Науковий вісник Волинського національного університету імені Лесі Українки

УДК 748.736.4

Р. О. Демчина – кандидат хімічних наук, доцент кафедри хімії Національного лісотехнічного університету України; М. Ф. Федина - кандидат хімічних наук, доцент кафедри хімії Національного лісотехнічного університету України; С. В. Орищин - кандидат хімічних наук, доцент кафедри аналітичної хімії Львівського національного університету імені Івана Франка

LnCu₄P₂ (Ln = La, Ce, Pr): нові тернарні фосфіди зі структурою типу SmNi₄P₂

Роботу виконано на кафедрі хімії НЛТУ України та аналітичної хімії ЛНУ ім. І. Франка

При 1070 К знайдено нові тернарні фосфіди LnCu₄P₂ (Ln = La, Ce, Pr). Кристалічну структуру одержаних сполук вивчено методом порошку. Структуру фосфіду LaCu₄P₂ уточнено методом Рітфельда (структурний тип (CT) SmNi₄P₂, просторова група (ПГ) *Pnnm*, Z = 6, a = 1,4732 нм, b = 1,1078 нм, c = 0,39403 нм, V = 0,6430 нм³, $R_{\rm I} = 0,088$, $R_{\rm P} = 0,131$). Проаналізовано структурні особливості сполук LnCu₄P₂ (Ln = La, Ce, Pr, Nd).

Ключові слова: рідкісноземельні метали, Купрум, фосфіди, кристалічна структура.

<u>Демчина Р. О., Федына М. Ф., Орыщин С. В. LnCu₄P₂ (Ln = La, Ce, Pr): новые тернарные фосфиды co структурой типа SmNi₄P₂. При 1070 К найдены новые тернарные фосфиды LnCu₄P₂ (Ln = La, Ce, Pr). Кристаллическая структура полученных соединений изучена методом порошка. Структура фосфида LaCu₄P₂ уточнена методом Ритфельда (структурный тип (CT) SmNi₄P₂, пространственная группа (ПГ) *Pnnm*, Z = 6, a = 1,4732 нм, b = 1,1078 нм, c = 0,39403 нм, V = 0,6430 нм³, $R_{\rm I} = 0,088$, $R_{\rm P} = 0,131$). Проанализированы структурные особенности соединений LnCu₄P₂ (Ln = La, Ce, Pr, Nd).</u>

Ключевые слова: редкоземельные металлы, медь, фосфиды, кристаллическая структура.

Demchyna R. O., Fedyna M. F., Oryshchyn S. V. The LnCu₄P₂ (Ln = La, Ce, Pr): New Ternary Phosphides with SmNi₄P₂ Type Structure. The LnCu₄P₂ (Ln = La, Ce, Pr) new ternary phosphides have been obtained at 1070 K. The titled ternaries adopt the SmNi₄P₂ structure type. The crystal structure of the new phosphides has been studied from X-ray powder diffraction data. The LaCu₄P₂ (SmNi₄P₂ structure type, *Pnnm*, Z = 6, a = 1,4732 nm, b = 1,1078 nm, c = 0,39403 nm, V = 0,6430 nm³, $R_I = 0,088$, $R_P = 0,131$) crystal structure is determined by Rietveld refinement. The crystal structure peculiarities of LnCu₄P₂ (Ln = La, Ce, Pr, Nd) are analyzed.

Key words: rare-earth, copper, phosphides, crystal structure.

Постановка наукової проблеми та її значення. Одним із важливих завдань сучасної неорганічної хімії є синтез нових сполук, дослідження фазових рівноваг у системах, в яких вони утворюються. Перспективним джерелом нових матеріалів є фосфіди та арсеніди рідкісноземельних та перехідних металів. Передбачається можливість їх застосування в напівпровідниковій техніці. Вони також мають такі цінні властивості: корозійну стійкість та високу твердість. У багатьох роботах пропонують застосовувати арсеніди в приладах, що працюють при високих температурах. Проте існують проблеми з одержанням чистих, бездомішкових та бездефектних зразків стехіометричного складу. Дослідження нами фазових рівноваг у системах Ln - Cu - P, кристалічної структури тернарних фосфідів дає можливість вивчити хімічну взаємодію компонентів у системах такого типу, умови утворення та існування тернарних сполук, що буде цінною інформацією для неорганічної хімії та матеріалознавства.

Аналіз останніх досліджень із цієї проблеми. Потрійні системи Ln – Cu – Р вивчалися систематично лише з Y [1], Ce [2], Nd [3], Tb [4] та Ho [5]. Особливістю досліджених систем є різна кількість тернарних фосфідів, що утворюються при температурі дослідження 1070 K, та суперечливі дані про їх кристалічну структуру. Так у системі Ce – Cu – Р при 1070 K на ізотермічному перерізі відображено два тернарні фосфіди CeCu_{1,09}P_{1,87} та Ce₅Cu₁₉P₁₂ [2]. Крім того, автори [6] повідомили про існування сполуки CeCu_{3,7}P₂ (CT CaCu₄P₂). При систематичному вивченні системи Nd – Cu – P [3] при 870 K виявлено чотири тернарних фосфіди: NdCu_{3,7}P₂ (CT CaCu₄P₂), NdCu₄P₂ (CT SmNi₄P₂ [7]), Nd₅Cu_{17,8}P₁₂ (власний CT) та NdCu_{1,16}P₂ (похідна структура від CT SrZnBi₂). Сполука NdCu₄P₂ є першим представником CT SmNi₄P₂

[©] Демчина Р. О., Федина М. Ф., Орищин С. В., 2009

Формулювання мети та завдань статті. Метою цього дослідження є перевірка припущення про утворення сполук складу $LnCu_4P_2$ у системах R - Cu - P та вивчення їхньої кристалічної структури; аналіз особливостей та взаємозв'язків кристалічних структур вивчених та раніше відомих сполук.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Для приготування зразків використовували компактні метали такої чистоти (масові частки основного компонента): Y, Ln – не менше 0,9995, мідь – 0,9999, порошок червоного фосфору – 0,9999. Стружку Y, Ln змішували зі стружкою міді і порошком червоного фосфору в мольному співвідношенні 1 : 4 : 2 і пресували в стальній пресформі під тиском ~5 МПа. Зразки спікали у вакуумованих кварцових ампулах при поступовому підвищенні температури до 1070 K і 100 год витримували при цій температурі. Після спікання зразки розтирали в агатовій ступці, пресували і сплавляли в електродуговій печі з вольфрамовим електродом на мідному водоохолоджуваному поді в атмосфері очищеного аргону. Гомогенізуючий відпал зразків проводили у муфельній печі протягом 1000 год при 1070 K і гартували в холодній воді без розбивання ампул. Склад зразків у вигляді металографічних препаратів, закріплених на електропровідний підкладці, визначали методом EDX (растровий електронний мікроскоп Philips XL30, Si(Li)-детектор).

Синтезовані зразки досліджували методом Гіньє (Ітаде Plate Huber G 670 порошковий дифрактометр, Си К_{α}-випромінювання, в інтервалі 8–100° θ /2 θ) або порошковою дифракцією на дифрактометрі ДРОН-3М (Си К_{α}-випромінювання, в інтервалі 15–140 ° θ /2 θ). Усі кристалографічні розрахунки та повнопрофільне уточнення структури проводили, використовуючи пакет програм WinCSD [8].

Інтенсивність ліній порошкограм та їх розташування для зразків LnCu₄P₂ (Ln = La, Ce, Pr) вказували на можливу ізоструктурність сполук до фосфіду NdCu₄P₂ [3] (CT SmNi₄P₂, ПГ *Pnnm*, a = 1,4185 нм, b = 1,0759 нм, c = 0,3744 нм [7]). Параметри гратки досліджених сполук, уточнені методом найменших квадратів, наведено в табл. 1. Для інших лантаноїдів та Ітрію за вищевказаних умов експерименту сполук зі структурою SmNi₄P₂ у зразках складу ~Ln₁₄Ni₅₇P₂₈ не одержали. Склад вивчених сполук підтверджували методом EDX: відхилення вмісту відповідних компонентів складало не більше 1 ат. %, наявність домішок інших елементів цим методом не виявили.

При вивченні структури сполук LaCu₄ P_2 за вихідну модель взяли структуру SmNi₄ P_2 . Уточнення кристалічної структури методом Рітфельда показало повну зайнятість усіх позицій. На рис. 1 наведено експериментальну, розраховану та різницеву дифрактограми LaCu₄ P_2 .

Розрахунком різницевого синтезу Фур'є не виявили максимумів електронної густини, які б свідчили про додатково заповнені кристалографічні позиції у структурах сполук. Уточнення координат та параметрів теплових коливань атомів (табл. 2) із урахуванням коефіцієнту текстури привело до невеликого фактору розбіжності (табл. 1).

Рис. 1. Експериментальна, розрахована та різницева дифрактограми сполуки LaCu4P2

Сполука		D	D			
	<i>а</i> , нм	<i>b</i> , нм	с, нм	V´ 10 ³ , нм ³	ΛI	К _Р
$LaCu_4P_2$	1,47318(2)	1,10783(1)	0,394030(5)	643,07(2)	0,0881	0,1309
CeCu ₄ P ₂	1,472(1)	1,106(1)	0,3931(3)	639(2)	**	**
PrCu ₄ P ₂	1,469(1)	1,1038(1)	0,3908(3)	634(2)	**	**
$NdCu_4P_2^*$	1,46762(8)	1,10031(6)	0,39049(2)	630,6(1)	0,0878	0,1281

Параметри комірки сполук LnCu₄P₂ (Ln = La, Ce, Pr, Nd)

* Використано дані [3]; ** кристалічну структуру не уточнювали.

Таблиця 2

Таблиця 1

Координати та параметри теплових коливань атомів у структурі фосфіду LaCu₄P₂

Атоми	ПСТ	x	у	z	$B_{i_{30}} \times 100 \text{ mm}^2$
La1	2(a)	0	0	0	1,03(4)
La2	4(g)	0,27275(9)	0,8743(1)	0	0,86(3)
Cu1	4(<i>g</i>)	0,0839(2)	0,7445(3)	0	1,53(7)
Cu2	4(<i>g</i>)	0,4371(2)	0,0714(2)	0	0,92(7)
Cu3	4(g)	0,0510(2)	0,4029(3)	0	1,03(7)
Cu4	4(g)	0,4617(2)	0,7361(2)	0	0,75(7)
Cu5	4(<i>g</i>)	0,3331(2)	0,5797(2)	0	1,02(7)
Сиб	4(<i>g</i>)	0,2827(2)	0,1711(2)	0	0,89(7)
P1	4(g)	0,1640(4)	0,5579(4)	0	0,71(13)
P2	4(<i>g</i>)	0,1274(4)	0,2083(5)	0	0,97(13)
P3	4(g)	0,3841(3)	0,3663(5)	0	0,67(12)

Структуру сполук LnCu₄P₂ (Ln = La, Ce, Pr, Nd) можна віднести до сімейства двошарових структур із тригонально-призматичною координацією атомів найменшого розміру за класифікацією структурних типів інтерметалічних сполук Крип'якевича [9], що є поширеною серед фосфідів загального складу зі співвідношенням металу до неметалу близьким до 1 : 2.

На рис. 2 показано проекцію структури LaCu₄P₂ на площину XY та координаційні многогранники (KM) атомів: Cu – чотиригранні призми з додатковими атомами навпроти чотирикутних граней (KЧ = 12(8 + 4)), оточенням атомів P є тригональні призми з центрованими прямокутними гранями, утворені атомами металів (KЧ = 9(6 + 3)). Параметри комірки сполук LnCu₄P₂ (Ln = La, Ce, Pr, Nd) (табл. 1) лінійно збільшуються зі зростанням протонного числа P3M, а їх співвідношення майже не міняється. Міжатомні віддалі в структурах досліджених сполук близькі до сум атомних радіусів вихідних компонентів (табл. 3).

Рис. 2. Проекція структури сполуки LaCu₄P₂ на площину XY та КМ атомів

Характерною особливістю структур досліджених сполук, як і більшості двошарових фосфідів загального складу зі співвідношенням металу до неметалу близьким до 1 : 2, є відсутність контактів між атомами Фосфору. Найближче координаційне оточення атомів La y LaCu₄P₂ можна розділити на три сфери: перша з атомів Фосфору (0,297–0,307 нм), наступне оточення сформоване атомами Cu (0,310–0,338 нм), найдальше перебувають атоми P3M (0,394–0,425 нм); першим оточенням атомів Cu є атоми P (0,232–0,254 нм), наступними є контакти Cu – Cu (0,244–0,271 нм); оточення атомів P містить лише атоми Cu та La. Структури сполук LnCu₄P₂ (Ln = La, Ce, Pr, Nd) є близькоспорідненими зі структурами силіцидів ZrFe₄Si₂, CeRe₄Si₂, NdRe₄Si₂ аналогічного стехіометричного складу. Ці структури розглядають як укладку планарних сіток, перпендикулярних одній із координатних осей [10]. Така сіткова структура характерна для багатьох боридів, силіцидів та фосфідів. Взаємозв'язок структури фосфіду NdCu₄P₂ зі структурами сполук ZrFe₄Si₂, CeRe₄Si₂ та NdRe₄Si₂ описано в [3], де розглянуто особливості та характерні закономірності укладки многогранників атомів найбільшого розміру та октаедричних і тетраедричних пустот, утворених атомами середнього та найменшого розмірів.

Таблиця З

La1-		2Cu4	2,677(3)	Cu4-		La2	3,291(3)
2P2	2,974(6)	2Cu2	2,767(3)	2P2	2,387(4)	КЧ = 12	
4P3	2,998(4)	2Cu6	2,900(3)	P3	2,539(6)	P1-	-
2Cu1	3,089(3)	La1	3,089(3)	Cu2	2,603(4)	Cu1	2,380(6)

Міжатомні віддалі (d ´ 10, нм) та координаційні числа (КЧ) у структурі фосфіду LaCu₄P₂

Науковий	вісник	Волинського	національного	університету	імені Лесі	Українки
				J		· · · · · ·

4Cu5	3,271(2)	La2	3,132(3)	Cu5	2,567(4)	2Cu6	2,464(3)
4Cu4	3,322(2)	КЧ = 12		2Cu1	2,677(3)	Cu3	2,390(6)
2La1	3,940(1)	Cu2-		2Cu3	2,708(3)	Cu5	2,500(4)
2La2	4,253(1)	Cu2	2,436(4)	La2	3,177(3)	2Cu2	2,474(4)
КЧ = 20		Cu6	2,529(4)	2La1	3,322(2)	2La2	2,981(4)
La2-		Cu4	2,603(4)	КЧ = 12		КЧ = 9	
2P1	2,981(4)	2P1	2,474(4)	Cu5-		P2-	
2P3	3,038(4)	2Cu3	2,604(2)	P3	2,480(6)	Cu6	2,325(6)
2P2	3,070(4)	2Cu1	2,767(3)	P1	2,504(6)	2Cu4	2,387(4)
2Cu6	3,101(2)	2Cu3	2,719(3)	2P2	2,500(4)	Cu3	2,432(6)
Cu4	3,132(3)	La2	3,261(3)	Cu4	2,567(4)	2Cu5	2,500(4)
Cu1	3,177(3)	КЧ = 12		2Cu6	2,796(3)	La1	2,974(6)
Cu2	3,261(3	Cu3-		2La1	3,271(2)	2La2	3,070(4)
Cu6	3,291(3)	P1	2,390(6)	3La2	3,390(3)	КЧ = 9	
2Cu3	3,274(2)	Cu1	2,573(4)	КЧ = 12		Р3-	
3Cu5	3,383(3)	P2	2,432(6)	Cu6-		2Cu1	2,434(4)
2La2	3,940(1)	Cu3	2,624(4)	P2	2,325(6)	Cu5	2,480(6)
La1	4,253(1)	2Cu2	2,604(2)	2P1	2,464(3)	Cu4	2,539(6)
КЧ = 20		2Cu4	2,708(3)	Cu2	2,529(4)	Cu6	2,629(6)
Cu1-		2Cu2	2,719(3)	P3	2,629(6)	2La1	2,998(4)
P1	2,380(6)	2La2	3,274(2)	2Cu1	2,900(3)	2La2	3,038(4)
2P3	2,434(4)	КЧ = 12		2Cu5	2,796(3)	КЧ = 9	
Cu3	2,573(4)			2La2	3,101(2)		

Якщо в структурах сполук LnCu₄P₂ виділити найближче оточення атомів найбільшого розміру [3], то в структурі ZrFe₄Si₂ це октаедр, для CeRe₄Si₂ – тетрагональна призма, KM Nd у структурі NdRe₄Si₂ є семивершинник (октаедр, одна з вершин якого замінена двома атомами Si). У структурі LnCu₄P₂ (CT SmNi₄P₂) атом Ln має найближче координаційне оточення у формі октаедра та тригональної призми з додатковими атомами (рис. 3). Такі многогранники, утворені атомами неметалу, зв'язані між собою вершинами та ребрами, а в пустотах, таким чином поданого каркасу атомів найбільшого та найменшого розмірів, розміщені атоми середнього розміру, які утворюють тетраедричні пустоти \Box [Cu₄] як у структурі Cu, та октаедричні пустоти \Box [Cu₅P] в одержаних фосфідах. Подібною будовою характеризуються і деякі фосфіди з високим вмістом перехідного металу, наприклад La₂Ni₁₂P₅ та ВаCu₁₀P₄. У структурі сполуки La₂Ni₁₂P₅ можна виділити (рис. 3) укладку октаедричних \Box [Ni₅P] та тетраедричних \Box [Ni₄] пустот та многогранників найменшого розміру для La (I – чотирикутна призма, $\Gamma - La$ [Ni₄P₄], VII – тригональна призма з додатковою вершиною La[P₇]). Подібно до LaCu₄P₂ та La₂Ni₁₂P₅ можна подати структуру фосфіду BaNi₁₀P₄ (рис. 3), проте пустот октаедричної форми в його структурі немає.

Рис. 3. Укладка многогранників найменшого розміру для атомів La або Ba та пустот октаедричної та тетраедричної форми у структурах сполук LaCu₄P₂ (a), La₂Ni₁₂P₅ (b), BaCu₁₀P₄ (c): I – чотирикутна призма La[P₆Cu₂], I` – La[Ni₄P₄]; II – октаедр з двома додатковими вершинами La[P₆Cu₂]; III – тетраедр □[Cu₄] або □[Ni₄]; IV – октаедр □[Cu₅P] або □[Ni₅P]; V – тетраедри □[Cu₃P], □[Ni₃P]; VI – тетраедр Cu[P₄]; VII – тригональна призма з додатковою вершиною La[P₇], VII` – Ba[P₇])

Висновки й перспективи подальших досліджень. Синтезовано нові тернарні фосфіди $LnCu_4P_2$ (Ln = La, Ce, Pr). Кристалічну структуру одержаних сполук вивчено методом порошку. Структуру фосфіду $LaCu_4P_2$ уточнено методом Рітфельда (структурний тип (CT) SmNi₄P₂). Проаналізовано структурні особливості сполук $LnCu_4P_2$ (Ln = La, Ce, Pr, Nd). Встановлено взаємозв'язки зі структурами раніше вивчених тернарних фосфідів з високим вмістом перехідного металу. Розроблений метод синтезу буде використано для одержання чистих, гомогенних зразків цих речовин та деяких споріднених із метою дослідження таких фізичних властивостей: твердість, магнітна сприйнятливість, електропровідність.

Література

- Demchyna R. O. The Y Cu P system / R. O. Demchyna, S. I. Chykhrij, Yu. B. Kuz'ma // J. Alloys and Compounds. - 2002. - Vol. 345. - P. 170-174.
- 2. Phase equilibria and crystal structure of compounds in the Ce Cu P system / S. I. Chykhrij, G. V. Loukashouk, S. V. Oryshchyn, Yu. B. Kuz'ma // J. All. Comp. 1997. Vol. 248. P. 224–232.
- Demchyna R. O. The Nd Cu P system / R. O. Demchyna, S. V. Oryshchyn, Yu. B. Kuz'ma // J. All. Comp. – 2001. – Vol. 322. – P. 176–183.
- 4. Шумінський Є. С. Взаємодія компонентів у системі Тb − Cu − P / Є. С. Шумінський, С. І. Чихрій, Ю. Б. Кузьма // Вісн. Львів. ун-ту. Сер. хім. 1991. Вип. 30. С. 29–31.
- 5. Кузьма Ю. Б. Система Но Си Р / Ю. Б. Кузьма, Ю. А. Можаривський, О. Н. Панас // Неорган. материалы. 1998. Т. 34. № 1. С. 7–8.
- 6. Dünner J. Darstellung und Kristallstruktur von LnCu_{4-x}P₂ (Ln: Y, La Yb) sovie von LuCu_{3-x}P₂ / J. Dünner und A. Mewis // Z. anorg. allg. Chem. 1997. Bd. 623. № 1. S. 608–612.
- 7. Новий фосфід SmNi₄P₂ і його кристалічна структура / С. В. Орищин, С. І. Чихрій, Т. Гловяк, Ю. Б. Кузьма // Доп. АН УРСР. Сер. Б. № 3. С. 54–57.
- CSD-Universal program package for single crystal and powder structure data treatment / L. G. Aksel'rud, Yu. N. Grin', P. Yu. Zavalij [at al.] // Collected Abstracts of XIIth European Crystallogr. Meet. (Moscow, USSR, 20–28 August). M., 1989. Vol. 3. P. 155.
- 9. Крипякевич П. И. Структурные типы интерметаллических соединений / П. И. Крипякевич. М. : Наука, 1977. 287 с.
- Kuz'ma Yu. B. Phosphides / Yu. B. Kuz'ma, S. I. Chykhrij // Handbook on the Physics and Chemistry of Rare Earths / K. A. Jr. Gschneidner and L. Eyring. Amsterdam : Elsevier, 1996. – Vol. 23. – P. 285–434.

Адреса для листування: 43001, Луцьк, вул. Новочерчицька, 26/4. <u>Тел.</u> 4-84-27. <u>Ел. адреси:</u> demtschyna@ua.fm; fmf@ua.fm; ndch@franko.lviv.ua

Статтю подано до редколегії 20.11.2009 р.