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Abstract 

A low frost point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at 

the Istituto Nazionale di Ricerca Metrologica (INRiM) as part of a calibration facility for upper-air sounding 

instruments. This new humidity generator covers the frost point temperature range between -99 °C and -20 °C and 

works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas 

(nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a 

water vapour amount fraction between 14·10-9 mol/mol and 5·10-3 mol/mol. In this work the design of the generator 

is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 

03 against one of the INRIM humidity standards in the common region is also included. Basing on experimental test 

results, an initial uncertainty evaluation of the generated frost-point temperature, Tfp, and water vapour amount 

fraction, xw, in the limited range down to -75 °C at atmospheric pressure is reported. For the frost point temperature, 

the uncertainty budget yields a total expanded uncertainty (k=2) of less than 0.028 °C, while for the mole fraction 

the budget yields a total expanded uncertainty of less than 10-6 mol/mol. 

 

Keywords: hygrometry, humidity generator, frost point, upper-air sensors 

 

 

1. Introduction 

The measurement of the amount of water present in material substance represent a critical aspect in 

several social and economics fields. Particularly, the abundance of water vapour in air and other gases 

influences a wide range of physical, chemical and biological processes with a significant effect on quality 

product, production efficiency, safety, cost, health and human comfort [1-6]. For these reasons humidity 

measurements play an important role in industrial, laboratory and process control applications and 

significant efforts to their improvement are requested by industries and beyond. Also scientists in 

climatology, as well as in meteorology and environmental pollution, require improvements in humidity 
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 2 

measurements, considering the fundamental role water vapour has in weather and climate change 

investigation. This kind of studies often require the cooperation of different groups of scientist distant in 

space and time and a wide use of models. To make these collaborations successful and models reliable, 

data of the Essential Climate Variables (EVCs) [7] need to be of high quality, consistent, unambiguous 

and traceable to the International System of Units (SI) [8]. Thus, also the humidity and moisture scientific 

community is called [9] to provide the necessary support to make this possible, as far as it is concerned. 

Water vapour is one of the ECVs identified by the Global Climate Observing System (GCOS); it 

represents a key greenhouse gas (GHG) in the atmosphere and it is also responsible for the global water 

and energy cycles on Earth [10]. Despite its importance, its concentration in atmosphere and its trend over 

time is not yet well known. Thus, accurate measurements of ground based and airborne humidity and of 

its profile in atmosphere result essential to support the atmospheric and climatological research. However, 

since water vapour has a strong vertical concentration gradient, accurate measurements are really difficult 

to obtain. 

Through the years, several methods and instruments have been developed for the measurement of the 

humidity in atmosphere [11], such as radiosondes, airborne and balloon-borne chilled mirror hygrometer 

(CMH), tunable diode laser absorption spectrometers (TDLAS). Among these instruments, radiosondes 

represent the most used measurement system to detect water vapour in the upper atmosphere. 

Approximately 1000 radiosondes are launched every day around the world, providing a big amount of 

valuable data for the determination of vertical profiles of pressure, temperature and humidity from ground 

to ballon-burst altitude limit, which is approximately 40 km. Once a radiosonde is assembled, its sensors 

of pressure, temperature and humidity are calibrated against SI traceable standards [12-14]. In particular 

humidity sensors are calibrated in terms of relative humidity, albeit they are much more likely dependent 

on water vapour partial pressure with a strong temperature sensitivity, which means there is most likely a 

lower bound in partial pressure detection limit, rather than in relative humidity [Vomel15]. However, this 

pre-launch calibration results of a little significance since strictly associated to pressure, temperature and 

humidity conditions at which it has been carried out [16]. In the case of radiosondes, in which operational 

environmental parameters vary considerably depending on the launching location and on the altitude in 

atmosphere, the SI-traceable calibration has to be carried out in conditions similar to those expected in the 
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field [17] to provide accurate and metrologically-sound humidity measurements minimizing any 

unwanted measurement bias or systematic error. 

Considering that rising from the troposphere to the stratosphere the water vapour amount may vary 

between some percent to few part per million [10], in order to satisfy the demand of climatology, 

meteorology and aerospace community, for a standard humidity generator capable of producing a humid 

gas stream with a water vapour amount of the order of nmol–per–mol, during last decades some low-frost 

point generators have been realised in the main metrological institutes around the world. In the ‘90s at the 

National Institute of Standards and Technology (NIST) a two-temperature generator designed for the 

generation of precise humidity level in the frost-point range included between -100 °C and -5 °C was 

developed  [18, 19]. This generator was a saturator based system, where the passing gas was moisturized 

with the evaporated and saturated water vapour rising from the ice surface. It consisted of a saturator 

residing within an evacuated enclosure, a flow control for carrier gas, temperature and pressure measuring 

instrumentation, a multimode closed loop temperature control scheme comprising Peltier heat-pump 

thermoelectric devices and a mechanical refrigeration system to maintain the saturator temperature 

stability. The expanded (k=2) relative uncertainty produced was less than 0.8% in terms of mole fraction 

of water vapour in air, while for humidity expressed in terms of frost-point temperature the expanded 

uncertainty was of 0.013 °C [20]. Based on the same phase equilibrium principle but with a complete 

different design, a humid gas generator in trace was developed at the D I Mendeleyev Institute for 

Metrology (VNIIM) [21] at the end of the last century. The system consisted of a temperature controlled 

chamber in which two saturators, the preliminary and the main one, were placed. Evaporated liquid 

nitrogen was used as a coolant in the chamber and the temperature inside the chamber was maintained 

equal to the required frost-point temperature. Similar to the one at NIST, in 2006 a low frost-point 

humidity generator was realised at the Korea Research Institute of Standards and Science (KRISS) 

provided with thermoelectric devices and a two-stage compression refrigerator for the temperature 

control. It was capable to operate from -95 °C to -40°C in the frost-point range, which corresponds to the 

range from 18 nmol/mol to 130 umol/mol in terms of water vapour mole fraction [22, 23]. The obtained 

standard uncertainty was less than 32 mK in the frost-point range from -70 °C to -40 °C, while it 

increased to 137 mK at -90 °C. In recent years the same generator was reformed to a two-temperature and 
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two-pressure type system, in order to extend the Korean institute calibration capability to a frost point of -

105 °C (4 nmol/mol).The combined expanded uncertainty in the generated humidity results to be 0.72 °C 

(0.8 nmol/mol) when the frost point is -105 °C [24]. Generators of humidity in trace based on dilution and 

mixing principle were also realised, with the purpose of obtaining a faster instrument than high precision 

generators based upon thermodynamical equilibrium, suitable for industry applications even if a 

compromise in terms of accuracy is paid [25].    

Although based on different principles, design and carrier gas, mentioned generators have in common the 

ambient pressure (~105 Pa) at which they work. Since radiosondes need a SI–traceable calibration in 

conditions similar to those encountered in atmosphere during sounding operations in terms both of 

pressure and water vapour mole fraction, a new low-frost point primary generator able to operate at sub-

atmospheric pressure has been designed and constructed at INRIM. Indeed the generator, hereinafter 

called INRIM 03 in order to differentiate it from the primary humidity generators INRIM 01 and INRIM 

02 already existing at the Italian national metrological institute, covers the frost-point temperature range 

between -99 °C and -20 °C and, in particular, works at any controlled, linearly-variable, total pressure 

between 1100 hPa and 200 hPa to simulate the atmospheric pressure profile from the ground level to a 

barometric altitude of about 12 km, where conventionally the tropopause is placed. 

In this work a complete description of the generator and its performance are presented. Furthermore, a 

preliminary uncertainty evaluation of the generated frost-point temperature and water vapour amount 

fraction in the limited range down to -75 °C and at atmospheric pressure is discussed. Experimental tests 

include measurements of temperature gradients, pressure stability and saturator efficiency under various 

operating conditions, as well as a comparison between the humidity generated by the INRIM 03 and that 

one generated by the existing primary humidity standard INRIM 02, in the temperature and pressure 

overlapped region. 

 

2. Humidity generator design and construction 

INRIM 03 is a one pressure generator based on the saturation of an inert gas, specifically nitrogen, which 

flowing over a plan surface of isothermal ice at a well-defined temperature, T, and pressure, P, reaches 

the thermodynamic equilibrium with the ice. Ideally, the humid gas leaving the generator is characterised 
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 5 

by a water vapour mole fraction, xw, which, for a gas saturated at a temperature T and a pressure P, is 

given by the following equation [26]: 

   PTf
P

Te
x ,w

w            (1) 

where ew(T) is the saturation vapour pressure in the pure phase with respect to ice at the temperature T, P 

is the total pressure of the gas and f is the enhancement factor, which takes into account the non-ideal 

behaviour of the gas. In this work the quantity ew(T) and its uncertainty are based on the Sonntag 

formulation [27], while the enhancement factor f is based on Greenspan’s formulation for moist air [28] 

and its relative uncertainty ur(f) is based on the Lovell-Smith work [29] on moist air. The corresponding 

enhancement factor for moist N2 was not considered as the available second virial coefficient for N2-H2O 

complex is affected by an unacceptable large uncertainty [30].     

The gas humidity at the outlet of the generator can also be expressed in terms of the frost-point 

temperature, Tfp. The quantity Tfp is the temperature at which frost forms on cooling a gas at constant 

pressure and corresponds to the temperature at which gas is saturated in equilibrium with ice. Thus, in an 

ideal humidity generator that works perfectly, the saturation temperature T and Tfp correspond. 

In figure 1 a schematic of the experimental apparatus and a picture of the core of the generator is 

presented. 

(a)  (b)  

Figure 1. (a) Schematic of the experimental apparatus, which comprises the INRiM 03 low frost point generator and 

two humidity sensors for testing it: a CRDS (cavity ring down spectroscopy analyzer) and a CMH (chilled mirror 

hygrometer); (b) A picture of the core of the generator, consisting of a heat exchanger and a saturator. 

 

Page 5 of 26 AUTHOR SUBMITTED MANUSCRIPT - MST-105946.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 6 

A stream of dry nitrogen flows through an helicoidal heat exchanger having a length of about 3 m and 

then through a 3 m long stainless steel isothermal saturator. The length of the saturator has been chosen in 

order to ensure the complete saturation of the carrier gas with a single passage in the circuit according 

theory suggested by [31] and a dedicated model developed by the University of Cassino [32]. 

The saturator is made of stainless steel 316 L, has an height of 166 mm, an external radius of 60 mm and 

an internal radius of 40 mm. It is helicoidal and composed of 11 coils plus an outlet plenum, where water 

in excess is collected. The passageway has a cross section of 14 mm in width and 9 mm in height, of 

which about the 40% filled up with ice, while the remaining 60%  left empty for the gas passage. The 

carrier gas flows from a coil to the following one passing through vertical connection holes of 8 mm of 

diameter.  In figure 2 saturator technical details are shown. 

(a)  (b)   

Figure 2.  Engineering drawing of the saturator. a) Vertical section of the saturator with the humid gas outlet and the 

pressure line; the magenta line represents the SPRT, while the blue arrows show the humid gas flow direction 

through the outlet tube. The horizontal section of the humid gas outlet is also shown, highlighting the section 

reserved for the humid gas flow. b) Details about the saturator coils with the gas trajectory indicated by the arrows. 
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 7 

The carrier gas, saturated with water vapour, exits from the generator and passes through an 

electropolished tube, insulated and heated to 40 °C to avoid ice formation on its outside wall due to 

ambient air humidity condensation. The tube connects the generator to two different instruments placed in 

parallel: a cavity ring down spectroscopy analyser (CRDS) and a chilled mirror hygrometer (CMH), both 

used for the INRiM 03 characterisation. The CMH is used exclusively for the generator characterisation at 

pressure above 1000 hPa, since the sensor head is not vacuum-tight. The overpressure with respect to the 

ambient pressure at the inlet of the CMH is sufficient to guarantee a gas flow rate through the instrument 

(typically around 0.5 l·min-1). On the other hand, the CRDS works over a pressure range from 80 hPa to 

2650 hPa regulating the pressure inside the cavity at 100 Torr (~ 133 hPa), so it can be used also for the 

INRIM 03 characterisation below 1000 hPa. However, in order to guarantee a gas flow rate (around 0.5 

l·min-1) through the instrument, the outlet of the spectroscopy analyser has been connected to a vacuum 

pump. 

The saturator and the heat exchanger are placed in a thermostatic bath, which allows to maintain a 

constant temperature between -99 °C and -20 °C. A standard platinum resistance thermometer (SPRT) is 

used to measure the saturated gas temperature, Tsat, which corresponds to the generated frost point 

temperature. It consists of a glass 25-Ω capsule SPRT assembled in a sealed 450 mm long electropolished 

AISI 316L sheath coaxial to the outlet pipe (see figure 2a) in thermal equilibrium with the saturated 

humid gas flow. The temperature of the saturator, Tbath, is measured by means of a secondary standard 

platinum resistance thermometer (PRT) immersed in the bath in such a way that the sensing element is 

located at the same depth of the SPRT. All temperatures are acquired by means of a precision 

thermometer bridge. 

A back-pressure control, based on a pressure transducer to measure the saturator pressure, an electrovalve 

and a PID controller which sets the opening of the electrovalve toward the vacuum pump, has the 

function to maintain the saturator pressure at the desired constant value included between 200 hPa and 

1100 hPa. The gas flow rate at the inlet of the generator, , is controlled by means of a commercial mass 

flow controller, with a full-scale of 10 l·min-1. 

To prevent the ice formation in the heat exchanger, with a consequent block of the gas passage when the 

generator operate for long time at low temperature, dry inlet nitrogen must have a frost-point temperature 
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 8 

lower than the minimum one generated (-99 °C). For this reason, a drying system, consisting of a purifier  

and a molecular sieve in series, is placed before the generator inlet, in order to further reduce the frost-

point temperature of the nitrogen below -100 °C. The purifier and the molecular sieve are both provided 

by SAES Pure Gas. The first one is a MonoTorr heated getter purifier for nitrogen gas, which withholds 

gaseous impurities such as oxigen and carbon dioxide present in the carrier gas by means of irreversible 

chemical bonds, while the second one is a MicroTorr point of use ambient temperature purifier whose 

removal impurities action is based on chemisorption and physisorption.  

 

2.1.  Generator filling procedure 

The filling procedure of the saturator is a fundamental operation from which the correct functioning of the 

generator depends on. The generator is initially evacuated to about 3·10-4 Pa to speed up the desorption 

from the tubing wall. Subsequently, dry nitrogen is back-fluxed through the pressure line (see figure 2a) 

towards the humid gas outlet bypassing the saturator coil, in order to continuously purge the outlet tubing 

and prevent any system contamination from the ambient. Approximately 126 ml of demineralised water 

are directly supplied to the first coil of the saturator through a filling tube (see figure 1b). To complete the 

filling procedure, dry nitrogen is now fluxed from the filling tube across the saturator to prevent ice from 

blocking the gas passageway, and the saturator temperature is reduced to -10 °C. 

 

3.  Performance and validation tests 

In this work a preliminary uncertainty budget associated to the frost-point temperature Tfp and the water 

vapour mole fraction xw generated by the INRiM 03 is reported. In order to determine the uncertainty 

sources and their impact, some performance tests have been conducted on the humidity generator, ranging 

in all its pressure and temperature operating range as shown in figure 3. 
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 9 

 

Figure 3. Characterisation of the humidity generator INRIM 03: gas pressure P, saturator temperature and 

corresponding water vapour mole fraction xw range.  

 

As shown in equation (1), xw is influenced by variations of the pressure P, thus an evaluation of its 

stability is needed. After the optimization of the PID settings of the pressure controller, pressure 

fluctuations have been measured as a functions of the nitrogen flow rate  through the generator and of 

the saturated gas temperature Tsat, in the range from 1.5 l·min-1 to 7 l·min-1 and from -20 °C to -99 °C, 

respectively. Measurements have been conducted in the pressure range from 200 hPa up to 1100 hPa. A 

pressure control stability of about 60 Pa has been routinely achieved, with a worst-case stability better 

than 100 Pa. Figure 4a shows the P stability as a function of time in the worst situation, corresponding to 

a saturator temperature of -20 °C, a flow rate of 4 l·min-1 and a pressure of 1100 hPa, while figure 4b 

shows the P stability observed at a saturator temperature of about -93 °C, flow rate 1 l·min-1 and a 

pressure of 200 hPa, which is the lowest gas pressure value investigated. 

Another influence quantity is given by the gas flow rate  at the inlet of the generator. Indeed, its 

fluctuation through the saturator implies instabilities in the gas flow rate through the chilled mirror 

hygrometer and, as a consequence, in the mirror temperature, increasing the uncertainty in the frost-point 

temperature measurements. At present the maximum peak-to-peak variation of the flow rate is about 

0.006 l·min-1 (see figure 5a) and it has been measured at the saturator temperature of -93 °C, pressure 
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 10

1100 hPa and set point flow rate of 4 l·min-1. In figure 5b the flow rate variation at the saturator 

temperature of -99 °C, pressure 200 hPa and set point flow rate of 1.4 l·min-1 is shown. 

 

(a)  (b)  

Figure 4. Pressure stability observed under the following nominal conditions: a) Tbath = -20 °C,  = 4 l·min-1 and P = 

1100 hPa. Peak-to-peak amplitude = 0.99 hPa, mean value = 1099.36 hPa, standard deviation = 0.18 hPa; b) Tbath = -

93 °C,  = 1 l·min-1 and P = 200 hPa. Peak-to-peak amplitude = 0.52 hPa, mean value = 199.76 hPa, standard 

deviation = 0.11 hPa. 

(a) (b)  
 

Figure 5. Flow rate stability under the following nominal conditions: a) Tbath = -94 °C,  = 4 l·min-1 and P = 1100 

hPa. Peak-to-peak amplitude = 0.006 l·min-1, mean value = 3.999 l·min-1, standard deviation = 0.001 l·min-1. b) Tbath 

= -99 °C,  = 1.4 l·min-1 and P = 200 hPa. Peak-to-peak amplitude = 0.004 l·min-1, mean value = 1.400 l·min-1, 

standard deviation = 0.001 l·min-1. 

 
The saturated gas temperature, Tsat, corresponds to the frost-point temperature of the humid gas generated 

by the INRiM 03, Tfp, if the water vapour of the gas is fully saturated and contributes to the determination 

of the water vapour amount (see equation (1)); thus an evaluation of its stability has a critical importance. 

Since the stability of Tsat depends on the stability of the temperature of the saturator, Tbath, the flow rate at 
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the inlet of the generator,  and the pressure P, its evaluation has been carried out for different values of 

these influence quantities. The stability of the saturated gas temperature has resulted to be better than 0.01 

°C, while for the saturator temperature is better than 0.02 °C. In figure 6 and 7 an example of the Tsat 

stability is shown and compared with Tbath, P, and  behaviour. 

The generator has been designed in order to insure the water vapour saturation of the gas at the exit of the 

saturator. This implies that an isothermal condition through all the saturator and the outlet pipe is 

maintained. After have verified that Tsat and Tbath are in agreement within 0.005 °C when the 

thermometers are positioned at the same depth inside the bath, the saturator temperature uniformity has 

been evaluated moving the PRT in the bath along the height of the saturator, in particular in 

correspondence of the last saturator coil and repeating the measurement for different saturator  

temperatures. The saturator temperature uniformity is resulted better than 0.005 °C. 

Finally, the saturator efficiency has been evaluated by measuring variations in xw and Tfp as a function of 

 for different values of Tsat and P. The carrier gas flow rate at the inlet of the generator is varied between 

1.5 l·min-1 and 7 l·min-1. In figure 8 the water vapour mole fraction and the frost-point temperature trends, 

measured using respectively the CRDS analyser, xw_CRDS, and the CMH, Tfp_CMH, are reported for a 

saturated gas temperature and pressure of about -75 °C and 1100 hPa, while in figure 9 the quantity 

xw_CRDS for a Tsat and a P of about -88 °C and 300 hPa is reported. At ambient pressure and above, the 

efficiency of the generator has been evaluated determining the difference between the saturated gas and 

the frost-point temperature measured by the chilled mirror hygrometer at different values, using as a 

reference the difference between Tsat and Tfp_CMH measured at 1.5 l·min-1, thus assuming that at the lower 

flow rate the water vapour of the gas is completely saturated. Figure 10 shows the difference values 

determined at -75 °C and 1100 hPa. By contrast, below the ambient pressure the efficiency of the 

generator has been evaluated by means of the CRDS analyser comparing the theoretical water vapour 

mole fraction xw_0 determined from Tsat and P values with xw_CRDS measured by the analyser. Figure 

11shows the differences determined at a saturated gas temperature of about -75 °C and gas pressure 300 

hPa. 
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In the evaluation of the generator efficiency, the pressure drop P which occurs between the INRIM 03 

outlet and the hygrometer has been also taken into account. It should be noted, the pressure drop of the 

gas flowing into the saturator is compensated for by design, as the system pressure is measured at a 

pressure tap near the last coil of the saturator. 

 

 

Figure 6. Saturated gas temperature Tsat stability at a saturator temperature Tbath of -75 °C, a pressure value of 1100 

hPa and a flow rate included between 2 l·min-1 and 7 l·min-1. The Tsat stability results to be better than 0.006 °C. 
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Figure 7. Saturated gas temperature Tsat stability at a saturator temperature Tbath of -99 °C, a pressure value of 600 

hPa and a flow rate included between 2.5 l·min-1 and 4 l·min-1. The Tsat stability results to be better than 0.007 °C. 
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Figure 8. Trends of the water vapour mole fraction measured by the CRDS, xw_CRDS, and of the frost-point 

temperature measured by the CMH, Tfp_CMH, as a function of the flow rate, , in the range between 2 l·min-1 and 7 

l·min-1. The saturated gas temperature, Tsat, trend is also reported in the same time range. Reported data refer to a gas 

pressure of about 1100 hPa.  
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Figure 9. Trends of the water vapour mole fraction measured by the CRDS, xw_CRDS, as a function of the flow rate, 

, in the range between 1.5 l·min-1 and 2 l·min-1. The saturated gas temperature, Tsat, trend is also reported in the 

same time range. Reported data refer to a gas pressure of about 300 hPa.  
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Figure 10. Differences between the saturated gas temperature, Tsat, and the frost-point temperature measured by the 

chilled mirror hygrometer, Tfp_CMH, as a function of the flow rate, . Reported data refer to a gas pressure of about 

1100 hPa and a saturated gas temperature of about -75 °C. 

 

 

Figure 11. Differences between the theoretical water vapour mole fraction generated by the INRIM 03, xw_0, and the 

water vapour mole fraction measured by the CRDS analyser, xw_CRDS, as a function of the flow rate, . Reported 

data refer to a gas pressure of about 300 hPa and a saturated gas temperature of – 75 °C. 

 

4.Uncertainty budget 

Since performance tests below Tsat = -75 °C are still ongoing, a preliminary uncertainty budget evaluation 

for the mole fraction, xw, and the frost-point temperature generated by the INRIM 03, Tfp, has been carried 

out in the temperature range between -20 °C and -75 °C at atmospheric pressure taking into account 

current available performance test results and specifications of the instruments which are part of the 

experimental apparatus. In table 1 and 2 all contributions considered to the uncertainty evaluation of Tfp 

are reported. In particular contributions relative to the specific case of the generated nominal frost-point 

temperature Tfp = -20 °C and Tfp = -75 °C at P = 1100 hPa are shown. By assuming that no correlation 

exists among quantities of influence, the combined uncertainty associated to Tfp is obtained as the square 

root of the sum of squares of each contribution weighted for its own sensitivity coefficient. In the specific 

case reported in table 1, the combined standard uncertainty uc(Tfp) is 0.013 °C, while for the case reported 

in table 2, the combined standard uncertainty uc(Tfp) is 0.014 °C. 
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Table 1. INRiM 03 uncertainty budget on the frost point temperature Tfp when nominally Tfp = -20 °C and  
P = 1100 hPa. 

 

Source of uncertainty 
Standard 

uncertainty 
Probability 
distribution 

Degrees of 
freedom 

Sensitivity 
coefficient 

Contribution to standard 
uncertainty / °C 

Saturator temperature 
stability 

0.0013 °C Normal >50 1 0.0013 

Saturator temperature 
uniformity 

0.0014 °C Rectangular >50 1 0.0014 

SPRT Calibration 0.00025 °C Normal >50 1 0.00025 

Thermometer bridge 
accuracy 

0.00061 °C Triangular >50 1 0.00061 

Self-heating SPRT 0.00008  
Asymmetric 
Rectangular 

>50 9.8640 °C/ 0.00078 

Pressure drop 69 Pa 
Asymmetric 
Rectangular 

>50 0.000094 °C/Pa 0.0065 

Saturation efficiency 0.0114 °C Rectangular >50 1 0.0114 

Combined standard 
uncertainty, uc     

0.013 

 

Table 2. INRiM 03 uncertainty budget on the frost point temperature Tfp when nominally Tfp = -75 °C and  
P = 1100 hPa. 

 

Source of uncertainty 
Standard 

uncertainty 
Probability 
distribution 

Degrees of 
freedom 

Sensitivity 
coefficient 

Contribution to standard 
uncertainty / °C 

Saturator temperature 
stability 

0.0008 °C Normal >50 1 0.0008 

Saturator temperature 
uniformity 

0.0014 °C Rectangular >50 1 0.0014 

SPRT Calibration 0.00025 °C Normal >50 1 0.00025 

Thermometer bridge 
accuracy 

0.00061 °C Triangular >50 1 0.00061 

Self-heating SPRT 0.00008  
Asymmetric 
Rectangular 

>50 9.8640 °C/ 0.00078 

Pressure drop 69 Pa 
Asymmetric 
Rectangular 

>50 0.000058 °C/Pa 0.0040 

Saturation efficiency 0.0131 °C Rectangular >50 1 0.0131 

Combined standard 
uncertainty, uc     

0.014 

 

Between the generator outlet and the inlet of the chilled mirror hygrometer used for the humidity 

measurement, a pressure drop up to 120 Pa was measured and taken into account in the uncertainty 

evaluation of Tfp. Considering an asymmetric rectangular probability distribution, in terms of temperature, 

the uncorrected pressure drop contributes to the frost-point temperature uncertainty for 0.0040 °C at Tfp = 

-75 °C and 0.0065 °C at Tfp = -20 °C.  
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As table 1 and 2 highlight, the saturation efficiency represents the main source of uncertainty to the 

overall Tfp uncertainty budget. Its contribution has been determined considering a rectangular probability 

distribution of the difference between Tsat and Tfp_CMH for P values above ambient pressure and between 

xw_0 and xw_CRDS for P below 1000 hPa, as described in section 3. 

In figure 12 contributions to the frost-point temperature uncertainty considered in the present work are 

depicted. The combined standard uncertainty uc(Tfp) is also represented. 

 
Figure 12. Sources of uncertainty and their contributions to the frost-point temperature uncertainty u(Tfp) in the 

temperature range -75°C to -20 °C . The thickest black line represents the combined standard uncertainty uc(Tfp). 

 

Starting from equation (1) and applying the uncertainty propagation law, the uncertainty associated to the 

water vapour mole fraction has be obtained [33]. In table 3 and 4 are reported the sources of uncertainty 

and their contributions for a particular case, respectively nominal Tfp = -20 °C, P =1100 hPa, which 

corresponds to a water vapour amount of 944·10-6 mol/mol and nominal Tfp = -75 °C, P =1100 hPa, which 

corresponds to a water vapour amount of 1·10-6 mol/mol.  

 

Table 3. INRiM 03 water vapour mole fraction uncertainty budget when nominally xw=  944·10-6 mol/mol  
(Tfp = -20 °C and P = 1100 hPa). 

 

Source of uncertainty 
Standard 

uncertainty 
Probability 
distribution 

Degrees 
of 

freedom 

Sensitivity 
coefficient 

Contribution 
to standard 
uncertainty 

mol/mol 

Pure water vapour saturation pressure, e(Tfp) 0.112  Pa Normal >50 9 ·10-6 1 ·10-6 

Enhancement factor, f(Tfp, P) 0.0002 mol/mol Normal >50 9 ·10-4 2 ·10-7 
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Frost point temperature, Tfp 0.015  °C Normal >50 7 ·10-7 8 ·10-9 

Saturator pressure, P 28 Pa Normal >50 8 ·10-9 2 ·10-7 

Combined standard uncertainty, uc 1 ·10-6 

 

Table 4. INRiM 03 water vapour mole fraction uncertainty budget when nominally xw= 1·10-6 mol/mol  
(Tfp = -75 °C and P = 1100 hPa). 

 

Source of uncertainty 
Standard 

uncertainty 
Probability 
distribution 

Degrees 
of 

freedom 

Sensitivity 
coefficient 

Contribution 
to standard 
uncertainty 

mol/mol 

Pure water vapour saturation pressure, e(Tfp) 0.0005  Pa Normal >50 9 ·10-6 4.6 ·10-9 

Enhancement factor, f(Tfp, P) 0.0003 mol/mol Normal >50 9 ·10-7 2.7 ·10-10 

Frost point temperature, Tfp 0.016  °C Normal >50 7 ·10-7 9.7 ·10-9 

Saturator pressure, P 28 Pa Normal >50 8 ·10-12 2.4 ·10-10 

Combined standard uncertainty, uc 1.1 ·10-8 

 

In figure 13 the uncertainty contributions to the water vapour mole fraction ur(xw) together with the 

combined uncertainty ucr(xw) are shown as relative contributions for all the xw range investigated. It is 

worth noticing that for low values of xw the main contribution to its uncertainty is given by Tfp, while for 

higher values it is represented by the formulation of pure water vapour saturation pressure e(Tfp).  

 

Figure 13. Sources of uncertainty and their contribution to the water vapour mole fraction relative uncertainty ur(xw) 

in the mole fraction range between 10-6 mol/mol and 10-3 mol/mol.  The thickest black line represents the combined 

relative standard uncertainty ucr(xw), while the red, magenta, blue and green lines represent the relative standard 

uncertainties ur(Tfp), ur(e(Tfp)), ur(f(Tfp,P)) and ur(P) respectively. 
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5. Initial experimental validation 
 
To validate the performance of the new low frost-point generator, a comparison with the standard 

humidity generator INRiM 02 [34-37], which works at atmospheric pressure and over the frost-point 

temperature range from -75 °C to 0 °C, has been performed. The comparison, by using an uncalibrated 

chilled mirror hygrometer (MBW 373 LX) as transfer standard, has been carried out at two different 

saturated gas temperatures, i.e. -20 °C and -75 °C, which belong to the working range of both generators, 

at P = 1100 hPa and  = 1.5 l·min-1. The differences between the frost-point temperature generated by the 

INRIM 03, Tfp_03, and the frost-point temperature generated by the INRIM 02, Tfp_02, determined as: 

   fp_CMH02_fpfp_CMH03_fp02_fp03_fp TTTTTT  ,             (2) 

  

are shown in figure 14. The combined standard uncertainties uc(Tfp_03 - Tfp_02) have been determined 

according to the following expression: 

 
fp_CMH02_fpfp_CMH03_fpfp_CMH02_fpfp_CMH03_fp

222
02_fp03_fpc TTTTTTTT uuuuTTu   

         (3) 
 
where the correlation coefficient ρ has been assumed equal to 1 and uTfp_03 - Tfp_CMH and uTfp_02 - Tfp_CMH are 

the standard uncertainties respectively of the difference between Tfp_03 and the frost-point temperature 

measured by the hygrometer Tfp_CMH and between Tfp_02 and Tfp_CMH. The uncertainties represented in the 

plot correspond to the expanded combined uncertainty with a coverage factor k = 2.  At -20 °C the 

difference between the INRIM 03 and the INRIM 02 frost-point temperature results to be (Tfp_03 - Tfp_02) = 

(0.011 ± 0.148) °C, while at -75 °C is (Tfp_03 - Tfp_02)  = (0.160 ± 0.260) °C. The measurements provided by 

the two humidity generators are consistent within their expanded combined uncertainties, although at -75 

°C the difference between the two generators is an order of magnitude greater than that one at -20 °C due 

to the poor reproducibility of CMH. 
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Figure 14. Difference values between the frost-point temperature generated by the INRIM 03 and the frost-point  

temperature generated by the INRIM 02 at two different saturated gas temperatures (-20 °C and -75 °C), P = 1100 

hPa and   = 1.5 l·min-1. 

 

6. Case study: comparison of performance of two CRDS analysers 

INRiM 03 generator has been constructed with the aim to create a calibration facility for upper-air 

humidity sensors, such as radiosondes. However, at the moment it has been used exclusively to 

investigate and compare the performances of two different models of Tiger Optics trace gas moisture 

analysers: the HALO-RP M7005 and the SPARK model. Main properties of CRDS analysers taken from 

data sheets are reported in table 5. 

Table 5. Main data sheet properties of HALO and SPARK CRDS. 

Instrument properties HALO SPARK 

Operating range 0 – 10 ppmv 0 - 2000 ppmv 

Lowest detection limit 2 ppb 15 ppb peak-to-peak 

Accuracy 4% of reading 4% of reading 

Sample inlet pressure 80 – 2650 hPa 0.1 – 0.9 MPa 

 

Both instruments, placed in parallel to each other, have been connected to the outlet of the generator. 

Thus, the humid gas generated by the INRIM 03 supplies in the same time both the analysers. For the 

investigation of the CRDS performances, a flow of humid nitrogen generated at a constant pressure of 

about 1100 hPa and at different values of frost-point temperature included between -90 °C and -65 °C has 

been used. In figures 15 the amounts of water vapour measured by the two analysers are shown as a 
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function of the frost-point temperature Tfp of the humid gas generated by the INRIM 03. The black line 

represents the theoretical water vapour amount generated by the INRiM 03, xw_0, used as reference value, 

while squares and bullets represent the water vapour mole fraction measured respectively by the Halo and 

the Spark analyser, both indicated with the symbol xw_CRDS for practical reasons. 

Figure 15 highlights an overall agreement between values measured by the two CRDS within their 

expanded combined uncertainty, determined as square root of the sum of squares of their accuracy as 

given by the manufacturer and measurement repeatability, in addition to an overall agreement with the 

reference value, although the accuracy of the Spark analyser results to be lower than that of the Halo 

CRDS due to its construction features.  

 
 
Figure 15. HALO analyser (■) and SPARK analyser (○) measurements of water vapour mole fraction, xw_CRDS, as a 

function of the frost point temperature Tfp of the INRIM 03. The theoretical water vapour mole fraction generated by 

INRiM 03, xw_0, is used as reference value.  Uncertainties with a coverage factor k = 2. 

 
7. Conclusions 

To meet climatological community needs, a calibration facility for upper-air humidity sensors has been 

designed and constructed at INRIM. This facility can generate a humid gas with characteristics similar to 

those encountered in atmosphere during sounding operations in terms of pressure, temperature and water 

vapour amount fraction. It consists in a new low-frost point primary generator INRIM 03, which is able to 

operate at sub-atmospheric pressure (from 200 hPa to 1100 hPa) and in a wide range of frost point 
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temperature (-99 °C to -20 °C). This generator extends the INRIM humidity measurement capabilities 

downwards to -99 °C. 

A preliminary uncertainty evaluation for the frost-point temperature down to -75 °C at atmospheric 

pressure and the corresponding water vapour mole fraction has been performed, resulting in an 

uncertainty uc(Tfp) = 0.015 °C and uc(xw) = 1.1 ·10-8 respectively. A more detailed uncertainty evaluation 

on the generated xw and Tfp in the whole working range is still underway. A comparison between the 

INRiM 03 and the well-established standard humidity generator INRIM 02 has been carried out showing 

an agreement within the expanded combined uncertainty. Finally, a comparison of performance of two 

CRDS analysers using the INRIM 03 has been shown as case study. 
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