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Abstract

Shaping the collision selectivity in vision-based artificial collision-detecting sys-

tems is still an open challenge. This paper presents a novel neuron model of a

locust looming detector, i.e. the lobula giant movement detector (LGMD1), in

order to provide effective solutions to enhance the collision selectivity of loom-

ing objects over other visual challenges. We propose an approach to model the

biologically plausible mechanisms of ON and OFF pathways and a biophysical

mechanism of spike frequency adaptation (SFA) in the proposed LGMD1 vi-

sual neural network. The ON and OFF pathways can separate both dark and

light looming features for parallel spatiotemporal computations. This works

effectively on perceiving a potential collision from dark or light objects that

approach; such a bio-plausible structure can also separate LGMD1’s collision

selectivity to its neighbouring looming detector – the LGMD2. The SFA mech-

anism can enhance the LGMD1’s collision selectivity to approaching objects

rather than receding and translating stimuli, which is a significant improvement

compared with similar LGMD1 neuron models. The proposed framework has

been tested using off-line tests of synthetic and real-world stimuli, as well as on-

line bio-robotic tests. The enhanced collision selectivity of the proposed model

has been validated in systematic experiments. The computational simplicity and
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robustness of this work have also been verified by the bio-robotic tests, which

demonstrates potential in building neuromorphic sensors for collision detection

in both a fast and reliable manner.

Keywords: locusts, LGMD1, neuron model, collision detection, collision

selectivity, ON and OFF pathways, spike frequency adaptation, bio-robotics

1. Introduction

Collision detection is of critical importance for mobile machines, like ground

vehicles, UAVs and robots. Although there are plenty of physical sensors used

for collision detection, such as infra-red, radar, laser, ultrasound, vision and

various combinations of these, it is still an open challenge for mobile machines5

to detect a collision in both a timely and robust manner, without human in-

tervention, especially in complex and dynamic environments. Vision, amongst

these sensing modalities, can extract useful motion cues from dynamic scenes.

For real-time collision detection, there are many conventional computer vi-

sion strategies. The vast majority of methods implement object and scene seg-10

mentation, estimation or classification algorithms [1, 2]. Some vision-based

collision-detecting systems have also been applied in ground-vehicles handling

driving scenarios to improve road safety [1]. In addition, the state-of-the-art

visual sensors like RGB-D [3], Kinect [4, 5] and event-driven cameras [6], can

provide mobile machines with more abundant visual features compared to tra-15

ditional cameras which facilitate obstacle recognition, object segmentation and

map construction for collision detection. However, these vision-based tech-

niques, based on segmentation, classification and localisation algorithms, are

either computationally costly or heavily relying upon specific visual sensors.

In addition, the efficiency of these approaches also depends on the degree of20

complexity required in real-world physical scenes. As a result, a fast, reliable

and low-power method for collision detection in complex and dynamic scenes is

required for future intelligent machines.

Millions of years of evolutionary development has produced, in nature, ani-
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Figure 1: Schematic illustration of the morphological LGMD1 neural network: the red ‘den-

drites’ field indicates pre-synaptic visual processing with the proposed ON and OFF mech-

anisms; the green ‘dendrites’ field denotes a separate feed-forward inhibitory (FFI) pathway

to the LGMD1; SIZ is short for the ‘spike initiation zone’ for the proposed spike frequency

adaptation mechanism. DCMD (descending contralateral motion detector) is a one-to-one

post-synaptic target neuron conveying spikes to further motion control neural systems.

mals that possess robust and efficient vision systems capable of collision percep-25

tion to deal with a variety of aspects of life, including foraging, escaping from

predators, chasing mates and so forth. Insects, in particular, have a relatively

small number of visual neurons compared with vertebrates and humans but can

still navigate smartly through visually cluttered and dynamic environments [7].

Understanding insects’ collision perception strategies are not only attractive to30

neural system modellers, but also critical in providing effective solutions for fu-

ture robots [8, 7, 9]. More specifically, both locusts [10, 11, 12, 13] and flies

[14] possess the amazing ability to perceive impending collisions in complex and

dynamic scenes. These biological visual systems provide inspiration to compu-

tational modellers to build neuromorphic collision detectors in mobile robotic35

applications[15, 16, 17, 18, 19, 20, 21], ground vehicles [22, 23, 24, 25] and UAVs

[26, 7].

Amongst these insect looming detectors, the lobula giant movement detec-

tors (LGMDs) in the locusts’ optic lobe is known to respond most strongly
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to direct and fast approaching objects [10, 11, 13]. Biologists have explored40

two neighbouring LGMDs, i.e. LGMD1 and LGMD2, and moreover revealed

the different collision selectivity between them: the LGMD2 is only sensitive

to dark looming objects, whilst the LGMD1 can detect either dark or light

approaching stimuli [10, 11, 13]. The LGMD1 (Fig. 1), in particularly, has

generated many simple solutions for collision detection in mobile machines, e.g.45

[27, 16, 17, 18, 19]. However, shaping the collision selectivity to looming objects

in these collision perception neural systems, is a big challenge to computational

modellers, as other kinds of visual stimuli like the translation and the recession,

significantly affect the accuracy of collision detections. In this study, we pro-

pose a method to enhance the collision selectivity with two biologically plausible50

structures and mechanisms – the ON and OFF pathways and the spike frequency

adaptation.

The ON and OFF pathways have been explored in the visual systems of

many animals such as flies [28, 29, 30, 31, 32, 33] and vertebrates[34]; these

include mammals like rabbits [35], mice [36], cats [37] and monkeys [38]. Such a55

structure reveals an important theory of encoding visual information separately

in an animal’s preliminary motion-detecting circuitry: luminance increments

and decrements flow into the ON and OFF pathways, respectively [30, 35, 31,

36]. The underlying functionality of ON and OFF pathways has generated

many biological motion detectors [39, 40, 41, 42, 28]. It has also been applied60

to computational models of direction-selective neurons [43] and small target

movement detectors [44, 45] in the fly’s preliminary visual systems. Our previous

partial studies have demonstrated the potential of such polarity pathways in

modelling LGMD2 looming detectors [20, 21]. In this paper, we apply the bio-

plausible ON and OFF pathways to model the LGMD1 looming detector and65

more importantly investigate its underlying functionality and characteristics.

The biophysical mechanism of spike frequency adaptation has been revealed

to play an important role in shaping the collision selectivity of LGMD1 for

looming stimuli versus translation and recession in previous biological research

[46, 47]. In this paper, we continue on demonstrating its potential computational70
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role and furthermore the efficacy in real-world collision detection tasks. Our

systematic experiments ranging from off-line synthetic and real-world stimuli

tests to on-line bio-robotic tests demonstrate the following contributions of this

neuron modelling study:

• The functionality of proposed ON and OFF pathways enable us to separate75

the collision selectivity of LGMD1 to its neighbouring looming-sensitive

neuron – the LGMD2, which has specific collision selectivity to dark loom-

ing objects [11, 20, 21]. Such a structure can fully realise the underlying

characteristics of a biological LGMD1 neuron in locusts, which works effec-

tively on collision recognition of both light and dark objects that approach.80

• The computational mechanism of spike frequency adaptation significantly

enhances the collision selectivity of LGMD1 in real-world tests which is

an advance over similar LGMD1 neuron models.

• The proposed method yields simple solutions for collision perception in

both an efficient and reliable manner, that only requires a monocular85

camera and fewer computational resources than conventional computer

vision methods. This has been verified by our bio-robotic tests.

• The proposed neuron model evidences that the ON and OFF pathways

play roles in the locusts’ visual systems, though little physiological and

anatomical evidence has been found to date.90

In the following sections, we review some related works in Section 2. The

proposed LGMD1 neuron model framework is presented in Section 3. Experi-

mental evaluation along with results and analysis is provided in Section 4. Fur-

ther discussion is given in Section 5. Finally, we conclude this work in Section

6.95

2. Related work

Within this section, some relevant works to the proposed LGMD1 neuron

model will be reviewed, specifically in the areas relating to biologically inspired
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collision-detecting systems, biologically plausible ON and OFF pathways and

spike frequency adaptation.100

2.1. Biologically visual systems for collision perception

Flies and locusts are well-known ‘experts’ in looming perception and colli-

sion avoidance [7, 13]. Intriguingly, they each apply different visual strategies for

collision detection and have distinct structures of visual neural systems. Under-

standing and modelling these insect visual systems has always been attractive105

to researchers.

Optical flow-based collision detectors. A significant number of models come from

a fly’s optical flow-based methods [7]. In terms of physiology, such a strategy has

been implemented by a group of visual neurons, called lobula plate tangential

cells (LPTCs) in a fly’s visual system [48, 49, 50, 31, 7]. The advantages of the110

optical flow based strategy are the computational simplicity and the generations

of pixel-wise motion flow to guide landing, collision avoidance, and mimic the

navigation behaviour of flies [51]. Such a strategy has been widely used in the

application of flying robots such as UAVs and MAVs [7, 26, 52, 53].

However, to the best of our knowledge, there are several limitations of the115

optical flow-based collision detection approach. Firstly, it is mainly used for

lateral-collision avoidance and is insufficient for frontal incoming object detec-

tion [26]. Secondly, the optical flow based models have a weak ability to detect

the proximity of a homogeneous object with little texture, for example, a wall

[26]. Moreover, it can also depend on the visual estimation of the angle and120

speed, calculated by the ratio between the relative linear speed of an agent and

the distances from obstacles in the surrounding environment. An insect can

solve this problem directly using the visual patterns rather than the measure-

ment of linear speed and distance, while a mobile machine such as an UAV,

always needs additional sensors like a GPS unit in order to handle such an125

optical flow problem [7].

To address these optical flow based problems using only a vision-based sen-

sor, modellers can take inspiration from locusts. Unlike flies, locusts do not have
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similar LPTCs for an optical flow-based strategy, yet they have specific neurons

that sense looming stimuli, the LGMDs, that are caused by incoming objects.130

These respond most strongly to direct-collision from onward coming objects, a

situation that the optical-flow neurons cannot deal with very well.

Locust inspired collision detectors. The LGMDs looming detectors are crucial

for the survival of locusts, from adolescence to adulthood, for perceiving im-

minent collision corresponding to various avoidance behaviours such as hiding,135

jumping and sliding during flight [54, 55]. The collision selectivity in these lo-

cust looming detectors has been solidly formed, representing the highest firing

rates by approaching objects amongst other visual stimuli.

Inspired by such fascinating visual neurons, there are a few collision-free

neural vision systems that have been designed, and successfully applied in ap-140

plications, not only for ground vehicles [23, 24, 22], but also vision-based robots

[18, 15, 56, 19, 27, 17, 16]. These works have demonstrated the effectiveness

and robustness of LGMDs-based models in collision detection, however, shap-

ing the collision selectivity to looming objects only, is still an open challenge

to computational modellers, as these collision detectors are easily affected by145

irrelevant movements like translational and recessive motion, especially in com-

plex and dynamic environments. To improve the collision selectivity of these

looming detectors, some solutions have been proposed either to monitor the gra-

dient change of LGMD1 neural responses [57], or to combine the functionality

of LGMD1 model with a translating sensitive neural network [25]. In addition,150

Badia et al. proposed a seminal work of a non-linear LGMD1 model which can

discriminate approaching from receding stimuli well [16].

Compared with above methods, we propose an alternative way to shape the

collision selectivity with biologically plausible pathways and mechanisms, which

demonstrates the following advantages over previous LGMD1 models:155

• In comparison to the non-linear LGMD1 model proposed in [16], we apply

linear spatiotemporal computations in the pre-synaptic field of LGMD1

neural network, which requires fewer computational resources. Moreover,
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the ON and OFF pathways in the proposed neuron model can achieve

distinct collision selectivity between two LGMDs, that fills the vacancy of160

previous research.

• Compared with the linear LGMDs models [27, 15, 20, 21], the compu-

tational modelling of spike frequency adaptation can suggest a simpler

solution to mediate the LGMD1’s selectivity to approaching rather than

translating and receding stimuli.165

2.2. ON and OFF visual pathways

In the proposed neuron model, we highlight the functionality of ON and OFF

visual pathways. As mentioned in Section 1, little evidence has been found that

the ON and OFF pathways exist in a locust’s visual system [58, 59]. While the

biological substrate has not been fully identified by biologists, the computational170

modelling studies and bio-robotic solutions are particularly useful to provide new

biological hypotheses, as the models and robots can be tested in experimental

conditions similar to physiological and ethological experiments.

In the vast majority of LGMD1 neuronal models, visual information is pro-

cessed in a single pathway, as shown in Fig. 2a. Compared with the seminal175

work on modelling ON and OFF mechanisms in an LGMD-based computational

model by Keil et al. [60], we model the ON and OFF pathways each with mul-

tiple layers for spatiotemporal computations and investigate its functionality

of achieving different collision selectivity. In addition, the nonlinear modelling

study proposed in [16], also demonstrated the effectiveness of an ON and OFF180

mechanism of encoding for onset and offset responses separately to implement a

biological LGMD1 neuron. More specifically, luminance increments/decrements

give rise to onset and offset responses, respectively. With a similar idea in the

proposed LGMD1 neuron model, we demonstrate that the onset and offset re-

sponses bring about delayed inhibitory and excitatory information in the ON185

and OFF pathways respectively, as can be seen in the schematic diagram shown

in Fig. 2c. While in previous LGMD1 models like 2a, the inhibitory flows are

always delayed relative to the excitatory flows. Moreover, as shown in Fig. 2b,
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(a) comparative LGMD1 (b) previous LGMD2 (c) proposed LGMD1

Figure 2: Schematics of former LGMDs models adapted from [27, 15, 21, 20] and the proposed

LGMD1 model: (a) The previous LGMD1 model [27, 15] (taken 6 pixels from the visual field)

processes visual information in a single pathway, that is composed of five layers (P, E, I, S, G)

and two cells (FFI, LGMD). (b) The LGMD2 model from our previous research [21, 20] (taken

3 pixels) processes signals in separated ON (red-arrows) and OFF (green-arrows) pathways

each with three layers (E, I, S), whilst the ON channels are rigorously blocked. (c) The

proposed LGMD1 model processes signals in the ON and OFF pathways without bias, whilst

a new SFA mechanism is modelled. In all models, the dashed lines indicate transmissions of

delayed neural signals.

we recently demonstrated the potential and usefulness of ON and OFF pathways

in the modelling of a biological LGMD2 neuron [20, 21].190

2.3. Spike frequency adaptation

Another important biological theory guiding this modelling study is a bio-

physical mechanism of spike frequency adaptation. Compared with similar

LGMDs-based models, such as [27, 15, 21, 20] in Fig. 2, the SFA mechanism

is for the first time modelled in the LGMD1 visual neural network. Generally195

speaking, it explains the fundamental phenomenon of an ‘adaptive status’ in

neural processing of auditory, visual and other sensory systems. Specifically for

LGMD1, the biological studies demonstrate that such an adaptive mechanism

contributes significantly to mediate the collision selectivity of approaching, over

receding and translating objects [61, 46, 47]. There are a few assumptions of its200

computational roles [47], one of which is reconciled with a high-pass filtering in

the spike initiation zone (SIZ in Fig. 1).
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For biological looming detectors in locusts, when challenged by the transla-

tional movements at a constant speed, a fixed number of photoreceptors in the

field of view are activated, which makes the neurons liable to adaptation, i.e.,205

the neural response decays quickly [61, 46]. In addition, the receding stimuli

give rise to a reducing number of activated photoreceptors, which also leads to

adaptation [46, 47]. On the other hand, in the case of looming, an increasing

number of photoreceptors will be activated, a situation in which the neurons

likely overwhelm adaptation and represent high firing rates [61, 46].210

3. Framework of the proposed neuron model

In this section, we present the proposed LGMD1 neuron model. In the

pre-synaptic field to the LGMD1 cell, compared with similar LGMD1 works

[27, 15], we highlight the functions of separated ON and OFF pathways with

spatial convolution and dynamically temporal filtering. A new mechanism of215

spike frequency adaptation is modelled in the spike initiation zone. Generally

speaking, as depicted in Fig 3, the LGMD1 model includes (1) a photoreceptors

layer to retrieve initial motion information, (2) two separated visual pathways

to encode ON and OFF depth features – each of which has three local lay-

ers of excitation, inhibition and summation cells, (3) a summation-grouping220

layer to combine relayed excitations from both pathways, (4) a LGMD1 cell to

exponentially map feed-forward excitation to membrane potential, (5) an indi-

vidual feed-forward pathway for an ‘all-or-none’ law to control the activation

of LGMD1, (6) SFA and Spiking mechanisms to transform neural response to

spikes.225

It is also important to state that the proposed framework only involves low-

level image processing strategies and perceiving collisions by reacting to the

expanding edges. Fig. 3 depicts a schema of the proposed framework with

underlined PNN structure and spatiotemporal convolutions. Table 1 illustrates

the abbreviations of components in this visual neural network.230
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Figure 3: Schematic of LGMD1 neural network for collision detection. (a) A schema of signal

processing in LGMD1 model: the pixel-wise luminance (L) is captured by photoreceptors

(P), which convey motion information to the partial neural networks (PNN); the LGMD1 cell

integrates the local excitations from intact pre-synaptic PNNs forming the sigmoid membrane

potential (SMP) towards the spike frequency adaptation (SFA) and spiking mechanisms; the

generated spikes are transmitted to motion neural systems. (b) A schema of PNN depicts

the ON and OFF mechanisms: in ON channels, the inhibition (I) is computed via convolving

surrounding delayed excitations (D(E)); in OFF channels, the excitation (E) is computed via

convolving surrounding delayed inhibitions (D(I)); excitations and inhibitions compete with

each other in local summation (S) cells; the grouping (G) layer convolves excitations from S

cells. (c) Spatiotemporal convolutions in PNNs.

3.1. Photoreceptors

In the LGMD1 model, as shown in Fig. 3a, the first layer consists of pho-

toreceptors arranged as a 2D matrix. The total number of photoreceptors cor-

respond to the number of local pixels (n) in the field of view. Photoreceptors

capture grey-scaled brightness and compute the change of luminance between
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Table 1: The LGMD1 neuron model components

acronym & full-name

P photoreceptor n total number of pixels

LP low-pass filter PNN partial neural network

Wi inhibitory convolution matrix We excitatory convolution matrix

E/I local excitation/Inhibition S/G summation/grouping cells

Wg grouping matrix FFI feed forward inhibition

SMP sigmoid membrane potential SFA spike frequency adaptation

every two successive frames:

P (x, y, t) = L(x, y, t)− L(x, y, t− 1) +

Np∑
i

ai · P (x, y, t− i), (1)

where P (x, y, t) is the brightness change corresponding to each local pixel: x

and y are the abscissa and ordinate, t indicates the current frame. L(t) and

L(t − 1) are the grey-scaled brightness of two successive frames. In addition,

the luminance change could last for a short duration of Np number of frames.235

We defined a coefficient ai to be calculated by ai = (1 + eu·i)−1 and u = 1,

simulating the fast (exponential) decay of residual luminance change.

3.2. ON and OFF rectifying transient cells

Next, the relayed visual signals from photoreceptors are split into parallel

ON and OFF visual pathways via the mechanisms of ON and OFF rectifying

transient cells (RTCs), encoding luminance increments (onset response) and

decrements (offset response), respectively. Technically speaking, as shown in

the PNN of LGMD1 model (Fig. 3b), the functionality of these polarity cells is

reconciled with a ‘half-wave’ rectifier, which filters out negative/positive inputs

for ON and OFF pathways, and inverts negative inputs to positive in the OFF

pathway. Each photoreceptor corresponds to a pairwise ON and OFF RTCs:

ON(x, y, t) = (P (x, y, t) + |P (x, y, t)|)/2 + σp ·ON(x, y, t− 1),

OFF (x, y, t) = |(P (x, y, t)− |P (x, y, t)|)|/2 + σp ·OFF (x, y, t− 1).
(2)
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We also allow a small fraction (σp) of original polarity signals at previous frame

in parallel to pass through to the following circuits mimicking the absolute240

brightness in the motion detection circuitry [41].

3.3. Spatiotemporal visual processing in ON and OFF pathways

After ‘half-wave’ rectifying, the ON cells convey brightness increments to the

ON pathway including the excitation (E), the inhibition (I) and the local ON-

summation (Son) cells, as shown in Fig. 3b. ON cells elicit onset responses, i.e.,

excitations are time-advance relatively to inhibitions and transmitted directly

to the excitation cells in the ON pathway:

Eon(x, y, t) = ON(x, y, t). (3)

Meanwhile, it is delayed by tens to hundreds of milliseconds, the mechanism of

which is reconciled with a first-order low-pass filtering:

dDon(x, y, t)

dt
=

1

τs
(ON(x, y, t)−Don(x, y, t)), (4)

where τs is a dynamic time parameter, which can vary between tens to hundreds

of milliseconds in the low-pass filter. Inhibitions in the ON pathway are formed

by convolving surrounding delayed excitations, as shown in Fig. 3c. Compared

with previous LGMD1 models (e.g. [27, 15]), wherein the inhibition was com-

puted by convolving surrounding one-frame-delayed excitations, we propose a

dynamic spatiotemporal convolution: the nearest four neighboring cells share

relatively higher weightings and shorter delays than the four diagonal cells. The

temporal dynamics are illustrated in Fig. 3c, and the weightings of convolution

kernel (Wi) fits the following matrix:

[Wi] =


1/8 1/4 1/8

1/4 0 1/4

1/8 1/4 1/8

 . (5)

It is worth noticing that the delayed information only spreads out to their

neighboring cells rather than to its direct counterpart. In this modeling study,
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the radius (r) of convolution kernel is set to 1, for the purpose of saving compu-

tational power, as the convolution process goes through each local cell in both

ON and OFF pathways. Therefore, the inhibition in each interneuron of the

ON pathway is calculated by the following equation:

Ion(x, y, t) =

r∑
i=−r

r∑
j=−r

Don(x+ i, y + j, t) ·Wi(i+ r, j + r). (6)

The OFF pathway processes visual information similarly to the ON path-

way. However, since OFF cells elicit offset responses by brightness decrements,

inhibitions are directly conveyed to the inhibition cells, whilst the excitation is

formed by convolving surrounding delayed inhibitions, as illustrated in Fig. 3b

and Fig. 3c. In this modeling study, we set the excitatory convolution kernel

([We]) equal to the [Wi] in Eq. 5. The dynamic temporal parameter τs is used

to filter inhibitions in the OFF pathway as well:

dDoff (x, y, t)

dt
=

1

τs
(OFF (x, y, t)−Doff (x, y, t)). (7)

Accordingly, the excitation and inhibition are calculated as follows:

Ioff (x, y, t) = OFF (x, y, t),

Eoff (x, y, t) =

r∑
i=−r

r∑
j=−r

Doff (x+ i, y + j, t) ·We(i+ r, j + r).
(8)

After that, each polarity summation cell linearly integrates excitation and in-

hibition with the biases w1 and w2, in order to suppress each inhibitory flow:

Son(x, y, t) = Eon(x, y, t)− w1 · Ion(x, y, t),

Soff (x, y, t) = Eoff (x, y, t)− w2 · Ioff (x, y, t).
(9)

3.4. Summation and grouping layers

With similar ideas in a few biological and computational modelling studies

on a fly’s visual system, [42, 45, 43], the relayed local excitations from ON and

OFF channels interact with each other in a supralinear (both multiplicative and

linear) way at each summation cell in the PNN (S in Fig. 3b):

S(x, y, t) = θ1 ·Son(x, y, t)+θ2 ·Soff (x, y, t)+θ3 ·Son(x, y, t) ·Soff (x, y, t), (10)
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where {θ1, θ2, θ3} indicates the combination of term coefficients, which allows us

to represent different ’balances’ of interactions between ON and OFF pathways245

and realise either purely linear or nonlinear computation. Importantly, such a

formula can summarise two computational principles in the modelling of bio-

logical motion sensitive systems. For example, the multiplicative computations

have been applied in models based on Hassenstein-Reichardt Correlation (HRC)

detectors, like the elementary motion detectors in flies (e.g. [62, 7, 31, 50]). The250

purely linear computations have been used in previous locust LGMD1 and DSNs

neuronal models, e.g. [27, 63, 64, 65, 15]. More specifically, in the LGMDs neu-

ron models, such a supralinear computation manner that has also been used to

separate the different looming selectivity between LGMD1 and LGMD2 [21].

In this LGMD1 neuron model, we implement the selectivity to expanded

edges by clustering excitations of looming objects, through a simplified grouping

layer (G in Fig. 3b) relative to the similar LGMD1 models [27, 15] in Fig. 2a.

It is basically a convolution course:

G(x, y, t) =

r∑
i=−r

r∑
j=−r

S(x+ i, y + j, t) ·Wg(i+ r, j + r), (11)

where Wg is an equal-weighted kernel as shown in Fig. 3c, and the radius of

convolving area is also set to 1:

[Wg] =
1

9


1 1 1

1 1 1

1 1 1

 . (12)

For the grouped cells, the clustered and stronger excitations will pass through

to the LGMD1 cell, whilst the smaller isolated (or decayed) excitations are

eliminated by thresholding:

G
′
(x, y, t) =

G(x, y, t), if G(x, y, t) ≥ Tg

0, else
. (13)

3.5. LGMD1 cell255

At the LGMD1 cell, the neural processing is a competition between the feed-

forward excitation and the feed-forward inhibition: if the excitation wins, the
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neuron is activated to generate spikes, otherwise, it is rigorously inhibited. The

feed-forward excitation is formed by linearly pooling all local excitations from

the grouping layer which can be represented by the membrane potential in the

terminology of biology:

MP (t) =

row∑
x=1

col∑
y=1

G
′
(x, y, t), (14)

where row and col are the numbers of rows and columns of the grouping layer.

The membrane potential is then exponentially mapped to sigmoid membrane

potential, the transformation of which mimics the activation of artificial neurons:

U(t) = (1 + e−|MP (t)| (n·Ksig)
−1

)−1, (15)

where U indicates the sigmoid membrane potential (SMP in Fig. 3) and n de-

notes the total number of photoreceptors. The output is thus normalised within

[0.5, 1) with a scale parameter of Ksig towards the following spike mechanism.

On the other hand, the feed-forward inhibition is formed in a parallel path-

way relatively to the whole pre-synaptic area (Fig. 1 and Fig. 3a). Like the

former LGMD1 models [10, 27, 57, 15], the FFI mechanism obeys an ‘all-or-

none’ law, meaning it can directly suppress the LGMD1 cell if a large area

of luminance change occurs rapidly within the field of view. The mathematic

expression of FFI is taking the average value of absolute luminance change cap-

tured by photoreceptors:

F (t) =
row∑
x=1

col∑
y=1

|P (x, y, t)| · n−1. (16)

It is then delayed by tens to hundreds of milliseconds with a time parameter τf

in the low-pass filtering:

dF
′
(t)

dt
=

1

τf
(F (t)− F

′
(t)). (17)

Once the postponed FFI output exceeds a predefined threshold level (Tffi), the

generated membrane potential is cut off directly and LGMD1 neuron is inhibited
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immediately, otherwise, the FFI has no effects on the LGMD1 cell:

U(t) = 0.5, if F
′
(t) ≥ Tffi, (18)

where the sigmoid membrane potential is set to its minimum value of, in our

case, 0.5.260

3.6. Spike frequency adaptation

As presented in above sections, in order to further enhance the visual loom-

ing selectivity, we computationally model the biophysical SFA mechanism. Its

computational role allows a neural response with a positive derivative profile

to overcome adaptation selectively, otherwise, the neural response is heavily

blocked causing a quick decline. Such a mechanism can be mathematically

defined as:

U
′
(t) =


σslow · U(t), if d2U(t)/dt2 ≥ 0

σfast · U(t), if d2U(t)/dt2 < 0 & dU(t)/dt ≥ 0

σfast · (U
′
(t− 1) + U(t)− U(t− 1)), if dU(t)/dt < 0

, (19)

where σslow and σfast denote two coefficients simulating ‘slow’ and ‘fast’ adap-

tations respectively, which can be calculated as:

σslow = τslow/(τslow + τi), σfast = τfast/(τfast + τi). (20)

τslow, τfast indicate two time constants in milliseconds. τslow is greater than

τfast and τi is the time interval, also in milliseconds, between successive frames.

It is worth emphasising that as the digital signals do not have continuous deriva-

tives, we compute the gradient by comparing signals at successively discrete265

frames. It is also necessary to notice that the delays (τslow and τfast) could

vary within a wide range from hundreds to thousands of milliseconds in or-

der to partition adaptation rates for different profiles of the LGMD1 neural

response.
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3.7. Spiking mechanism270

After the SFA mechanism, a different number of spikes could be generated at

each time point by an exponential mapping from the neural membrane potential

to the firing rate:

Sspike(t) =
⌊
e[Ksp·(U

′
(t)−Tsp)]

⌋
, (21)

where bxc indicates a function to return the largest integer less than or equal to

the input x. Ksp and Tsp denote a scale parameter and a threshold in the spiking

mechanism: increasing Ksp will lead to higher spike frequency with an identical

input. As a result, compared with previous works on LGMD1 modelling, such

as [27, 15], there could be more than one spike at each frame being generated.

Finally, a potential collision recognition is given by:

Col(t) =


true, if

t∑
i=t−Nt

Sspike(i) ≥ Nsp

false, otherwise

, (22)

where Nsp, Nt denote the number of successive spikes and frames, respectively.

We set Nsp to be greater than Nt in this modelling study, as the exponential

mapping from membrane potential to firing rate. As depicted in Fig. 1 and 3a,

the generated spikes by the LGMD1 neuron are conveyed to its post-synaptic

target-neuron, the DCMD, and towards further motion neural systems for col-275

lision avoidance behaviours.

3.8. Parameters setting

All of the parameters of the proposed visual neural network are decided em-

pirically with considerations and optimisations of the underlined functionality

of ON and OFF pathways and the SFA mechanism to implement the under-280

lying characteristics of a biological LGMD1 as an embedded vision system for

a ground miniaturised robot. Table 2 illustrates the parameters’ settings: all

the adaptable parameters correspond to the physical properties of the input

visual streams, i.e., the resolution of images and the sampling frequency of

video clips from synthetic or real-world visual stimuli and a visual modality of a285
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Table 2: The predefined parameters of LGMD1 neuron model

Name Value Name Value Name Value

col, row adaptable Ksp 4 τs 15 ∼ 120(ms)

w1 0.3 w2 0.6 τi adaptable

n col · row Ksig 1 τfast 300 ∼ 500(ms)

θ1 1 ∼ 2 θ2 0.5 ∼ 1 θ3 0 ∼ 0.6

Tsp 0.66 ∼ 0.74 Nt 4 Nsp 4 ∼ 8

τf 10 ∼ 100(ms) Tg 10 Tffi 10

σp 0.1 τslow 700 ∼ 1000(ms) r 1

micro-robot. It is worth emphasising that the parameters learning and training

methods are not applied to this neuron model. Compared to previous LGMD1

studies [15, 27], we will investigate and demonstrate the effects of several neuron

model parameters on collision detection, including the spiking threshold as well

as temporal parameters for the ON and OFF pathways and SFA mechanism in290

the next section of experiments.

4. Experiments and results

In this section, we will present our experiments. All of the experiments can

be categorised into two types, off-line and on-line. For off-line, we tested the pro-

posed framework using synthetic stimuli and physical stimuli. For comparison,295

we compared its performance with a previous LGMD1 computational model

[27, 15]. We also compared the proposed model with the biological data and a

biological LGMD1 model [46, 47]. For the on-line tests, the proposed framework

was embedded into a visual module of a ground micro-robot for both arena tests

and other investigations. The main objectives are as follows: firstly, to examine300

the effectiveness and robustness of the proposed LGMD1 neuron model in colli-

sion detection and, secondly, to provide insights into the underlined mechanisms

of ON and OFF pathways and SFA in shaping the collision selectivity.
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Figure 4: Illustrations of the arena and Colias the robot used in the on-line tests: (a) The

arena profile, (b) A subregion view of the arena with Colias robots and obstacles, (c) The

Colias robot prototype.

4.1. Experimental set-up

Software set-up. The off-line tests, proposed framework and comparative LGMD1305

model [27, 15] were all set up in Visual Studio 2015 (Microsoft Corporation).

Data analysis and visualisations were generated in Matlab 2015b (The Math-

Works, Inc. Natick, USA). The resolution of input synthetic stimuli of looming-

receding, translating and sinusoidal-grating movements are 300×300, 400×200

and 320× 240, respectively, and were all at 30 fps. The resolution of real-world310

stimuli is 352×288 at 23 fps. Model parameters of the proposed framework cor-

responded to Table 2, whilst the parameters of the comparative LGMD1 model

were obtained from previous research[27, 15].

Hardware set-up. In the on-line tests, a low-cost monocular vision based micro-

robot named ‘Colias’ [66, 15], with an RGB-camera sensing module, was used.315

This is the only applied sensor in this research. It has been developed for bio-

robotics research, including swarm robotic applications [67, 66], as well as neural

vision systems research [56, 15, 21, 20, 9]. As illustrated in Fig. 4c, the robot has

a small footprint measuring only 4 cm in diameter and 3 cm in height, with two

main modules. The bottom board is the motion actuator with two differential320

DC motors that provide the platform with a maximum speed of approximately

20



35 cm/s. In addition, a 3.7 V , 320 mAh lithium battery supports the autonomy

for 1 ∼ 2 hours.

The upper board executes vision-based models. Its processor used to run

the model, including the image processing, is the ARM-Cortex M4 based MCU325

STM32F427, which runs at 180 MHz, with 256 Kbyte SRAM, 2M byte on-chip

Flash. As shown in Fig. 4c, the utilised camera is OV7670 from Omni-vision,

which could reach an approximate viewing angle of 70 deg. The acquired images

were set to the resolution of 99× 72 in YUV422 format at 30 fps.

In order to test the essential collision-detecting abilities of the proposed330

framework, we built an arena with an area of 170 × 160 cm2. The bounds of

the arena consisted of 15 cm in height walls, as illustrated in Fig. 4a. In order

to ensure an even illumination, the arena was lit from the top down covering

the whole field. Cameras were also mounted from a top-down perspective for

the purpose of tracking and recording overall performance of the Colias robots.335

Obstacles and the arena walls were all decorated with a distinct dark pattern

texture on a white background, as depicted in Fig. 4b. In addition, there

were also ID-specific patterns on the top of the Colias robot and all stationary

obstacles that were tracked by a practical localisation system [68, 69, 70], to

get the robots overall trajectories and calculate the success rates of collision340

detections.

4.2. Off-line tests

Challenged by synthetic stimuli. First of all, the experiments started by testing

the proposed LGMD1 model using synthetic stimuli and comparing its looming

selectivity with a previous LGMD1 model [27, 15]. All the synthetic visual stim-345

uli can be categorised into the following types: approaching-receding (Fig. 6),

translating (Fig. 7) and sinusoidal gratings (Fig. 10). There is no environmen-

tal noise in the synthetic scenes. We also compared the results with the neural

response of biological LGMD1 neuron and model [46, 47] (Fig. 5), by using

the similar visual stimuli. In the grating tests, we examined its performance350

challenged by grating movements with a broad range of spatial and temporal
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Figure 5: Neural response of a biological LGMD1 neuron or model adapted from [46, 47]:

(a) Biological LGMD1 neuronal response to looming and translation. (b) Biological LGMD1

model response to looming. (c) Biological LGMD1 model response to recession. The LGMD1

model shows asymmetric responses that the response is quickly decayed by receding stimuli.

(d) Biological model response to looming stimuli without (red-curve) and with (black-curve)

the SFA mechanism. (e) Biological model response to translation stimuli. The LGMD1

neuron overcomes adaptation by looming with an increasing intensity of stimuli,

yet the response is largely weakened by translation with a constant intensity.

frequencies, which were reconciled with visual clutter in the real world.

In the first part of synthetic tests, we examined if the proposed LGMD1

model possesses similar characteristics to a biological LGMD1 neuron. Fig.

5 illustrates the biological LGMD1 neuron and model response by looming,355

receding, and translating stimuli, which reveals three important points: (1) the

LGMD1 neuron can overcome adaptation in looming; (2) the LGMD1 represents

asymmetric response at the end of looming and the start of recession, i.e., the

neural response decays quickly by receding; (3) the response of LGMD1 decays

quickly by translation at a constant speed. Our results in Fig. 6 and Fig. 7360

show that the proposed LGMD1 neuron model has demonstrated all of these

characteristics. On the other hand, when challenged by looming and receding

stimuli, the comparative LGMD1 model demonstrates symmetrical responses.
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Figure 6: Neural responses of the proposed LGMD1 model and the comparative model by

synthetic looming and receding movements of a dark and a light objects embedded on light

and dark backgrounds, respectively. The image size is depicted at the bottom. The snapshots

are shown at top. Y-axis indicates the SMP. X-axis denotes the time window in frames. The

horizontal dashed-lines designate the spiking threshold. Both models show continuous

increasing response by the looming stimuli; while the response of the proposed

model decays very quickly in recession.
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Figure 7: Neural response of the proposed LGMD1 model and the comparative model by

synthetic dark/light translating movements. The object-position is indicated at the bottom of

the result. The proposed LGMD1 model demonstrates a much weaker and quickly

decayed response to translations at constant speeds in both directions; while the

comparative LGMD1 model shows continuously stronger response to translations.
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Figure 8: Neural response of the proposed LGMD1 model challenged by the similar looming

and receding stimuli to Fig. 6, yet with ON and OFF pathways alternately being blocked.

Blocking the ON pathway abolishes the onset response by luminance increments

and can realise the underlying functionality of a biological LGMD2; while blocking

the OFF pathway abolishes the offset response by luminance decrements.

It also appears that the comparative LGMD1 model is affected by translations

more significantly with continuously high-level neural responses. Therefore,365

compared with the previous LGMD1 neuron model [27], the collision selectivity

is effectively enhanced for looming rather than receding and translating stimuli.

The neural response of the proposed model is consistent and match the results

in Fig. 5.

In the second part of synthetic tests, we investigated the functionality of the370

ON and OFF visual pathways in the proposed LGMD1 model. As illustrated in

Fig. 8, we blocked either the ON or OFF pathways in looming and receding tests.

Interestingly, the results demonstrate that blocking the ON pathway rigorously

abolishes the underlying functionality of ON polarity cells for the onset response

by luminance increments, i.e., the LGMD1 model only responds to the dark375

object looming and the light object receding. While after blocking the OFF

pathway, the model is sensitive to only dark object receding and light object

looming. Our previous research (Fig. 2b) has demonstrated that such a bio-

plausible structure has great potential to realise the underlying functionality of a
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Figure 9: Peak neural responses of the proposed (red) and comparative (blue) LGMD1 models

by synthetic looming and translation movements of dark objects in a bright background. The

stimuli of dark objects are with different contrasts to the background and moving at differ-

ent speeds. The green dashed lines indicate the spiking threshold. The proposed LGMD1

model demonstrates contrast sensitivity and speed response to looming and trans-

lating stimuli, better than the comparative LGMD1 model. The proposed model

is not significantly activated by translations at constant speeds.

biological LGMD2 neuron, which is only sensitive to the light-to-dark luminance380

change, and consistent with the proposed ON-blocked LGMD1 model in Fig. 8.

Furthermore, we systematically investigated the effects of two basic proper-

ties of visual stimuli on neuronal responses of the proposed LGMD1, the speed

and the contrast, and comparative model for the movement of dark objects

approaching and translating. In this case, we define the contrast between the

moving objects and the background to be calculated by:

Contrast = (Lobj − Lback)/Lback, (23)

where Lobj and Lback are the average luminance of the moving object and the
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background. The results in Fig. 9 allows the following conclusions to be drawn:

both LGMD1 models represent comparable speed response. The neural re-

sponses all steadily peak at higher levels when the approach and translation385

movements speed up (Fig. 9b and 9d). By fixing the edge expanding rate of

looming objects (Fig. 9a), the peak responses of both models reach a valley

with the smallest contrast. And compared with the former LGMD1 model,

the proposed model demonstrates more significant reduction of peak response.

The proposed LGMD1 model could fail to perceive looming stimuli once the390

contrast decreases below | − 0.51| (Fig. 9a), which validates that the proposed

LGMD1 model is more sensitive to the contrast between moving objects and

the background.

Challenged by translations, the results in Fig. 9c, by movements at fixed

speeds, reveal the proposed framework could also treat the translations, with395

larger contrasts or at faster speeds, as potential collisions. Intuitively, when

challenged against translation movements, the proposed LGMD1 model is not

easily activated like the previous LGMD1 model, as the neural response is largely

weakened. To briefly summarise, compared with the comparative LGMD1

model, the proposed bio-plausible mechanisms and spatiotemporal computa-400

tions play roles in shaping the LGMD1’s collision selectivity to looming rather

than translation.

In the last part of the synthetic tests, we examined the performance of the

proposed neuron model against gratings with a wide range of spatial and tempo-

ral frequencies. In previous biological research [10, 11, 13], these locust looming405

detectors have proposed robust performance against gratings corresponding to

visual clutter in the real world. The locust LGMD1 neuron is rigorously in-

hibited by gratings. Fig. 10 illustrates that we have achieved similar results to

previous biological findings, which is a critically important ability for a practical

collision detector. In the proposed neuron model, we realise such an ability by410

low-level spatiotemporal visual processing, instead of the registration or classi-

fication based methodologies.
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Figure 10: Neural responses of the proposed LGMD1 model are challenged by sinusoidal

grating stimuli with a wide range of spatial and temporal frequencies (SF/TF), respectively.

The example grating patterns, as input, are shown at the top. The spiking threshold is set at

0.7. The proposed LGMD1 model remains quiet by all tested gratings, similarly

to a biological LGMD1 neuron in locusts.

Challenged by real physical stimuli. In the second set of off-line tests, we also

gave an initial insight into the efficacy of proposed collision perception vision

systems in ground vehicle applications. We used on-road recordings from dash-415

board cameras as the visual stimuli to test the LGMD1 model. As illustrated

in Fig. 11 and Fig. 12, the input from off-line stimuli involved both colliding

and non-colliding driving scenarios in complex and dynamic scenes, which are

frequent visual challenges to drivers.

In the first case, as shown in Fig. 11, our results demonstrate that the pro-420

posed LGMD1 model successfully recognises these impending vehicle-collisions:

the LGMD1 neuron is highly activated by these fast approaching stimuli. In-

terestingly, the FFI can also indicate a potential collision, which increases dra-

matically before colliding. A defect of the current model is that the predefined

FFI threshold influences the collision-detecting ability since the FFI can di-425

rectly suppress the LGMD1 neuron in the critical moments before the end of

the rapidly approaching stimuli in this neuron model. Therefore, an automated
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Figure 11: Neural responses of the proposed LGMD1 model challenged by ‘colliding scenar-

ios’ of real-world stimuli from recordings of ground-vehicle dashboard cameras. The snapshots

are shown at each top. The proposed LGMD1 neuron model successfully recognises

the on-road impending collisions in complex and dynamic environments.
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Figure 12: A neural response of the proposed LGMD1 model challenged by ‘non-colliding

scenarios’ of real-world stimuli including ‘near-miss’ and translation scenes. The proposed

LGMD1 model is not activated by the translation scene, yet only shortly activated

by the ‘near-miss’ scene, both of which were correctly recognised as ‘non-collision’.

adjusting of the FFI threshold is badly needed in the future research.

In the second case, to make the comparison, we also tested the proposed

LGMD1 model with two non-colliding scenarios – a near-miss and a transla-430

tion scene. Our results in Fig. 12 demonstrate that the proposed LGMD1

28



Linear speed: 5 cm/s Linear speed: 10 cm/s Linear speed: 15 cm/s

Figure 13: Example results of arena tests with overtime trajectories of a Colias robot imple-

menting the proposed LGMD1 neuron model. The yellow arrow indicates the end-position of

the robot with the specific ID in each arena test; the obstacles are indicated by red circles

for the same layout. The Colias robot was tested at different linear speeds. The results

demonstrate its efficacy for collision detection in robot navigation applications.

neuron model successfully recognises these movements as non-collision events.

Our initial tests with driving scenarios can provide important implications for

the future research on applying the locust looming sensitive vision systems to

build neuromorphic sensors in the applications of ground vehicles for improving435

driving safety.

4.3. Robot tests

In this subsection, we continue to present our on-line bio-robotics experi-

ments. The proposed LGMD1 neuron model was implemented in the monocular

vision based Colias robot. We applied the camera sensor as the only utilised440

modality for collision detection. To examine its performance in robotic applica-

tions and deepen the understandings of the underlined bio-plausible mechanisms

in shaping LGMD1’s collision selectivity, we designed two kinds of on-line tests:

the arena tests and the other systematic tests.

4.3.1. Arena tests445

In the first type of on-line tests, we inspected the basic collision-detecting

ability of the proposed method in an arena with many obstacles. In the arena

tests, we investigated the effects of linear-speed of the Colias robot on the
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Table 3: Success rates of collision avoidance

Success Rate(SR), Correct Avoidance(CA), Miss Avoidance(MA)

SR = CA/(CA+MA) · 100%

linear speed(cm/s) 3 5 10 15 20

CA 61 115 306 322 460

MA 18 19 34 14 20

SR 77.2% 85.8% 90.0% 95.8% 95.8%

Table 4: Comparative success rates of collision avoidance

LGMD1 neuron models 3 (cm/s) 5 10 15 20

Proposed LGMD1 77.2% 85.8% 90.0% 95.8% 95.8%

Comparative LGMD1 81.3% 83.6% 85.0% 88.8% 87.4%

Proposed (ON-blocked) 79.0% 85.0% 86.5% 92.7% 89.0%

Proposed (OFF-blocked) 60.0% 70.5% 73.9% 78.0% 73.2%

success rate of collision detection and avoidance. The linear speeds thus varied

from the slowest speed of 3 cm/s to the fastest speed of 20 cm/s as shown in450

Table 3. Moreover, for comparison, we also did arena tests for the comparative

model [15], as well as the proposed neuron model with ON or OFF pathway

blocked, respectively. The arena experimental setting was identical for each kind

of LGMD1 neuron model. More specifically, in the arena tests, the Colias robot

with each tested neuron model was initialised to go forward until a potential455

collision was detected. The collision-avoidance behaviour was simply set to turn

right or left randomly with equal probability. After each avoidance, it resumed

going forward. For all tested neuron models, the time window was set to 7

minutes for each test, whilst each speed test was repeated four times.

Firstly, Fig. 13 illustrates the trajectories of collision avoidance for the460

Colias robot with the proposed LGMD1 neuron model from our repeated tests.

Moreover, Table 3 shows the statistical success rates of collision avoidance. We

defined the ‘miss avoidance’ as any human interventions in the arena tests after
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the Colias robot got stuck at the edges of the arena or collided with an obstacle.

The statistical results in Table 3 demonstrate that the Colias robot at the465

slowest linear speed (3 cm/s) has the lowest success rate of collision avoidance

in the arena tests. Increasing the linear speed gives rise to a rising of the

success rate, which seems to peak around 15 cm/s for the tested Colias robot.

As a result, faster moving speeds make the visual neuron more sensitive to the

looming stimuli by approaching the obstacles. However, we observed the larger470

distances to collisions (DTC) of the Colias robot at faster linear speeds.

For comparison, under the same arena test settings, we investigated the

performance of the collision avoidance with the comparative LGMD1 neuron

model, as well as the effects of blocking either ON or OFF pathways for the

proposed model with the collision avoidance. Table 4 demonstrates that our475

proposed LGMD1 model outperforms the comparative model in the arena tests,

despite it being at the slowest speed of 3 cm/s. Interestingly, after blocking the

ON pathway, the performance of the collision avoidance for the proposed model

is only slightly affected; while the collision avoidance performance deteriorates

sharply after blocking the OFF pathway in arena tests. The results demonstrate480

that the ON and OFF pathways play a role in the proposed neuron model for

collision detection. Importantly, for the ground robotic navigation tests, the

OFF pathway has a more significant influence on looming perception than the

ON pathway, as most objects are darker than the background in the arena.

4.3.2. Open-loop tests485

For systematically studying the unique characteristics of the proposed neu-

ron model in robotic applications, we designed a few types of open-loop tests.

The first kind of open-loop test was to test the proposed embedded LGMD1

model with movements in depth (Fig. 14). The second kind of open-loop test

was to investigate the DTC response (Fig. 15 and 16). After that, we also stud-490

ied the effects of angular approach (Fig. 18) and translation (Fig. 19) stimuli

on the neural response of the proposed model. The experimental settings for

the angular approach and translation tests are illustrated in Fig. 17. In the
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Figure 14: Neural responses of the embedded LGMD1 model in the stimulated Colias robot

challenged by the looming and recession of a dark object. The first example views are shown

at the top of each result. X and Y axes indicate the time window in frames and SMP from

the tested robot. Both the neural responses before and after the proposed SFA mechanism

are shown. The robot neural response matches the results in Fig. 5.

two former test types, the motion controls unit was used for the Colias robot

for approaching or receding from the targets; while in the angular approach and495

translation tests, the Colias robot was a motionless observer stimulated by an-

other moving robot. In all the open-loop tests, we collected the neural response

of the proposed model including the SMP and spikes through a Bluetooth device

attached to the visual module of the tested Colias robot.

Firstly, Fig. 14 demonstrates that when challenged by direct looming stimuli500

caused by ego-motion of the Colias robot, the proposed LGMD1 model over-

comes adaptation representing continuously increasing neural response as the

size of the projected object grows in the field of view. It is fully activated by the

end of approaching. The neural response is consistent and matches Fig. 5a, 5b,

5d. On the other hand, when receding from the object, the proposed embedded505

LGMD1 model is only activated for a short period of time. The adapted neural

response decreases dramatically, which matches Fig. 5c.

DTC tests. As mentioned in the arena tests, for deepening the understanding

of the underlined correlations between the DTC and the looming speed, we also
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Figure 15: Statistical results (error bars) of DTC tests on different combinations of investigated

parameters: the Colias robot approached an identical dark object at three linear-speeds.

Each combination of parameters was repeated ten times at each speed. (a) The spiking

threshold varies. (b) The temporal parameter in the SFA mechanism varies. (c) The temporal

parameters in the ON and OFF pathways vary. The results demonstrate the speed

response of the proposed neuron model tested by all combinations of investigated

parameters in collision detection tasks.

designed experiments to test the proposed framework with various combinations510

of model parameters, including the spiking threshold, the temporal parameters

in the low-pass filtering of the ON and OFF pathways and the high-pass filtering

of the SFA mechanism. More specifically, the spiking threshold plays a crucial

role in mediating the spike frequency of the proposed model. Compared with

the comparative LGMD1 model, we apply a strategy of exponentially mapping515

the membrane potential to the firing rate. Moreover, instead of the ‘one-frame-

delay’ strategy in the comparative model, we compute the delayed signals by

linear and temporal filtering the original signals with these investigated time

parameters.

In the first round of DTC experiments, the Colias robot with the proposed520

model was used to approach an identical dark object at three constant linear-

speeds. As illustrated in Fig. 15, the statistical results demonstrate the pa-

rameters all influence the DTC’s response when tested at all speeds. The faster

approaching speed gives rise to higher DTC response with each combination of

parameters, underlying the speed response of the proposed looming detector.525
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Figure 16: Statistical results of DTC tests on different grey-scaled looming stimuli: the Colias

robot approached five grey-scaled obstacles (a) under the same parameters set at three linear

speeds, respectively. Each test repeated ten times. (b) – (c) The box plots of DTC results at a

slow and a fast linear speed, respectively. (d) The medians of DTC results. The embedded

LGMD1 neuron model demonstrates both speed response and contrast sensitivity

to looming stimuli.

More concretely, as shown in Fig. 15a, reducing the spiking threshold gives rise

to larger DTC at all tested speeds. At each tested speed, the DTC increases by

the shrinking of the spiking threshold. The results are in accordance with the

computational rule of Eq. 21, that is, lower spiking threshold corresponds to

higher firing rate with other parameters fixed.530

On the aspect of temporal parameters in the proposed framework, Fig. 15b

and 15c illustrate that these time parameters all have an influence on the speed

response of the proposed neuron model. It appears that the DTC response at

each tested speed peaks by a combination of temporal parameters of 500 ms for

the high-pass filtering and 30/60 ms for the low-pass filtering. The results are535

also consistent with the spatiotemporal computations in the proposed frame-

work: for temporal filtering in the polarity pathways, the delayed information

decays more slowly by raising the time parameters (Eq. 4, 7), corresponding
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to stronger feedforward excitation and higher firing rate with other parameters

fixed. Similarly, increasing the time parameter in the SFA mechanism also leads540

to higher firing rate (Eq. 19, 20) with other parameters fixed. In the future

research, we aim to explore a method for optimising the selection of model

parameters adapting to different visual environments.

In the second round of DTC experiments, we let the robot approach different

objects, each with a certain grey-scale (Fig. 16a), in order to examine whether545

the contrast influences the DTC response. The statistical results in Fig. 16,

demonstrate that the proposed neuron model is also sensitive to the contrast be-

tween looming objects and background in robot vision, which are consistent and

also match the synthetic tests in Fig. 9. The LGMD1 model is more sensitive

to darker looming objects even at the lowest linear speed of 3 cm/s, represent-550

ing relatively larger DTC response (Fig. 16b). When the approach speed rises

up, the DTC response by approaching each grey-scaled object also climbs up

(Fig. 16c) – the looming stimulus with larger contrast leads to sharper rising of

DTC response. The statistical results in Fig. 16d demonstrate more intuitively

the speed response and the contrast sensitivity of the proposed LGMD1 neuron555

model. As the robot accelerates when approaching, the darkest looming object

corresponds to the most significant increase of DTC response. The green and

red looming objects with the medium contrast levels give rise to an increase in

the DTC response in a linear manner. The pink and white looming objects with

the smallest contrasts nevertheless have little influence on DTC response.560

Angular approach tests. In the angular approach tests, we investigated the ef-

fects of direct looming as well as ‘near-miss’ scenes by the approaching stimulus

from other angles. As illustrated in Fig. 17a, the motionless Colias robot was

stimulated by an identical dark looming object from four distinct angles against

a cluttered background: a ‘direct looming’ corresponds to the 0-degree angu-565

lar approach, whilst looming from other angles simulate the ‘near-miss’ scenes,

which are also frequent challenges for visual collision detectors. We accumu-

lated the elicited spikes from the proposed LGMD1 model during each angular
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Figure 17: Experimental settings of the angular approach and translation tests. In the angular

approach tests, the stimulated Colias robot was motionless and challenged by a same dark

object approaching from different angles against a cluttered background. In the translation

tests, the stimulated Colias robot was challenged by translations of a moving robot.

approach with a course of approximately the same length of time throughout

repeated tests. The results in Fig. 18 clearly demonstrate that the spike fre-570

quency (firing rate) of LGMD1 peaks when directly approaching. The spike rate

declines gradually along with the increase of approaching angles. When stimu-

lated by looming from 45 degrees, the largest angle tested, the LGMD1 model

represented the lowest spike frequency. Our results verify that the proposed

neuron model possesses similar characteristics to a biological LGMD1 neuron575

in locusts, which responds most strongly to directly approaching objects that

represent the most powerful strikes from predators.

Translation tests. In the last part of the open-loop robot experiments, the Co-

lias robot was challenged by translations against a cluttered background, as

illustrated in Fig. 17b. We investigated effects of the translation speed of vi-580

sual stimulus and the distance from the stimulated robot. More specifically, the

linear speed of the translating robot (stimulus) was set at approximately 3, 5,

7, 10 and 13 cm/s, whilst the distance varied from 10 to 50 cm.

As illustrated in Fig. 19, the statistical results demonstrate that both the

translating speed and the distance to the stimuli affect the peak neural response585

of the proposed LGMD1 neuron model. Concretely, the embedded LGMD1

neuron model represents the response speed to translation movements despite
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Figure 18: Angular approach tests results: (a) neural response of the embedded LGMD1

neuron model tested by three different angular approaches, (b) statistical results of the spike

count (firing frequency) with each angle of looming tested by ten times. The spike frequency

peaks at the direct looming, and declines as the increase of looming angle.

translations from the tested distance of 50 cm. These results are consistent

with the synthetic tests in Fig. 9. The faster translating speed gives rise to

the stronger neural response of the proposed model. In addition, the nearby590

translations from a distance of 10 cm or closer also highly activate the proposed

LGMD1 neuron model. It is conceivable that the locusts also treat the nearby

fast translating objects as potential collision or dangers. In addition, if the

translating distance is very far from the field of view (40 ∼ 50 cm or further),

the proposed LGMD1 model remained quiet for all tested translating speeds.595

In this case, the translating object corresponds to a small target, which may

be identified by other kinds of visual neurons like the small target movement

detectors [45], rather than the LGMDs.

5. Discussion

Through systematic experiments ranging from off-line to on-line tests, we600

have shown that the proposed looming sensitive neuron model, with the paral-

lel polarity pathways and the spike frequency adaptation mechanism, demon-

strates similar characteristics to the biological LGMD1 neuron and model (Fig.

5). More importantly, compared with a similar LGMD1 model from previous
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Figure 19: Statistical results of systematic translation experiments: each speed or distance was

tested for ten times, respectively. The horizontal dashed-lines indicate the spiking threshold.

research that deals with visual processing in a single pathway [15, 27], we have605

demonstrated the efficacy of ON and OFF pathways in building a looming sen-

sitive neural system. The collision selectivity is further enhanced for looming

objects over other regular visual challenges, which have been exhibited by the

above experiments. Unlike other animals such as the flies, the biological ON

and OFF pathways have not yet been anatomically and physiologically identi-610

fied in locusts, leaving little evidence to the computational modellers. However,

this modelling study evidences that such ON and OFF mechanisms or pathways

may exist locationally between the preliminary photoreceptors and the LGMDs.

Despite the ON and OFF pathways, another important achievement of this

research is to demonstrate the efficacy of an SFA mechanism in shaping the col-615

lision selectivity. However, there is valuable data on different protocols for shap-

ing the collision selectivity in LGMD1 that has not been compared thoroughly

in this work. For example, a seminal work of a non-linear LGMD1 neuron model

has demonstrated a non-linear correlation between the feedforward inhibitory

and excitatory responses [16]. The FFI mechanism could also contribute effec-620

tively in mediating the collision selectivity of an LGMD1 neuron, which cannot
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be disregarded. We would like to compare the different mechanisms and inves-

tigate the collaboration of them in shaping the LGMD1’s collision selectivity in

our future work.

The arena tests have verified the effectiveness and robustness of the pro-625

posed neuron model for guiding collision avoidance in robotic navigation (Table

3). The comparative arena tests have also demonstrated the improved perfor-

mance of collision detection of the proposed model over the comparative model

(Table 4). Again, the efficacy of ON and OFF pathways for looming perception

has been validated by the comparative experiments. We would like to further630

investigate the efficacy of this embedded collision-detecting vision system for

collision detection in dynamic scenes mixed with multiple robots.

6. Conclusions

In this paper, we have presented a looming sensitive visual neural network

based on a biological LGMD1 neuron in the locust’s visual system. Although635

many LGMD-based modelling works have been successfully utilised for fast col-

lision detection, shaping the collision selectivity to looming stimuli over other

types of visual challenges is still an open challenge. In this modelling study,

we have demonstrated the efficacy of biologically plausible ON and OFF path-

ways and spike frequency adaptation mechanism for looming perception and640

enhancing the LGMD1’s collision selectivity. Our systematic experiments have

verified that the collision selectivity of the proposed neuron model has been

effectively enhanced to looming rather than translating and receding stimuli.

The experiments have also shown the potential of ON and OFF pathways in

achieving different collision selectivity among looming detectors, like the real-645

isation of a biological LGMD2 neuron which is only sensitive to dark looming

objects. Moreover, we have exhibited the role of spike frequency adaptation as

a novel protocol in the proposed LGMD1 neuron model for shaping the collision

selectivity.

The proposed LGMD1 model perceives looming via low-level spatiotempo-650
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ral computation dealing with cluttered environments without applying complex

image segmentation and object recognition strategies. The experiments have

shown the significant potential to build neuromorphic sensors in the applications

of robots and vehicles. Similar to other neuromorphic solutions, the proposed

work can also be easily realised in VLSI chip for volume production.655

In our future work, we will investigate the possibility of integrating direc-

tion and collision selective neural models with similar separated ON and OFF

pathways to handle more complex navigating scenarios of robots and vehicles.
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