РОЗДІЛ І. Неорганічна хімія. 16, 2008

Література

- 1. Томашик В. Н., Грыцив В. И. Диаграммы состояния систем на основе полупроводниковых соединений А^{II}В^{VI}.− К.: Наук. думка, 1982.− 168 с.
- Diehl R., Nitsche R. Vapour and flux growth of γ-In₂S₃, a new modification of indium sesquisulphide // J. Cryst. Growth.– 1973.– Vol. 20.– P. 38–46.
- 3. Полупроводниковые халькогениды и сплавы на их основе / Н. Х. Абрикосов, В. Ф. Банкина, Л. В. Порецкая и др.– М.: Наука, 1975.– 219 с.
- Haeuseler H. X-ray investigations in the system CdIn₂S₄-CdIn₂Se₄ // J. Solid State Chem.- 1979.- Vol. 29.-P. 121-123.
- Akselrud L. G., Zavalij P. Yu., Grin' Yu. N., Pecharsky V. K., Baumgartner B., Wolfel E. CSD-Universal program package for single crystal or powder structure data treatment // Materials Science Forum.– 1993.– Vol. 133.– P. 335.
- 6. Olekseyuk I. D., Parasyuk O. V., Halka V. O. et al. Phase equilibria in the quasi-ternary system Ag₂S-CdS-Ga₂S₃// J. Alloys Compds.- 2001.- Vol. 325.- P. 167-179.
- 7. Метлинский Н. Н., Тырзиу В. Г., Маркус М. М., Дерид О. П. Диаграмма состояния системы HgSe-Ga₂Se₃ // В сб.: Монокристаллы и техника.– Харьков, 1973.– № 1(8).– С. 52–56.

Статтю подано до редколегії 30.09.2008 р.

УДК 546.47'865:546.5

П. М. Милян – кандидат хімічних наук, старший науковий співробітник, завідувач лабораторії НДІ фізики і хімії твердого тіла Ужгородського національного університету;
 О. О. Семрад – кандидат хімічних наук, доцент кафедри неорганічної хімії Ужгородського національного університету;
 В. І. Сідей – кандидат хімічних наук, старший науковий співробітник НДІ фізики і хімії твердого тіла Ужгородського національного університету;

А. М. Соломон – кандидат фізико-математичних наук, старший науковий співробітник Інституту електронної фізики НАНУ

Фазові рівноваги в системі ZnO-Sb₂O₅

Роботу виконано на кафедрі неорганічної хімії та лабораторії НДІ фізики і хімії твердого тіла УжНУ

Методом твердофазної реакції одержано сплави системи ZnO-Sb₂O₅. За результатами рентгенофазового та хімічного аналізів проведено їх ідентифікацію. Доведено існування двох тернарних сполук ZnSb₂O₆ та Zn₇Sb₂O₁₂. Вивчено деякі фізико-хімічні властивості та побудовано структурні моделі для цих сполук.

Ключові слова: рентгенофазовий аналіз, тернарна сполука, властивості.

<u>Милян П. М., Семрад О. О., Сидей В. И., Соломон А. М. Фазовые равновесия в системе ZnO–Sb₂O₅.</u> Методом твердофазной реакции получены сплавы системы ZnO–Sb₂O₅. За результатами рентгенофазового и химического анализов проведена их идентификация. Доказано существование двух тернарних соединений ZnSb₂O₆ и Zn₇Sb₂O₁₂. Изучены некоторые физико-химические свойства и построены структурные модели для этих соединений.

Ключевые слова: рентгенофазовий анализ, тернарное соединение, свойства.

<u>Milyan P. M., Semrad E. E., Sidey V. I., Solomon A. M. Phase Equilibria in the $ZnO-Sb_2O_5$ System.</u> The series of samples of the $ZnO-Sb_2O_5$ quasibinary system have been synthesized by solid-state reactions and characterized by using X-ray powder diffraction techniques (XRD) and chemical analysis. Two intermediate ternary

[©] Милян П. М., Семрад О. О.. Сідей В. І., Соломон А. М., 2008

phases, the compounds $ZnSb_2O_6$ and $Zn_7Sb_2O_{12}$, have been found in the system $ZnO-Sb_2O_5$; and the structural models have been built for these compounds.

Key words: X-ray phase analysis, ternary compound, properties.

Постановка наукової проблеми та її значення. Аналіз досліджень із цієї проблеми. Дослідженням фізико-хімічної взаємодії компонентів системи Zn–Sb–O займається значна кількість учених. Результати різних дослідників часто досить суперечливі (рис. 1) [1–8]. Під час вивчення зразків часткової системи ZnO–Sb₂O₃, одержаних у закритих евакуйованих ампулах, вдалось одержати тільки сполуку ZnSb₂O₄ [3]. Інші автори [4], досліджуючи зразки тієї ж самої часткової системи, але синтезовані на повітрі, одержали сполуки ZnSb₂O₆ та Zn₄Sb₂O₉, що свідчить про те, що кисень повітря бере активну участь у взаємодії вихідних оксидів – ZnO i Sb₂O₃. У нашій попередній роботі [7] проведено термодинамічний аналіз системи Zn–Sb–O (досліджуючи зміну енергії Гіббса) з метою вияснення, як впливає температура, тиск та концентрація кисню на хід взаємодії вихідних речовин та на хімічний склад утворених продуктів. Одержані результати визначили умови утворення складних продуктів різноманітного складу Zn_xSb_yO₂.

У цій статті розглядається дослідження фазових рівноваг у частковій системі ZnO-Sb₂O₅.

Матеріали і методи. Вихідні речовини ZnO і Sb₂O₅ взяли у семи різних мольних відношеннях, перемішали їх і суміші нагрівали у корундизових тиглях, які були поміщені у шахтні печі. Синтез зразків проводили при температурі 1023 К із витримкою 6 год при максимальній температурі. Після цього продукти були охолоджені до кімнатної температури в режимі виключеної печі. Склад продуктів визначений за допомогою рентгенофазового аналізу (DRON-3, Cu K_α-випромінювання з Ni-фільтром).

Оскільки рентгенофазовий аналіз виявив однофазність зразка мольним співвідношенням компонентів 1:1, доцільно було провести його хімічний аналіз. Цинк визначали комплексонометрично, стибій – броматометрично. Для визначення кисню розробили своєрідну методику: зразок нагрівали з надлишком сірки і визначали утворений оксид сульфуру (IV), що дало можливість оцінити вміст кисню.

Хід визначення цинку. Зразки були розчинені у соляній кислоті, pH розчину доведений амонійним буферним розчином до 7–11 у присутності індикатора еріохрому-чорного T і розчин був протитрований трилоном Б (червоне забарвлення). Хід визначення стибію. Стибій визначали броматометричним методом [9; 10]. З цією метою 50–100 мл розчину перенесли у 250 мл колбу, додали 10–15 мл концентрованої соляної кислоти і одержаний розчин нагрівали до розчинення осаду, що випав. До нагрітого до температури 343–353 К розчину додали 2–3 краплі розчину метилоранжу і повільно титрували розчином KBrO₃ до його знебарвлення.

У процесі визначення відбувається така хімічна реакція:

 $KBrO_3 + 3SbCl_3 + 6HCl = 3SbCl_5 + KBr + 3H_2O.$

Хід визначення кисню [11]. 0,3–0,5 г зразка змішали з такою ж масою сірки, суміш помістили у керамічну лодочку, яка була встановлена у кварцову трубку. Через цю трубку пропускали потік чистого азоту. Систему нагрівали повільно до температури 670–770 К. Утворений при цьому SO₂ поглинали 0,1 н розчином NaOH.

Після цього утворений розчин перелили у конусоподібну колбу, додали 0,5 мл 30%-го розчину H₂O₂ і через 5 хв надлишок NaOH відтитрували 0,1 н розчином соляної кислоти у присутності індикатора фенолфталеїну.

У процесі визначення відбуваються такі хімічні реакції:

$$\begin{aligned} &Zn_xSb_yO_z + S \rightarrow ZnS + Sb_2S_3 + SO_2\uparrow;\\ &SO_2 + 2 \text{ NaOH} = \text{Na}_2SO_3 + H_2O;\\ &Na_2SO_3 + H_2O_2 = \text{Na}_2SO_4 + H_2O;\\ &NaOH_{\text{HAJI}} + HCl = \text{NaCl} + H_2O. \end{aligned}$$

Дослідили деякі фізичні властивості сполуки ZnSb₂O₆. Так, під тиском 20 000 атм виготовили таблетку, для якої вивчили температурну залежність діелектричної сталої та питомої електропровідності. Діелектричну сталу визначили на частоті 1 МГц за допомогою цифрового приладу LCR E7-12. Розрахунок діелектричної сталої виконали за формулою:

$$\varepsilon = \frac{d}{\varepsilon_0 \cdot S_x} \cdot C_x,$$

де d – товщина зразка, м; C_x – ємність, Φ ; ε_0 – діелектрична стала вакууму, Φ/M ; S_x – площа поперечного перерізу зразка, M^2 .

Електропровідність зразків визначали за вимірюванням опору чотиризондовим методом. Температуру зразків вимірювали за допомогою мідь-константанової термопари.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Для системи *x*ZnO–*y*Sb₂O₅ синтезували декілька зразків з різним мольним співвідношенням *x*:*y* і провели їх рентгенофазовий аналіз (рис. 2).

У зразку 7:1 встановили присутність трьох фаз: $ZnSb_2O_6$, $Zn_7Sb_2O_{12}$ і ZnO; у зразку 4:1 – $ZnSb_2O_6$ (близько 10 %) та $Zn_7Sb_2O_{12}$ (близько 90 %). Остання фаза присутня і у зразках 2:1 та 3:2. У зразках із мольним співвідношенням вихідних компонентів 1:1 та 2:3 встановили утворення виключно сполуки $ZnSb_2O_6$. Нарешті, у складі зразка зі співвідношенням 1:4 встановлено дві фази: $ZnSb_2O_6$ і α - Sb_2O_4 . Ці фазові рівноваги для наочності винесемо окремо:

7:1 – ZnO (50 %) + Zn₇Sb₂O₁₂ (40 %) + ZnSb₂O₆ (10 %);
4:1 – Zn₇Sb₂O₁₂ (90 %) + ZnSb₂O₆ (10 %);
2:1 – ZnSb₂O₆ (60 %) + Zn₇Sb₂O₁₂ (40 %);
3:2 – ZnSb₂O₆ (75 %) + Zn₇Sb₂O₁₂ (25 %);
1:1 – ZnSb₂O₆ (чистий);
2:3 – ZnSb₂O₆ (чистий);
1:4 – ZnSb₂O₆ (40 %) +
$$\alpha$$
-Sb₂O₄ (60 %)

Як видно із вищенаведеного, нам вдалося підтвердити існування сполук ZnSb₂O₆ і Zn₇Sb₂O₁₂ (рис. 1). Сполука ZnSb₂O₆ кристалізується в тетрагональній системі, пр. гр. *P*4₂/*mnm*; *a* = 0,4669(1), *c* = 0,9310(3) нм; *Z* = 2; ρ_{064} = 6,665 г/см³, $\rho_{експ.}$ = 6,52 г/см³. Структуру сполуки наочно представляють рис. 3 і 4.

Рис. 3. Модель елементарної комірки сполуки ZnSb₂O₆

Структура сполуки $Zn_7Sb_2O_{12}$ – типу шпінелі, має гранецентровану кубічну решітку, пр. гр. *Fd* 3 *m*, параметр елементарної комірки *a* = 0,8597 нм.

Згадану в літературі сполуку $Zn_4Sb_2O_9$ у застосованому нами технологічному режимі синтезувати не вдалося.

Побудували модель елементарної комірки (рис. 3) та загальну структурну модель (рис. 4) сполуки ZnSb₂O₆.

Рис. 4. Зчленування структурних октаедрів у просторі для сполуки ZnSb₂O₆ – порівняння структур трирутилу (ZnSb₂O₆) і рутилу (TiO₂) a – проекція на площину XY; б – проекція на площину YZ

На основі виконаного хімічного аналізу довели (табл. 1), що зразок системи складу 0,5ZnO-0,5Sb₂O₅ ідентичний складнику хімічної сполуки ZnSb₂O₆. Незначне відхилення від стехіометричного складу можна пояснити наявністю певних дефектів у кристалічній гратці.

Таблиця 1

Склад	Zn, %		Sb, %		0, %		Одержана
зразка	обч.	експ.	обч.	експ.	обч.	експ.	формула
ZnSb ₂ O ₆	16,15	15,56	60,14	60,34	23,71	24,10	$Zn_{0,97}Sb_{2,02}O_{6,14}$

Результати хімічного аналізу досліджуваної сполуки

На рис. 5 представлено результати досліджень температурної залежності діелектричної сталої та питомої електропровідності сполуки ZnSb₂O₆.

Як показують криві на рис. 5, у температурному інтервалі 280–460 К зі зростанням температури діелектрична стала (ε) і питома електропровідність (σ) параболічно зростають. Із цього випливає, що, напевно, речовина має частково напівпровідникові властивості, і в той же час – іонну провідність за рахунок переміщення вакансій, зумовлених іонами кисню.

Незважаючи на те, що сполуку $Zn_7Sb_2O_{12}$ вдалось одержати з домішками іншої фази, вивчили її структуру і побудували її структурну модель. Встановлено, що сполука має гранецентровану кубічну структуру, в якій скелет кристалічної ґратки утворюють атоми Оксигену. Атоми Цинку розташовані у тетраедричних та у 2/3 частині октаедричних порожнин, а атоми Стибію містяться у 1/3 октаедричних порожнин (рис. 6). Структуру можна уявити, як систему зі зчленованих тетраедрів [ZnO₄] і октаедрів [ZnO₄] і октаедрів [ZnO₄] (розміри Zn²⁺ і Sb⁵⁺ приблизно збігаються) (рис. 7).

Рис. 6. Елементарна комірка сполуки Zn₇Sb₂O₁₂ (великі білі кулі – атоми Оксигену, малі білі кульки – атоми Стибію, чорні кульки – атоми Цинку)

Відому в літературі сполуку Zn₄Sb₂O₉ при дослідженні системи не виявили.

Висновки. У процесі дослідження фазових рівноваг у системі ZnO-Sb₂O₅ підтвердили існування хімічних сполук ZnSb₂O₆ і Zn₇Sb₂O₁₂. Першу сполуку одержали в чистому стані, а другу – лише у суміші з 10 % домішок. Виконали хімічний аналіз сполуки ZnSb₂O₆, який підтвердив передбачений склад.

Вивчили структуру обох сполук, визначили основні параметри структури та побудували моделі структур.

Сполука ZnSb₂O₆ кристалізується у тетрагональній системі, просторова група P4₂/mnm, параметри елементарної комірки: a = 0,4669(1), c = 0,9310(3) нм; $Z = 2; \rho_{\text{експ.}} = 6,52$ г/см³, $\rho_{o54.} = 6,665$ г/см³.

Структура сполуки Zn₇Sb₂O₁₂ типу шпінелі, має гранецентровану кубічну гратку, просторова

група *Fd*3*m*, параметр елементарної комірки: *a*_{експ.} = 0,8597 нм; *a*_{літ.} = 0,8594 нм. Скелет кристалічної гратки утворюють атоми Оксигену, атоми Цинку розташовані у тетраедричних порожнинах та у 2/3 частині октаедричних порожнин, а атоми Стибію розміщені у 1/3 частині октаедричних порожнин.

Дослідили температурну залежність діелектричної сталої та питомої електропровідності сполуки ZnSb₂O₆ і встановили, що обидва параметри параболічно зростають зі зростанням температури.

Існування відомої в літературі сполуки Zn₄Sb₂O₉ в наших експериментах не підтвердили.

Література

- 1. Clark G. L., Reynolds D. A. The crystal structure of zinc meta-antimonate Zn(SbO₃)₂ // Z. Krist.- 1938.-Bd. 98.- S. 185-190.
- 2. Byström A., Hök B., Mason B. The crystal structure of zinc metaantimonate and similar compounds // Ark. kemi miner. geol.- 1941.- Bd. 15B, №4.- S. 1-8.
- 3. Stähl S. The crystal structure of ZnSb₂O₄ and isomorphous compounds // Ark. kemi miner. geol.- 1943.-Bd. 17B, № 5.– S. 1–7.
- 4. Гедакян Дж. А., Унанян Л. Г. // Материалы 4-го Респ. совещ. по неорган. химии.- Ереван, 1976.-C. 153-155.
- 5. Puebla E. G., Rios E. G., Monge A., Rasines I. Crystal growth and structure of diantimony (III) zinc oxide // Acta Cryst.– 1982.– Vol. 38B, № 7.– P. 2020–2022.
- Милян П. М., Кун Г. В., Семрад О. О. Фазові рівноваги та деякі властивості сполук в системі Zn–Sb–O // Наук. вісн. УжНУ. Сер. "Хімія".– 2005.– Вип. 13–14.– С. 102–105.
 Милян П. М., Семрад Е. Е., Кун А. В. Фазовые равновесия в системе Zn–Sb–O // Конденсированные
- среды и межфазные границы. 2006. Т. 8, № 4. С. 312–314.
- 8. Милян П. М., Семрад О. О., Кун Г. В., Крафчик С. С., Соломон А. М. Фізико-хімічне дослідження сплаву ортостибату (III,V) цинку // Наук. вісн. УжНУ. Серія "Хімія". 2007. Вип. 17–18. С. 202–204.
- 9. Крешков А. П. Основы аналитической химии. Т. 2. М.: Химия, 1970. 456 с.
- 10. Немодрук А. А. Аналитическая химия сурьмы. М.: Наука, 1978. 222 с. 11. Милян П. М., Семрад О. О., Студеняк Я. І., Кун Г. В. Аналіз хімічного складу сплавів та сполук по
 - трійних систем Pb(Hg)-Sb-O // Наук. вісн. УжНУ. Сер. "Хімія". 2006. Вип. 15–16. С. 24–27.

Статтю подано до редколегії 16.09.2008 p.

УДК 536.42:548.3:546.22 (546.56+546.74+546.221+546.23)

О. П. Назарчук – аспірант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

I. I. Мазурець – кандидат хімічних наук, старший викладач кафедри загальної та неорганічної хімії Волинського національний університету імені Лесі Українки; I. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки; Л. Д. Гулай – кандидат хімічних наук, доцент, завідувач кафедри екології Волинського національного університету імені Лесі Українки

Системи Cu₂S(Se)–NiS(Se)–SiS₂(Se) та кристалічна структура сполуки Cu₄NiSi₂S₇

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Рентгенофазовим аналізом встановлено фазові рівноваги в системах Cu₂S-NiS-SiS₂ та Cu₂Se-NiSe-SiSe₂ при 670 К. Побудовано політермічні перерізи Cu₂SiS₃-NiS та Cu₂SiSe₃-NiSe за допомогою рентгенофазового та

© Назарчук О. П., Мазурець І. І., Олексеюк І. Д., Гулай Л. Д., 2008