Науковий вісник Волинського національного університету імені Лесі Українки

УДК 544.344:548.3:546.659:546.666:546.81:546.289:546.23

1. Д. Олексеюк – доктор хімічних наук, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
Л. Д. Гулай – доктор хімічних наук, завідувач кафедри екології та охорони навколишнього середовища Волинського національного університету імені Лесі Українки;
О. В. Марчук – кандидат хімічних наук, доцент кафедри фізичної та колоїдної хімії Волинського національного університету імені Лесі Українки;

Системи Sm(Er)₂Se₃ – PbSe – GeSe₂ при температурі 770 К та структура сполуки Sm_{1.32}Pb_{1.68}Ge_{1.67}Se₇

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

За допомогою рентгенофазового аналізу досліджено взаємодію компонентів у квазіпотрійних системах $Sm_2Se_3 - PbSe - GeSe_2$ і $Er_2Se_3 - PbSe - GeSe_2$ при температурі 770 К. Встановлено існування та вивчено методом порошку кристалічну структуру тетрарної сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (пр. гр. *P*6₃, *a* = 1,04569(4) нм, *c* = 0,66222(5) нм).

Ключові слова: рентгенофазовий аналіз, ізотермічний переріз, кристалічна структура, метод порошку.

<u>Олексеюк И. Д., Гулай Л. Д., Марчук О. В. Системы $Sm(Er)_2Se_3 - PbSe - GeSe_2$ при температуре</u> <u>770 К и структура соединения $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$.</u> С помощью рентгенофазового анализа исследовано взаимодействие компонентов в квазитройных системах $Sm_2Se_3 - PbSe - GeSe_2$ и $Er_2Se_3 - PbSe - GeSe_2$ при температуре 770 К. Установлено существование и изучена методом порошка кристаллическая структура соединения $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (пр. гр. $P6_3$, a = 1,04569(4) нм, c = 0,66222(5) нм).

Ключевые слова: рентгенофазовый анализ, изотермическое сечение, кристаллическая структура, метод порошка.

<u>Olekseyuk I. D., Gulay L. D., Marchuk O. V. Isothermal Sections of the $Sm(Er)_2Se_3 - PbSe - GeSe_2$ Systems</u> <u>at 770 K and Crystal Structure of $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ Compound.</u> The interaction has been studied between the components in quasiternary systems $Sm_2Se_3 - PbSe - GeSe_2$ and $Er_2Se_3 - PbSe - GeSe_2$ at 770 K using X-ray phase methods. Existence has been found and the crystal structure of $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ compound has been examined by means of powder diffraction method (space group $P6_3$, a = 1,04569(4) nm, c = 0,66222(5) nm).

Key words: X-ray phase analysis, isothermal section, crystal structure, powder diffraction.

Постановка наукової проблеми та її значення. Дослідження діаграм фазових рівноваг багатокомпонентних систем, які відображають фізико-хімічну взаємодію компонентів, характер утворення проміжних сполук та межі існування твердих розчинів на їх основі, сприяє створенню перспективних у практичному використанні матеріалів з передбачуваними характеристиками. Наша робота є одним із етапів систематичного вивчення взаємодії компонентів у квазіпотрійних системах $Ln_2X_3 - PbX - D^{IV}X_2$ (Ln – P3M; $D^{IV} - Si$, Ge, Sn; X – S, Se) [1–4] й ін.

Аналіз останніх досліджень із цієї проблеми. Відомості про діаграми фазових рівноваг у РЗМвмісних квазіпотрійних системах та кристалічну структуру складних халькогенідних сполук, що в них утворюються, використовуються як довідковий матеріал у галузі напівпровідникового матеріалознавства та для розширення баз кристалографічних даних і пошуку нових матеріалів. Саме цьому аспекту досліджень присвячено ряд робіт [5–7] і ін.

Формулювання мети та завдань статті. Метою нашої роботи є встановлення фазових рівноваг у квазіпотрійних системах Sm₂Se₃ – PbSe – GeSe₂ і Er₂Se₃ – PbSe – GeSe₂ при температурі 770 К для пошуку нових тетрарних халькогенідних матеріалів і дослідження їх кристалічної структури.

Матеріали і методи. Синтез сплавів квазіпотрійних систем $Sm(Er)_2Se_3 - PbSe - GeSe_2$ проводили з простих речовин із вмістом основного компонента не менше 99,99 ваг. % в електричній муфельній печі з програмним управлінням технологічними процесами МП-30. Максимальна температура синтезу становила 1370 К. Гомогенізуючий відпал при температурі 770 К проводили протягом 500 годин. Рентгенофазовий аналіз здійснювали за дифрактограмами, які були зняті на дифрактометрі ДРОН-4-13 у межах $2\Theta = 10-80^{\circ}$ (СиК_α-випромінювання, крок сканування – 0,05°, експозиція у

[©] Олексеюк І. Д., Гулай Л. Д., Марчук О. В., 2009

кожній точці – 1 с). Обробку даних та визначення кристалічної структури здійснювали за допомогою пакету програм CSD [8].

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. В обмежуючих системах нами підтверджено існування трьох потрійних сполук Er_2PbSe_4 (пр. гр. *Pnma*), Pb₂GeSe₄ (пр. гр. $I\overline{4}$ 3*d*) і Sm₃Ge_{1,25}Se₇ (пр. гр. *P*6₃). Комплекс проведених досліджень дав змогу побудувати ізотермічні перерізи досліджуваних квазіпотрійних систем при температурі 770 К.

Система Sm₂Se₃ – PbSe – GeSe₂. У самарійвмісній системі при температурі відпалу сплавів встановлено існування шести однофазних, десяти двофазних та п'яти трифазних полів (табл. 1).

Таблиця 1

Поле	Фази
1	Sm ₂ Se ₃
2	$Sm_2Se_3 + PbSe$
3	$PbSe + Pb_2GeSe_4$
4	$GeSe_2 + Pb_2GeSe_4$
5	$GeSe_2 + Sm_3Ge_{1,25}Se_7$
6	$Sm_3Ge_{1,25}Se_7 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
7	$PbSe + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
8	$Pb_2GeSe_4 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
9	$GeSe_2 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
10	$\mathbf{Sm}_{2}\mathbf{Se}_{3} + \mathbf{Sm}_{3}\mathbf{Ge}_{1,25}\mathbf{Se}_{7}$
11	$Sm_2Se_3 + Sm_3Ge_{1,25}Se_7 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
12	$Sm_2Se_3 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
13	$PbSe + Sm_2Se_3 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
14	$PbSe + Pb_2GeSe_4 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
15	$GeSe_2 + Pb_2GeSe_4 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$
16	$GeSe_2 + Sm_3Ge_{1,25}Se_7 + Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$

Фазові поля в системі Sm₂Se₃ – PbSe – GeSe₂ при 770 К

Розчинність на основі вихідних компонентів квазіпотрійної системи (рис. 1) є незначною ($\approx 1-2$ мол. % відповідного компонента). Найбільша розчинність спостерігається на основі бінарної сполуки Sm₂Se₃. Твердий розчин локалізований уздовж квазібінарної системи Sm₂Se₃ – PbSe і сягає складу 50 мол. % PbSe (рис. 2).

Рис. 1. *Ізотермічний переріз системи* Sm₂Se₃ – PbSe – GeSe₂ при температурі 770 К

Система Er₂Se₃ – PbSe – GeSe₂. В ербійвмісній системі при температурі відпалу сплавів існує п'ять однофазних, сім двофазних та три трифазних поля (табл. 2).

Таблиця 2

Поле	Фази		
1	$Er_2Se_3 + Er_2PbSe_4$		
2	$Er_2PbSe_4 + PbSe$		
3	$PbSe + Pb_2GeSe_4$		
4	$Pb_2GeSe_4 + GeSe_2$		
5	$Er_2Se_3 + GeSe_2$		
6	$Er_2Se_3 + Pb_2GeSe_4$		
7	$Pb_2GeSe_4 + Er_2PbSe_4$		
8	$PbSe + Er_2PbSe_4 + Pb_2GeSe_4$		
9	$Er_2Se_3 + Er_2PbSe_4 + Pb_2GeSe_4$		
10	$Er_2Se_3 + Pb_2GeSe_4 + GeSe_2$		

Фазові поля в системі Er₂Se₃ – PbSe – GeSe₂ при 770 К

Розчинність на основі вихідних компонентів квазіпотрійної системи є також незначною ($\approx 1-2$ мол. % відповідного компонента) (рис. 3).

Кристалічна структура сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$. Згідно з літературними даними [9], у системі $Y_2Se_3 - PbSe - GeSe_2$ утворюється тетрарна сполука $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (власний структурний тип, пр. гр. $P6_3$, a = 1,0394(1) нм, c = 0,66361(5) нм). Нами синтезовано сплав, компонентний вміст якого відповідав складу $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ та вивчено його кристалічну структуру методом порошку. Вивчення кристалічної структури отриманого сплаву проводилося з використанням програми CSD [8]. У табл. З наведено умови рентгенівського експерименту та кристалографічні параметри сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$.

Таблиця З

Результати дослідження кристалічної структури сполуки Sm_{1,32}Pb_{1.68}Ge_{1.67}Se₇

Просторова група	<i>P</i> 6 ₃
	a = 1,04569(4) нм
Параметри компрки	c = 0,66222(5) HM
Об'єм комірки	0,6271(1) нм ³
Обрахована густина	$6,462(1) \mathrm{r/cm}^3$
Випромінювання і довжина хвилі	Си 0,154178 нм
Дифрактометр	ДРОН-4-13
Спосіб обрахунку	Повнопрофільний
Число формульних одиниць	2
Програма для обрахунку	CSD
R_I, R_P	0,0964; 0,2044
Вісь текстури і параметр	[1 1 0] 0,53(3)

Аналіз індексів hkl рефлексів та їх інтенсивностей вказав на можливу приналежність структури сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ до структурного типу $Y_{1,32}Pb_{1,68}Ge_{1,67}Se_7$. Уточнення координат та ізотропних теплових параметрів атомів (табл. 4) у цій моделі привело до задовільних значень фактору розбіжності. Експериментальна, розрахована та різницева між ними дифрактограми сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ при цих параметрах атомів наведена на рис. 4.

Таблиця 4

Ізотропні теплові параметри атомів сполуки Sm1,32Pb1.68Ge1.67Se7

Атом	x/a	y/b	z/c	$B_{i_{30}} \times 10^2 \text{ mm}^2$
M^*	0,3806(3)	0,11574(2)	0,452(6)	1,09(6)
Gel	1/3	2/3	0,0365(4)	0,4(4)
Ge2**	0	0	0	0,9(5)
Se1	0,8930(6)	0,1446(6)	0,021(4)	0,4(2)
Se2	0,5271(7)	0,4399(6)	0,734(4)	5,2(6)
Se3	1/3	2/3	0,730(4)	1,6(3)

Рис. 4. Експериментальна і розрахована дифрактограми сполуки Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇ та різницева між ними

Міжатомні відстані та координаційні числа атомів M(Sm + Pb), Ge1 та Ge2 в структурі сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ наведено в табл. 5. Міжатомні відстані добре узгоджуються із сумами відповідних іонних радіусів [10].

Таблиця 5

Міжатомні відстані d (нм) і координаційні числа (к. ч.) атомів М та Ge у структурі сполуки Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇

	Атоми	<i>d</i> , нм	К. ч.
М	– 1Se3	0,300(2)	7
	– 1Se2	0,299(2)	
	– 1Se1	0,3055(8)	
	– 1Se1	0,309(3)	
	– 1Se1	0,3115(9)	
	– 1Se2	0,317(2)	
	– 1Se2	0,325(2)	
Ge1	– 1Se3	0,241(4)	4
	– 3Se2	0,2398(1)	
Ge2	– 3Se1	0,2291	3

Елементарну комірку сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ і координаційні многогранники атомів у структурі цієї сполуки показано на рис. 5.

Рис. 5. Елементарна комірка тетрарної сполуки Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇ та координаційні многогранники атомів

Рис. 6. Укладка центрованих атомами M (Sm + Pb), Ge1 та Ge2 многогранників у структурі сполуки Sm_{1,32}Pb_{1,68}Ge_{1,67}Se₇

Для атомів статистичної суміші M(Sm + Pb)многогранниками є тригональні призми з одним додатковим атомом. Атоми Gel і Ge2 мають тетраедричне і трикутне оточення відповідно; атоми Sel оточені тетраедрами, центрованими ззовні, атоми Se2 і Se3 – тетраедрами. Укладку центрованих атомами M(Sm + Pb), Gel та Ge2 многогранників у структурі сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ показано на рис. 6. Три тригональні призми, центровані атомами M, формують блок. Центровані атомами Ge2 трикутники розташовані в цих блоках. У той же час тетраедри, центровані атомами Ge1, розміщені в кільцях із шести тригональних призм.

Висновки й перспективи подальших досліджень. У роботі досліджено взаємодію компонентів

у квазіпотрійних системах $Sm_2Se_3 - PbSe - GeSe_2$ та $Er_2Se_3 - PbSe - GeSe_2$ при температурі 770 К. В ербійвмісній системі встановлено існування та вивчено методом порошку кристалічну структуру тетрарної сполуки $Sm_{1,32}Pb_{1,68}Ge_{1,67}Se_7$ (пр. гр. $P6_3$, a = 1,04569(4) нм, c = 0,66222(5) нм).

Подальші дослідження стосуватимуться аналізу взаємодії компонентів у квазіпотрійних системах $Ln_2X_3 - PbX - D^{IV}X_2$ (Ln – P3M; $D^{IV} - Si$, Ge, Sn; X – S, Se) і встановлення закономірностей у характері утворення тетрарних сполук.

Література

- 1. Investigation of the Y_2S_3 PbS SnS₂ system at 770 K / [O. V. Marchuk, I. P. Ruda, L. D. Gulay, I. D. Olekseyuk] // Polish J. Chem. 2007. Vol. 81. P. 425–432.
- Crystal structures of the R₂Pb₃Sn₃S₁₂ (R La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er and Tm) compounds / [L. D. Gulay, I. P. Ruda, O. V. Marchuk, I. D. Olekseyuk] // J. Alloys and compounds. – 2008. – Vol. 457. – P. 204–208.
- Фазові рівноваги в системах Y₂S(Se)₃ PbS(Se) SiS(Se)₂ при 770 К / [О. В. Марчук, І. П. Руда, Л. Д. Гулай, І. Д. Олексеюк] // Наук. вісн. ВНУ ім. Лесі Українки. 2008. № 13. С. 24–27.
- Gulay L. D. Crystal structures of the R₃CuSnSe₇ (R La, Ce, Pr, Nd, Sm, Gd, Tb and Dy) compounds / L. D. Gulay, I. D. Olekseyuk // J. Alloys Comp. – 2005. – Vol. 388. – P. 274–278.
- Crystal structures of the Y₃CuSiS₇ and Y₃CuSiSe₇ compounds / [L. D. Gulay, O. S. Lychmanyuk, J. Stępień-Damm and others] // J. Alloys Comp. 2005. Vol. 402. P. 201–203.
- The crystal structures of R₃CuSnS₇ (R = La Nd, Sm, Gd Ho) / [L. D. Gulay, I. D. Olekseyuk, M. Wołcyrz, J. Stępień-Damm] // Z. Anorg. Allg. Chem. 2005. Vol. 631. P. 1919–1923.
- Crystal structures of the compounds R₃CuSiS₇ (R = Ce, Pr, Nd, Sm, Tb, Dy and Er) and R₃CuSiSe₇ (R = La, Ce, Pr, Nd, Sm, Gd, Tb and Dy) / [L. D. Gulay, O. S. Lychmanyuk, I. D. Olekseyuk and others] // J. Alloys Comp. 2007. Vol. 431. P. 185–190.
- CSD-Universal program package for single crystal and powder structure data treatment / [L. G. Aksel'rud, Yu. N. Grin', P. Yu. Zavalii and others] // Collected Abstracts 12th European Crystallogr. Meet., Moscow, USSR, 20–28 August. – 1989. – Vol. 3. – P. 155.
- Кристалічна структура сполуки Y_{1,32}Pb_{1,68}Ge_{1,67}Se₇: матеріали I Міжнар. наук.-практ. конф. ["Європейська наука XXI століття: стратегія і перспективи розвитку – 2006"], Дніпропетровськ, 22–31 трав. 2006 р., т. 15. – Д.: Наука і освіта, 2006. – 50 с.
- Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / Shannon R. D. // Acta Cryst. – 1976. – Vol. 39. – P. 751–767.

Адреса для листування: 43001, Луцьк, вул. Кравчука, 704/36. <u>Тел.</u> 4-84-27. Статтю подано до редколегії 10.12.2009 р.