On generating systems of some transformation semigroups of the boolean

T. Zhukovska

Let M be a poset with a partial order \leq. A transformation $\alpha: M \rightarrow M$ is called order-decreasing if $\alpha(x) \leq x$ for all $x \in \operatorname{dom}(\alpha)$. The set of such transformations is denoted by $\mathcal{F}(\mathcal{M})$. A transformation α is called order-preserving if for every $x, y \in$ $\operatorname{dom}(\alpha), x \leq y$ implies $\alpha(x) \leq \alpha(y)$. The set of such transformations is denoted by $\mathcal{O}(\mathcal{M})$. We consider a subset $\mathcal{C}(\mathcal{M})=\mathcal{F}(\mathcal{M}) \cap \mathcal{O}(\mathcal{M})$. The sets $\mathcal{F}(\mathcal{M}), \mathcal{O}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ are semigroups with respect to the composition of transformations.

Many authors (see [1] and references therein) studied the semigroups $\mathcal{F}(\mathcal{M}), \mathcal{O}(\mathcal{M})$ and $\mathcal{C}(\mathcal{M})$ in the case where the order \leq on M is linear. We deal with the set of all subsets of a n-element set $N=\{1,2, \ldots, n\}$ naturally ordered by inclusion, that is, with the boolean \mathcal{B}_{n}.

We focus on three classic semigroups: the symmetric semigroup of all transformations of the set \mathcal{B}_{n}; the semigroup of all partial transformations of the set \mathcal{B}_{n} and the symmetric inverse semigroup of all partial injective transformations of \mathcal{B}_{n}. Thus, we have nine semigroups of order-consistent transformations of the set $\mathcal{B}_{n}: \mathcal{F}\left(\mathcal{B}_{n}\right)$, $\mathcal{P F}\left(\mathcal{B}_{n}\right), \mathcal{I F}\left(\mathcal{B}_{n}\right), \mathcal{O}\left(\mathcal{B}_{n}\right), \mathcal{P} \mathcal{O}\left(\mathcal{B}_{n}\right), \mathcal{I O}\left(\mathcal{B}_{n}\right), \mathcal{C}\left(\mathcal{B}_{n}\right), \mathcal{P C}\left(\mathcal{B}_{n}\right), \mathcal{I C}\left(\mathcal{B}_{n}\right)$.

Denote by $J(S)$ the set of idempotents of defect 1 of a transformation semigroup S. Let ϵ be an identity transformation of semigroup S.

Our main results are the following:
Theorem 1. The symmetric semigroup of order-decreasing transformations $\mathcal{F}\left(\mathcal{B}_{n}\right)$ is generated by the set $J\left(\mathcal{F}\left(\mathcal{B}_{n}\right)\right) \bigcup\{\epsilon\}$, where $\left|J\left(\mathcal{F}\left(\mathcal{B}_{n}\right)\right)\right|=3^{n}-2^{n}$. The semigroup of all partial order-decreasing transformations $\mathcal{P F}\left(\mathcal{B}_{n}\right)$ is generated by the set $J\left(\mathcal{P F}\left(\mathcal{B}_{n}\right)\right) \bigcup\{\epsilon\}$, where $\left|J\left(\mathcal{P F}\left(\mathcal{B}_{n}\right)\right)\right|=3^{n}$.

Theorem 2. The semigroups $\mathcal{I F}\left(\mathcal{B}_{n}\right)$, $\mathcal{O}\left(\mathcal{B}_{n}\right)$ (for $n \geq 2$), $\mathcal{P O}\left(\mathcal{B}_{n}\right)$ (for $n \geq 2$), $\mathcal{I O}\left(\mathcal{B}_{n}\right), \mathcal{C}\left(\mathcal{B}_{n}\right)$ (for $n \geq 3$), $\mathcal{P C}\left(\mathcal{B}_{n}\right)$ (for $n \geq 3$), $\mathcal{I C}\left(\mathcal{B}_{n}\right)$ are not generated by the idempotents.

References

[1] Ganyushkin O., Mazorchuk V. Classical Finite Transformation semigroups. An Introduction. - Algebra and Applications. - London: Springer-Verlag, 2009. - 9. - XII, 314 p.

Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Volodymyrska Str., 64, Kyiv, 01601, Ukraine
t.zhukovska@ukr.net

