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ABSTRACT 
 
Atmospheric radionuclide dispersion systems (ARDS) are important tools to predict the impact of radioactive 
releases from Nuclear Power Plants and guide people evacuation from affected areas. Four modules comprise 
ARDS: Source Term, Wind Field, Plume Dispersion and Doses Calculations. The slowest is the Wind Field 
Module that was previously parallelized using the CUDA C language. The statement purpose of this work is to 
show the speedup gain with the optimization of the already parallel code of the GPU-based Wind Field module, 
based in WEST model (Extrapolated from Stability and Terrain). Due to the parallelization done in the wind field 
module, it was observed that some CUDA processors became idle, thus contributing to a reduction in speedup. It 
was proposed in this work a way of allocating these idle CUDA processors in order to increase the speedup. An 
acceleration of about 4 times can be seen in the comparative case study between the regular CUDA code and the 
optimized CUDA code. These results are quite motivating and point out that even after a parallelization of code, 
a parallel code optimization should be taken into account.  
 
 

1. INTRODUCTION 
 
When nuclear accidents occur with radionuclide leaks to the atmosphere, it is imperative to 
know where this radioactive plume is going. Accurate prediction of the direction of this plume 
is crucial to successfully guiding the teams responsible for protecting and evacuating people 
from possible affected areas. In order to predict the transport and diffusion of the radioactive 
material and its consequences for the environment, atmospheric radionuclide dispersion 
systems (ARDS) have been used [1]. ARDS are basically comprised by 4 main modules: 
Source Term, Wind Field, Plume Dispersion and Doses Calculations. In special, Wind Field 
and Plume Dispersion modules are the most computationally expensive. 
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This work focus in the Wind Field module. Wind Field models estimate wind conditions at 
each geographical point inside the region of interest. Here, the “Winds Extrapolated from 
Stability and Terrain” (WEST) model [2] is considered as the base for our development. In this 
model, the region of interest is divided into several volumes (cells) creating a large 3D block 
(as an array of 3x3 dimensions) where each cell has a component of the wind field like velocity 
and stability, as can be seen, in figure 1. Depending on how much the 3D grid is refined 
(decreasing the volume of the cell and increasing the number of cells), the computational 
overhead imposed may make their execution impracticable. 
 
 

Figure 1: 3D grid example 
Source: Adapted from http://www.smhi.se/en/research/research-departments/air-quality/match-transport-and-ch

emistry-model-1.6831, accessed 08/08/2017 
 
 
Motivated by the fact that such computational overhead actually occurs in a realistic scenarios, 
it was developed a high performance parallel computational approach to Wind Field 
calculations, using WEST model, in order to allow the practical use of a high spatial 
resolutions. In the first approach made, a monolithic kernel structure was used where speedup 
of 40 times for interpolation of velocity and 10 times for stability interpolations was obtained, 
showing the viability of CUDA programming to solve the computational overload problem. 
This primary investigation is reported in Pinheiro et al., 2017 [3].  
 
The second approach was to determine which part of the program consumed the longest 
processing time (in a sequential approach). As can be seen in table 1, the divergent 
minimization function consumes 92,23% of the total time of the program and this investigation 
is reported in Pinheiro, 2017 [4].  
 
 
Table 1 – Relative processing time of functions in sequential Wind Field module. 

Function name Relative processing time 
Stability Interpolation 0,62% 
Vertical Extrapolation 0,00%* 
Wind Field Initialization 0,16% 
Land Addition 0,00%* 
Speed Interpolation 5,95% 
Speed Zero 0,02% 
Transparency Calculation 0,27% 
Divergence Minimization 92,23% 
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Divergence Removal 0,59% 
Remaining West Function 0,01%* (Each one < 0,002%) 

* Insignificant time (<10-3%) 
 
 

2. THE PARALLEL APPROACH WITH THE RELOCATION OF IDLE 
PROCESSORS 

 

2.1. The Problem of Idle Processors 
 
The third approach was to paralyze the code using the technique called Grid Stride Loop [5], 
but the parallel approach for Divergence Minimization function is not straightforward. The 
algorithm is iterative and presents strong sequential nature due to propagation of velocity 
correction signals (in order to minimize divergence) to the entire computational domain, which 
creates dependence between contiguous cells. Furthermore, it is by far the most time-
consuming function of the program. By these reasons, the main focus here is to describe the 
most important issues and performance evaluation of the parallel version of Divergence 
Minimization. 
 
In Pinheiro et al., 2017 [6], an intensive investigation was performed on the evaluation of the 
performance of the parallel version of the Divergence Minimization function and, at this 
moment, the 3D-Red-Black [5] approach was used as can be seen in figure 2. 
 
 

Figure 2: Divergence Minimization Kernel function 
 
 

__global__ void Divergence_Minimization_Kernel (parameters){ 
 ...  
 // Calculate indexes in the matrix using the thread identification with Grid-Stride Loops 
 for (int K = blockIdx.z * blockDim.z + threadIdx.z; K < NZ; K += blockDim.z * gridDim.z){ 
  for (int J = blockIdx.x * blockDim.x + threadIdx.x; J < NY; J += blockDim.x * gridDim.x){ 
   for (int I = blockIdx.y * blockDim.y + threadIdx.y; I < NX; I += blockDim.y * gridDim.y){ 
    if ((color == 'R') && ((I + J + K) % 2 != 0)) || // RED and ODD sum 
       ((color == 'B') && ((I + J + K) % 2 == 0)) { // or BLACK and EVEN sum 
     IP1 = I + 1; 
     ... 
     // Calculate indexes in the big vector (3D matrix has been transformed into 1D) 
     ... 
     TOT = 1.0 / (TX[index_IP1] + TX[index_I]) / DX2 + (TY[index_JP1] + TY[index_J]) / DY2 + 
                         (TZ[index_KP1] + TZ[index_K]) / DZ2; 
     D = (VENTOU[index_IP1] - VENTOU[index_I]) / DX + (VENTOV[index_JP1] – 
              VENTOV[index_J]) / DY + (VENTOW[index_KP1] - VENTOW[index_K]) / DZ; 
     delta_Phi = 1.25 * TOT * D;  
     U[index_I]   = VENTOU[index_I]   + delta_Phi * TX[index_I]   / DX; 
     U[index_IP1] = VENTOU[index_IP1] - delta_Phi * TX[index_IP1] / DX; 
     ... 
    } // If   } // I  } // J } // K } 
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In the Divergence Minimization Kernel function, a big grid of threads is managed to process 
the entire partition (Black or Red partition). Note that the loops that appear in the algorithm 
refer to the grid-stride loop technique and the kernel is called twice: one for the Red pass and 
one for the Passage Black. As result of this approach, accelerations up to 24.91 times were 
obtained as can be seen in Pinheiro et al., 2017 [6]. 
 
In this version of the parallel algorithm, it can be noted that a big grid of threads is allocated to 
process the entire partition (Red or Black partition). However, due to the use of the 3D-Red-
Black method, half of these threads become idle ( In Red execution the threads containing the 
Black cells are idle and vice versa), which is not a problem for small computational domains 
that can be allocated in the threads available in the GPU, since all the cells are executed in a 
single cycle Parallel (even with half of them idle). 
 
However, when the computational domain increases, there are not enough threads available in 
the GPU to execute all the cells of the computational domain in a single parallel cycle (each 
cell being executed by a thread) and due to this fact, the grid-stride Loop technique  is used. In 
a simplified way, this technique creates within each thread an execution queue where the cells 
of the computational domain that could not be allocated due to the amount of threads available, 
are part of this queue and are executed in the later loops. 
 
With the increase of the computational domain and the use of the grid-stride loop technique, 
half of the loops are idle, thus contributing to the increase of the time spent in executing the 
algorithm. 
 

2.2. Relocation of Idle Processors 
 
A Better memory management was been implemented so that the threads are allocated only 
with the Red cells, in the case of Red execution or only with the Black cells, in the case of 
Black execution, so that we no longer have idle threads. Figure 3 shows the implementation of 
the CUDA kernel with relocation of idle processors. 
 
 

Figure 3: Divergence Minimization Kernel function with relocation of idle processors 

__global__ void Divergence_Minimization_Kernel (parameters){ 
 ...  
 // Calculate indexes in the matrix using the thread identification with Grid-Stride Loops 
 for (int K = blockIdx.z * blockDim.z + threadIdx.z; K < NZ; K += blockDim.z * gridDim.z){ 
     ... 
    //Threads optimization 
    KK = K * 2; 
    if (Black) 
     if ((I + J) % 2 != 0) 
      KK--; 
    else 
     if ((I + J) % 2 == 0) 
      KK--; 
     IP1 = I + 1; 
     ... 
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2.2.1. Execution times and speedups 
 
The objective of this section is only to quantify and analyze execution times and speedups 
obtained with the use GPU-based program with relocation of idle processors since the 
validation has already been done in Pinheiro et al., 2017 [6]. To accomplish that, a unique 
observed wind has been chosen (WId#2 [1]) and simulations with all refinement levels [6] and 
several number of iterations [6] were investigated. In the sequential code it was used an Intel-
I7 2700K @3.50 GHz 3.90 GHz CPU and in the parallel code it was used GTX-680 GPU 
 
Table 2 shows the comparative results between the execution times (in seconds) of the Wind 
Field module (average of 6 executions) for sequential implementations (CPU), first parallel 
implementation (GPU1) and for parallel implementation with the relocation of idle processors 
(GPU2) for the different levels of refinement and number of iterations. Computed times for 
GPU versions include the execution of GPU kernels, memory allocation in GPU and data 
transfer to GPU. 
 
 
Table 2: Speedups and runtimes of sequential and parallel implementations 

500 
 CPU GPU1 GPU2 Speedup1 Speedup2 

R1 0,52 0,25 0,24 2,04 2,22 
R4 3,00 0,46 0,40 6,55 7,44 
R16 24,91 1,30 1,12 19,07 22,28 
R64 112,24 4,66 4,13 24,09 27,21 

1000 
 CPU GPU1 GPU2 Speedup1 Speedup2 

R1 1,02 0,40 0,35 2,56 2,94 
R4 5,94 0,81 0,66 7,34 8,95 
R16 49,74 2,47 2,08 20,13 23,89 
R64 223,68 9,09 7,98 24,62 28,02 

1500 
 CPU GPU1 GPU2 Speedup1 Speedup2 

R1 1,52 0,51 0,49 2,96 3,10 
R4 10,02 1,16 0,94 8,63 10,70 
R16 74,67 3,65 3,05 20,45 24,48 
R64 334,67 13,52 11,86 24,76 28,21 

2000 
 CPU GPU1 GPU2 Speedup1 Speedup2 

R1 2,02 0,66 0,64 3,05 3,18 
R4 13,52 1,51 1,26 8,95 10,75 
R16 98,76 4,82 4,01 20,49 24,66 
R64 449,29 18,04 15,15 24,91 29,66 

 
 
In this table, can be observed an increase of the speedup of this implementation (Speedup2) in 
relation to the one of the first implementation (Speedup1), thus demonstrating that the 
relocation of the idle processors had a positive effect on the performance of the algorithm. 
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Figure 4 shows the influence of the number of iterations at the execution time for all the 
computational domains and for the different implementations of the algorithm. 
 
 

 
Figure 4: Execution time versus number of iterations for different computational 

domains: 
 
 
In figure 5, can be observed the increase of the speedup after the optimization of the idle 
processors. 
 
 

 
Figure 5: Speedup versus number of iterations for different computational domains: 
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In figure 6, can be observed increasing of the execution time as the computational domain is 
refined for the whole number of iterations investigated. 
 
 

 
Figure 6: Execution time versus refinement level for different numbers of iterations 

 
 
Figure 7 shows the comparative graphs of the speedups with the refinement of the 
computational domain. 
 
 

 
Figure 7: Speedups for different refinement levels for different numbers of iterations 
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3. CONCLUSIONS  
 
As can be demonstrated, the execution time is approximately proportional to the number of 
iterations. Speedup is significantly reduced for simulations with fewer iterations and smaller 
computational domains, where the contribution of other functions in the total time is 
emphasized, increasing as the number of iterations and computational domain increases. 
 
Comparing the results obtained in this work with the result of the previous work, we can 
observe as seen in table 3 a small increase in speedup. However, as seen in Figures 5 and 7, for 
larger computational domains or increase of iterations the increase of speedup becomes more 
significant in this way being of extreme importance that the idle threads must be reallocated. 
 
 
Table 3: Speedup comparison 

 Sequential Time Parallel Time Speedup 
Previously work [6] 449,29 18,04 24,90 
This work 449,29 15,15 29,66 

 
 
As future works, it would be recommended that larger computational domains with larger 
numbers of iterations be studied to see the addition of speedup 
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