On generating systems of some transformation semigroups of the boolean

T. Zhukovska

Let M be a poset with a partial order \leq . A transformation $\alpha: M \to M$ is called order-decreasing if $\alpha(x) \leq x$ for all $x \in \text{dom}(\alpha)$. The set of such transformations is denoted by $\mathcal{F}(\mathcal{M})$. A transformation α is called order-preserving if for every $x, y \in \text{dom}(\alpha)$, $x \leq y$ implies $\alpha(x) \leq \alpha(y)$. The set of such transformations is denoted by $\mathcal{O}(\mathcal{M})$. We consider a subset $\mathcal{C}(\mathcal{M}) = \mathcal{F}(\mathcal{M}) \cap \mathcal{O}(\mathcal{M})$. The sets $\mathcal{F}(\mathcal{M})$, $\mathcal{O}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ are semigroups with respect to the composition of transformations.

Many authors (see [1] and references therein) studied the semigroups $\mathcal{F}(\mathcal{M})$, $\mathcal{O}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ in the case where the order \leq on M is linear. We deal with the set of all subsets of a n-element set $N = \{1, 2, ..., n\}$ naturally ordered by inclusion, that is, with the boolean \mathcal{B}_n .

We focus on three classic semigroups: the symmetric semigroup of all transformations of the set \mathcal{B}_n ; the semigroup of all partial transformations of the set \mathcal{B}_n and the symmetric inverse semigroup of all partial injective transformations of \mathcal{B}_n . Thus, we have nine semigroups of order-consistent transformations of the set \mathcal{B}_n : $\mathcal{F}(\mathcal{B}_n)$, $\mathcal{PF}(\mathcal{B}_n)$, $\mathcal{IF}(\mathcal{B}_n)$, $\mathcal{O}(\mathcal{B}_n)$, $\mathcal{PO}(\mathcal{B}_n)$, $\mathcal{IO}(\mathcal{B}_n)$, $\mathcal{C}(\mathcal{B}_n)$, $\mathcal{PC}(\mathcal{B}_n)$, $\mathcal{IC}(\mathcal{B}_n)$.

Denote by J(S) the set of idempotents of defect 1 of a transformation semigroup S. Let ϵ be an identity transformation of semigroup S.

Our main results are the following:

Theorem 1. The symmetric semigroup of order-decreasing transformations $\mathcal{F}(\mathcal{B}_n)$ is generated by the set $J(\mathcal{F}(\mathcal{B}_n)) \bigcup \{\epsilon\}$, where $|J(\mathcal{F}(\mathcal{B}_n))| = 3^n - 2^n$. The semigroup of all partial order-decreasing transformations $\mathcal{PF}(\mathcal{B}_n)$ is generated by the set $J(\mathcal{PF}(\mathcal{B}_n)) \bigcup \{\epsilon\}$, where $|J(\mathcal{PF}(\mathcal{B}_n))| = 3^n$.

Theorem 2. The semigroups $\mathcal{IF}(\mathcal{B}_n)$, $\mathcal{O}(\mathcal{B}_n)$ (for $n \geq 2$), $\mathcal{PO}(\mathcal{B}_n)$ (for $n \geq 2$), $\mathcal{IO}(\mathcal{B}_n)$, $\mathcal{C}(\mathcal{B}_n)$ (for $n \geq 3$), $\mathcal{PC}(\mathcal{B}_n)$ (for $n \geq 3$), $\mathcal{IC}(\mathcal{B}_n)$ are not generated by the idempotents.

References

[1] Ganyushkin O., Mazorchuk V. Classical Finite Transformation semigroups. An Introduction. — Algebra and Applications. — London: Springer-Verlag, 2009. — 9. — XII, 314 p.

Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Volodymyrska Str., 64, Kyiv, 01601, Ukraine t.zhukovska@ukr.net