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SUMMAPRY

. Dynanicanalysis—of-shell -structures-subjected toseimmic
loadings—4is-one—of the hasic requirements in-the safety
assessnent of nuclear- powsr plants.- Typical-examples of -sueh
stuctures-are-steel-containnent vesssel-that-houses the
primery cooling-systen;—coolingtovers—and—the concreteresctor
builéing that serves ¥s x missile-and bielegicel-shield-for
QWMAxismetnc 2
shells subjected to multiple support excitation.The shells s{m A

( are spatialy discretized by the finite element method and in
' order to obtain estinat!gps for the maximum values of
1= displacerents and stresses the response spectrum technique is
used. Finally, some numerical results are presented and
discussed in the case of a shell of revolution with vertical
syncetry axis, subjected to seismic ground motions in the
horizontal, vertical and rocking directions.

RESUMO
- A-anilisedinimica—de—cascas Sujeitas—a-cargas "s}‘!ﬁﬁ:h

cWWWM—;M
nuoleares. Casos t{picos de-taisestruturas sao por | eéxempio -

q_!!!gLgg_ggg5gngio_gn_Asn+—quc—8brtga—o~sfotons_p:imifinm,_ﬂn.

esfriarento,. a8 torres-de-resfriaménto & 0O -vaso-de-eonf
reator que representa para O.vaso.de-Gontencdo um antepars Bio

16gico e uma protagiccontramissets. -
m;uudam-se cascas axisimétricas sujeitas a
excitacao miltipla de apqig:;:>
("As cascas sao discretizadas espacialmente pelo método dos
elerentos finitos e o conceito de espectro de resposta € utili

LW

28d0 na obtencio de estimativas para os valores maximos dos
deslocarentos e tensdes.
it

Finalrente, sao apresentados ¢ discutidos alguns resulta =
dos nunéricos para o caso de uma casca de revolucdo com eixo
vertical de simetria, sujeita a excitacdo sismica ce apoios
nas direcdes horizontal, vertical e rocking.



1. INTRODUCTION

The design of thin shells is one of the most important
structural problem in a nuclear power plant. An analyst is often
confronted with the task of performing rather complicated
analysis in order to satisfy the available safety codes.

An important part of such an analysis deals with the response
of shells when subjected to time depedent loads produced by
seismic support motions.

Seismic analysis of thir shells of revolution is carried
ocut in this work making use of response spectrum concepts.

The equations derived herein sters from the Principle of
Virtual Work applied to axisymmetric thin shells according to
Fl0gye and Love's theory, obtaining a general formulation for
the treatment of multiple support excitation problems for this
kind of structures.

Application to an actual design case of a steel containment
vessel presently under construction in Brazil, is obtained and
the results are shown in good agreement with those obtained
with computer code ANSYS.

2. STATEMENT OF THE PROBLEM

In this work the problem of finding the response of
axisymmetric shells to given motions of its foundations is
considered. The problem consists of finding the solution of
the following boundary value problem: Given a shell of revolutim,
and a model for its deformation, find its stresses and
displacements when the structure is subjected to precribed
time dependent boundary conditions.

The eguations governing the problem can be stated if we
consider an elastic body, in a regular bounded region 2 of a
3-D Euclidean space - E’, free from bedy and surface forces and
subjected to a prescribed field displacement in part (ry)of its
boundary.

It is not difficult to show that to £ind the displacement
field to this kind of loading is eguivalent to solving



the following variatinnal problem, derived from the Principle
of Virtual wWork:

Find the field v & Kinv such that:
va.odn . [nm:(v) .E($)d0= 0 Vi € var, (1)

where: D - Elasticity tensor
p - material density

E(v) - infinitesizal strain tensor
and
Var, ={V, V.= 0 at rv)

xinv ={v; veg(x,t) and gi(x,0)=0 both at rv }

vix,0) =v(x,0) =0 - initial conditions

Enploying the usual technigue to treat this kind of problem
one Ceconposes the original cisplacement field in two new fields
- v= u?+ u - in such way that u* ¢ Kinv, the stresses DE(u*)
are self equilibrated and u € var, . The original problem (1)
readily becomes two new (Pl1,P2) problems i.e.:

Pl - an(u') - E(V)31 =0 V¥ ¢ var, (2)
P2 -~ Inpii.\'r dan + IQD E(u) .E(V)an --Inpii'.\'rdn vV Vevar, (3)

In order to make use of this formulation in the case of
thin .shells of revolution cone adopts a cylindrical coordinate
systes r,0,2z, to describe the geometry of the shell middle
surface. Under the sinplifications retained in the Fllgge's
theory- and Love's theory as well - the displacement field of
a shell subjected to the action of arbitrary loading is
uniquely 3defined by the displacement field of its middle
surface.

Let vx,i- 1,2,3, be the components of the displacement
vector associated to an arbitrary point of the middle surface,
in the local basis {t,,tz,n) (fig.l). Let moreover,

v, 1:11111 - (1/.')3\13/5; represent the rotation of the normal
n around t, and where:

R, = One of the principal radiiof curvature



s = (r'’+2°*)"2 ()* indicating derivative respect

to the paramcter { adcpted along the meridian.

Defining the generalized displacement vector v-(v, vy vy v‘)T
and expanding this displacement field v of the original problenm
in Fourier series and noting that doing so v, u*, u, of the
Pl1, P2 problems will have similarly expressions, one writes for v

T 5.5 a a
v .ngo(q,{ Vo * 9, Vp) 4
vhere the superscripts s and a indicate, respectively, the

syzmetric and antisyrmmetric components of vi(and ¥, u*, u). The
diagonal matrices q: for l=s,a are defined as follows:

q:- P cos n® -3in n® cos n® cos nd J (5)
q;- I sin nO@ cos n® sin nd cos nod J (6)
and where

1l 1 1 l.7
Va * (Yi3n V2n Van Van!

l.s,a.
The constitutive relations assumed here allow for Hookean
orthotropic materials, provided that the planes of orthotropy

contain the principal lines of curvature. :

L] Figure 1



-

with the above assunptioni, and considering the
orthogonality relatioas:
2% 2z
L sin nesinna-! cos O cosn® =0 for mg¢ n
° =% form=ngf0
=285 form=ns=0

it is easy to show that the problems Pl and P2 becone:

Pl - Pind the vector tield u':l [~ linl {(n=0,1,2,...;1=8,a)

for any v lc Var {n=0,]1, 2,...;1-s.l) such that:

I"z(s u* ). B, (v )aR = O : n

¢

P2 - Find the vector field ui ¢varl for any \'r: cv;z: such

that :
I;‘r l. 1’:1 $°'rdf o+ ] E(B ul).B (Fhs'rdk «
Co L 9N
L £ % U
--I F, G, vnsrdc (9
to

Both problems with the colateral condition:

1
1 vin ! 4v3n
V4n = —Rl —‘-5 11—' (9)

vhere:

xu}n - is the space of the kinematically admissible
displacements related to the n-th harmonic, symmetric
or antisymmetric according to superscript 1,

ng}’ -~ is the space of virtual di'sphccmnts related to the
n-th harmonic, symmetric and antisymmetric according
to the superscript 1,

z,7, - are nmatrices depernding on the shell gecmetry and
material properties. Their explicit forms are given
in reference?,



Bn - is a3 differential operator matrix depending on the
shell geometry. Its explicit form can be found in
reference’.

“: :' - are the second derivative with rQSpéct to time of the
vector fields u% and u';.

For sake of simplicity it will be dropped, in the sequel,
the superscript 1 and subscript n. The developzent for any
harmonic, symmetric or antisymmetric part, is entirely similar
and the following equatﬂpns will cover all cases.

3- APPROXIMATE SOLUTIONS -~ FINITDZ ELEMENT DISCRETIZATION

Using the standard Finite Element procecures in the
construction of the approximation spaces, the .-
region oOf interest I= [{,{,] can be divided in sub-regions
(finite elements) conected by nodal points. One can easily
obtain the glodbal interpeolation functions constructed by
assemblage of the suitable local interpolazion functions
selected to represent the displacement variation along the
meridian direction. Then the original problem defined in a
space of infinite dimensions can straightfoward be written in a
finite dimension space.

The finite element employed here is a curvilinear one
developed by Feijdo et al’, with three nodal points. The
displacement field has four components -~ three éisplacements
and the rotation of the normal of the shell aroungd t, — and is
interpolated with cubic and quintic polinomials. The geometry
of the shell is also approximated and the element satisfies
all the continuity reguirements for VyrVasVy and Ver preserving
moreover the colateral condition (9) for every point of the .
shell surface.

Hepce the problem Pl -can readily be written:
-3
Pl - X, ,U* ' G = =K, e »vr = - Xe *ep Oe (10)

x“ - Partition of the global stiffncss matrix associated to
the free 4.0.f. of the structure.



xlp - Partition of tHe glokal stiffness matrix representing
the coupling between the prescribed and the free d.o.f.
of the structure.

U* - Nodal free displacement vector of the structure composed
of the suitable asscrmblage of all elements nodal global
displacement vectors.

0*» - prescribed¢ nocdal displacement vector of the structure.

All guantities related above are obtained by suitable
asserblage of the matrices and vectors at element level in the
usual way of the finite element technique and explicit forms
can be found in Jospin®. .

It must be pointed out that from the knowledge of the
prescribed function g(x,t) in I, one must identify the Fourier
series terms envolved in the analysis of (10) and then construct
the vector U* of amplitudes of the prescribed motions in each
harrmonic and solve Pl problem for each one of these harmonics
and obtain the total solution using (4) in the superposition
of the results thus obtained.

It is worth noting that * can be decomposed as written:

< k-th component
11)

P
11 .kzlv" l.'s‘ (t) (11) where V, =

Ot = DO

where the scalar function 0 (t) is the prescribed time history
in the k-th d.o.f.

Rence from the linearity of the problem Pl, U* can be
obtained by the superposition of the solutions vp of p "static”
problems corresponding to the application of a unit displacement
in each one of the p prescribed d.0.f., multiplied by 1;3
associated time-histories i.e.:

P
o0 - v, Up | 12)
k=1 ¥ X (32)
wheze

u; is the solution of Pl for each term in the summation (1l1),

For the problem P2 in similar way and making use of the



solution for Pl one obtains:
M,, U0+ K,pU = = | Mo, K;2K, o B, |G* 13
2L 174 coeetep® Tep (13)
where

- Partition of the global mass matrix associated with
the free d.0.f. of the structure.

Eee

“lp -Partition of the global mass matrix representing the
coupling betweep the prescribed and the free d.0.f.

With the decomposition (11) the prescribed accelerations U*can
be conveniently written

- P . '
" =} v.0 (t) (14)
k:lkk
From time-histories ﬁk one can obtain the forcing
term in (13) and determine the solution U. The superposition

- of the solutions U and U* in each time t will finally give the
solution to the problem initially stated in (1).

In solving the eguations (13), one can employ any
desired method 1like direct integration, modal superposition
and so on.

4~ SPECTRAL ANALYSIS

If a deterministic response to a known ground motion is
desired one can use any of the above mentioned methods in order
to provide the time dependence of the response of the structure.
However seismic design is concerned with a ground motion that
is expected to occur in the future, so that its deterministic
time record cannot be anticipated. The use of an acceleration
record of a previous earthquake is possible, but, as far as the
design of an unbuild shell structure is concerned, that is not
very meaningful. A logical procedure to follow in seisamic
design is the response spectrum approach.

In this section the response spectrum concepts are used in
order to obtain estimatives for the maximum values of each



response of intcrost [(displacenent, stresses, ctc).

The natural freguencies L anéd the free vibration mode

shapes of problem P2 can be obtained from the eigenvalue problem

(xu-:.’uu)x =0 (15)

Considering the orthogonality relations

xinuxj = 6ij (16)

xx‘uxj = ‘1jﬁ‘1 1,’ = 1,2,-.. (17)
where 6” is the kronecker delta.

Then it is possible to obtain the uncoupled form of
eguation (13) through the use of the linear transformation:

U= xnlt) (18)

Where ¥ is the modal matrix with the first m vibration
pode shapes of the system and n= (n, n;...nm)T contains the
modal amplitudes.

7he contribution to the total response, of the r-th
vibration mode, when one has a prescribed support motion in
the k-th é.0.f. is given by:

pad 3 K = :

SRR o N (19)

where r:‘_ is the modal participation factor of the mode r due
to the motion in the k-th prescribed d.o.f., and can be
deternined by

X -3

The maximum value of n: that occurs irn time t: not Xnows is

given by
SA" “’r,

) 3
O ,max * l': (w17 (21)

wvhere



SA (”r) - is the spectral acceleration value of the r-th mode
with respect to excitation ﬁ (t).

Taking into account the simultaneous application of all
support motions one possible estimate of the naximunm response
in the r-th mode can be:

y V2 (22)

n = ({ (nk

I ,max I, max

or conservatively, by absolute summation

) 4
Nr,max * Z lnr,maxl (23)

The corresponding displacement of the structure are
Ups Ny nayXy- With these values the modal stresses, moments,etc.
can promptly be obtained,

Once obtained the representative values of the maximum for
each response of interest in each mode subjected to all
prescribed support motions,or ,these values are usually corbined
in order to. evaluate the representative value of their

r

max imum value taking into account the
contribution of all vibration modes. Two common ways of doing
80 are: , -

m
a) Absolute sum - Q = § |0 | (24)

rsl

b) Square root of sum of the squares (RQSQ)

o 112
(25)

%)

where -
Qy - the peak response of interest due to k-th mode

In the case ©f vertically axisymmetric shells the known
response speotra are in the horizontal, vertical, rocking and -
torsional "directions”. Hence in this case the d.0.f. of the
nodal point at each basis, if there are more than one, of the
shell must be combined in order to represent each one of those
above mentioned motions.

In this case one defines analogously with (20) and (21) the
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following:
4
d k,. 1
(r. ), = ) rele), (26)
ksl
and
a1 .4 s"d"":’
('&’)n. (rr,n n, s (27)
("'r)

where the index n is relative to the excited harmonic; les,a
~ means synmetric or antisymmetric part of then-th harmonic

d: « r=-th frequency of the n-th excited harmonic.

(c;)k- is a constant suitably choosed that relates the k-th d.o.f.

of the basis of the shell, to the “d” directions
previously defined.

Finally, the harmenics involved may be combined by absolute
sun.

S- NUMZRICAL RESULTS

The results here analysed are from a spherical steel
containment vessel (£ig.2) under the action of a vertical,
horizontal and rocking ground acceleration

2
Uy Maleric! properties
' ? £ =2, 210° N‘/mmz
4 y =03 .
RN p =7.85 116° Ne¥/mm®
\{ Geometry
! R 228000 mm
\L t s30mm
P ‘ P =130°
V] Un
Y \ rp 21450 mm
a !
L
™ fp T Figuwe 2

The estimatives for - the maximum modal responses, in each
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*direction” d, according to {(26), arc given by:

X v s v SAV(‘;) N
- vertical motion (“r)o,mx = l‘r oy (28)
“r
H 1
SAT (w))
- horizontal motion (r\n)s = 1'2 X (29)
T ),max (u;)'
R.s R SAR(u;)
- rocking motion (n) = [ ———— (30)
r r 1
1,max (w2)?

wvhere explicit expressions for the participation factors in f.l"ae
r~th mode r:, l‘:’, r: are:

¥ = 1.’ (c5), with (c]), = 1 ©(31)
T e Il tel), o Tich), with (€)= (c)a= 2 (32)
8 e 12 (e, » FLch), with (e} aor, and (cf) -2 (33)

The constants (<:x];)k in (31), (32) and (33) are defined as
indicated in figure 3.

LS
o
Vertical moltion Horizontal motion
4 Uy cos o
3 &b
[, =, Uncos »
' ]
[
“y

Rocking mofion

Figure 3
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All results prescnted as being {rom the ANSYS code were
obtained with a discretization employing 100 elements. Orly
the first vibration mode share was considered in the carparisons
made from hereafter.

A camparison between the participation factors determined
by ANSYS code ané those obtained herein is shown in Table 1.
Good agreement is achieveé even in the case where it was used
only four of the finite elements employed in this work.

vit) Wi rY r,¥ ryRe107*
ANSYS 13.75 6.35 15.81  18.73 7.53
50 ELEM. 13.71 6.31 15.74 20.87 7.56
20 ELEM. 13.76 6.33 15.71 20.87 7.56
4 ELEM. 14.62 6.67 15.10 20.77 7.47

Table 1 - Participation factors for vertical, horizontal and rocking motions

Next the radial, axial displacement as well as the rotation
of the normal of the shell around t (Fig.l), are also compared
in Table 2 and 3, for the circunfercntial wave number ns=0 and
nsl respectively. In both Tables the presented results here,
were obtained with a 50 elements mesh.

u_»10? U, *10° 8107
9 ANSYS P.W. ANSYS P.W. ANSYS P.W.
123.47 15.60 16.03 14.60 14.91 7.99 8.00
91.02 9.28 9.34 19.34 19.42 3.95 4.38
61.00 3.16 3.01 24.13 24 .34 5.32 5.21

Table 2 - Maximun displacements (mm), Rotations(rad) for circunferencial
wave n=0.

v_+10? v, *10’ g #1 07

¢ ANSYS P.W, ANSYS P.W. ANSYS P.W.

123.43 192.44 205.06 176.95 187.38 46.45 45.72
- 91.02 347.27 366.25 276.49 292.31 115.02 121.95 °
61.00 507.63 53£.78 257.69%9 270.11 111.70 117.71

Table 3 - Maximum displacements (mm) and rotations (rad) for circunferential
wave nsl

In the Table 3 the absolute sum {23) was used to obtain
maximum response estimations for the case of simultaneous action
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of the horizontal and rocking excitations.

Ng Na
ANSYS S0 EL. 20 FL. __ANSYS 50 EL. 20 EL.
n=0  28.83  24.08  37.28 8.65 7.22 1.19 -
nel 392.69  328.93 491.76  118.14 98.68  147.53

Table 4 - Maximm secctional forces at clamping point (N/rm)

ANSYS 50 EL. 20 EL. ANSYS S0 EL. 20 EL.
n=0 340.50 395.26 286.14 102.13 118.58 85.8¢4

n=l .4428.10 4942.55 3644.04 1328.63 1482.77 1093.21

Table 5 - maximum moments at the clanping point (N.rm)

Finally it can be concluded from Table 4 on 5 that although
a poor mesh (4 elements) can give good results for the
participation factors (Table 1), this is not the case for the
sectional values (NO'Nb) and moments(no,na) at the clamping
point.

CONCLUSIONS

Although the usual problems in seismic analysis of shells
seem to be that of rigid basis excitation, the approach used
in this work was that .f multiple support excitation. The
advantages of this kind of approach comes from the clarity
given to all aspects involved: formulation of the problenm,
assumed decomposition criteria conducting to problems Pl and P2
and the numerical algorithms used to obtain approximated
solutions. The generality gained enables the study-of any
problem of prescribed time-histories motions for this kind of
structures, using the available techniques in dynamic analysis
such as direct integration, modal superposition and so on. And
last but not least is worth mentioning that the solution of
problem Pl in the case of rigid basis excitation can be seen
as a good test for the finite element esployed in the
discretization.
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