brought to you by CORE

РОЗДІЛ І. Неорганічна хімія. 29, 2009

УДК 546.221.1

Л. Д. Гулай – доктор хімічних наук, завідувач кафедри екології та охорони навколишнього середовища Волинського національного університету імені Лесі Українки; **О. С. Личманюк** – кандидат хімічних наук, старший

викладач кафедри екології та охорони навколишнього середовища Волинського національного університету імені Лесі Українки

Дослідження систем Sm₂S₃-Cu₂S-SiS₂ та Er₂S₃-Cu₂S-GeS₂ при 870 К

Роботу виконано на кафедрі екології та охорони навколишнього середовища ВНУ ім. Лесі Українки

Рентгенівським методом порошку досліджено системи Sm_2S_3 - Cu_2S - SiS_2 , Er_2S_3 - Cu_2S - GeS_2 та побудовано їх ізотермічні перерізи при 870 К. Підтверджено існування тернарних сполук на обмежуючих сторонах при 870 К. У системі Sm_2S_3 - SiS_2 встановлено існування нової сполуки $Sm_3Si_{1,25}S_7$ (структурний тип $Dy_3Ge_{1,25}S_7$, просторова група $P6_3$, a = 0.99558(4) нм, c = 0.57069(4) нм). Підтверджено існування тетрарних сполук Sm_3CuSiS_7 та Er_3CuGeS_7 у досліджених системах.

Ключові слова: халькогеніди, сполуки Sm, сполуки Er, сполуки Cu, сполуки Si, сполуки Ge, сполуки S, ізотермічний переріз, кристалічна структура, рентгенівський метод порошку.

<u>Гулай Л. Д., Личманюк О. С. Исследование систем Sm₂S₃–Cu₂S–SiS₂ и Er₂S₃–Cu₂S–GeS₂ при 870 К. Рентгеновским методом порошка исследованы системы Sm₂S₃–Cu₂S–SiS₂, Er₂S₃–Cu₂S–GeS₂ и построены их изотермические сечения при 870 К. Подтверждено существование тернарных соединений на ограничивающих сторонах при 870 К. В системе Sm₂S₃–SiS₂ определено существование нового соединения Sm₃Si_{1,25}S₇ (структурный тип Dy₃Ge_{1,25}S₇, пространственная группа $P6_3$, a = 0.99558(4) нм, c = 0.57069(4) нм). Подтверждено существование тетрарных системах.</u>

Ключевые слова: халькогениды, соединения Sm, соединения Er, соединения Cu, соединения Si, соединения Ge, соединения S, изотермическое сечение, кристаллическая структура, рентгеновский метод порошка.

<u>Gulay L. D., Lychmanyuk O. S. Investigation of the Sm₂S₃-Cu₂S-SiS₂ and Er₂S₃-Cu₂S-GeS₂ Systems at 870 K. The Sm₂S₃-Cu₂S-SiS₂ and Er₂S₃-Cu₂S-GeS₂ systems at 870 K were investigated using X-ray powder diffraction. Isothermal sections of these systems at 870 K were constructed. The existence of ternary compounds on the bound sides was confirmed. The formation of new Sm₃Si_{1,25}S₇ compound (Dy₃Ge_{1,25}S₇ structure type, space group *P*6₃, a = 0.99558(4) nm, c = 0.57069(4) nm) was established in the Sm₂S₃-SiS₂ system. The existence of quaternary Sm₃CuSiS₇ and Er₃CuGeS₇ compounds was confirmed.</u>

Key words: chalcogenides, Sm compounds, Er compounds, Cu compounds, Si compounds, Ge compounds, S compounds, isothermal section, crystal structure, X-ray powder diffraction.

Постановка наукової проблеми та її значення. Одержання більш складних сполук, таких як тернарні, тетрарні, стало основним напрямом у сучасному матеріалознавстві [1]. Серед багатокомпонентних систем важливе місце належить складним халькогенідам рідкісноземельних металів, які мають різноманітні фізичні властивості. Рідкісноземельні сульфідні матеріали викликають певний інтерес протягом останніх років своїми термічними, електричними й оптичними властивостями. Тому дослідження фазових взаємодій у таких системах, а також синтез і вивчення кристалічних структур нових сполук є важливим кроком пошуку нових матеріалів.

Аналіз останніх досліджень. У літературі існують відомості про існування двох модифікацій сполуки Sm₂S₃. Кристалічну структуру низькотемпературної модифікації Sm₂S₃ (структурний тип La₂S₃, просторова група *Pnma*, a = 0,766 нм, b = 0,422 нм, c = 1,595 нм) вивчено в роботі [2]. Високотемпературна модифікація кристалізується в кубічній сингонії (структурний тип Th₃P₄, просторова група $I\bar{4}$ 3*d*, a = 0,8429 нм) [3].

Сполука Er_2S_3 кристалізується в моноклінній сингонії (структурний тип Ho₂S₃, просторова група $P2_1/m$, a = 1,74417 нм, b = 0,39822 нм, c = 1,01013 нм, $b = 98,688^\circ$) [4].

У літературі є відомості про існування декількох фаз зі складом, близьким до Cu₂S. Кристалічну структуру Cu₃₁S₁₆ (структурний тип Cu₃₁S₁₆, просторова група $P2_1/n$, a = 2,6897 нм, b = 1,5745 нм,

[©]Гулай Л. Д., Личманюк О. С., 2009

c = 1,3565 нм, $b = 90,13^{\circ}$) досліджено в роботі [5]. Низькотемпературний халькоцит Cu₂S (власний структурний тип, просторова група $P2_{1/c}$, a = 1,5246 нм, b = 1,1884 нм, c = 1,3494 нм, $b = 116,35^{\circ}$) також досліджено в роботі [5]. Високотемпературний халькоцит Cu₂S (власний структурний тип, просторова група $P6_{3/mmc}$, a = 0,389 нм, c = 0,688 нм) досліджено в роботі [6]. Кубічна елементарна комірка виявлена для високотемпературного Cu_{1,8}S (структурний тип Cu₂Se, просторова група $Fm \overline{3}m$, a = 0,5564 нм) [7]. Кристалічну структуру сполуки Cu₇S₄ (структурний тип Cu₇S₄, просторова група Pnma, a = 0,789 нм, b = 0,784 нм, c = 1,101 нм) досліджено в роботі [8].

Сполука SiS₂ кристалізується в ромбічній сингонії (просторова група *Ibam*) з параметрами комірки: a = 0,9545 нм, b = 0,5564 нм, c = 0,5552 нм [9].

Відомо дві модифікації GeS₂. Кристалічну структуру низькотемпературної модифікації (структурний тип GeS₂, просторова група *Pc*, a = 0,6875 нм, b = 2,255 нм, c = 0,6809 нм, $b = 120,45^{\circ}$) досліджено в роботі [10]. Високотемпературна модифікація кристалізується також у моноклінній сингонії (структурний тип GeS₂, просторова група *P*2₁/*c*, a = 0,6720 нм, b = 1,6101 нм, c = 1,1436 нм, $b = 90,88^{\circ}$) [11].

У системі Sm₂S₃–Cu₂S утворюються сполуки SmCuS₂ (структурний тип LaCuS₂, прострова група $P2_{1/c}$, a = 0,64724 нм, b = 0,71085 нм, c = 0,67809 нм, $b = 98,403^{\circ}$) [12] та Sm₂₃Cu₂S₂ (структурний тип Er₂₃Cu₂S₂, просторова група $P\overline{3}$, a = 0,393 нм, c = 0,647 нм) [13].

У системі Sm₂S₃–SiS₂ існують сполуки Sm₄Si₃S₁₂ та Sm₆Si₄S₁₇. Кристалічну структуру сполуки Sm₄Si₃S₁₂ (структурний тип La₄Ge₃S₁₂, просторова група *R*3*c*, a = 0,975 нм, c = 0,570 нм) досліджено в роботі [1]. Кристалічну структуру сполуки Sm₆Si₄S₁₇ (структурний тип Ce₆Si₄S₁₇, просторова група $P\overline{1}$, a = 0,88300 нм, b = 0,9779 нм, c = 1,4047 нм, $a = 82,126^{\circ}$, $b = 87,338^{\circ}$, $g = 89,018^{\circ}$) вивчено в роботі [14].

Сполука Cu₈SiS₆ кристалізується в ромбічній сингонії (структурний тип b¢Ag₈GeSe₆, просторова група $Pmn2_1$) із параметрами комірки a = 0,69928 нм, b = 0,69000 нм, c = 0,97723 нм [15]. Сполуку Cu₂SiS₃ (структурний тип Cu₂SnS₃, просторова група Cc, a = 0,6332 нм, b = 1,1230 нм, c = 0,6273 нм, $b = 107,49^{\circ}$) досліджено в роботі [16].

Система Er₂S₃–Cu₂S на предмет існування сполук детально вивчалась у роботі [17]. Сполука ErCuS₂ кристалізується в структурному типі YCuS₂ (просторова група $P2_12_12_1$) з параметрами комірки: a = 0,62565 нм, b = 1,32973 нм, c = 0,39474 нм. У системі існує твердий розчин Er_{(2+x)/3}Cu_{2-x}S₂ ($0 \le x \le 0,58$, a = 0,38825-0,38929 нм, c = 0,63044-0,62260 нм) зі структурою типу Er_{2/3}Cu₂S₂ (просторова група $P\overline{3}$) [17]. У цій системі виявлено існування сполуки складу ErCu₅S₄ [18]. Вона кристалізується в гексагональній сингонії з параметрами комірки: a = 1,163 нм, c = 0,644 нм.

Літературних відомостей про існування сполук у системі Er₂S₃-GeS₂ не виявлено.

У системі Cu₂S-GeS₂ утворюються сполуки Cu₈GeS₆ (структурний тип *b*'-Ag₈GeSe₆, просторова група $Pmn2_1$, a = 0,70445 нм, b = 0,69661 нм, c = 0,98699 нм) [19], Cu₄GeS₄ (структурний тип Cu₄GeS₄, просторова група $P2_1/c$, a = 0,9790 нм, b = 1,3205 нм, c = 0,9942 нм, $b = 100,90^\circ$) [20], Cu₂GeS₃ (структурний тип Cu₂SnS₃, просторова група Cc, a = 0,6449 нм, b = 1,1319 нм, c = 0,6428 нм, $b = 108,37^\circ$) [21].

Кристалічну структуру тетрарної сполуки Sm₃CuSiS₇ (структурний тип La₃CuSiS₇, просторова група $P6_3$, a = 0,9854 нм, c = 0,5656 нм) досліджено в роботі [22].

Кристалічну структуру тетрарної сполуки Er_3CuGeS_7 (структурний тип La_3CuSiS_7 , просторова група $P6_3$, a = 0,9854 нм, c = 0,5656 нм) вивчено в роботі [23].

Метою та завданням дослідження є проведення фазового аналізу систем Sm_2S_3 -Cu₂S-SiS₂, Er₂S₃-Cu₂S-GeS₂ при 870 K, побудова відповідних ізотермічних перерізів, дослідження кристалічної структури нової сполуки $Sm_3Si_{1,25}S_7$.

Матеріали та методи. Для дослідження систем Sm₂S₃–Cu₂S–SiS₂ та Er_2S_3 –Cu₂S–GeS₂ при 870 К синтезовано 39 та 30 зразків відповідно. Розраховані кількості компонентів були запаяні у вакуумовані кварцові ампули. Синтез проводився в печі шахтного типу. Ампули з наважками елементів нагрівали до максимальної температури 1420 К зі швидкістю 30 К/год і витримували 3 год. Далі їх охолоджували зі швидкістю 10 К/год до температури 870 К і проводили відпал протягом 240 год. Після відпалу ампули загартували в холодній воді.

30

Дослідження систем Sm₂S₃–Cu₂S–SiS₂ та Er₂S₃–Cu₂S–GeS₂ при 870 К проводилося рентгенівським методом порошку з використанням дифрактометра DRON-4-13 (CuK_{α}-випромінювання). Дифрактограми зразків отримували в інтервалі 10° $\leq 2\Theta \leq 80°$ з кроком зйомки 0,05°, час відліку в точці 1 с.

Для дослідження кристалічної структури сполуки Sm₃Si_{1,25}S₇ одержано масив експериментальних інтенсивностей зразка відповідного складу. Зйомка відбувалася на дифрактометрі DRON-4-13 (СиК_{α}-випромінювання, інтервал зйомки 10° $\leq 2\Theta \leq 100^\circ$, крок зйомки 0,05°, час відліку в точці 20 с).

Усі обчислення, пов'язані з розшифруванням і уточненням кристалічної структури сполуки Sm₃Si_{1,25}S₇, проводилися з використанням комплексу програм CSD [24].

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження

Система Sm_2S_3 – Cu_2S . У системі Sm_2S_3 – Cu_2S підтверджено існування сполуки $SmCuS_2$ (структурний тип LaCuS₂, просторова група $P2_1/c$). Утворення сполуки складу $Sm_{2/3}Cu_2S_2$ не виявлено.

Система Sm_2S_3 -SiS₂. *Кристалічна структура сполуки* $Sm_3Si_{1,25}S_7$. У системі Sm_2S_3 -SiS₂ підтверджено існування сполук $Sm_6Si_4S_{17}$, $Sm_4Si_3S_{12}$ та виявлено існування нової сполуки складу $Sm_3Si_{1,25}S_7$.

Визначення кристалічної структури Sm₃Si_{1,25}S₇ проводилося рентгенівським методом порошку. Дифрактограма сполуки проіндексована в гексагональній сингонії з параметрами комірок, наведеними в табл. 1. Склад зразків, інтенсивності рефлексів і обраховані параметри комірки доводять, що сполука Sm₃Si_{1,25}S₇ є ізоструктурною з Dy₃Ge_{1,25}S₇ (просторова група P6₃) [1].

Таблиця 1

Результати структурних досліджень сполуки Sm₃Si_{1.25}S₇

Емпірична формула	$Sm_3Si_{1,25}S_7$
Формульна маса	710,73
Просторова група	<i>P</i> 6 ₃ (№ 173)
Параметри комірки (нм)	a = 0,99558(4), c = 0,57069(4)
Об'єм комірки (нм ³)	0,48988(7)
Кількість формульних одиниць	2
Обрахована густина (г/см ³)	4,816
Метод обрахунку	Повнопрофільний
R_{I} , R_{P}	0,0968 0,1953
Вісь текстури та параметр	[1 1 0] та 0,79(3)

Результати визначення кристалічної структури сполуки наведено в табл. 1, а координати атомів і температурні фактори – в табл. 2.

Таблиця 2

Атом	ПСТ	x/a	y/b	z/c	Заповнення	$B_{iso.}$ 10 ² , HM ²
Sm	6с	0,2289(2)	0,3567(2)	0,774(1)	1,00	0,5
Si1	2a	0	0	0,91(1)	0,25	0,5
Si2	2b	1/3	2/3	0,333*	1,00	0,5
S 1	2b	1/3	2/3	0,978(3)	1,00	0,5
S2	6с	0,9147(8)	0,1623(8)	0,760(3)	1,00	0,5
S3	6с	0,4278(9)	0,901(1)	0,506(2)	1,00	0,5

Координати атомів та температурні фактори для сполуки Sm₃Si_{1,25}S₇

* зафіксоване.

Елементарна комірка та координаційні многогранники атомів Sm (a), Si1 (б), Si2 (в), S1 (г), S2 (д) та S3 (е) у структурі сполуки Sm₃Si_{1,25}S₇ зображено на рис. 1. Атоми Sm оточені атомами S, які формують деформовані тригональні призми. Атоми Si1 розміщені практично в центрах октаедрів. Для атомів Si2, S1 та S3 існує тетраедрична координація. П'ять атомів оточують кожний атом S2.

Рис. 1. Елементарна комірка та координаційні многогранники атомів у структурі сполуки $Sm_3Si_{1,25}S_7$

Розраховані міжатомні відстані *d* та координаційні числа (К. Ч.) атомів у структурі сполуки Sm₃Si_{1,25}S₇ наведено в табл. З. Міжатомні відстані узгоджуються із сумами відповідних радіусів іонів [25]. *Таблиця З*

Атом		<i>d</i> , нм	К. Ч.	
Sm	-1S2	0,2735(9)		
	-1S2	0,2802(8)		
	-1 S 2	0,293(2)	6	
	-1S3	0,276(1)	0	
	-1S1	0,2956(7)		
	-1S3	0,299(1)		
Si1	-3S2	0,234(3)	Ę	
	-3S2	0,293(5)	0	
0:0	-1S1	0,2027		
512	-3\$3	0,2261	4	
S 1	-1Si2	0,2027	1	
51	-3Sm	0,2956(7)	4	
S2	-1Si1	0,234(3)		
	-1Si1	0,293(5)		
	-1Sm	0,2735(9)	5	
	-1Sm	0,2802(8)		
	-1Sm	0,293(2)		
	-1Si2	0,2261		
52	-1Sm	0,276(1)	4	
55	-1Sm	0,299(1)	4	
	-1Sm	0,301(1)		

Міжатомні відстані (d, нм) та координаційні числя	а (К. Ч.	.) атомів у	структурі сполуки	Sm ₃ Si _{1,25} S ₇
---	----------	-------------	-------------------	---

Система Cu_2S -SiS₂. У системі Cu_2S -SiS₂ підтверджено існування сполук Cu_8SiS_6 (структурний тип β' -Ag₈GeSe₆, просторова група $Pmn2_1$) та Cu_2SiS_3 (структурний тип Cu_2SnS_3 , просторова група Cc).

*Система Er*₂*S*₃*–Си*₂*S*. У системі Er₂*S*₃*–*Cu₂*S* існують сполуки ErCuS₂ (структурний тип YCuS₂, просторова група P2₁2₁2₁), ErCu₅*S*₄ (кристалізується в гексагональній сингонії) та твердий розчин $Er_{(2+x)/3}Cu_{2-x}S_2$ ($0 \le x \le 0.58$) зі структурою типу $Er_{2/3}Cu_2S_2$ (просторова група $P\overline{3}$).

Система Er_2S_3 -GeS₂. У системі Er_2S_3 -GeS₂ існування сполук не виявлено.

*Система Си*₂*S*–*GeS*₂. У системі Cu₂*S*–GeS₂ підтверджено утворення сполук Cu₈GeS₆ (структурний тип β' -Ag₈GeSe₆, просторова група *Pmn*2₁), Cu₄GeS₄ (структурний тип Cu₄GeS₄, просторова група *P*2₁/*c*) та Cu₂GeS₃ (структурний тип Cu₂SnS₃, просторова група *Cc*).

Дослідження системи Sm_2S_3 - Cu_2S - SiS_2 . Результати фазового аналізу одержаних зразків системи Sm_2S_3 - Cu_2S - SiS_2 при 870 К зображено на рис. 2. У системі утворюється тетрарна сполука Sm_3CuSiS_7 (структурний тип La_3CuSiS_7 , просторова група $P6_3$), кристалічна структура якої досліджена в роботі [22].

Рис. 2. *Ізотермічний переріз діаграми стану системи Sm*₂*S*₃*–Cu*₂*S–SiS*₂ *при 870 К*

Дослідження системи Er_2S_3 - Cu_2S - GeS_2 . За результатами фазового аналізу зразків системи Er_2S_3 - Cu_2S - GeS_2 побудовано ізотермічний переріз при 870 К (рис. 3). У системі існує тетрарна сполука Er_3CuGeS_7 (структурний тип La_3CuSiS_7 , просторова група $P6_3$), кристалічна структура якої вивчена в роботі [23].

Рис. 3. Ізотермічний переріз діаграми стану системи Er₂S₃-Cu₂S-GeS₂ при 870 К

Висновки і перспективи подальших досліджень. У результаті досліджень побудовано ізотермічні перерізи діаграм стану систем Sm_2S_3 - Cu_2S - SiS_2 та Er_2S_3 - Cu_2S - GeS_2 при 870 К. У цих системах підтверджено існування двох тетрарних сполук складу Sm_3CuSiS_7 та Er_3CuGeS_7 . У роботі досліджено також кристалічну структуру нової сполуки $Sm_3Si_{1,25}S_7$, яка утворюється в системі Sm_2S_3 - SiS_2 .

Квазіпотрійні системи R_2X_3 -Cu₂X-ZX₂ (R – P3M; Z – Si, Ge; X – S, Se) на предмет існування тетрарних сполук досліджено повністю. У системах утворюються сполуки складу R_3 CuZS₇ (R – Y, La – Nd, Sm, Gd – Er; Z – Si, Ge) та R_3 CuZSe₇ (R – Y, La – Nd, Sm, Gd – Ho; Z – Si, Ge), кристалічна структура яких є визначеною. Тому для цих систем надалі роботу слід спрямувати на вивчення фізичних властивостей указаних сполук, зокрема оптичних та магнітних.

Квазіподвійні системи R₂X₃–ZX₂ (R – P3M; Z – Si, Ge; X – S, Se) вивчено нами на предмет існування окремих тернарних сполук. Кристалічні структури повністю визначено лише для деяких сполук. Тому в цих системах насамперед варто дослідити існування або підтвердити відомі з літературних джерел відомості про існування сполук. Наступним етапом буде детальне вивчення кристалічної структури сполук, які утворюються у вказаних квазіподвійних системах.

Література

- Eliseev A. A. Handbook on the physics and chemistry of rare earths. Phase equilibrium and crystal chemistry in rare earth ternary systems with chalcogenide elements / A. A. Eliseev, G. M. Kuzmichyeva // Elsevier Science Publishers B. V. – 1990. – Vol. 13. Ch. 89. – P. 191–281.
- Lissner F. Ueber Sulfide und Oxidsulfide des Samariums / F. Lissner, T. Schleid // Z. Naturforsch. 1992. B. 47. – P. 1614–1620.
- Определение кристаллических структур γ-La₂S₃ и γ-Sm₂S₃. Соотношение структур Th₃P₄ и циркона / Н. В. Подберезская, Н. В. Кожемяк, Л. Г. Голубева и др. // Журн. структ. химии. – 1979. – Т. 20. – С. 1092–1095.
- 4. Schleid T. Einkristalle von A-Nd₂S₃, U-Ho₂S₃, D-Er₂S₃ und E-Lu₂S₃ durch Oxidation reduzierter Chloride der Lanthanide mit Schwefel / T. Schleid, F. Lissner // Z. Anorg. Allg. Chem. 1992. Vol. 615. P. 19–26.
- Evans H. T. The crystal structures of low chalcocite and djurleite / H. T. Evans // Z. Kristallogr. 1979. Vol. 150. – P. 299–320.
- Buerger M. J. Distributon of the atoms in high chalcolite, Cu₂S / M. J. Buerger, B. J. Wuensch // Science. 1963. – Vol. 141. – P. 276–277.
- Yamamoto K. X-Ray Study of the Average Structures of Cu₂Se and Cu_{1.8}S in the Room Temperature and the High Temperature Phases / K. Yamamoto, S. Kashida // J. Solid State Chem. – 1991. – Vol. 93. – P. 202–211.
- 8. Koto K. The crystal structure of Anilite / K. Koto, N. Morimoto // Acta Cryst. 1970. Vol. B26. P. 915-924.
- Peters J. Silicon disulphide and silicon diselenide : a reinvestigation / J. Peters, B. Krebs // Acta Cryst. 1982. Vol. B38. – P. 1270.
- 10. Dittmar G. Die Kristallstruktur von L.T.–GeS₂ / G. Dittmar, H. Schäfer // Acta Cryst. 1976. Vol. 32. P. 1188.
- 11. Dittmar G. Die Kristallstruktur von H.T.–GeS₂ / G. Dittmar, H. Schäfer // Acta Cryst. 1975. Vol. 31. P. 2060.
- Strobel S. Münzmetall-Lanthanid-Chalkogenide : I. Kupfer(I)-Lanthanid(III)-Sulfide der Zusammensetzung CuMS₂ (M = La – Nd, Sm, Gd, Tb) im monoklinen A-Typ / S. Strobel, P. Lauxmann, Th. Schleid // Z. Naturforsch. – 2005. – Vol. 60b. – P. 917–923.
- 13. Андреев О. В. Фазовые равновесия в системе Cu-Sm-S / О. В. Андреев // Журн. неорган. химии. 1989. Т. 34. С. 1603–1609.
- 14. The crystal structure of the $R_6Si_4S_{17}$ (R = Pr, Nd and Sm) compounds / L. D. Gulay, M. Daszkiewicz, O. S. Lychmanyuk, A. Pietraszko // J. Alloys Comp. 2008. Vol. 453. P. 197–202.
- Levalois M. Structure du Sulfure de Cuivre et de Silicium Cu₈SiS₆ / M. Levalois, G. Allais // Acta Cryst. 1981. – Vol. 37. – P. 1816.
- 16. Synthesis, structure, and electronic properties of Cu₂SiQ₃ (Q = S, Se) / X.-A. Chen, H. Wada, A. Sato, H. No-zaki // J. Alloys Comp. 1999. Vol. 290. P. 91.
- 17. Investigation of the R₂S₃–Cu₂S–PbS (R = Y, Dy, Ho and Er) systems / L. D. Gulay, V. Ya. Shemet, I. D. Olekseyuk et al // J. Alloys Comp. 2007. Vol. 431. P. 77–84.
- 18. Тройные соединения типа A₅^IB^{III}C₄^{VI} / П. Г. Рустамов, О. М. Алиев, Г. Г. Гусейнов и др. // Изв. АН СССР. Неорган. материалы. 1976. Т. 12. С. 1192–1195.
- Multiple-twinned crystal of the room-temperature phase of Cu₈GeS₆ / M. Onoda, X.-A. Chen, K. Kato et al // Acta Cryst. – 1999. – B 55. – P. 721.

- 20. Preparation, electrical properties, crystal structure, and electronic structure of Cu₄GeS₄ / X-A. Chen, M. Onoda, H. Wada et al // J. Solid State Chem. 1999. Vol. 145. P. 204.
- 21. Synthesis and single-crystal structural study of Cu_2GeS_3 / L. M. De Chalbaud, G. Diaz de Delgado, J. M. Delgado et al // Mater. Res. Bull. 1997. Vol. 32. P. 1371.
- 22. Crystal structures of the compounds R₃CuSiS₇ (R = Ce, Pr, Nd, Sm, Tb, Dy and Er) and R₃CuSiSe₇ (R = La, Ce, Pr, Nd, Sm, Gd, Tb and Dy) / L. D. Gulay, O. S. Lychmanyuk, I. D. Olekseyuk et al // J. Alloys Comp. 2007. Vol. 431. P. 185–190.
- 23. The crystal structures of R_3CuGeS_7 (R = Ce Nd, Sm, Gd Dy and Er) / L. D. Gulay, O. S. Lychmanyuk, M. Wołcyrz et al // J. Alloys Comp. 2006. Vol. 425. P. 159–163.
- 24. Collected Abstr. 12th Eur. Crystallographic Meet. / L. G. Aksel'rud, Yu. N. Grin', P. Yu. Zavalij et al // Izv. Acad. Nauk SSSR. 1989. Vol. 3. P. 155.
- 25. Wiberg N. Lehrbuch der Anorganischen Chemie / Wiberg N. Berlin : Walter de Gruyter, 1995. P. 1838-1841.

Статтю подано до редколегії 24.12.2009 р.