of dose/dose rate to be predicted; 

iii) time after accident starts; 

iv) wind direction and 

v) wind velocity. 

Note that the ANNs designed here use only 4 inputs: wind direction, wind velocity              
and position (x, y). So a set of ANNs are used for a fixed time after accident begins (steps of                    
15 minutes). Future work may investigate the introduction of the variable "time after accident              
starts" as another ANN input. 

Also, at present stage, only the effective dose rate has been considered. Other kinds of               
dose rates such as specifically on thyroid, lungs or other organs could also be considered.               
Figure 4 shows the users' interface on the mobile phone. 

 

 



 

Figure 4. Prototype of the mobile dose prediction applet 

After choosing the input information and clicking button "Predict", the adequate ANN            
is chosen and fired for each cell of the computational domain (2881 position in the map). The                 
generated dose distribution is then plotted on the map.  

The application also comprises some other functionalities, such as: 

i) show the current position and dose of the user; 

ii) show the dose on a clicked position of the map; 

 

5. ARTIFICIAL NEURAL NETWORKS DESIGN AND APPLICATION 

5.1. Artificial neural network architectures 

Artificial Neural Networks (ANN) [1] are mathematical models inspired in the human brain,             
which have the ability of learning by examples. There are many different approaches for              
ANNs. In this work, we consider those that use supervised learning (input/output learning)             
and are skilled for interpolation and prediction. According to literature, Backpropagation           
Multilayer Perceptrons (MLP) [1] and General Regression Neural Networks (GRNN) [2]           
present such characteristics. 

It is well-known the ability of backpropagation MLPs for generalization and           
prediction, however, training might be very time-consuming. On the other hand, GRNNs are             
fast to train and are pointed in literature (Timonin and Savelieva, 2005) as promising tool for                
spatial prediction of radioactivity. Preliminary comparative work (Pereira et all, 2016) ratified            
this points. In that work, a 5-layers MLP was presented the best accuracy while the GRNN                
presented slightly worst results but with a very faster training. In that work the 3-layers MLPs                
were the worst ones. Hence, in the present work, we emphasize investigations on GRNN and               
5-Layers MLP in order to improve them to be used in the mobile dose prediction system. 

5.1.1. Backpropagation Multilayer perceptrons 

 



Backpropagation Multilayer Perceptrons (MLPs) are ANN comprised by layers of neurons, in            
which the input signals always propagates forward, from input to output. They present: i) an               
input layer, which receives the input data, ii) an output layer, which provides the ANN output                
and iii) one or more hidden layers. The number of neurons in the input layers is equal to the                   
number of inputs of the problem. As well, the number of neurons in the output layer is equal                  
to the number of outputs. The number of neurons in the hidden layer(s) is flexible and is                 
responsible to provide the ability of non-linear adaptation of the ANN. The activation             
function of neurons may be non-linear (generally logistic or tanh) for complex adaptations.             
The training algorithm used is the backpropagation [1], which is a gradient-descendent            
algorithm aimed to minimize the ANN squared error by tuning the synaptic weights             
iteratively as the training patterns are presented. The training may be very time-consuming             
according to the number of patterns, complexity of the correlations and number of neurons. 

5.1.3. General Regression Neural Network 

Preliminary investigations were done in order to select an adequate ANN architecture and             
training strategies. Several multi-layer perceptrons (MLP) architectures with backpropagation         
training algorithms were tried without success. The General Regression Neural Network           
(GRNN) (Specht, 1991) optimized by Genetic Algorithm (GA) (Goldberg, 1989) produced,           
by far, the best results. This observation agrees with literature, in which some authors              
(Timonin and Savelieva, 2005; Mól et al, 2011 and Sarwat and Helal, 2013) also used GRNN                
due to its skill for estimation of continuous variables. 

According to Specht (1991), GRNN is "a memory-based network that provides           
estimates of continuous variables and converge to the underlying (linear or nonlinear)            
regression surface". It uses a one-pass learning algorithm that provides smooth transitions            
between training patterns even with sparse data in multidimensional spaces. 

The GRNN uses the concepts of consistent estimators proposed by Parzen (1962). The             
estimated output (Equation 1) is a weighted average of all training patterns. 

                                                  (1) 

                                                   (2) 

Where is the estimated output; and are the training patterns inputs and             
outputs, respectively; X is an observed value to which an estimation is required; and is the                
smoothing factor. 

High values of leads to more smooth function. To find optimum value for ,               
optimization procedures can be used in order to minimize the least squared errors for a test                
set. In this work a Genetic Algorithm (GA) (Goldberg, 1989) have been used. 

5.2. Training, test and production dataset preparation 

 



All training, test and production patterns were generated using the CNAAA NPP atmospheric             
dispersion system, which (in simulation mode) can be used to simulate customized scenarios             
for the whole set of postulated accidents and observed meteorological conditions. Tables 2             
and 3 show the ranges and distribution of each variable of training and test sets. 

Table 2 - Ranges and distribution of training set. 

Name Range Values Step 
Wind velocity (m/s) 1 - 5 5 1 
Wind direction (degrees)  135 - 225 5 22.5 
Position X 1 - 65 * 17 4 
Position Y 10 - 42 * 9 4 

* Computational domain is discretized into 65 x 42 cells of 250 x 250 meters. 

 

Table 3 - Ranges and distribution of test set. 

Name Range Values Step 
Wind velocity (m/s) 1.5 - 4.5 4 1 
Wind direction (degrees)  146 - 214 5 22.5 
Position X 1 - 65 * 17 4 
Position Y 10 - 42 * 9 4 
* Computational domain is discretized into 65 x 42 cells of 250 x 250 meters. 

 

In order to test the ANN with patterns different from those used in training and test                
set, a wide production dataset was generated uniformly spread along the computational            
domain. The total number of patterns generated for each usage is shown in Table 4. 

 

Table 4 - Quantity of training, test and production patterns. 

Usage Quantity 
Training 3825 
Test 2448 
Production 6120 

 

In order to improve the ANNs efficiency in learning the training patterns, data have              
been normalized according to Equation 3. 

 ,                                                     (3) 

where is the normalized value; is the original value; is the average and is the               
standard deviation; 

5.3. ANN application and evaluation 



As already mentioned, in this work we emphasize the investigations to find improved ANN              
architectures for the proposed application, starting from the results obtained in (Pereira et al,              
2016). Ratifying previous results, after some dozens of experiments, with different number of             
layers, neurons per layers, and activation functions, a 5-layers MLP achieved the best             
accuracy while the GRNN presented the fastest training. Their characteristics are summarized            
on Table 5. 

Table 5 - ANN characteristics. 

ANN architecture Characteristics 
 
 
GRNN 

- Layers: 4 
- Input layer: 4 neurons (distribution) 
- Pattern layer (hidden): 3825 neurons (Gaussian) 
- Summation layer (hidden): 2 neuron (sum) 
- Output layer: 1 neuron 
- Smoothing factor optimization: genetic algorithm 

 
 
5L-MLP  

- Layers: 5 
- Input layer: 4 neurons (linear) 
- Hidden layer 1: 40 neurons (logistic) 
- Hidden layer 2: 40 neurons (logistic) 
- Hidden layer 3: 40 neurons (logistic) 
- Training: backpropagation 

 

5.3.1. Statistics of the ANNs training 

Tables 6 and 7 shows some statistics obtained applying the GRNN and the 5L-MLP,              
respectively, to each dataset. 

Table 6 - Statistics of the GRNN training 

 Training set Test set Production set 
Number of Patterns 3825 2448 6120 
Mean absolute error 0.011 1.810 1.217 
Max absolute error 1.088 74.060 98.538 
Correlation Coefficient 1.0000 0.9822 0.9882 
Generations (population=20) 31   
Training time 00:19h   

 

Table 7 - Statistics of the 5L-MLP training 

 Training set Test set Production set 
Number of Patterns 3825 2448 6120 
Mean absolute error 0.691 1.113 1.050 
Max absolute error 28.772 82.884 98.065 
Correlation Coefficient 0.9980 0.9906 0.9909 
Learning Epochs 40,000   
Training time 04:30h   

 



The Correlation Coefficients and errors on tables 6 and 7 are quite good, specially for               
the production set, demonstrating very good generalization (ability to predict untrained           
patterns) of both ANN.  

Note that the 5L-MLP was slightly better on test and production datasets. On the other               
hand, the GRNN got a very good fitting on the training set. This is an expected characteristic                 
of GRNNs due to the fact that the pattern-layer activation functions (Gaussians) are centered              
on each training pattern. The smoothing factor is, then, optimized to fit the test patterns. 
Notably, the GRNN presented a great advantage in terms of training time. 

5.3.1. Prediction of the spatial dose distribution 

In order to achieve the final objective, which is to obtain the dose distribution map, the ANNs                 
need to be fired for each position. 

Figure 8(a) shows the map generated by the NPP atmospheric dispersion simulator            
(used here as reference) for a 2.5 m/s and 326o wind for a hypothetical accident (source term).                 
It must be emphasized that it comprises only untrained (production) patterns. Figures 8(b) and              
8(c) shows predictions obtained by the 5L-MLP and the GRNN respectively. 

Note that, although the statistics of trained ANNs seems to be very good and similar,               
many different discrepancies appear. On the 5L-MLP predicted spatial dose map (Figure 6(b)             
), too many points in the map, supposed to have null dose rate, present small values of dose                  
(see the light green regions). On the other hand, high dose rate regions (other colors) present                
satisfactory prediction. In the case of GRNN, discrepancies occur in regions of high dose. It               
doesn't seem to interpolate with smooth transitions leading to a poor resolution. 

 

 

                       (a) (b) (c)  

 

Figure 6 - Comparisons between (a) simulator; (b) MLP predictions and (c) GRNN predictions              
for spatial dose rate distribution 1h after a occurring the accident, considering wind velocity=2.5              
m/s and wind direction=34o. 

 



 

      (a)                                                        (b) 

Figure 6 - Comparisons between (a) simulator; (b) MLP predictions and (c) GRNN predictions 
for spatial dose rate distribution 1h after a occuring the accident, considering wind velocity=2.5 
m/s and wind direction=34o. 

Note that although some discrepancies can be observed, the information is           
qualitatively important to support field teams decisions if NPP information systems are no             
available. 

Some enlargement of the plume is observed, which is a conservative feature. This fact              
occurs mainly due to the spatial discretization used to form the training and test patterns. 

5.3.2. Running time evaluation 

A more refined set of patterns could be generated, however, it would imply in bigger ANNs                
and more time needed to generate training/test patterns and train ANNs. In fact, the time spent                
on these tasks is considerable, as can be seen on Table 8. 

 

Table 8 - Time requirements for generating training/test patterns and train one ANN for 3 hours 
of prediction (sequential executions on a Intel I7-PC). 

 

Task Time (minutes) 
Generation of training/test patterns 30 1 
Training2 one ANN 20  

1 41 simulations are required for each ANN. 

2  Optimization of smoothing factors 

Remember that the system comprises 4 ANNs for accident. To illustrate the overall             
time requirements to have the whole system trained, let's consider the case of CNAAA Unit 2,                
which uses 12 postulated accidents. In this case, something about 30 hours are needed to run                
the 1728 simulations and train the 48 ANNs on an Intel I7 (sequential executions). If               
considered parallel processing on computer cluster, such time could decrease proportionally           
to the number of processors. The use of generic programming on graphic processing unities              
(GPGPU) is also very interesting, however, the simulator program should be properly written             
to run on these devices.  

 

5.2. Running the system on an Android phone 



In this section we show results of the performance evaluation of the ANNs running on               
an Android mobile system. Here, we used a commercial smart-phone Samsung J5 (Quad Core              
com 1.2 GHz e 2 Gb de RAM). Table 8 shows the execution time of each ANN on the                   
specified system to reconstruct and plot the dose rate distribution. Remember that, the ANN              
needs to be fired 2881 times (once  for each position).  

Note that the execution of the GRNN is very time consuming, when compared to the               
5L-MLP. This fact was expected due to the great number of neurons required in the pattern                
(hidden) layer. The GRNN is comprised by 3832 neurons at all, while the 5L-MLP has only                
125.  

Although the 5L-MLP needs much more time for training (4:30 h), considering the             
predicted dose distribution map and the associated execution time to generate it, the 5L-MLP              
seems to be quite better than the GRNN.  

 

6. CONCLUDING REMARKS 

In this work, a mobile system for dose predictions based on ANN has been proposed and                
evaluated. Preliminary investigations (Pereira et al., 2016) pointed to a 5 layers MLP and a               
GRNN as good options. Here, these two ANN architectures were improved and incorporated             
in a mobile system aimed to generate a dose distribution map for supporting decisions of               
emergency teams when NPP data and systems are no available.  

As concluded in previous investigations, the statistics of both, 5L-MLP and GRNN            
seemed to be similar in terms of errors magnitude and correlation coefficients. However, it              
has been showed here that the dose distribution maps generated by each ANN are quite               
different. The 5L-MLP presented much more errors when dose rate values should be null,              
while the GRNN presented more errors in high values of dose rates. In order to enhance the                 
predicted maps, a threshold of 0.5 mRem/h has been imposed to set the null dose points.  

Comparing the maps generated for a production set (untrained data) with the simulated             
(reference) map, a better representation was produced by the 5L-MLP, while the GRNN did              
not interpolate training data with smooth transitions, leading to poor spatial resolution.  

After evaluating the ANNs accuracy in their predictions, the execution times on an             
Android based commercial smart-phone were measured. Remember that, to generate one the            
dose distribution map, the ANN must be executed 2881 times. To accomplish that, the              
5L-MLP took 5 s, while the GRNN needed 25 s. Such great difference in execution times was                 
expected due to the 3832 neurons needed in the GRNN, while the 5L-MLP used only 125.  

In summary, it could be concluded that the mobile dose prediction using a 5L-MLP              
achieved good accuracy in the prediction of the dose map, with fast execution time.  

This work is the first step in investigations of the feasibility of developing a mobile               
dose prediction system for mobile phones, based on ANNs. The system would be more              
complete if other variables, such as the time after accident stars, temperature and other              
meteorological information, for example, were considered. However, to include more          
variables as ANNs inputs, the size of the dataset for training and testing the ANNs would                
increase in such a way that conventional ANNs may not be able to deal with. To overcome                 



such limitations, the use of deep learning models, such as deep nets, together with the use of                 
parallel processing techniques are under investigation. 
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