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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of
the requirement for the degree of Doctor of Philosophy

EXTREME AIR POLLUTANT DATA ANALYSIS USING CLASSICAL AND
BAYESIAN APPROACHES

By

NOR AZRITA BT MOHD AMIN

December 2015

Chairman: Mohd Bakri Adam, PhD
Faculty : Institute For Mathematical Research

Extreme value (EV) theory has raised researcher intention for modeling and forecasting
of catastrophic or higher risk events. The concept of EV theory affords attention to the
tails of distribution where standard models are proved unreliable. Generalized extreme
value (GEV) distribution and generalized Pareto (GP) distribution are two main models
in EV theory based on block maxima and threshold exceedances approaches. These two
models are obviously different in terms of the sampling routine used in the formation of
the extreme series. However, decisions on block sizes and threshold selection should be
made by taking into consideration the limiting distribution properties.

Inferences on the extremes of environmental events are essential as guidelines in
designing structures in order to survive under the utmost extreme conditions. Extreme air
pollutants caused various effects associated to human health and material damages. In
many cases, the pollutants are responsible for huge impacts on economic performances.
The EV theory is applied to model the extreme PM10 pollutant for three air monitoring
stations in Johor. This study started with the analysis of extreme PM10 data based on
maximum likelihood estimation technique. Several block sizes were chosen to compare
the model fit and hence estimate the return level. Using threshold exceedances technique,
the selection of threshold value was made using mean residual life plot and threshold
choice plot. Comparable estimates are found when the numbers of samples for both
techniques are almost similar.

Alternatively, Bayesian framework is implemented to allow priors or additional infor-
mation concerning the data into the analysis which expectantly improve the model fit.
Bayesian inference in the context of EV theory obviously overcomes the scarcity of
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extreme observations. The applications of Bayesian techniques have become practical
through the development of simulation based techniques such as Markov chain Monte
Carlo (MCMC). Two MCMC techniques are considered for the inferences namely
Metropolis-Hastings (MH) algorithm and the Multiple-try Metropolis (MTM) algorithm.
MTM algorithm is an extension of MH algorithm, designed to improve the convergence
of MH algorithm by performing parallel computation. In general, both methods are
performing well for analyzing extreme model but numerical results show that MTM
method performs slightly better than MH method in terms of efficiency and convergency
to the stationary distribution.

The univariate and bivariate extreme processes have been considered extensively using a
frequentist perspective and recently there has been an increasing interest in the applica-
tion of Bayesian methods to EV problems. Generally the univariate extreme inference has
been considered commonly in Bayesian perspective. Bayesian techniques for bivariate
model have not yet received much attention due to the hitches in dealing with much more
parameters. Literature on Bayesian extremes based on MCMC techniques are dealing
with either Gibbs sampling method or MH method, or the combination of both methods.
This research implemented the MTM method as an alternative for modeling of univari-
ate and bivariate extremes with non-informative priors. Bayesian technique for bivariate
monthly maxima data from each pair of sites were employed to analyze the dependencies
between two stations.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ANALISIS DATA PENCEMARAN UDARA EKSTRIM MENGGUNAKAN
KAEDAH KLASIKAL DAN BAYESIAN

Oleh

NOR AZRITA BT MOHD AMIN

Disember 2015

Pengerusi: Mohd Bakri Adam, PhD
Fakulti : Institut Penyelidikan Matematik

Teori nilai ekstrim (NE) menarik perhatian penyelidik dalam pemodelan dan ramalan ter-
hadap bencana alam atau kejadian-kejadian yang berisiko tinngi. Teori NE menyediakan
kefahaman terhadap penghujung taburan di mana model-model lain telah dibuktikan
tidak benar. Taburan nilai ekstrim teritlak (NET) dan taburan Pareto teritlak (PT)
merupakan dua model utama bagi teori NE berasaskan kaedah maksima blok dan lebihan
ambangan. Kedua-dua model tersebut sangat berbeza dari segi cara persampelan siri
ekstrim. Walaubagaimanapun, keputusan bagi menentukan saiz blok dan pemilihan nilai
ambangan perlu dilakukan dengan mengambil kira ciri-ciri khas had taburan.

Kesimpulan bagi peristiwa ekstrim terhadap alam sekitar adalah perlu sebagai tanda
aras dalam rekaan struktur binaan supaya selamat walaupun ketika keadaan yang
sangat ekstrim. Pencemaran udara yang ekstrim menyebabkan pelbagai kesan terhadap
kesihatan seseorang dan kerosakan harta benda. Dalam pelbagai kes, bahan pencemaran
tersebut adalah bertanggungjawab terhadap kesan yang besar bagi prestasi ekonomi.
Teori NE diaplikasikan terhadap model ekstrim pencemaran PM10 untuk tiga stesen
kawalan udara di Johor. Kajian dimulakan dengan analisis terhadap data ekstrim PM10
menggunakan kaedah panganggar kebarangkalian maksimum. Beberapa saiz blok
dipilih bagi perbandingan model dan seterusnya menganggar tahap pulangan. Dengan
menggunakan kaedah lebihan ambangan, pemilihan nilai ambangan adalah dengan
menggunakan kaedah plot purata baki kehidupan dan plot pilihan ambangan. Nilai
anggaran yang hampir sama diperolehi apabila bilangan sampel bagi kedua-dua teknik
yang digunakan hampir sama.
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Kaedah alternatif adalah dengan menggunakan kaedah Bayesian dengan membe-
narkankan keutamaan atau maklumat tambahan berkenaan data diambil kira dalam
analisis yang diharapkan dapat memperbaiki pemodelan data. Aplikasi Bayesian se-
makin praktikal dengan adanya kemajuan teknik simulasi seperti teknik rantaian Markov
Monte Carlo (RMMC). Dua kaedah RMMC digunakan dalam membuat kesimpulan
iaitu algoritma Metropolis-Hastings (MH) dan algoritma Pelbagai-percubaan Metropolis
(PPM). Algoritma PPM merupakan lanjutan bagi algoritma MH bagi memperbaiki
penumpuan algoritma MH dengan menggunakan pengiraan selari. Umumnya, kedua-dua
kaedah melaksanakan analisis model ekstrim dengan baik tetapi keputusan berangka
menunjukkan PPM sedikit lebih baik dari MH dari segi kecekapan dan penumpuan ke
taburan pegun.

Proses ekstrim bagi univariat dan bivariat telah dipertimbangkan dengan meluas meng-
gunakan perspektif kekerapan. Keadaan pada masa kini mendapati terdapat peningkatan
minat dalam kaedah Bayesian bagi aplikasi masalah NE. Secara umumnya, kesimpulan
proses ekstrim bagi univariat telah dipertimbangkan dengan meluas menggunakan per-
spektif Bayesian. Teknik Bayesian bagi model bivariat masih tidak lagi mendapat lebih
perhatian disebabkan kesukaran dalam menguruskan lebih banyak parameter. Sastera ter-
dahulu terhadap bidang ekstrim Bayesian adalah terhad kepada kaedah RMMC berpan-
dukan pesampelan Gibbs atau kaedah MH atau gabungan kedua-duanya. Kajian ini mem-
bangunkan kaedah PPM sebagai alternatif terhadap pemodelan ekstrim bagi univariat dan
bivariat dengan menggunakan keutamaan tidak bermaklumat.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Dealing with extreme observation events is critical in order to decide the appropriate
actions for future extreme circumstances. Extreme studies on environmental events are
among the most important areas to be explored extensively due to its worse impacts to
humankind and materials. To achieve this purpose, a suitable statistical analysis must be
adopted efficiently. Extreme value (EV) theory is one of the statistical methodologies that
handle extreme situations. This chapter introduces the basic ideas of the research together
with the motivation and the list of objectives.

1.2 Motivation

The occurrence of extreme events such as atmospheric pollutions, high rainfalls, floods
and windstorms and many others are due to physical processes and also human activities.
The impacts of these extreme phenomena have caused serious injuries, material damages
as well as affecting the economic developments of a country. The relations of these
catastrophic events with the statistical analysis of EV theory have been developed some
decades earlier. EV theory is unlike other statistical approaches since its focus is on the
tail of distribution either on maxima or minima values. The scope of EV theory has been
widely explored in various fields. Recently, it has become an area vigorously researched
due to its significance in many applications. Literatures on EV theory among others are
by Coles (2001) and Haan and Ferreira (2006) that provide from basic EV theory to the
application of EVT in various fields. Behrens et al. (2004) investigate the alternative,
threshold approach based on Bayesian idea.

Statistical modelling of extreme air pollutants has a very practical motivation since these
events have major effects on serious health threats. This motivates the need to estimate
the most terrible air pollutant level that will be occur over a certain benchmark value in
the future. In air quality control, particulate matter (PM10) is recognized as the most
influencing atmospheric pollutant for air quality index in a majority of cities in Malaysia.
This situation is particularly due to the haze and biomass burning as well as industrial
and vehicle emissions which usually contribute to high PM10 levels. This situation of
unease has been an annual problem across Malaysia. The main concerns of this study are
on the extreme levels of PM10 concentrations at three air quality monitoring stations in
Johor, Malaysia. These three stations are located in different districts which have diverse
roles. Therefore, we expect different patterns of statistical modelling for the extreme
PM10 data from each station. The aim is to approximate the possible extreme PM10
levels in the future and provide important information to facilitate the proper procedures
for combating these problems.

1
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Fitting the model to the extreme data required the use of estimation methods for the
unknown parameter θ . Among the very common methods are by using maximum likeli-
hood estimation, method of moments and probability weighted moments. Undoubtedly,
the most distinguished method is by using the maximum likelihood estimation method.
However, data for rare events are often scarce because such events are necessarily
unusual. Therefore, careful and sophisticated modelling is desirable to extract the
fullest information from the data and to provide more accurate forecasts and associated
measures of uncertainty. Bayesian framework offers an alternative to deal with small
sample size and has managed to estimate models that are difficult to estimate using
standard statistical approaches. Thus, combining the extreme analysis with Bayesian
framework gives an advantage in management of the scarcity of the extreme data. One
of the objectives for Bayesian extreme analysis is to elicit prior information for extreme
PM10 in such a way that when combined with data through a Bayesian analysis, the
posterior analysis obtained would provide a rational basis for extrapolation.

This study focuses on the estimation of the model parameters by using Metropolis-
Hastings (MH) algorithm and new methods in Bayesian extreme models which is based
on the Multiple-try Metropolis (MTM) algorithm. MTM extends the MH by promising
larger areas for exploration in order to find the right points positions. The MTM results
are consistent with those obtained by the MH method. The advantage in MTM is that
it takes shorter iterations to meet the stationary distribution although the same initial
values are used for both methods. MTM performs parallel computation depending on
the number of proposals for which the rates of convergence accelerate as the number of
proposals in MTM increase. The apparent drawback of MTM is the additional backward
computation that makes the programming much more complex.

In order to implement the Markov chain Monte Carlo methods, some procedures have to
be considered. The issues of initial values, the length of chains and the burn-in periods
are also discussed as these matters has always been problematic in Bayesian modeling
practices. Convergence diagnostic provides better understanding in terms of assessing
the performance of MCMC algorithms. Researches on MCMC techniques are widely
applied in numerous fields but only a few studies worked on the practical use of diagnos-
ing the convergence of the algorithms. MCMC techniques do not give a clear indication
on whether the iterations have been converged. The fundamental theory of MCMC only
guarantees that the distribution of the output will converge to the posterior distribution as
the number of iterations increases to infinity. However, it is not guaranteed that the chain
will converge after a certain number of iterations.

1.3 Problem Statement

Maximum likelihood is a very well-known method for estimation of parameters while
Bayesian framework gives an alternative thought on data modeling with the facility of
prior information. This countenance the additional knowledge of the process based on
expert knowledge before exploring the behavior of the data. Currently there is a wide
variety of Bayesian techniques developed and practiced for statistical modelling. But it
is important to understand that each idea developed based on Bayesian framework has

2
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its own distinct advantages and drawbacks. This thesis considers the MCMC techniques
which are MH and MTM methods for the analysis of extreme data. MTM algorithm
modifies the MH algorithm by expanding the proposal region to improve convergence
performance by generating a larger number of candidates, k and therefore improving
exploration of the chain near current value, x(t) . It is expected that the higher number of
candidates, k give better convergence of the draws to the preferred stationary distribution.

Using Bayesian inference on extremes of environmental problems would allow any
additional information about the processes to be incorporated as prior information. Due
to the lack of data, the benefits of using any information available are likely to be great.
In this thesis, the priors are constructed by assuming there is no information available
about the process apart from the data. It is to be expected that posterior means would be
close to the maximum likelihood estimates, since the priors were almost flat and added
very little information to the likelihood but do tend to be slightly higher.

The main anxieties in environmental management are on extreme phenomena (catas-
trophic) instead of common events. However, most statistical approaches are concerned
primarily with the center of a distribution or on the average value rather than the tail of
the distribution which contains all the high observations. EV theory offers a strong statis-
tical tool for analyzing rare events and predicts the maximum concentration in a certain
return period for air quality management purposes. The adverse effects of PM10 to hu-
man health and material damages are the main reasons for extensive explorations on the
behavior of this pollutant especially on the extreme level. High level of PM10 has strong
effects on mortality and morbidity among population with high health risk. Environmen-
tal risk management is more concerned on the occurrence of extreme pollutant level than
normal level due to the serious impacts of the pollutant on individuals, organizations and
also to the developments of a country. Thus is the significance to give more attention to
the modeling and analysis of these extreme events.

1.4 Objectives of the Thesis

1. To evaluate the extreme PM10 concentration model based on block maxima and
threshold exceedances approaches.

2. To investigate the statistical inferences of extreme PM10 data using maximum like-
lihood estimation method.

3. To propose a new approach in Bayesian extreme studies that is the MTM technique
for analysing the statistical inferences of extreme PM10 data.

4. To analyse the efficiency for estimating location, µ and scale, σ parameters of
Gumbel distribution simulated data, with different number of proposals and the
influence of initial values using MH and MTM approach.

5. To examine the convergence of the MTM and MH for the inferences of EV distri-
butions.
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6. To evaluate the dependencies of extreme PM10 data between two air monitoring
stations in Johor.

1.5 Thesis Outline

The thesis is structured as follows. Chapter 1 describes the motivation of the research
area and sets up the problem statement as well as the objectives of the research. Chapter
2 provides the methodologies of EV theory together with some important literatures. The
concepts of block maxima and threshold exceedances approaches are discussed with the
corresponding return levels for both approaches.

In Chapter 3, preliminary studies on univariate EV analysis are introduced to investigate
the behavior of high PM10 data for different block sizes. Air quality data for three air
quality monitoring stations in Johor are analyzed separately. The statistical analysis
is performed using maximum likelihood method. An alternative threshold approach
to analyse the similar data discussed in Chapter 3 is implemented in Chapter 4. The
threshold exceedances approach considers the extreme data exceeding an appropriate
chosen threshold. Some techniques for threshold selection are also presented. At the
end of the chapter, we compare and discuss the analysis of block maxima and threshold
exceedances approaches for extreme PM10 data.

Bayesian framework with focus on Markov chain Monte Carlo (MCMC) techniques are
introduced in Chapter 5. The general ideas of Bayesian modeling and MCMC techniques
applied throughout the thesis are presented. MH and MTM are Bayesian methods devel-
oped based on MCMC idea for the analysis of the posterior distribution. The simulation
study for Gumbel distribution is covered in this chapter. This provides an illustration of
the implementation of Bayesian techniques for EV distributions. Convergence diagnostic
tests are introduced to investigate the performance of MH algorithms. In Chapter 6, the
Bayesian modeling for extreme PM10 data are executed.

Besides working on the univariate extreme modeling, some extent of bivariate extreme
models will be considered by comparing the PM10 data from two different stations. Chap-
ter 7 applies the component wise block maxima for the analysis of bivariate extreme data
and the estimation of parametric models which are computed using maximum likelihood
and Bayesian methods. The dependencies of extreme PM10 between two air monitoring
stations are analyzed. Finally Chapter 8 concludes the overall thesis and provides some
recommendations.
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