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shells subjected to multiple support excitation.The shells $tu.<<-

are spatialy discretized by the finite element method and in

order to obtain estinatitoes for the maximum values of

displacements and stresses the response spectrum technique is

used. Finally, some numerical results are presented and

discussed in the case of a shell of revolution with vertical

symsetry axis, subjected to seismic ground motions in the

horizontal, vertical and rocking directions.

RESUMO
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Jifjitsi^fjjjSlh^ «tudam-se cascas axisinétricas sujeitas a
excitação múltipla de

(^Ãscascas são diccretizadas esnacialmente pelo método dos
elementos fínitos e o conceito de espectro de resposta é ut iU
zado na obtenção de estimativas para os valores máximos dos
deslocamentos e tensões..

Finalmente, sao apresentados e discutidos alguns resulta -
dos numéricos para o caso de uma casca de revolução com eixo
vertical de simetria, sujeita a excitação sísmica de apoios
nas direções horizontal, vertical e rocking.



1. INTRODUCTION

The design of thin shells is one of the most important

structural problem in a nuclear power plant. An analyst isoftm

confronted with the task of performing rather complicated

analysis in order to satisfy the available safety codes.

An important part of such an analysis deals with the xr*{«.iae

of shells when subjected to time depedent loads produced by

seismic support motions.

Seismic analysis of thin, shells of revolution is carried

out in this work making use of response spectrum concepts.

The equations derived herein steir.s from the Principle of

Virtual Work applied to axisymmetric thin shells according to

FlOgye and Love's theory, obtaining a general formulation for

the treatment of multiple support excitation problems for this

kind of structures.

Application to an actual design case of a steel containment

vessel presently under construction in Brazil, is obtained and

the results are shown in good agreement with those obtained

with computer code ANSYS.

2. STATEMENT OF THE PROBLEM

In this work the problem of finding the response of

axisymmetric shells to given motions of its foundations is

considered. The problem consists of finding the solution of

the following boundary value problem: Given a shell of revolution,

and a model for its deformation, find its stresses and

displacements when the structure is subjected to precribed

time dependent boundary conditions.

The equations governing the problem can be stated if we

consider an elastic body, in a regular bounded region Q of a

3-D Euclidean space - E', free from body and surface forces and

subjected to * prescribed field displacement in part iry)of its •

boundary.

It is not difficult to show that to find the displacement

field to this kind of loading is equivalent to solving



the following variation.il proMtm, derived from the Principle

of Virtual War*:

Find the field v C Kin y such that:

f pV.Váa* Í BE(v).E(v)dQ« 0 Vv C Var v CD

where: X) - Elasticity tensor

p - material density

£(v) - infinitesimal strain tensor

and

Varv «<v, v « 0 at T y }

Kiny -{v; v>g(x,t) and g(x,O)«O both at f y }

v(x,o) *v(x,O) «0 - initial conditions

Employing the usual technique to treat this kind of problem

one decomposes the original displacement field in two new fields

- v> u* • u - in such way that u* C Kin v, the stresses IDE(u*)

are self equilibrated and u 6 Vary. The original problem (1)

readily becomes two new (P1,P2) problems i.e.:

PI - ^l>E(u-) . E<v)dii « 0 V v C Var v (2)

P2 - ^jpu.v dO-» JflDE(u).E(v)dn - - Jnpü«-vdn V v C Vary (3)

In order to make use of this formulation in the case of

thin shells of revolution one adopts a cylindrical coordinate

systes r,0,z, to describe the geometry of the shell middle

surface. Under the simplifications retained in the Flugge's

theory- and Love's theory as well - the displacement field of

a shell subjected to the action of arbitrary loading is

uniquely defined by the displacement field of its middle

surface.

Let v i #i» 1/2,3, be the components of the displacement

vector associated to an arbitrary point of the middle surface,

in the local basis {t^ft2,n) (fig.l). Let moreover,

v, • Vj/I^ - (l/s'j'Vj/K represent the rotation of the normal

n around t2 and where;

R. - One of the principal radii of curvature



*' . (r****** ) 1 / 2 (.)* indicating derivative respect

to the parameter Ç ad&ptcd along the meridian.

Defining the generalized displacement vector v»(v, v_ v- v.)T

ana expanding this displacement field v of the original problem

in Fourier series and noting that doing so v, u*, u, of the

Pi, P2 problem will have similarly expressions, one writes forv

n»0

where the superscripts s and a indicate, respectively, the

symmetric and antisymmetric components of viand v, u», u). The

diagonal matrices a for l>s,a are defined as follows:

q** f cos nG -sin n6 cos n© cos nd 4

q*» t sin nG cos n© sin n6 cos nõ i

(5)

and where

v n « <vín vJn V32n vín'T 1 ' ••••

The constitutive relations assumed here allow for Bookean

orthotropic materials, provided that the planes of orthotropy

contain the principal lines of curvature.

Figure 1



With the above assumptions, and considering the

orthogonality relations:

2* 2*

j sin is© sin n© « j cos •© oosnO « 0 for « I n

° > * for a • a i 0

•2« for m m n • 0

it is easy to show that the problems Pi and P2 becoae:

PI - Find the vector field u** C Kin* (n-0,1,2,...;l«s,a)

for any vjc V«r^ (n*0,l,2,...;l*s,a) such that:

fcu*^). BnCv^ )dQ . 0 (7)

P2 - Find the vector field u*CVar* for any v1 CVarjf such
n n n n

that:

j | 1

Both problems with the colateral condition:

vj

where:

^ - is the space of the kinematically admissible

displacements related to the n-th harmonic, symmetric

or antisymmetric according to superscript 1,

Var1 - is the space of virtual displacements related to the
n-th harmonic, symmetric and antisymmetric according
to the superscript 1.

Z,l - are matrices depending on the shell geometry and

material properties. Their explicit forms are given
in reference*.



B - is a differential operator matrix depending on the

shell geometry. Its explicit form can be found In

reference1.

ul.5# - «re the second derivative with respect to tine of the
n n

vector fields u1 and u*1.
n n

For sake of simplicity it will be dropped, in the sequel,

the superscript 1 and subscript n. The development for any

harmonic, symmetric or antisymmetric part, is entirely similar

and the following equations will cover all cases.

3-rFPTCOai'WE SOUmCNS - FINITE ELEMENT DISCRETIZATION

Using the standard Finite Element procedures in the

construction of the approximation spaces, the

region oi interest I> K^ti) can be divided in sub-regions

(finite elements) conected by nodal points. One can easily

Obtain the global interpolation functions constructed by

assesiblage of the suitable local interpolation functions

selected to represent the displacement variation along the

meridian direction. Then the original problem defined in a

space of infinite dimensions can straightfoward be written la a

finite dimension space.

The finite element employed here is a curvilinear one

developed by Feijóo et ai1, with three nodal points. The

displacement field has four components - three displacements

and the rotation of the normal of the shell around tt — and is

interpolated with cubic and quintic polinoicials. The geometry

of the shell is also approximated and the element satisfies

all the continuity requirements for V!»V
2'

V3 an<J v*r preserving

moreover the colateral condition (9) for every point of the .•

shell surface.

Hence the problem PI -can readily be written:

PI - K,,W - C - -X._ 0* -» V • - til K/ft 0« (10)

X,, - Partition of the global stiffness matrix associated to

the free d.o.f. of the structure.



X. - Partition of tMe global stiffness matrix representing

the coupling between the prescribed and the free d.o.f.

of the structure.

U* - Nodal free displacement vector of the structure composed

of the suitable assemblage of all elements nodal global

displacement vectors.

0* - Prescribed nodal displacement vector of the structure.

All quantities related above are obtained by suitable

assemblage of the matrices and vectors at element level in the

usual way of the finite element technique and explicit forms

can be found in Jospin* .

It must be pointed out that from the knowledge of the

prescribed function g(x,t) in I*y one must identify the Fourier

series terms envoived in the analysis of (10) and then construct

the vector 0* of amplitudes of the prescribed motions in each

harmonic and solve PI problem for each one of these harmonics

and obtain the total solution using (4) in the superposition

of the results thus obtained.

It is worth noting that 0* can be decomposed as written:
0
0

(t) (11) where V,V
•

component

0 f">

where the scalar function O^it) is the prescribed time history

in the k-th d.o.f.

Hence from the linearity of the problem Pi, U* can be

obtained by the superposition of the solutions U* of p "static"

problems corresponding to the application of a unit displacement

in each one of the p prescribed d.o.f., multiplied by its

associated time-hi stories i.e.:

P
. *. k k »**)

where
Li

For the problem F2 in similar way and making use of the

U£ is the solution of PI for each tarn in the summation (11).



solution for Pi one obtains:

where

M££- Partition of the global mass matrix associated with

the free d.o.f. of the structure.

K. -Partition of the global mass matrix representing the

coupling between the prescribed and the free d.o.f.

mm

With the decomposition (11) the prescribed accelerations O*can
be conveniently written

P ..

k»l * *

From time-histories ti^ one can obtain the forcing

term in (13) and determine the solution U. The superposition

of the solutions U and V* in each time t will finally give the

solution to the problem initially stated in (1).

In solving the equations (13), one can employ any

desired method like direct integration, modal superposition

and so on.

4- SPECTRAL ANALYSIS

If a deterministic response to a known ground motion is

desired one can use any of the above mentioned methods in order

to provide the time dependence of the response of the structure.

However seismic design is concerned with a ground motion that

is expected to occur in the future, so that its deterministic

time record cannot be anticipated. The use of an acceleration

record of a previous earthquake is possible, but, as far as the

design of an unbuild shell structure is concerned, that is sot

very meaningful. A logical procedure to follow in seismic

design is the response spectrum approach.

In this section the response spectrum concepts are used is

order to obtain estimative* for the maximum values of each



response of interest (displacement, stresses, etc).

The natural frequencies «r and the free vibration node
shapes of problem P2 can be obtained from the eigenvalue problem

^ ^ I X » 0 (15)

Considering the orthogonality relations

where i±. is the kronecker delta.

Then it is possible to obtain the uncoupled form of
equation (13) through the use of the linear transformation:

U * X n(t) (18)

Khere x *« t n« modal matrix with the first n vibration
mode shapes of the system and n> fn» n » - - « n

m )
T contains the

modal amplitudes.

The contribution to the total response, of the r-th
vibration mode, when one has a prescribed support motion in
the k-th d.o.f. is given by:

where r* i s the modal participation factor of the mode r due
to the motion in the k-th prescribed d.o . f . , and can be
deterained by

U%Ü*lp+ * V Vk
k v

The maximum value of r»r that occurs ir. time tj not Known is
given by

where



y

SA (u ) - is the spectral acceleration value of the r-th nod*

with respect to excitation 0. (t)•

Talcing into account the simultaneous application of all

support notions one possible estimate of the r***"!""? response

in the r-th mode can be:

or conservatively, by absolute summation

The corresponding displacement of the structure are

U_« n_ M , X r - With these values the nodal stresses, moments,etc.

can promptly be obtained.

Once obtained the representative values of the maximum for

each response of interest in each mode subjected to all

prescribed support motions,^,these values are usually combined

in order to evaluate the representative value of their

maximum value taking into account the

contribution of all vibration modes. Two common ways of doing

so are:
m

a) Absolute sum - Q « I \Q \ (24)
r«l

b) Square root of sum of the squares (RQSQ)

IB ] 1/2
I Cr (25)

where •

Q r - the peak response of interest due to k-th mode

In the case of vertically axisymmetric shells the known

response speotra are in the horizontal, vertical, rocking and

torsional "directions". Hence in this case the d.o.f. of the

nodal point at each basis, if there are more than one, of the

shell must be combined in order to represent each on* of those

above mentioned motions.

In this case one defines analogously with (20) and (21) the



10

following

c r t
d ) n

and

(26)

where the index n is relative to the excited harmonic; l«s,a

- seans symmetric or antisymmetric part of then-th harmonic

«n «. r-th frequency of -the n-th excited harmonic.

( O . - is a constant suitably chooseá that relates the k-th ã.o.f..
of the basis of the shell, to the "d" directions
previously defined.

Finally, the harmonics involved nay be combined by absolute

sua.

5- NUMERICAL RESULTS

The results here analysed are from a spherical steel
containment vessel (fig.2) under the action of a vertical,
horizontal and rocking ground acceleration

Mottriol properties

E «2.1 xlOSN/mm*
y «0.3
f «7.85 1IÓ* N«2/mm4

Geometry
R «28000 mm

f «30mm

rb«2l450mm

FiQtre Z

The tstfcntlves for * the maximum modal responses, in each
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"direction" d, according to (26), arc given by:

V s V
- ver t i ca l motion (n r> 0 JRAX * I"r

H « H
- hor i zonta l n o t i o n (n ) « I"**r 1,MX r (u£

- rocking n o t i o n (n )S

rl,Bax r (^

(28)

(29)

(30)

where explicit expressions for the participation factors in the
r-th «ode r r̂ r j , r£ are:

r̂  - rr'(c*), with (cf),« 1 (31)

rj « r» (c*), • r»(cs)twith (cf), « (c*), . 1 02)

rj . r£ (c?), * r (̂c*)% with (c»)i . - r b and tc=)% « 1 (33)

The constants (c1). in (31), (32) and (33) are defined asn x
indicated in figure 3.

jij»
Verlicol motion Horizontol motion

Rocking motion

Figure 3
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All results presented as being from the ANSYS code were
obtained with a discretization employing 100 elements. Only
the first vibration mode shape was considered in the carparisons
made from hereafter.

A canparison between the participation factors determined
by ANSYS code and those obtained herein is shown in Table 1.
Good agreement is achieved even in the case where it was used
only four of the finite elements employed in this work.

ANSYS

5 0 ELEK.

20 ELEK.

4 ELEK.

wj <H2)

13.75
13.71
13.76
14.62

6.35
6.31
6.33
6.67

r,v

15.81
15.74
15.71
15.10

18.73
20.87
20.87
20.77

r.Mo-
7.53
7.56
7.56
7.47

Table 1 - Participation factors for vertical, horizontal and rocking motions

Next the radial, axial displacement as well as the rotation
of the normal of the shell around tj(Fig.l), are also compared
in Table 2 and 3, for the circuniercntial wave number n»0 and
n«l respectively. In both Tables the presented results here,
were obtained with a 50 elements mesh.

123.47
91.02
61.00

Table 2

123
91
61

«

.43

.02

.00

ur*io»
ANSYS

15.60
9.28
3.16

P.W.
16.03

9.34
3.01

Maximum displacements
wave n=0.

ur*ioJ

ANSYS

192.44
347.27
507.63

P.W.

205.06
366.25
53P.78

Uz
ANSYS

14.60
19.34
24.13

•10*

P.W.
14.91
19.42
24.34

(mm), Rotations (rad)

ANSYS

176.95
276.49
257.69

•10»

P.W.

187.38
292.31
270.11

B'101

ANSYS

7.99
3.95
5.32

P.
8.
4.
5.

W.

00
38
21

for circunferencial

6.10»

AWSYS

46.45
115.02
111.70

P.

45.
121.
117.

W.

72
95 '
71

Table 3 - Maximum displacements (ran) and rotations (radj for cizcunferenfcial
wave n«l

In the Table 3 the absolute sun (23) was used to obtain
maximuB response estimations for the case of simultaneous action
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of the horizontal and rockinq excitations.

n*0
n»l

3»ble

n . 0
n«l

ANSYS

28.83
392.69

4- Maximum

ANSYS

340.50
-1428.10

50 EL.

24.08
328.93

sectional

50 EL.

395.26
4942.55

20

37.
491.

forces

20

286.
3644 .

EL.

28
76

at

EL.

14
04

ANSYS

8.
118.

clanping

.65
,14

point

ANSYS

102.
1328.

13
63

Ne
50

7,
98.

Me
50

EL.

.22

.68

EL.

118.58
1482.77

20

11
1<7

20

85
1093

EL.

.19 '

.53

EL.

.84

.21

Table 5 - Maximum ncnents at the clanping point (N.an)

Finally it can be concluded from Table 4 on 5 that although

a poor mesh (4 elements) can give good results for the

participation factors (Table 1), this is not the case for the

sectional values (K.,N.) and moments (H.,M.) at the clasping

point.

CONCLUSIONS

Although the usual problems in seismic analysis of shells

seem to be that of rigid basis excitation, the approach used

in this work was that wf multiple support excitation. The

advantages of this kind of approach comes from the clarity

given to all aspects involved: formulation of the problem,

assumed decomposition criteria conducting to problems PI and P2

and the numerical algorithms used to obtain approximated

solutions. The generality gained enables the study-of any

problem of prescribed time-histories motions for this kind of

structures, using the available techniques in dynamic analysis

such as direct integration, modal superposition and so on. And

last but not least is worth mentioning that the solution of

problem Pi in the case of rigid basis excitation can be seen

as a good test for the finite element employed in the

discretization.
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