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ABSTRACT

In this work we solve the space kinetic diffusion equation in a one-dimensional geometry considering a
homogeneous domain, for two energy groups and six groups of delayed neutron precursors. The proposed
methodology makes use of a Taylor expansion in the space variable of the scalar neutron flux (fast and
thermal) and the concentration of delayed neutron precursors, allocating the time dependence to the
coefficients. Upon truncating the Taylor series at quadratic order, one obtains a set of recursive systems
of ordinary differential equations, where a modified decomposition method is applied. The coefficient
matrix is split into two, one constant diagonal matrix and the second one with the remaining time
dependent and off-diagonal terms. Moreover, the equation system is reorganized such that the terms
containing the latter matrix are treated as source terms. Note, that the homogeneous equation system
has a well known solution, since the matrix is diagonal and constant. This solution plays the role of
the recursion initialization of the decomposition method. The recursion scheme is set up in a fashion
where the solutions of the previous recursion steps determine the source terms of the subsequent steps. A
second feature of the method is the choice of the initial and boundary conditions, which are satisfied by
the recursion initialization, while from the first recursion step onward the initial and boundary conditions
are homogeneous. The recursion depth is then governed by a prescribed accuracy for the solution.

1. INTRODUCTION

Our starting point is the neutron space kinetics equation considering the fast and thermal
groups and with six delayed neutron precursor groups. The typical time scales present
in this set of eight equations vary over six orders in magnitude, which characterizes the
problem as stiff.

In numerical approaches for solving the equation system this property imposes on the
one hand restrictions on the time step size and on the other hand sets limits for the
maximum time interval that may be simulated by the solution. Hence, in the present
work we propose an analytical procedure that eliminates stiffness and is less susceptible

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carpe dIEN

https://core.ac.uk/display/154050685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to limitations in the maximum feasible time interval. As a consequence one gains a fast
and stable convergence with an acceptable small computational effort and free of the afore
mentioned stiffness.

In reference [5] an analytical solution of the multi group neutron diffusion kinetic equa-
tion in a multilayered slab with one neutron precursor group was discussed. There the
solution was obtained by a modified Adomian decomposition method, where the hetero-
geneous problem was cast into a set of recursive problems with constant parameters. The
authors of reference [12] address an analytical solution of the multi group neutron kinetics
diffusion equation in a homogeneous parallelepiped, considering two energy groups and six
groups of delayed neutron precursors, by applying the GITT (Generalized Integral Trans-
form Technique). Reference [9] presents the multi-region bi-dimensional diffusion kinetics
model with analytical expressions through the Taylor series, where the coefficients are
found using the differential equation and the boundary and interface conditions. Using
the same method, the authors also solved the one-dimensional [7] and the two-dimensional
stationary problem [10]. The basic idea of the method consists in expanding the scalar
neutron flux and concentration of delayed neutron precursors in a double Taylor series in
the spatial and temporal variable, substitution of these expansions in the space kinetic
equation and construction of a linear algebraic system that allows to calculate the co-
efficients of the expansion in series, by the application of the boundary conditions and
continuity of flux and neutron current in the interfaces of the mesh. Further, the initial
condition was determined using the same methodology but for the stationary problem
(see reference [6]). In the same context, [13] solved the two dimensional space kinetic
equation using a polynomial approximation in a homogeneous rectangular domain, with
non-homogeneous boundary conditions. Note, that the studies cited above use analytical
continuation, that is, the successive integration in time to determine the solution.

In this work we determine a new solution free of stiffness and in analytical representation
in one-dimensional geometry and a homogeneous domain. In summary, the methodology
consists of expanding the scalar neutron flux and the concentration of delayed neutron
precursors in Taylor series in the spatial variable (applying the methodology discussed
in [7]), where the temporal dependence is incorporated in the coefficients of that series,
that allows to decompose the original problem into a recursive system of time-dependent
ordinary differential equations. We avert the stiffness character using the idea of [14]
(applied in the solution of the problem of neutron point kinetics) and thus obtaining the
solution of the problem. The idea consists in splitting the coefficient matrix into two,
one constant diagonal matrix and the second one with the remaining time dependent and
off-diagonal terms. Moreover, the equation system is reorganized such that the terms
containing the second matrix are assigned as source terms. The homogeneous equation
system has a well known solution, since the matrix is diagonal and constant, and plays
the role of the recursion initialization of the decomposition method [1, 3, 2, 11, 14]. The
recursion scheme is set up in a fashion where the solutions of the previous recursion steps
determine the source terms of all subsequent steps. A second feature of the method is
the choice satisfying the initial and boundary conditions by the recursion initialization,
so that from the first recursion step onward initial and boundary conditions are homo-
geneous. The fact that the time evolution in the solution is calculated recursively for in
principle all times does not impose any restrictions such as convergence limitations that
are typically present in progressive time step approaches, used by the methods cited above
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and elsewhere.

2. MODEL AND METHODOLOGY

The methodology, presented in this section, aims to determine the solution of the neutron
space kinetic equation (1) with two groups of energy, six groups of delayed neutron pre-
cursors, in one-dimensional geometry and homogeneous domain. To this end a recursive
scheme is elaborated, that avoids the otherwise inexorable presence of stiffness in the
algorithm.

1
v1

∂Φ1(x,t)
∂t

= D1∇2Φ1(x, t)− Σr1Φ1(x, t) + (1− β)(ν1Σf1Φ1(x, t)

+ν2Σf2Φ2(x, t)) +
6∑
i=1

λiCi(x, t),

1
v2

∂Φ2(x,t)
∂t

= D2∇2Φ2(x, t)− Σa2(t)Φ2(x, t) + Σs12Φ1(x, t),
∂Ci(x,t)

∂t
= βi(ν1Σf1Φ1(x, t) + ν2Σf2Φ2(x, t))− λiCi(x, t),

(1)

where i = 1, ..., 6. Here Φ1 and Φ2 denote the fast and the thermal neutron flux, Ci is the
i-th delayed neutron precursor group concentration, v is the neutron velocity, D is the
diffusion coefficient, Σa is the absorption cross section, Σs is the scattering cross section,
Σf is the fission cross section, ν is the average number of neutrons emitted by fission, β
is the delayed neutron fraction and the λ are the delayed neutron decay constants. The
system of equation is subject to the initial conditions:

Φ1(x, 0) = Φ1,0(x),
Φ2(x, 0) = Φ2,0(x),

Ci(x, 0) = βi
λi

[ν1Σf1Φ1,0(x) + ν2Σf2Φ2,0(x)].
(2)

One may think of a global domain segmented into a set of sufficiently small subdomains,
where in each of those the solution is represented by a Taylor expansion in the spatial
variable, where the expansion point is centered in the respective subdomain with size 2∆x
and for convenience equal size intervals are understood.

Φ1(x, t) =
∞∑
n=0

An(t)(x− x0)n,

Φ2(x, t) =
∞∑
n=0

Bn(t)(x− x0)n,

Ci(x, t) =
∞∑
n=0
Ci,n(t)(x− x0)n.

(3)

Note, that time dependence is incorporated in the coefficients of the Taylor series. This
implies that the original equation system may be dimensionally reduced to a recursive
system of ordinary differential time-dependent equations, which are solved by a modified
Adomian Decomposition Method. Applying the expansions (3) in the system of equations
(1), results in:
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1
v1

∂
∂t

∞∑
n=0

An(t)(x− x0)n = D1

∞∑
n=0

(n+ 1)(n+ 2)An+2(t)(x− x0)n

−Σr1

∞∑
n=0

An(t)(x− x0)n + (1− β)(ν1Σf1

∞∑
n=0

An(t)(x− x0)n

+ν2Σf2

∞∑
n=0

Bn(t)(x− x0)n) +
6∑
i=1

λi
∞∑
n=0
Ci,n(t)(x− x0)n,

1
v2

∂
∂t

∞∑
n=0

Bn(t)(x− x0)n = D2

∞∑
n=0

(n+ 1)(n+ 2)Bn+2(t)(x− x0)n

−Σa2(t)
∞∑
n=0

Bn(t)(x− x0)n + Σs12

∞∑
n=0

An(t)(x− x0)n,

∂
∂t

∞∑
n=0
Ci,n(t)(x− x0)n = βi(ν1Σf1

∞∑
n=0

An(t)(x− x0)n+

ν2Σf2

∞∑
n=0

Bn(t)(x− x0)n)− λi
∞∑
n=0
Ci,n(t)(x− x0)n.

(4)

Different powers n in x are linear independent so that terms with equal power have to
vanish individually, which leads to the afore mentioned system of ordinary differential
equations in the time variable.

∂
∂t
An(t) + An(t)(Σr1v1 − (1− β)ν1Σf1v1) +Bn(t)((1− β)ν2Σf2v1)

+Ci,n(t)(−v1

6∑
i=1

λi) = (n+ 1)(n+ 2)An+2(t)(D1v1),

∂
∂t
Bn(t) + An(t)(−Σs12v2) +Bn(t)(Σa2(t)v2) =

(n+ 1)(n+ 2)Bn+2(t)(D2v2),
∂
∂t
Ci,n(t) + An(t)(−βiν1Σf1) +Bn(t)(−βiν2Σf2) + Ci,n(t)(λi) = 0.

(5)

For convenience one may represent this equation system in a matrix form,

dXn(t)

dt
+ W(t)Xn(t) = Sn(t), (6)

where Xn(t) =
[
An(t), Bn(t), Ci,n

]T
(i = 1, ..., 6), Sn(t) =

[
(n+ 2)(n+ 1)v1D1An+2(t),

(n+ 2)(n+ 1)v2D2Bn+2(t), 0, 0, 0, 0, 0, 0
]T

and W(t) are the coefficients ma-

trix of the system equations (5). Note that the coefficients An+2(t) and Bn+2(t) arising
from the diffusive term of the fast and thermal flux equations were placed as source term.

The initialization together with the subsequent two equations of the ODE system are
given in equation (7) and we evidently have to truncate the system in order to render this
problem tractable from the computational point of view. Due to the Taylor expansion up
to the second order the system of three coupled equations is to be solved.

X0
′(t) + W(t)X0(t) = S0(t),

X1
′(t) + W(t)X1(t) = 0,

X2
′(t) + W(t)X2(t) = 0.

(7)
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Here the source term S0(t) is related to details of the fast and thermal neutron current
density.

In order to solve this coupled equation system we make use of a decomposition method in
the spirit of some works in the literature [1, 3, 2, 11, 14]. Note, that the present problem
is a linear equation system, whereas in references [1, 3, 2] the presented method there
was designed for non-linear problems, so that for the present procedure there is no need
for determining the functional polynomials, only the expansion technique is employed in
order to determine the expansion coefficients.

An(t) =
J∑
j=0

An,j(t),

Bn(t) =
J∑
j=0

Bn,j(t),

Ci,n(t) =
J∑
j=0
Ci,n,j(t).

(8)

Further, the matrix W(t) is split into a diagonal matrix containing constant elements only,
and a second matrix W1(t) which contains the off-diagonal elements together with the
time dependent terms. More specifically, in the present consideration the absorption cross
section of the thermal neutron group is assumed to be time dependent Σa2(t) = Σa2,0 +
Σa2,1(t). On the one hand this allows to decouple already in the recursion initialization
equations with its associated time scales, which circumvents the otherwise appearing
stiffness problem. As will be shown below the recursion system corrects then the solution
until a prescribed precision is attained, i.e. the recursion depth is finite and stops at
recursion step J .

Upon inserting the expansions (8) into the original differential equation system opens up
for separating groups of terms, that setup the constitutive equations that determine the
expansion coefficients An,j Bn,j and Ci,n,j. It is noteworthy that this splitting procedure is
not unique, a variety of possibilities exist and the choice for the present scheme is based on
the discussion of reference [14]. Thus, the recursion prescription is given by the following
equations, where for the recursion initialization the equation system is homogeneous and
only for j > 0 the system is non-homogeneous with the time dependent and off-diagonal
terms as source terms and using the solution from the previous recursion step.

X0,j
′(t) + W0X0,j(t) = S0,j−1(t)−W1(t)X0,j−1(t),
X1,j

′(t) + W0X1,j(t) = −W1(t)X1,j−1(t),
X2,j

′(t) + W0X2,j(t) = −W1(t)X2,j−1(t).
(9)

The solutions of equations (9) are known and given by equation 10.

Xn,j(t) = exp(−W0t)Xn,j(0) +

t∫
0

exp(−W0t)Qn,j(t− τ)dτ. (10)
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Here Qn,j represents the inhomogeneities of equations (9) and Xn,j(0) are determined from
the initial conditions. The numerical results were generated using as initial condition the
stationary solution from reference [8], which is absorbed in the recursion initialization
Xn,0(0), whereas for j > 0 the initial condition reads Xn,j(0) ≡ 0.

By inspection one observes that the contribution from the time dependent nuclear param-
eters enters through the source term in the integral equation (10). For small times t the
integral gives only small contributions whereas for large times the exponential term dom-
inates the integrand, which also results in small contributions. Only for times where the
integrand is not small larger contributions to the solution appear. Moreover, the solution
of the time evolution is corrected simultaneously for all times, so that the corrections in
the time region where the integral has significant contributions determine the recursion
depth according to a prescribed precision of the solution., a clear advantage in comparison
to progressive methods such as the one in reference [15].

The stiffness problem present in a variety of approaches does not appear in this method
since the origin of the stiff character is manifest in the diagonal elements of the matrix
W0. The corrections in the solution alter the components of each time scale separately
since the matrix exponential in the integral is diagonal, so that the source term adds only
terms to each contribution with its characteristic time scale.

3. NUMERICAL RESULTS

In order to demonstrate the feasibility of this methodology, we apply the proposed method
to neutron space kinetics in a homogeneous domain and one-dimensional geometry, with
two energy groups and six groups of delayed neutron precursors. The domain is defined
by a slab of length l = 160 cm with zero flux boundary conditions (Φ(0) = Φ(l) = 0).
The increment used in the space variable was ∆x = 0.25 cm. The nuclear parameters are
presented in Table 1 and Table 2.

Table 1: Nuclear parameters

Parameter Fast group Thermal group

D[cm] 1.0 0.5

v[cm/s] 1.0 · 107 3.0 · 105

Σa[cm
−1] 0.02 0.08

Σs12[cm−1] 0.01 0

νΣf [cm
−1] 0.005 0.099

In Figures 1 and 2 are shown the spatial dependence of the fast and scalar flux, for
three instances (t = 1s, 5s, 10s). The decreasing time evolution classifies the regime as
sub-critical.
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Table 2: Delayed neutron parameters

i βi λi[s
−1]

1 0.00025 0.0124

2 0.00164 0.0305

3 0.00147 0.111

4 0.00296 0.301

5 0.00086 1.14

6 0.00032 3.01

To analyze the solution for fast and thermal flux, we vary the number of terms of the
modified Decomposition Adomian Method. In the work developed by [4], the same method
was used to solve the temporal variable, but using the GITT method in the space variable
with analytical continuation. In order to compare the number of terms needed to achieve
the desired precision of the solution with the method mentioned in the literature, Table 3
presents the values of the neutron flux increasing the number J of terms of the expanded
series in the time variable, at position x = l/2 and for an instant t = 1 s.

Table 3: Values of the fast and thermal fluxes increasing the terms of the
modified Decomposition method

J Φ1[cm−2s−1] Φ2[cm−2s−1]

2 0.00014454598 0.00001753745

10 0.00052324994 0.00006422107

20 0.00073721052 0.00009118650

30 0.00082348593 0.00010228426

40 0.00085788806 0.00010678391

50 0.00087148094 0.00010858685

100 0.00088012141 0.00010975359

150 0.00088019442 0.00010976386

200 0.00088019499 0.00010976394

300 0.00088019499 0.00010976394

400 0.00088019499 0.00010976394

From the results presented in Table 3, one observes that with 200 terms one attains
the same accuracy as reference [4]. A comment is in order here, it seems that reference
[4] is more efficient due to the fact that there only 40 terms were needed to get results
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Figure 1: Fast neutron flux.

stable up to the eighth digit, however, both algorithms run with comparable CPU times.
The principal difference in both approaches is that in reference [4] time evolution was
implemented making use of analytical continuation and hence needs the calculation of all
time steps previous to the one of interest, whereas the present implementation allows to
calculate directly the fluxes recursively for any desired time, i.e the present method does
not employ a time step progressive scheme. The solutions for the thermal flux in Table 3
indicate that the precision of 8 digits was also achieved with 200 terms. The implemented
method on this work shows its advantage over the one of reference [4] if the knowledge of
the fluxes for larger times are of interest. With increasing time the method in [4] depends
strongly on the chosen size of the time step ∆t, which imposes limits on the convergence
radius, whereas the method lined out in this work does not need any segmentation of the
time axis.

4. CONCLUSIONS

In this work, we presented a solution for the space kinetics equation in analytical represen-
tation for one-dimensional and homogeneous domains. The method reduced the spatial
part of the problem using a segmented spatial domain, where the solution was expanded
around the center of interval. This procedure reduced the original problem to a set of
ODEs that determine the explicit time dependence of the expansion coefficients. Previous
works in the literature made use of a progressive time-step scheme, which consequently
has a relation between time step size and an upper time limit. The present implemen-
tation results in a recursive scheme that allows to determine the time dependence of the
expansion coefficients where additionally the recursion formula for the polynomial coeffi-
cients in each recursion step with respect to time is split, such that coefficients of higher
order are placed as source terms. From previous analysis not reported here the Taylor
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Figure 2: Thermal neutron flux.

expansion in the spatial coordinate was restricted to the second order with associated
domain segmentation size 2∆x in order to attain a prescribed precision. Comparing the
new proposed method to reference [4] shows that handling the time dependence with
the expansion coefficients allows to solve for the time evolution using a decomposition
method, where the recursion initialization is defined by the linear and diagonal (i.e. de-
coupled) matrix terms and the subsequent recursion steps contain the off-diagonal and
time dependent nuclear parameters, which constitute the afore mentioned source terms.
As a consequence stiffness manifest in the diagonal contributions remains uncoupled and
enters in the solution of the recursion initialization, which consequently circumvents ef-
fects due to the stiff character of the equation system. Moreover, since the time evolution
is determined in form of an analytical representation of the expansion coefficients, no time
steps are necessary, in other words the solution is recursively improved for in principle any
time. Evidently, error propagation that could impose limits on convergence is no issue in
the present implementation. Also computational efforts are maintained reasonably small,
which becomes especially apparent if solutions for larger time intervals (> 101s) shall be
computed. As an extension in future works, we focus on heterogeneous domains as well
as domains of higher dimensionality.
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