UNIVERSITI PUTRA MALAYSIA

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF GLYCOSMIS MACRANTHA MERR. AND CRATOXYLUM ARBORESCENS (VAHL) BLUME

MAIZATULAKMAL BINTI YAHAYU

FS 2012 34
CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF GLYCOSMIS MACRANTHA MERR. AND CRATOXYLUM ARBORESCENS (VAHL) BLUME

By

MAIZATULAKMAL BINTI YAHAYU

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Master of Science

May 2012
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of requirements for the degree of Master in Science

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF GLYCOSMIS MACRANTHA MERR. AND CRATOXYLUM ARBORESCENS (VAHL) BLUME

By

MAIZATULAKMAL BT. YAHAYU

May 2012

Chairman: Profesor Mawardi Rahmani, PhD
Faculty: Science

Phytochemical and biological activity studies of Glycosmis macrantha (family Rutaceae) and Cratoxylum arborescens (family Guttiferae) were carried out. The stem barks of Glycosmis macrantha and Cratoxylum arborescens were collected from Sabah and Sarawak, respectively. These two species were subjected to detail phytochemical investigation which involved extraction using three organic solvents of different polarity and isolation of the compounds by using common chromatographic techniques such as gravity column chromatography, vacuum column chromatography, chromatotron, preparative thin layer chromatography and gel filtration column chromatography using Sephadex LH20. The structural elucidations of the isolated compounds were carried out using spectroscopic techniques such as NMR, MS, IR, UV and by comparison with literature data. The phytochemical investigations have led to the isolation of several compounds of different classes including alkaloids, xanthones, flavonoids and
triterpenoids. The crude extracts and some of the isolated compounds were tested for antioxidant, cytotoxic and antimicrobial activity using DPPH, MTT and disc diffusion methods, respectively. The cell line used in cytotoxic assay was the human breast cancer (MCF7) cell line. The antimicrobial activity was tested against eight microbes namely *Bacillus subtilis*, *Bacillus cereus*, *Escherichia coli*, *Klebsiella pneumonia*, *Salmonella typhimurium*, *Staphylococcus aureus*, *Enterobacter aerogenes* and *Candida albican*.

The phytochemical study of *Glycosmis macrantha* has led to the isolation of two new acridone alkaloids, macranthanine (116), 7-hydroxynoracronycine (117); one known acridone alkaloid, namely atalaphyllidine (118), two flavonoids, dihydroglychalcone A (32) and epicatechin (58); and a sterol, β-sitosterol (119). Similar isolation work on *Cratoxylum arborescens* has yielded three xanthones, α-mangostin (36), β-mangostin (37) and fuscaxanthone C (103) together with stigmasterol (120). Among the pure compounds, only macranthanine (116) and 7-hydroxynoracronycine (117) exhibited significant activities towards antioxidant assay with IC$_{50}$ values 63.3 and 80.2 µg/ml, respectively. The study on antiproliferative activity against human breast cancer (MCF7) cell line displayed that α-mangostin (36) and β-mangostin (37) exhibited significant activity with IC$_{50}$ values of 12.48 µg/ml and 28.42 µg/ml respectively. Meanwhile, only α-mangostin (36) exhibited strong inhibition on the growth of *B. subtilis*, *B. cereus*, *S. typhimurium* and *S. aureus* with inhibition zone 16, 20, 17 and 20 mm, respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KANDUNGAN KIMIA DAN AKTIVITI BIOLOGI DARIPADA GLYCOSMIS MACRANTHA MERR. DAN CRATOXYLUM ARBORESCENS (VAHL) BLUME

Oleh

MAIZATULAKMAL BT. YAHAYU

Mei 2012

Pengerusi: Profesor Mawardi Rahmani, PhD
Fakulti: Sains

iv
alkaloid, xanthone, flavonoid dan triterpenoid. Ekstrak mentah dan sebahagian sebatian yang telah dipencilkkan telah diuji aktiviti antioksidan, sitotoksik dan antimikrob dengan masing-masing menggunakan kaedah DPPH, MTT dan peresapan cakera. Sel yang digunakan untuk uji sitotoksik adalah sel kanser payudara manusia (MCF7). Aktiviti mikrob telah diuji ke atas lapan mikrob seperti *Bacillus subtilis, Bacillus cereus, Escherichia coli, Klebsiella pneumonia, Salmonella typhimurium, Staphylococcus aureus, Enterobacter aerogenes* dan *Candida albicans*.

Kajian fitokimia ke atas *Glycosmis macrantha* telah membawa kepada pemencilan dua sebatian baru alkaloid akridon, makranthanina (116), 7-hidroksinorakronisina (117); satu alkaloid akridon yang telah diketahui iaitu atalafilidina (118), dua flavonoid, dihidroglicalkon A (32) dan epikatekin (58); serta satu sterol, β-sitosterol (119). Kajian yang sama ke atas *Cratoxylum arborescens* telah menghasilkan tiga xanthone, α-mangostin (36), β-mangostin (37) dan fuscaxanthon C (103) bersama stigmasterol (120). Di antara sebatian tulen tersebut, hanya makranthanina (116) dan 7-hidroksinorakronisina (117) menunjukkan aktiviti yang berpotensi terhadap ujian antioksidan dengan nilai IC₅₀ 63.3 dan 80.2 µg/ml. Kajian ke atas aktiviti antiproliferatif terhadap sel kanser payudara manusia (MCF7) menunjukkan α-mangostin (36) dan β-mangostin (37) memiliki aktiviti yang menarik dengan nilai IC₅₀ 12.48 dan 28.42 µg/ml. Namun begitu, hanya α-mangostin (36) sahaja yang memiliki perencatan yang kuat ke atas pertumbuhan *B. subtilis, B. cereus, S. typhimurium* dan *S. aureus* dengan zon perencatan 16, 20, 17 dan 20 mm.
ACKNOWLEDGEMENTS

I wish to extend my sincere gratitude and deepest appreciation to my supervisor, Prof. Dr. Mawardi Rahmani for his constant guidance and advice as well as for his great understanding throughout my research and preparation of this thesis. My sincere thanks also go to my supervisory committee members Prof. Dr. Gwendoline Ee Cheng Lian and Dr. Abdah Md Akim for their thoughtful ideas and kind guidance throughout this project.

My thanks also go to UPM for the facilities and GRF scholarship, En. Mohd Johadi, En. Mohd Fadzli, Cik Shareena, Pn. Rusnani and En. Zainal from Chemistry Dept. UPM, for their assistance in obtaining NMR, IR and mass spectra, and all staff from Chemistry Dept. UPM. My special and warmest thanks to my colleagues, Najihah, Winda, Aizat and other natural product labmates, Phoebe and Kent from Tissue Culture Laboratory for their kind help, valuable support and the friendship that will be treasured. Not to forget, my deepest thanks to my best friend, Junaidi for being a good listener, for his valuable support and encouragement.

My deepest love and gratitude go to my parents, Pn. Hamidah and En. Ramlan as well as my siblings, Norsuzana, Nuraidah and Mohd. Rabaie for their prayers, understanding, moral support and patience throughout this research.
I certify that a Thesis Examination Committee has met on 30th May 2012 to conduct the final examination of Maizatulakmal on her thesis entitled “Chemical Constituents and Biological Activities of *Glycosmis macrantha* Merr. and *Cratoxylum arborescens* (Vhal) Bl.” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the degree of Master of Science.

Members of the Thesis Examination Committee were as follows:

Emilia Abd Malek, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Aspollah Sukari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Intan Safinar Ismail, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Farediah Ahmad, PhD
Associate Professor
Faculty of Science
Universiti Teknologi Malaysia
(External Examiner)

__

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

vii
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mawardi Rahmani, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Gwendoline Ee Cheng Lian
Professor
Faculty of science
Universiti Putra Malaysia
(Member)

Abdah Md Akim
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

__
BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MAIZATULAKMAL BT. YAHAYU

Date: 30th May 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives of Study</td>
<td>4</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Botanical Aspects of The Plants</td>
<td></td>
</tr>
<tr>
<td>2.1.1 The Family Rutaceae</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Glycosmis</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3 Glycosmis macrantha Merr.</td>
<td>7</td>
</tr>
<tr>
<td>2.1.4 The Family Guttiferae</td>
<td>8</td>
</tr>
<tr>
<td>2.1.5 Cratoxylum</td>
<td>8</td>
</tr>
<tr>
<td>2.1.6 Cratoxylum arborescens</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Chemical Constituents</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Chemical Constituents of Genus Glycosmis</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Chemical Constituents of Genus Cratoxylum</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Biological Activities</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Biological Activities of Genus Glycosmis</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2 Biological Activities of Genus Cratoxylum</td>
<td>22</td>
</tr>
<tr>
<td>3 METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1 Plant Material</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Instruments</td>
<td>32</td>
</tr>
<tr>
<td>3.2.1 Infrared (IR)</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Mass Spectra (MS)</td>
<td>32</td>
</tr>
<tr>
<td>3.2.3 Melting Point</td>
<td>32</td>
</tr>
<tr>
<td>3.2.4 Nuclear Magnetic Resonance (NMR)</td>
<td>33</td>
</tr>
<tr>
<td>3.2.5 Ultraviolet (UV)</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Chromatographic Methods</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Column Chromatography</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 Chromatotron</td>
<td>34</td>
</tr>
</tbody>
</table>
3.3.3 Preparative Thin Layer Chromatography 34
3.3.4 Thin Layer Chromatography 34
3.4 Extraction and Isolation of Compounds from *Glycosmis macrantha* Merr. 35
3.4.1 Extraction of the stem bark 35
3.4.2 Fractionation of the Hexane Extract (CC 1) 35
3.4.2.1 Isolation of β-sitosterol (119) 35
3.4.2.2 Isolation of Macranthanine (116) 36
3.4.3 Fractionation of the Chloroform Extract (CC 2) 37
3.4.3.1 Isolation of Macranthanine (116) 37
3.4.3.2 Isolation of Dihydroglychalcone-A (32) 38
3.4.3.3 Isolation of Epicatechin (58) 39
3.4.4 Fractionation of the Methanol Extract (CC 3) 40
3.4.4.1 Isolation of 7-hydroxynoracronycine (117) 40
3.4.4.2 Isolation of Atalaphyllidine (118) 41
3.5 Extraction and Isolation of Compounds from *Cratoxylum arborescens* 42
3.5.1 Extraction of the stem bark 42
3.5.2 Fractionation of the Hexane Extract (CC 4) 42
3.5.2.1 Isolation of Stigmasterol (120) 43
3.5.2.2 Isolation of β-mangostin (37) 43
3.5.3 Fractionation of the Chloroform Extract (CC 5) 44
3.5.3.1 Isolation of β-mangostin (37) 45
3.5.3.2 Isolation of α-mangostin (36) 45
3.5.4 Fractionation of the Methanol Extract (CC 6) 46
3.5.4.1 Isolation of β-mangostin (37) 46
3.5.4.2 Isolation of α-mangostin (36) 47
3.5.4.3 Isolation of Fuscaxanthone C (103) 47
3.6 Biological Activities 48
3.6.1 Microorganisms 48
3.6.2 Antimicrobial Activity Assay 49
3.6.3 DPPH Free Radical Scavenging Activity 49
3.6.4 Cytotoxic Assay 50

4 RESULTS AND DISCUSSION
4.1 Isolation of Chemical Constituents from *Glycosmis macrantha* Merr. and *Cratoxylum arborescens* 52
4.2 Chemical Constituents from *Glycosmis macrantha* Merr. 54
4.2.1 Characterization of β-Sitosterol (119) 54
4.2.2 Characterization of Macranthanine (116) 60
4.2.3 Characterization of 7-hydroxynoracronycine (117) 73
4.2.4 Characterization of Atalaphyllidine (118) 84
4.2.5 Characterization of Dihydroglychalcone-A (32) 94
4.2.6 Characterization of Epicatechin (58) 104
4.3 Chemical Constituents from *Cratoxylum arborescens* 114
4.3.1 Characterization of Stigmasterol (120) 114
4.3.2 Characterization of α-Mangostin (36) 119
4.3.3 Characterization of β-Mangostin (37) 129
4.3.4 Characterization of Fuscaxanthone C (103) 139
4.4 Bioassay Results 148
 4.4.1 Antimicrobial Assay 148
 4.4.2 DPPH Free Radical Scavenging Activity 151
 4.4.3 Cytotoxic Assay 153

5 CONCLUSION 155

BIBLIOGRAPHY 157

APPENDICES

Appendix A 164
 Cytotoxic activity of crude extracts by using MTT assay 164
 Cytotoxic activity of isolated compounds by using MTT assay 167

Appendix B 170
 Antioxidant activity of crude extracts by using DPPH assay 170
 Antioxidant activity of isolated compounds by using DPPH assay 172

LIST OF PUBLICATIONS 173

BIODATA OF STUDENT 174