РОЗДІЛ II. Неорганічна хімія. 14, 2011

УДК 536.42+548.73

Н. А. Татарин – аспірант Волинського національного університету імені Лесі Українки;
Г. М. Бирук – студентка V курсу хімічного факультету Волинського національного університету імені Лесі Українки;
Ж. О. Кормош – кандидат хімічних наук, професор, завідувач кафедри аналітичної хімії та екотехнологій Волинського національного університету імені Лесі Українки;
О. В. Парасюк – кандидат хімічних наук, декан хімічного факультету Волинського національного університету імені Лесі Українки;
Л. В. Піскач – кандидат хімічних наук, доцент кафедри неорганічної та фізичної хімії Волинського національного університету імені Лесі Українки;

Дослідження системи Cu₂S – CoS – TiS₂ при 870 К

Роботу виконано на кафедрі неорганічної та фізичної хімії ВНУ ім. Лесі Українки

За результатами рентгенофазового аналізу побудовано ізотермічний переріз системи $Cu_2S - CoS - TiS_2$ при 870 К. У цій системі виявлено нові тернарний та тетрарний сульфіди, що кристалізуються в кубічній сингонії: просторовій групі *Fd-3m*, стр. типі MgAl₂O₄ з параметрами елементарної комірки для $Cu_2CoTi_3S_8 - a = 0,99003$ нм і для $Cu_2Ti_4S_9 - a = 1,00034$ нм, утворюючи між собою необмежений ряд твердих розчинів.

Ключові слова: халькогеніди, ізотермічний переріз, кристалічна структура, рентгенівська дифракція.

<u>Татарин Н. А, Бирук Г. Н., Кормош Ж. А., Парасюк О. В., Пискач Л. В. Исследование системы</u> <u>Cu₂S – CoS – TiS₂ при 870 К.</u> По результатам рентгенофазового анализа построено изотермическое сечение системы Cu₂S – CoS – TiS₂ при 870 К. В этой системе выявлено новые тернарный и тетрарный сульфиды, которые кристаллизируются в кубической сингонии, пространственной группе Fd-3m, стр. типе MgAl₂O₄ с параметрами элементарной ячейки для Cu₂CoTi₃S₈ – a = 0,99003 нм и для Cu₂Ti₄S₉ – a = 1,00034 нм, образуя между собой неограничений ряд твердых растворов.

Ключевые слова: халькогениды, изотермическое сечение, кристаллическая структура, рентгеновская дифракция.

<u>Tataryn N. A., Byruk G. M., Kormosh Zh. O., Parasiuk O. V., Piskach L. V. Investigation of the</u> <u>Cu₂S – CoS – TiS₂ System at 870 K.</u> Isothermal section of the Cu₂S – CoS – TiS₂ system at 870 K was investigated by X-ray phase analysis results. A new ternary and a quaternary sulfide were discovered in this system. They both crystallize in the cubic symmetry, space group Fd-3m, MgAl₂O₄ structure type, with the unit cell parameters a = 0,99003 nm for Cu₂CoTi₃S₈ and a = 1,00034 nm for Cu₂Ti₄S₉. The compounds form a continuous solid solution series.

Key words: chalcogenides; isothermal section; crystal structure; X-ray powder diffraction.

Постановка наукової проблеми та її значення. Потрійна система $Cu_2S - CoS - TiS_2$ утворена бінарними сполуками, що знайшли практичне використання як функціональні матеріали напівпровідникової техніки. В деяких аналогічних системах $Cu_2S - B^{II}S - TiS_2$ утворюються сполуки типу $Cu_2B^{II}C^{IV}_{3}S_8$ (B^{II} : Mn, Fe, Ni; C^{IV} : Sn, Ti, Zr). Дослідження є актуальним тому, що зосереджене на виявленні нових тетрарних фаз.

Аналіз останніх досліджень із цієї проблеми. Огляд відомостей за системою Cu – S здійснили Абрикосов та ін. [3]. Найбільш стабільною у ній є сполука Cu₂S з конгруентним типом плавлення, незначною областю гомогенності та поліморфізмом [1; 3]. Згідно з літературними даними встановлено три модифікації фази зі складом, близьким до Cu₂S. Низькотемпературний халькоцит Cu₂S описаний у моноклінній сингонії (пр. гр. $P2_1/c$) у роботі [9]. Проміжна модифікація представлена у тетрагональній сингонії (пр. гр. $P4_32_12$) у роботі [11]. Структура високотемпературного халькоциту Cu₂S, що досліджувалась у роботі [6], є гексагональною (пр. гр. $P6_3/mmc$). Кубічна елементарна комірка визначена для високотемпературної модифікації Cu_{1.8}S (пр. гр. Fd-3m) [20].

[©] Татарин Н. А., Бирук Г. М., Кормош Ж. О., Парасюк О. В., Піскач Л. В., 2011

Фазова діаграма системи Co – S [2] побудована в інтервалі 0–70 ат. % S, де вказано на наявнісь п'яти сполук, із яких лише сполука CoS утворюється конгруентно. Кристалічна структура сполуки CoS описана в [4] у гексагональній сингонії (пр. гр. *P*6₃/*mmc*).

Фазова діаграма системи Ti – S [15] побудована у повному інтервалі концентрацій. Однак спосіб утворення сполуки TiS₂ не встановлено. Кристалічна структура сполуки TiS₂ досліджена у тригональній сингонії [18] (пр. гр. *P*-3*m*1), у кубічній сингонії (пр. гр. *Fd*-3*m*) [19], а також у моноклінній сингонії (пр. гр. *C*2/*m*) [17].

Фазові діаграми систем $Cu_2S - CoS$, $CoS - TiS_2$ та $Cu_2S - TiS_2$, що є обмежувальними, у літературі не виявлені. Проте відомі кристалографічні характеристики сполуки Cu_4TiS_4 , що існує у системі $Cu_2S - TiS_2$: тетрагональна сингонія, пр. гр. *I*-42*m* [14].

На сьогодні є відомості про тетрарні купрумовмісні сульфіди складу $Cu_2B^{II}C^{IV}{}_{3}S_8$, що можуть існувати в системах $Cu_2S - B^{II}S - TiS_2$. Найвідомішим представником є родостанін $Cu_2FeSn_3S_8$, який кристалізується в тетрагональній сингонії (CT Fe₂SnS₄, пр. гр. $I4_1/a$) [12]. Досліджена також кристалічна структура $Cu_2MnTi_3S_8$, $Cu_2NiTi_3S_8$ [16], $Cu_{7,38}Mn_4Sn_{12}S_{32}$, $Cu_{7,07}Ni_4Sn_{12}S_{32}$ [10], $Cu_2FeTi_3S_8$, $Cu_2FeZr_3S_8$ [13]. Ці сполуки перехідних 3d-елементів належать до фаз зі змішаною координацією. В утворенні їх хімічного зв'язку важливе значення відіграють d-орбіталі, оскільки викликають певні структурні особливості. Упорядковане заповнення тетраедричних і октаедричних позицій у структурі дає змогу віднести їх до нормальних халькогенідних шпінелей. Дифрактограми цих сполук про-індексовані в кубічній сингонії (CT MgAl₂O₄, пр. гр. Fd-3m).

Матеріали та методи. Зважаючи на фізико-хімічні властивості простих речовин (Cu, Co, Ti, S) та компоненти системи $Cu_2S - CoS - TiS_2$, був вибраний однотемпературний ампульний метод синтезу. Склади сплавів у досліджуваній системі подано на концентраційному трикутнику (рис. 1).

Компонування шихти для синтезу зразків проводилося з таких високочистих простих речовин, як мідь, кобальт, титан, сірка з вмістом основної речовини 99,99 мас. %. Розраховані, відповідно до складу зразків, маси простих речовин (маса шихти – 1,5 г) завантажували у товстостінні кварцові контейнери, вакуумували до тиску 1,33 10⁻² Па і киснево-газовим пальником перепаювали його у верхній частині. Для синтезу використовувалися печі типу СШОЛ із автоматичною системою регулювання та підтримки температури. На першій стадії синтезу проходило повне зв'язування сірки. Температуру в печі підвищували зі швидкістю 20 К/год до 720 К. За цієї температури сплави витримували 24 год. Далі температуру підвищували зі швидкістю 20–30 К/год до 1170 К, витримували 6 год та охолоджували в режимі виключеної печі. Після першої стадії синтезу продукти реакції перетирали в агатовій ступці до дрібнодисперсного стану і пресували в таблетки. Отримані зразки нагрівали до 1270 К, витримували 20 год та охолоджували до температури гомогенізуючого відпалу – 870 К. Після відпалу протягом 250 год сплави загартовували у холодній воді.

Дифрактограми зразків для проведення рентгенофазового аналізу та розрахунку кристалічних структур сполук отримані за допомогою порошкового дифрактометра ДРОН 4-13 (СиК_{α}-випромінювання, 10° $\leq 2\Theta \leq 80^{\circ}$, крок зйомки 0,05°, експозиція 2 с – РФА; 10° $\leq 2\Theta \leq 100^{\circ}$, крок зйомки 0,05°, час відліку в точці 20 с – РСА). Визначення кристалічних структур сполук проводилось з використанням програми CSD [7].

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Для визначення фазового складу синтезованих сплавів використовували теоретичні порошкограми вихідних бінарних Cu₂S [6; 9; 11; 20], CoS [4], TiS₂ [17–19] і тернарної Cu₄TiS₄ [14] сполук.

Після порівняльного аналізу з експериментальними порошкограмами встановлено, що Cu₂S належить до моноклінної сингонії (пр. гр *P*2₁/*c*); CoS – до гексагональної сингонії (пр. гр. *P*6₃/*mmc*); TiS₂ – до тригональної сингонії (пр. гр. *P*-3*m*1) та Cu₄TiS₄ – до тетрагональної сингонії (пр. гр. *I*-42*m*).

У системах Cu₂S – CoS i CoS – TiS₂ утворення нових тернарних фаз не встановлено. В обмежуючій системі Cu₂S – TiS₂, окрім відомої тернарної сполуки Cu₄TiS₄, виявлено фазу, стехіометричний склад якої відповідає сполуці Cu₂Ti₄S₉. Проаналізувавши потрійну систему Cu – Ti – S виявлено ряд відомих у літературі фаз, які можна розмістити на перетинах Cu₂S – TiS₂ та Cu – TiS₂. У концентраціях, близьких до нової тернарної сполуки Cu₂Ti₄S₉, знаходяться: Cu_{0.07}Ti₂S₄, CuTi₂S₄, Cu_{7,44}Ti₁₆S₃₂, Cu_{2.1}Ti₃S₆, кожна з яких кристалізується у кубічній сингонії з пр. гр. *Fd-3m*. Отже, ми вважаємо, що це є великий твердий розчин. Виявлена фаза Cu₂Ti₄S₉ є ізоструктурною до нової тетрарної фази, знайде-

ної в досліджуваній потрійній системі $Cu_2S - CoS - TiS_2$ при складі: 20 мол. % Cu_2S , 20 мол. % CoS, 60 мол. % TiS₂, і яку можна описати формулою $Cu_2CoTi_3S_8$. Дифрактограми сплавів по ізоконцентраті 20 мол. % Cu_2S у межах встановленого твердого розчину представлені на рисунку 1.

Рис. 1. Дифрактограми сплавів складів: 1 – 20 мол. % Cu₂S, 80 мол. % TiS₂; 2 –20 мол. % Cu₂S, 5 мол. % CoS, 75 мол. % TiS₂; 3 – 20 мол. % Cu₂S, 10 мол. % CoS, 70 мол. % TiS₂; 4 – 20 мол. % Cu₂S, 15 мол. % CoS, 65 мол. % TiS₂; 5 – 20 мол. % Cu₂S, 20 мол. % CoS, 60 мол. % TiS₂

Сполуки Cu₂Ti₄S₉ і Cu₂CoTi₃S₈ належать до одного структурного типу – шпінелі. Як вихідну модель розрахунку сполуки Cu₂Ti₄S₉ використали координати атомів сполуки CuTi₂S₄ [8], а сполуки Cu₂CoTi₃S₈ – координати атомів сполуки Cu_{7,38}Mn₄Sn₁₂S₃₂ [10], теоретичні порошкограми яких за допомогою програми Powder Cell порівнювались з експериментально одержаними для Cu₂Ti₄S₉ та Cu₂CoTi₃S₈. Уточнення структурних параметрів досліджуваних сполук проводились за методом повнопрофільного аналізу (методом Рітвельда), за допомогою пакету програм CSD [19]. Рентгеноструктурні дослідження отриманих сульфідів проводились на полікристалічних зразках.

За результатами дослідження потрійної системи $Cu_2S - CoS - TiS_2$ за температури 870 К був побудований ізотермічний переріз (рис. 2). На обмежувальній стороні утворюється великий твердий розчин на основі нової тернарної фази $Cu_2Ti_4S_9$, що простягається в середину системи, включаючи склад нової тетрарної фази $Cu_2CoTi_3S_8$. На перерізі наявні п'ять однофазних областей, що відповідають бінарним сполуками Cu_2S , CoS, TiS_2), тернарній сполуці (Cu_4TiS_4) і α -твердому розчину між нововиявленими сполуками $Cu_2Ti_4S_9$ та $Cu_2CoTi_3S_8$, сім двофазних областей: $Cu_2S - Cu_4TiS_4$, $\alpha - Cu_4TiS_4$, $\alpha - TiS_2$, $TiS_2 - CoS$, $Cu_4TiS_4 - CoS$, $\alpha - CoS$, $Cu_2S - CoS$ та три трифазні області: $\alpha - TiS_2 - CoS$, $\alpha - Cu_4TiS_4 - CoS$.

На рисунку 3 наведено експериментальну, розрахункову та різницеву дифрактограми нових сполук.

Рис. 3. Експериментальна, розрахункова та різницева дифрактограми Си₂Ti₄S₉

Рис. 4. *Експериментальна, розрахункова та різницева дифрактограми* $Cu_2CoTi_3S_8$

Результати розрахунку параметрів комірок сполук Cu₂Ti₄S₉ та Cu₂CoTi₃S₈ в ізотропній апроксимації наведено в таблиці 1. У таблиці 2 наведено міжатомні віддалі (δ) та координаційні числа (КЧ) атомів у структурі нових сульфідів титану (ПГ *Fd*-3*m*, СТ MgAl₂O₄), в таблиці 3 – координати та ізотропні параметри теплового коливання атомів цих сполук.

Таблиця 1

Результати дослідження кристалічної структури сульфідів титану (ПГ Fd-3m, CT MgAl₂O₄)

Склад		Cu ₂ Ti ₄ S ₉	Cu ₂ CoTi ₃ S ₈	
Параметри елементарної	а, нм	1,00034(1)	0,99003	
комірки	V , нм ³	1,00102(4)	0,97039	
Розрахована густина	ρ, г/см ³	3,8161(1)	4,0122	
Фактори достовірності	R ₁	0,0364	0,0472	
	R ₂	0,0725	0,1223	

Таблиця 2

Міжатомні віддалі (δ) та координаційні числа (КЧ) атомів у структурі сульфідів титану (ΠΓ *Fd*-3*m*, CT MgAl₂O₄)

$Cu_2Ti_4S_9,$			Cu ₂ CoTi ₃ S ₈				
Атом	ли	δ, нм	6	Атоми		δ, нм	КЧ
Cu	-4S	0,244	4	Cu	-4S	0,2267(3)	4
Ti	-6S	0,227	6	M^*	-6S	0,2406(3)	6
S	-Cu	0,227	4	S	-Cu	0,2267(3)	4
	-3Ti	0,244			-3M*	0,2406(3)	

M^{*} - 0,75(Ti)+0,25(Co)

Таблиця З

Координати та ізотропні параметри теплового коливання атомів у структурі сульфідів титану (ПГ *Fd-3m*, CT MgAl₂O₄)

Атом	ПСТ	X	У	Z	КЗП	$B_{i_{30}} \times 10^2$, HM^2		
$Cu_2Ti_4S_9$								
Cu	8a	1/8	1/8	1/8	1	0,95(3)		
Ti	16d	1/2	1/2	1/2	1	0,78(3)		
S	32e	0,7438(2)	Х	X	1	0,59(3)		
Cu ₂ CoTi ₃ S ₈								
Cu	8a	1/8	1/8	1/8	1	0,9		
M*	16d	1/2	1/2	1/2	0,75(Ti)+0,25(Co)	0,7		
S	32e	0,7428	Х	Х	1	0,24		

M^{*} - 0,75(Ti)+0,25(Co)

Висновки. Побудовано ізотермічний переріз діаграми стану системи $Cu_2S - CoS - TiS_2$ при 870 К. Виявлено існування нової тернарної і тетрарної фаз $Cu_2Ti_4S_9$ і $Cu_2CoTi_3S_8$, які кристалізуються у кубічній сингонії (ПГ *Fd*-3*m*, CT MgAl₂O₄), з параметрами елементарної комірки для $Cu_2Ti_4S_9 a = 1,00034$ нм і $Cu_2CoTi_3S_8 a = 0,99003$ нм, утворюючи між собою при 870 К необмежений ряд твердих розчинів.

Список використаної літератури

- Горюнова Н. А. Сложные алмазоподобные полупроводники / Н. А. Горюнова. М.: Сов. радио, 1968. 267 с.
- Диаграммы состояния двойных металлических систем : справочник. В 3 т. Т. 1 / под ред. Н. В. Лякишева. – М. : Машиностроение, 1996. – 992 с.
- Полупроводниковые халькогениды и сплавы на их основе / Н. Х. Абрикосов, В. Ф. Банкина, Л. Ф. Порецкая [и др.]. – М.: Наука, 1975. – 220 с.
- 4. Alsen N. Roentgenographische Untersuchungen der Kristallstrukturen von Magnetkies, Breithau ptit, Pentlandit, Millerit und verwandten Verbindungen / N. Alsen // J. Sol. State Chem. – 1987. – S. 191–203.
- Binary Alloy Phase Diagrams (editor-in-chief T. B. Massalski). 2nd edition, Plus Updates, CD version 1.0. Ohio : ASM International, 1996.
- Buerger M. J. Distributon of the atoms in high chalcolite, Cu₂S / M. J. Buerger, B. J. Wuensch // Science. 1963. – Vol. 141. – P. 276–277.
- CSD Universal program packade for single crystal or powder structure data treatment / L. G. Aksel'rud, P. Yu. Zavalij, Yu. N. Grin' [et al.] // Mater. Science Forum. – 1993. – Vol. 133. – P. 335.
- Crystal structure and physical properties of a new CuTi₂S₄ modification in comparison to the thiospinel / [N. Soheilnia, K. M. Kleinke, E. Dashjav, H. L. Cuthbert et. al.] // Inorg. Chem. – 2004. – Vol. 43. – № 20. – P. 6473–6478.
- Evans H. T. The crystal structures of low chalcocite and djurleite / H. T. Evans // Z. Krist. 1979. Vol. 150. P. 299–320.
- 10. Garg G. Single crystal structures of two new cation-defsesent thiospinels: Cu_{7,38}Mn₄Sn₁₂S₃₂ and Cu_{7,07}Ni₄Sn₁₂S₃₂ / G. Garg, S. Bobev, A. K. Ganguli // Solid State Ionics. 2002. Vol. 146. P. 195–198.
- Janosi A. La structure du sulfure cuivreux quadratique / A. Janosi // Acta Cryst. 1964. Vol. 17. P. 311–312.
- Jumas J. Structure du rhodostannite synthetiqu / J. C. Jumas, E. Philippot, M. Maurin // Acta Cryst. B. 1979. Vol. 35. – P. 2195–2197.
- Kormosh Zh. The Cu₂FeTi₃S₃ and Cu₂FeZr₃S₃ compounds: Crytal structure and electroanalytical application / [Zh. Kormosh, A. Fedorchuk, K. Wojciechowski et. al.] // Mater. Sci. Eng. C. – 2011 (in press).
- 14. Klepp K. O. Synthesis and crystal structure of Cu₄TiS₄: a novel chalcogenide with tetrahedrally coordinated titanium / K. O. Klepp, D. Gurtner // J. Alloys Compd. 1996. Vol. 243. P. 19–22.
- 15. Murray J. L. Binary Alloy Phase Diagrams : S Ti (Sulfur-Titanium) / J. L. Murray ; [ed. T. B. Massalski] // ASM International, Materials Park. – Ohio, 1992. – P. 3286–3288.
- 16. New compounds Cu₂MnTi₃S₃ and Cu₂NiTi₃S₃ thiospinel structure / [V. P. Sachanyuk, A. O. Fedorchuk, I. D. Olekseyuk, O. V. Parasyuk et al.] // Mater. Res. Bul. 2007. Vol. 42. P. 143–148.
- 17. Structural investigation of mercury-intercalated titanium disulfide. 1. The crystal structure of Hg _{1.24}TiS₂ / [P. Ganal, P. Moreau, G. Ouvrard et al.] // Chem. Mater. 1995. Vol. 7. P. 1132–1139.
- 18. Structure determition of LiXTiS₂ by neutron diffraction / [J. R. Dahn, W. R. McKinnon, W. R. Haering et al.] // Canad. J. Phys. – 1980. – Vol. 58. – P. 207–213
- 19. Structure of the cubic intercalate MgxTiS₂ / [P. Lightfoot, F. Krok, J. L. Nowinski, P. G. Bruce] // J. Mater. Chem. 1992. Vol. 2 P. 139–140.
- 20. Yamamoto K. X-Ray Study of the Average Structures of the Cu ₂Se and Cu_{1,8}S in the Room Temperature and the High Temperature Phases / K. Yamamoto, S. Kashida // J. Sol. State Chem. 1991. Vol. 93. P. 202–211.

Статтю подано до редколегії 18.10.2011 р.