DIETARY FIBER AND ANTIOXIDANT PROPERTIES OF Mangifera pajang KORT. PEELS AND THEIR SYNERGISTIC HEALTH EFFECTS ON HYPERCHOLESTEROLEMIC RATS

FOUAD ABDULRAHMAN SALEH HASSAN

FPSK(p) 2012 12
DIETARY FIBER AND ANTIOXIDANT PROPERTIES OF Mangifera pajang KORT. PEELS AND THEIR SYNERGISTIC HEALTH EFFECTS ON HYPERCHOLESTEROLEMIC RATS

By

FOUAD ABDULRAHMAN SALEH HASSAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

April 2012
ALLAH IS THE ONLY ONE WHO GIVES US THE POWER TO FIGHT DISHONESTY AND INJUSTICE

To

MY BELOVED HOMELAND YEMEN
THE SOULS OF YEMENI AND ISLAMIC WORLD MARTYRS
MY BELOVED PARENTS A SOURCE OF LOVE AND COMPASSION
MY BELOVED FAMILY
MY PRECIOUS FRIEND SADEQ HASAN

WITH MY LOVE FROM DEEP OF MY HEART
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DIETARY FIBER AND ANTIOXIDANT PROPERTIES OF Mangifera pjang KORT. PEELS AND THEIR SYNERGISTIC HEALTH EFFECTS ON HYPERCHOLESTEROLEMIC RATS

By

FOUAD ABDULRAHMAN SALEH HASSAN

April 2012

Chair: Professor Amin Bin Ismail, PhD

Faculty: Medicine and Health Sciences

The fruit of Mangifera pjang Kort., known as bambangan is an underutilised fruit that is found in Malaysia (Sabah and Sarawak). Its size is about 3 times as large as commercial mango with a high amount of peel. The study was aimed to characterize the peels and investigate its effect on lowering cholesterol of hypercholesterolimic rat model. Bambangan peels are rich in dietary fiber and have been shown to contain high amount of valuable compounds such as polyphenols that should be strongly considered for exploitation. Dietary fiber (DF) and several properties of bambangan peels related to its nutritional quality were investigated. The physicochemical properties and antioxidant capacity of fiber rich peel powder (FRPP) obtained from bambangan peels were characterized. Chemical composition of soluble dietary fibre (SDF) and insoluble dietary fibre (IDF) for their related polysaccharides using RI-HPLC were also determined. The FRPP had a high amount of DF (72.3 g/100 g dry weight) with a balanced SDF/IDF ratio (1:1.2). The FRPP had a high glucose retardation index, water-holding capacity (WHC), oil-holding capacity (OHC), and swelling property. As FRPP was characterized
for its content of DF, it also analyzed for its content of phenolic compounds in an acidified methanolic extract obtained from fully ripe bambangan (*M. pajang Kort.*) peel. The antioxidant capacity of the FRPP as determined by Ferric Reducing Antioxidant Power (FRAP) and 1, 1-diphenyl-2- picrylhydrazyl (DPPH) assays exhibited strong potency with a high value (44 μg/mL) of IC\textsubscript{50}, due to the presence of associated polyphenols (98.3 mg GAE/g FRPP) as determined by Folin–Ciocalteu method. Sixteen phenolic compounds, were identified and quantified in FRPP using a HPLC-DAD coupled to Quantum-electrospray ionization /mass spectrometry (TSQ Quantum Ultra-ESI-MS) to confirm peaks identification, by comparing their retention times, UV–Vis absorption spectra and mass spectra with authentic standards. Gallic acid, *p*-coumaric acid, ellagic acid, protocatechuic acid and mangiferin were the major compounds among the identified 16 phenolics in *M. pajang Kort.* peels with amount of 20.9, 12.7, 7.3, 5.4 and 4.8 mg/g FRPP, respectively.

Investigation of the potential hypolipidemic effect of FRPP was performed using an animal model of dietary-induced hypercholesterolemia rats. For 6 weeks rats were fed cholesterol-free diets as a negative control, diets supplemented with 2% cholesterol to induce hypercholesterolemia (positive control), fiber control diet containing 5% cellulose as standard DF and test diets supplemented with 70 g of FRPP per kilogram (providing 5% DF) and 97 g/ kg (providing 7% of DF). Beside the nutritional parameters, lipid profile, malondialdehyde (MDA), toxicity parameters, total antioxidant status (TAS), the activity of the antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) were measured in plasma. In addition, the fecal bile acids excretions were also determined utilizing HPLC-DAD. The consumption of FRPP in

iv
hypercholesterolemic condition improved the animals’ blood lipid profile, liver and kidney functions and reduced lipid peroxidation marker with increasing the excretion of bile acid. Thus, suggested that the potential contribution of FRPP in a cardiovascular risk reduction. Hypercholesterolemia and hypertriglyceridemia were recognized as a result of the cholesterol-rich diets. FRPP exhibited an important hypolipidemic action, returning triglyceride (TG) levels in hypercholesterolemic animals to normal values. The hypocholesterolemic effect of FRPP with dose of 7% was observed, reducing total and low-density lipoprotein cholesterol (−63%, −76%, respectively). Decreased lipid peroxidation in plasma as a consequence of FRPP intake was found in hypercholesterolemic treated groups. Increased the fecal bile acids excretion as a result of FRPP intake was observed in all treated groups. This could be attributed to the high DF content. All these favorable findings might be related to its DF content and the natural presence of antioxidant polyphenols that prevent lipid peroxidation. Findings of the present study had indicated that the incorporation of FRPP into hypercholesterolemic diet improved the lipid profile and reduced lipid peroxidation. It might defend against cellular damage and contribute to a reduction of cardiovascular risk. The findings in the current study might be related to the synergistic effect of SDF (33% d.w) and polyphenols in FRPP.

FRPP properties showed that peels of Mangifera pajang Kort. are rich source of DF and other bioactive compounds that could be used as functional food ingredients. It also exhibited an important health effect as lowering cholesterol thus would put forward the potential application of bambangan peels to be incorporated into food formulation.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SERAT DIETARI DAN CIRI ANTIOKSIDAN KULIT BUAH *Mangifera pajang* KORT. DAN KESAN SINERGSTIK KE ATAS KESIHATAN TIKUS YANG HIPERKOLESTEROL

Oleh

FOUAD ABDULRAHMAN SALEH HASSAN

April 2012

Pengerusi: Profesor Amin Bin Ismail, PhD

Fakulti: Perubatan dan Sains Kesihatan

Kandungan DF dalam FRPP adalah tinggi (72.3 g/100 g berat kering) dengan nisbah SDF/IDF yang seimbang (1:1.2). FRPP mempunyai indeks perencatan dialisis glukosa, keupayaan pegangan air (WHC), keupayaan pegangan minyak (OHC) dan sifat mengembang yang tinggi. Analisis kandungan komponen fenolik dalam ekstrak metanol berasid yang diperoleh daripada kulit buah bambangan masak sepenuhnya (*Mangifera pajang* Kort.) juga dijalankan. Kapasiti antioksidan FRPP seperti yang ditentukan dalam ujian kuasa antioksidan penurunan ferik (FRAP) dan 1, 1-difenil-2- pikrilhidrazil (DPPH) menunjuk nilai potensi IC$_{50}$ yang tinggi (44 µg/mL), ini dijelaskan oleh kehadiran polifenol sebanyak 98.3 mg kesamaan asid galik (GAE)/g FRPP yang ditentukan dengan ujian *Folin-Ciocalteu*. Enam belas komponen fenolik dalam kulit buah bambangan telah dikenalpasti dan ditentukan dengan kromatografi cecair bertekanan tinggi-pengesan sinaran fotodiod (HPLC-DAD) yang dilengkapi dengan pengionan kuantum-eletrospray/spektrometri jisim (TSQ Quantum Ultra-ESI-MS) untuk pengesahan puncak, berdasarkan perbandingan masa retensi, spektra penyerapan sinaran ultraungu-nyata dan spektra jisim dengan rujukan piawai. Asid galik, asid p-kumarik, asid elagik, asid protokatekuik dan mangiferin merupakan komponen fenolik utama yang dikenalpasti dalam kulit buah bambangan dengan kandungan masing-masing adalah 20.9, 12.7, 7.3, 5.4 dan 4.8 mg/g FRPP.

Potensi kesan hipolipidemik FRPP dilaksanakan dengan menggunakan model haiwan tikus yang diaruh hiperkolesterol dengan diet. Dalam masa enam minggu, tikus yang diberi diet tanpa kolesterol dijadikan sebagai kawalan negatif; tikus yang diberi diet dengan 2% kolesterol untuk menjadikan hiper-kolesterolemia dijadikan sebagai kawalan positif; diet kawalan mengandungi 5% selulosa sebagai DF rujukan; diet kajian vii
mengandungi 70 g FRPP/kg (membekalkan 5% DF) dan 97 g FRPP/kg (membekalkan 7% DF). Selain parameter pemakanan, profil lipid, paras malondialdehid (MDA), parameter ketoksikan, status jumlah antioksidan (TAS) serta aktiviti enzim antioksidan glutation peroksidase (GPX) dan superoksidia dismutase (SOD) dalam plasma ditentukan. Tambahan pula, perkumahan asid hemptedu dalam najis juga ditentukan dengan HPLC-DAD. Pengambilan FRPP dalam tikus hiper-kolesterollemik memberi kesan positif ke atas profil lipid darah, fungsi hati dan buah pinggang, serta penurunan penanda pengoksidaan lipid dengan peningkatan perkumuhan asid hemptedu. Maka ini mencadangkan potensi FRPP dalam penurunan risiko penyakit kardiovascular. Hiper-kolesterollemia dan hiper-trigliseridemia dalam tikus dikenal pasti sebagai kesan diet kaya dengan kolesterol. Serbuk kulit berfiber tinggi (FRPP) telah mempamerkan kesan hipo-lipidemik, dengan penurunan paras trigliserida (TG) dalam tikus hiper-kolesterollemik ke paras normal. Kesan hipo-kolesterollemik FRPP juga dilihat dalam tikus yang diberi suplementasi 7% DF, dengan penurunan paras jumlah kolesterol dan lipoprotein-kolesterol berketumpatan rendah (LDL) (−63% dan −76% masing-masing). Penurunan pengoksidaan lipid dalam plasma merupakan kesan pengambilan FRPP. Peningkatan perkumuhan asid hemptedu dalam najis sebagai kesan pengambilan FRPP didapati dalam semua kumpulan diberi suplementasi FRPP. Ini boleh dijelaskan dengan kandungan DF yang tinggi dalam FRPP. Kesemua kesan positif suplementasi FRPP boleh dikaitkan dengan kandungan DF dalam FRPP dan kehadiran semulajadi antioksidan polifenol dalam FRPP yang mencegah pengoksidaan lipid. Kajian menunjukkan bahawa suplementasi FRPP dalam diet hiper-kolesterollemik memberi kesan positif ke atas profil lipid plasma dan menurunkan pengoksidaan lipid. Suplementasi FRPP mungkin memberi pertahanan terhadap kerosakan sel dan
mengurangkan risiko penyakit kardiovaskular. Kesalan positif suplementasi FRPP dalam kajian ini boleh dikaitkan dengan kesan sinergi kandungan SDF (33% FRPP) dan polifenol yang tinggi.

Ciri FRPP telah menunjukkan bahawa kulit Mangifera pajang Kort. adalah sumber kaya DF dan komponen bioaktif lain yang boleh digunakan sebagai bahan makanan berfungsi. Ia juga telah menunjukkan kesan penting bagi kesihatan dengan menurunkan paras kolesterol, maka dengan itu kulit buah tersebut boleh diaplikasikan bersama ke dalam formulasi makanan.
ACKNOWLEDGEMENTS

All praises and thanks are due to Allah who gave me competence to finish my study and to acquire the knowledge in science; and peace and blessings are upon His Trustworthy and Honest Messenger. I do not have enough words to express my gratitude to all of those who directly or indirectly contributed to accomplish this study and shared my journey towards exploring knowledge but the lesser things can be offered is the acknowledgements words.

From the formative stages of this thesis, to the final draft, I owe an immense debt of gratitude to my supervisor, Prof. Amin Ismail, the chairman of Supervisory Committee, for his trust on my capability to join the PhD program at the Faculty of Medicine and Health Sciences, UPM and for providing advices, encouragement, support, and comments through the academic program and research. His sound advice and careful guidance were invaluable. I am sure my study would have not been possible without his help.

I am also equally sincerely and heartily grateful to the members of Supervisory Committee; Assoc. Prof. Dr. Azizah Abdul Hamid and Assoc. Prof. Dr. Azrina Azlan for their kind help in valuable suggestions and comments during my study program. Their critical suggestions and invaluable comments were very useful to develop this thesis.
I would also like to take this opportunity to express my sincere appreciation to the examination committee for their time and efforts to improve this thesis, without their time and cooperation, this project would not have been possible.

Special thanks go to all staff of Nutrition Science and Dietetics Department whom I had opportunity to undertake co-ercives with them during the period of my study. I am very grateful to all those for their enthusiastic assistance and support in using the various equipments during my lap work starting from Department of Nutrition Science and Dietetics including, Syed Hasbullah (Abul), Mr. Simon, Maznah Ahmad, Norainah Ahmad, Jola, and all other staff. Passing to Department of Pathology particularly Mr. Azmy and Mrs. Lina for their kind help. I acknowledge Mr. Ramli for his facilitation during my animal study. Special thanks pass to chromatography labs staff in Faculty of Food Science and Technology particularly Miss. Lyza, Mr. Halim, and Mr. Hamizan. My gratitude also goes to my friends that I met during my work in Dr. Azizah Hamid’s lab, Asyraf, and Mar Mar for their kind help. I would also not forget the kind help of Dr. Ghaniah Alnageeb, Kak Siti from Institute of Bioscience (IBS). I would be remiss without mentioning Dr. Najat Alodini from the Faculty of Environment for her valuable advices and helps.

Great thank goes to my kind friend Lye Yee Chew for her favors that she offered during my study. I enjoyed the company of friends and colleagues namely, Hock-Eng Khoo, Hafizan, Kong, Ali Alshookri, Zaki Al Tobish, Hani Hamad, Zaid Sadeq, Abid Aufa, Naderah, Farhana, Hanafi, Bahareh Sarmadi, Mohammed Reza, Mohammed Ibraheem,
Abe Maliky, Fatimah Zeri, Maryam Zeri, and Dr. K. Nagendra Prasad, we had very nice memories that won’t be forgotten.

I am very much grateful to my relatives in Sabah; Datuk Sayed Abbs bin Al-Medwahi, Sayed Husein, Gomash and all family for their invitations, kind care and encouragement during my study.

Special thanks to my worthy friend lieutenant colonel Hamid Antar and his family. My gratitude and warm feeling goes to my precious friend Mohammad Abdulgader and all my relatives for the strong moral and emotional support they provided to me.

Last but not least, great thanks to Prof. Farouk F. Al-Nouri for his insistence to do my PhD study in Malaysia also to Prof. Sami Husein for his valuable advices. Very special thank goes to my dear friend Mohammad Alhetar for his time to process my admission at UPM and for his hosting during the first moments I enter Malaysia.

I won’t forget my valuable friends in Ibb University, Department of Food Science and Technology particularly Ali Alwerafî, Ali Alwadeay, Majed Almashrîki, Sam Aldalali and all staff.

I will be without feeling if I forget to mention my worthy friend Sadeq Hasan and his wife with their beloved son Zaid for their nice dealing and hosting me during whole of my study, I ask god to help me to return back even small thing of the grateful to them.
I certify that a Thesis Examination Committee has met on 18-04-2012 to conduct the final examination of Fouad Abdulrahman Saleh Hassan on his thesis entitled “Dietary Fiber and Antioxidant Properties of *Mangifera pajang* Kort. Peels and Their Synergistic Health Effects on Hypercholesterolemic Rats” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy degree.

Members of the Thesis Examination Committee were as follows:

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah binti Rahmat, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Suraini binti Abd Aziz, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fereidoon Shahidi, PhD
Professor
Department of Biochemistry
Memorial University of Newfoundland
Canada
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment was of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Amin Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Azizah Abdul Hamid, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Azrina Azlan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

FOUAD ABDULRAHMAN SALEH HASSAN
Date: 18 April 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
1.1 General Background 1
1.2 Statements of Problem 4
1.3 Significance of Study 4
1.4 Objectives 5
1.4.1 General Objective 5
1.4.2 Specific Objectives 5
1.5 Organization of the Thesis 6

2. LITERATURE REVIEW
2.1 Dietary Fiber 7
2.1.1 Definition of Dietary Fiber 7
2.1.2 Antioxidant Dietary Fiber (AODF) 8
2.1.3 Types of Dietary Fiber and Its Composition 9
2.1.3.1 Soluble Dietary Fiber (SDF) 10
2.1.3.2 Insoluble Dietary Fiber (IDF) 10
2.1.4 Benefits of high-fiber foods 11
2.1.5 Dietary Fiber in Of Mangoes 11
2.1.6 Physical Characteristics of Mangifera pajang Kort. 13
2.1.7 Characteristics and Source of Dietary Fiber 17
2.1.8 Factors Affecting on the Quality of Dietary Fiber 19
2.1.8.1 Pre-Treatment 19
2.1.8.2 Mechanical Treatments 20
2.1.8.3 Heat Treatments 20
2.1.8.4 Chemical Treatments 21
2.1.8.5 Enzymatic Treatments 22
2.1.9 Recommended Intakes of Dietary Fiber 23
2.1.10 Adverse Effect of High-Fiber Diet 23
2.1.11 Dietary Fiber and Health Benefits 25
2.1.12 Soluble Fiber (SDF) and Its Hypcholesterolemic 28
Mechanisms
2.1.12.1 Increased Fecal Cholesterol and Bile Acids
2.1.12.2 Interference with Lipid and/or Bile Acid Metabolism
2.1.12.3 Effects of Short-Chain Fatty Acids
2.1.12.4 Altered Lipid Absorption and Genetic Factors
2.1.13 Insoluble Dietary Fiber (IDF) and its Hypcholesterolemic Mechanism

2.2 Antioxidants
2.2.1 Definition of Antioxidants
2.2.2 Synthetic Antioxidants
2.2.3 Natural Antioxidants
2.2.4 Polyphenols in Genus of Mangifera
 2.2.4.1 Phenolic Acid
 2.2.4.2 Flavonoids
 2.2.4.3 Xanthones
 2.2.4.4 Catechins
 2.2.4.5 Anthocyanins
2.2.5 Antioxidant Activity
 2.2.5.1 1, 1-Diphenyl-2- Picrylhydrazyl Method
 2.2.5.2 Ferric Reducing Antioxidant Power (FRAP)
2.2.6 Antioxidant and CVD Prevention
 2.2.6.1 Antioxidant and LDL Oxidation
 2.2.6.2 Suggested Mechanisms of antioxidants
 2.2.6.3 Synergistic Effect of Antioxidant Dietary Fiber in Lowering CVD
2.2.7 Perspectives And Future Directions of antioxidants

3 CHARACTERISATION OF FIBRE-RICH POWDER OBTAINED FROM Mangifera pajang KORT. FRUIT PEELS
3.1 Introduction
3.2 Materials and Methods
 3.2.1 Chemicals
 3.2.2 Sample Preparation
 3.2.3 Preparation of Extract
 3.2.4 Physical Characteristic of M. pajang Kort. Fruit Peel
 3.2.5 Proximate Analysis of FRPP
 3.2.5.1 Determination of Dietary Fiber
 3.2.5.2 Determination of Available Carbohydrates
 3.2.6 Total Extractable Polyphenols (TEP)
 3.2.7 Physicochemical Properties of FRPP
3.2.7.1 Water Holding Capacity (WHC) and Oil Holding Capacity (OHC) 61
3.2.7.2 Swelling 61
3.2.7.3 Glucose Dialysis Retardation Index (GDRI) 62
3.2.8 Composition of Soluble and Insoluble Dietary Fiber 63
3.2.9 Statistical Analysis 65

3.3 Results and Discussion 65
3.3.1 Physical Characteristics 65
3.3.2 Proximate Composition 66
3.3.3 Total Extractable Polyphenols 67
3.3.4 Physicochemical Properties 68
3.3.6 Composition of SDF and IDF 73

3.4 Conclusion 78

4 IDENTIFICATION AND QUANTIFICATION OF PHENOLIC COMPOUNDS IN BAMBANGAN (Mangifera pajang KORT.) PEELS AND THEIR FREE RADICAL SCAVENGING ACTIVITY 79

4.1 Introduction 79

4.2 Material and Methods 81
4.2.1 Chemicals 81
4.2.2 Preparation of Standard Curves 81
4.2.3 Sample Preparation 82
4.2.4 Total Extractable Polyphenols 82
4.2.5 Ferric-Reducing Antioxidant Power (FRAP) Assay 83
4.2.6 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay 84
4.2.7 Preparation of Extract for Chromatographic Analysis 85
4.2.8 Linearity 85
4.2.9 Reproducibility 86
4.2.10 Quantitative HPLC Conditions 86
4.2.11 Spectroscopic Apparatus Conditions 87
4.2.11.1 Mass Spectrometric 87
4.2.11.2 UV Identification 88
4.2.11 Statistical Analysis 89

4.3 Results and Discussion 89
4.3.1 Total Extractable Polyphenol (TEP). 89
4.3.2 Ferric-reducing antioxidant power (FRAP) 90
4.3.3 DPPH Radical-Scavenging Activity (RSA) 92
4.3.4 Identification of Phenolic Compounds of Peel Extract 94
4.3.5 Quantitative Analysis of Phenolic Compounds 102
4.3.5.1 Quantification of Phenolic Acids 104
4.3.5.2 Quantification of Flavonoids and Xanthones Aglycons 105

4.4 Conclusion 108
5 HYPOCHOLESTEROLEMIC AND ANTIOXIDATIVE EFFECTS OF Mangifera pajang KORT. FRUIT PEELS IN VIVO

5.1 Introduction 109

5.2 Material and Methods 111

5.2.1 Materials 111

5.2.2 Chemicals 111

5.2.3 Animals 112

5.2.4 Preparation of Fiber Rich Peel Powder (FRPP) Diet 112

5.2.4.1 Preparation of Phenol-Free FRPP 113

5.2.4.2 Incorporation of Diet With FRPP 113

5.2.5 Grouping of Animals 114

5.2.6 Food Intake, Body Weight and Food Efficiency 116

5.2.7 Blood Sampling 116

5.2.8 Tissues Collections 116

5.2.9 Estimation of Lipid Profile 119

5.2.9.1 Analysis of Total Cholesterol (TC) 119

5.2.9.2 Analysis of High Density Lipoprotein (HDL) 120

5.2.9.3 Analysis of Low Density Lipoprotein (LDL) 121

5.2.9.4 Analysis of Triglycerides (TG) 122

5.2.10 Plasma Malondialdehyde (MDA) Level 123

5.2.11 Evaluation of toxicity Analysis 123

5.2.11.1 Alanine Transaminase (ALT) Assay 124

5.2.11.2 Gamma–Glutamyltranspeptidase (GGT) Assay 125

5.2.11.3 Aspartate Aminotransferase (AST) Assay 125

5.2.11.4 Alkaline Phosphates (ALP) 126

5.2.11.5 Creatinine Assay 127

5.2.11.6 Urea Assay 127

5.2.12 Measurement of Oxidative Parameters 128

5.2.13 Bile Acids Determination 130

5.2.14 Statistical Analysis 131

5.3 Results and Discussion 131

5.3.1 Food Intake and Alimentary Efficiency 131

5.3.2 Body Weight 133

5.3.3 Liver, Kidney, Heart, Spleen and Adipose Tissues Weights 138

5.3.4 Lipid Profile Analysis 139

5.3.4.1 Total Cholesterol (TC) Level 140

5.3.4.2 High Density Lipoproteins (HDL) level 143

5.3.4.3 Low Density Lipoprotein (LDL) Level 146

5.3.4.4 Triglyceride (TG) Level 150
5.3.5 Plasma Malondialdehyde (MDA) Level 152
5.3.6 Toxicity Analysis 156
 5.3.6.1 Alanine Aminotransferase (ALT) 156
 5.3.6.2 Aspartate Aminotransferase (AST) 160
 5.3.6.3 Alkaline Phosphatase (ALP) 162
 5.3.6.4 Gamma–Glutamyltranspeptidase (GGT) 165
 5.3.6.5 Urea Level 168
 5.3.6.6 Creatinine Level 170
5.3.7 Measurement of Oxidative Parameters 173
5.3.8 Bile Acids Excretion 177
5.4 Conclusion 181

6 GENERAL DISCUSSION, CONCLUSION AND FUTURE RECOMMENDATIONS 182
 6.1 General Discussion 182
 6.2 General Conclusion 186
 6.3 Future Recommendations 188

REFERENCES 189
APPENDICES 221
BIODATA OF STUDENT 264
LIST OF PUBLICATIONS 271