Cloned Prokaryotic Iron Superoxide Dismutase Protects Yeast Cells against Oxidative Stress Depending on Mitochondrial Location

Rena Balzan, Dolores R. Agius, and William H. Bannister
Department of Physiology and Biochemistry, University of Malta, Msida MSD 06, Malta

Received January 25, 1999

Superoxide dismutase (SOD) is considered to be the first line of defense against oxygen toxicity. It exists as a family of three metalloproteins with copper, zinc (Cu,ZnSOD), manganese (MnSOD), and iron (FeSOD) forms. In this work, we have targeted Escherichia coli FeSOD to the mitochondrial intermembrane space (IMS) of yeast cells deficient in mitochondrial MnSOD. Our results show that FeSOD in the IMS increases the growth rate of the cells growing in minimal medium in air but does not protect the MnSOD-deficient yeast cells when exposed to induced oxidative stress. Cloned FeSOD must be targeted to the mitochondrial matrix to protect the cells from both physiological and induced oxidative stress. This confirms that the superoxide radical is mainly generated on the matrix side of the inner mitochondrial membrane of yeast cells, without excluding its potential appearance in the mitochondrial IMS where its elimination by SOD is beneficial to the cells.

Key Words: oxidative stress; Saccharomyces cerevisiae; superoxide dismutase; mitochondrial targeting.

The generation of reactive oxygen species such as the superoxide radical (O$_2^-$) normally associated with cellular respiratory activities (1) and living cells have evolved several mechanisms against these reactive oxygen species. On the first line of defense there are the superoxide dismutase enzymes (SOD); EC 1.15.1.1) (2). In eukaryotic cells, with the exception of a large group of marine arthropods (3), manganese superoxide dismutase (MnSOD) is found exclusively in the mitochondrial matrix (4), and a yeast mutant lacking mitochondrial MnSOD was found to be hypersensitive to oxygen (5). In addition to cytosolic copper, zinc superoxide dismutase (Cu,ZnSOD), a cyanide-sensitive SOD has been claimed to reside in the mitochondrial intermembrane space of eukaryotic cells (6–8). However, according to Geller and Winge (9), the rat liver Cu,ZnSOD, previously reported to be localized in the mitochondrial intermembrane space (7, 8), was due to lysosomal contamination, even though these authors did not exclude the possibility that a small amount of Cu,ZnSOD may be located in the mitochondria.

In this work we tried to acquire a better understanding of the generation and location of the superoxide radical in yeast cells, through differential mitochondrial targeting of the prokaryotic iron superoxide dismutase (FeSOD). We show that Escherichia coli FeSOD, on being imported into the mitochondrial intermembrane space (IMS) of yeast cells deficient in MnSOD, increases the growth rate of the cells growing in minimal medium in the presence of 2% lactate, though not as efficiently as when the FeSOD is targeted to the mitochondrial matrix. When the MnSOD-deficient yeast cells were subjected to induced oxidative stress, or to higher oxygen utilization, cloned FeSOD located in its active form in the mitochondrial IMS, was not able to replace the matrix MnSOD in its activity against oxidative stress.

MATERIALS AND METHODS

Bacterial and yeast strains. The E. coli strain used in the standard cloning procedures was TG1 (supE hsdR15 thy A1 [lac-proAB]) F' [traD36 proAB' lacIq lacZM15] obtained from Amersham International. The Saccharomyces cerevisiae strains used were (i) DL1Mn~"~ (a, leu2-3, -112 his3-11, -15 ura3-251, -372, -328 sod2::LEU2) (5), kindly provided by S. Oliver of Manchester University, and (ii) DL1Mn·Fe"-P, which is DL1Mn" carrying the E. coli FeSOD gene with the yeast MnSOD gene targeting signal on the recombinant plasmid YE8/PGK-S (10).

Construction of plasmid vector for expressing E. coli FeSOD with the yeast cytochrome c$_1$ targeting signal in S. cerevisiae. The E. coli FeSOD gene (11) was isolated from the plasmid pH51-8 (donated by D. Touati, Institut Jacques Monod, Paris) by digestion with the restriction endonucleases AsuI and Clal and then ligated to the plasmid pDL415 (12) donated by G. Schatz, Basel University, Switzerland) at its BamHI site (downstream to the yeast cytochrome c$_1$ leader sequence (pc$_1$)) to form the recombinant plasmid pDL415-P.
The *E. coli* FeSOD gene with the yeast cytochrome *c*1 leader sequence was isolated from the plasmid pDVL45-F by digestion with the restriction endonucleases SpeI and StuI, and then ligated to the plasmid YEp/PGK (supplied by S. Oliver, Manchester University) at itsBgIII site (flanked by the yeast 3-phosphoglycerate kinase gene (PGK) promoter and transcription terminator) to form the recombinant plasmid YEp/PGK-C,F. All ligation experiments using *E. coli* TG1 cells as the transformation host were carried out as specified by Sambrook et al. (13).

Expression of *E. coli* FeSOD with the yeast cytochrome *c*1 targeting signal in yeast cells. Transformation of *S. cerevisiae* DL1Mn*"*-cells (carrying an inactivated MnSOD gene) (5) by the recombinant plasmid YEp/PGK-C,F (to give rise to the strain DL1Mn-"-YEp-C,F) and YEp/PGK (to give rise to the strain DL1Mn-'YEp'), respectively, was carried out by the lithium acetate method according to Ito et al. (14). The culture media used were (i) YEPD (ii) minimal medium (Bacto Yeast Nitrogen Base without amino acids, 0.67%; glucose, 1%; L-lactate, 2%; with adenine sulfate, L-methionine and uracil (each at 20 μg/ml), L-histidine–HCl (100 μg/ml), L-tryptophan (40 μg/ml), L-lysine–HCl (30 μg/ml), and L-lysine–HCl (120 μg/ml), as required, and pH adjusted to 5.5 with KOH). For plates 2% agar was used and incubation was at 28°C. Aerobic growth in liquid cultures was maintained at 28°C with constant shaking at 300 rpm.

Isolation and subfractionation of yeast mitochondria. The protocols used for the isolation of the membrane-free cytosolic fraction, mitochondrial, intermembrane space fraction, mitochondrial matrix, and mitochondrial membranes were as described by Click and Pon (15).

Determination of protein expression and activity. Protein expression studies were carried out by using SDS–polyacrylamide gel electrophoresis followed by staining with Coomassie brilliant blue (16). SOD activity was determined according to McCord and Fridovich (17, 18), and for SOD activity staining the method of Beauchamp and Fridovich (19) was used. Catalase (CAT; EC 1.11.1.6) activity was determined according to the method of Aebi (20). Cytochrome *c* peroxidase (CCP; EC 1.11.1.5) enzyme assays were carried out as specified by Yonetani (21).

Response to oxidative stress. In the study of the response of *S. cerevisiae* strains DL1Mn-"-YEp, DL1Mn-"-YEp-C,F, and DL1Mn-"-Fe-C,F (having cloned *E. coli* FeSOD in the mitochondrial matrix) (10) to induced oxidative stress, the yeast cells were exposed to (i) 1 mM or 6 mM paraquat (Sigma) in minimal medium and YEPD respectively; and (ii) a wide range of menadione (Sigma) concentrations (1 mM to 6 mM) in YEPD medium for 1 h, followed by plating of resuspended cells on minimal medium plates to study cell viability. Cellular growth of the three strains exposed to paraquat was followed by measuring the optical density (OD) at 600 nm in a Perkin-Elmer Lambda 17 spectrophotometer after appropriate dilution of the cell cultures. The response of the recombinant yeast cells to "physiological" oxidative stress was studied by growing the cells in YPE liquid medium in air.

Miscellaneous. DNA sequencing was carried out by the dye-deoxy method (22) using Sequenase I enzyme (United States Biochemicals). The Bradford procedure was used to determine protein concentrations (23). Electrophoretic analysis of proteins from SDS–polyacrylamide gels on to nitrocellulose membranes (Hybond-C extra, from Amersham) was carried out on a Pharmacia LKB 2011-250 Novablot electrophoresis transfer kit. For subsequent immunoscreening of the proteins the Amersham SuperScreen system was used. Densitometry studies were carried out on Bio-Rad Multi-Analyser/PC Version 1.1.

RESULTS

Targeting of *E. coli* FeSOD to the intermembrane space of yeast mitochondria in vivo. The prokaryotic FeSOD gene with the leader sequence of the yeast cytochrome *c*1 gene was expressed in *S. cerevisiae* DL1Mn-"-YEp-C,F cells. Protein expression studies, together with electroblotting and subsequent immunoscreening by means of *E. coli* FeSOD antibody, revealed the presence of FeSOD in the isolated mitochondrial intermembrane space (IMS) fraction of *S. cerevisiae* cells (Fig. 1, lane 3). From a series of immunoscreening experiments with antibodies for yeast hexokinase, hsp60, cytochrome *c* oxidase subunit IV, and 29 kDa porin (all yeast antibodies were kindly provided by G. Schatz of Basel University), the mitochondrial IMS fraction of the *S. cerevisiae* cells (confirmed as IMS fraction by immunoscreening with cytochrome *b*2 antibody) was found not to be contaminated by the cytosol, or the outer mitochondrial membrane, and only very slightly and insignificantly contaminated by the matrix and inner membrane. The mitochondrial matrix fraction was contaminated by the cytochrome *b*2 of the IMS fraction (results not shown).

Densitometry showed comparable contamination of matrix by IMS fraction for cytochrome *b*2, and FeSOD. This corresponds with the presence of a fainter FeSOD band in lane 4 of Fig. 1.

The import of the prokaryotic protein into the mitochondria of yeast cells was accompanied by the proteolytic removal of the yeast cytochrome *c*1 presequence as judged by electrophoretic behavior (Figs. 1 and 2), and the enzymatic activity of the mature protein is shown in Fig. 2. The absence of a second activity band in Fig. 2 (lanes 4 and 8) indicates that the cyt *c*1-FeSOD precursor is inactive since the precursor protein has a different mobility from that of the mature protein.

The fact that in DL1Mn-"Fe-P cells the mitochondrial FeSOD activity level was much higher than in DL1Mn-"YEp-C,F cells (Table 1), indicates that the mitochondrial matrix can support a much higher FeSOD activity level than the IMS. One cannot exclude the possibility that the MnSOD targeting signal used in DL1Mn-"Fe-P cells is more efficient than the cytochrome *c*1 targeting signal used in DL1Mn-"YEp-C,F. In DL1Mn-"Fe-P cells the MnSOD presequence is not cleaved off (10) and the precursor protein is active both
in the mitochondrial matrix and in the cytosol (Table 1). However, it has already been proved that active FeSOD located in the cytosol cannot replace mitochondrial MnSOD in protecting yeast cells against oxidative stress (10). In this work, since FeSOD activity was determined in cells harvested at mid-logarithmic phase, the result obtained from DLIMn -Fe^2+-P cells was higher than in previous work (10) where the activity was measured in cells harvested at stationary phase. This has been observed with other yeast strains in our laboratory (24). The threefold increase in CAT activity in DLIMn -Fe^2+-P cells (Table 1) is probably due to the much higher SOD activity level in the cell, and it indicates that it is CAT and not CCP which controls the H_2O_2 level within the yeast cells. The observed tendency to increase in CCP activity registered in DLIMn -YEp-C_1,F cells (Table 1) points towards the possibility of having a more efficient means of removing H_2O_2 from the mitochondrial IMS as soon as it is formed.

Role of cloned FeSOD in protecting yeast cells against oxidative stress depends on mitochondrial location. When growing in minimal medium in the absence of paraquat, DLIMn -YEp-C_1,F cells with FeSOD targeted to the IMS had a better growth rate than DLIMn -YEp cells which carry only the plasmid YEp/PGK without the cloned FeSOD gene. However, the growth rate of DLIMn -YEp-C_1,F cells was less than that of DLIMn -Fe^2+-P cells with FeSOD targeted to the mitochondrial matrix (10) (Fig. 3A(i)). In rich YEPD medium, the differences in growth rates of the three recombinant strains were not so marked since, during fermentation, respiration is mainly anaerobic (Fig. 3B(i)).

In YPE medium with ethanol as the non-fermentable carbon source, as well as in minimal or YEPD medium

TABLE 1

<table>
<thead>
<tr>
<th>Yeast strains</th>
<th>Cu,ZnSOD (µg/mL)</th>
<th>FeSOD (mitochondrial)</th>
<th>FeSOD (cytosolic)</th>
<th>CAT (U/mg)</th>
<th>CCP (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLIMn -YEp</td>
<td>25.1 ± 0.98</td>
<td>—</td>
<td>—</td>
<td>18.2 ± 2.5</td>
<td>1.06 ± 0.04</td>
</tr>
<tr>
<td>DLIMn -YEp-C_1,F</td>
<td>17.4 ± 1.21</td>
<td>5.9 ± 0.72</td>
<td>—</td>
<td>17.9 ± 1.3</td>
<td>1.50 ± 0.14</td>
</tr>
<tr>
<td>DLIMn -Fe^2+-P</td>
<td>22.7 ± 1.56</td>
<td>62.8 ± 2.45</td>
<td>19.91 ± 1.69</td>
<td>55.8 ± 3.4</td>
<td>1.18 ± 0.18</td>
</tr>
</tbody>
</table>

Note. Cells were grown in minimal medium and harvested at midlogarithmic phase. Specific activity was determined in triplicate on at least three independent extracts. Cytochrome c peroxidase (CCP) activity was normalized to 20 µM cytochrome c concentration in the assay. Data are given with the SE of the estimate. Specific activities of copper, zinc superoxide dismutase (Cu,ZnSOD), mitochondrial and cytosolic iron superoxide dismutase (FeSOD), catalase (CAT), and CCP are quoted as U/mg of total cell protein.
YEp (MnSOD-deficient mutant which carries only the fusion protein consisting of trinox, as opposed to that in the IMS, is essential for activity. This is in contrast to a previously constructed cleaved off and the resulting mature protein, would have been sufficient, if located in the mitochondrial IMS of wild-type yeast cells did protect the cells against oxidative stress. Hence, the presence of MnSOD.

It has also been shown in previous work (5) that a comparable level of mitochondrial SOD activity in the matrix of wild-type yeast cells did protect the cells against oxidative stress. Hence, the presence of SOD in the matrix, as opposed to that in the IMS, is essential for protection against induced oxidative stress.

DISCUSSION

In this work, E. coli FeSOD was targeted to the mitochondrial IMS of S. cerevisiae cells deficient in MnSOD. The yeast cytochrome c₁ targeting signal was cleaved off and the resulting mature FeSOD proved to be active whilst the precursor protein did not show any activity. This is in contrast to a previously constructed fusion protein consisting of FeSOD with the yeast MnSOD presequence which gave rise to an active precursor protein (10). Therefore, the in vivo folding of the mature FeSOD as part of a precursor protein appears to depend on the nature of the presequence.

Our results show that MnSOD-deficient yeast cells having cloned E. coli FeSOD targeted to the mitochondrial IMS behave differently than when having the cloned FeSOD targeted to the matrix. The fact that the presence of FeSOD in the IMS increases the growth rate of the cells growing in minimal medium in air, even though not to the extent as when the FeSOD is located in the matrix (Fig. 3A(i)), points towards a possible relevance of the presence of SOD in the mitochondrial IMS of yeast cells. However, the presence of FeSOD in the IMS did not protect the MnSOD-deficient yeast cells when exposed to induced oxidative stress (Figs. 3A(ii) and B(ii) and Fig. 5), or when growing on a nonfermentable carbon source such as ethanol (Fig. 4). Under these conditions cloned FeSOD has to be targeted to the mitochondrial matrix to protect the cells from oxidative stress. Similar results were also obtained in our laboratory, when E. coli FeSOD was targeted to the IMS of S. cerevisiae cells deficient in both MnSOD and Cu,ZnSOD. The double mutant strain carrying FeSOD in the IMS showed a 53% increase in growth rate over the double mutant strain carrying the plasmid only, after 95 h of growth in minimal medium. In the presence of 1 mM paraquat, both double mutant strains with, or without FeSOD in the IMS, could not survive (unpublished results).

The protection given by FeSOD located in the IMS to MnSOD-deficient yeast cells growing in minimal me-

FIG. 4. S. cerevisiae DL1Mn−Fe⁺-P cells with E. coli FeSOD in the mitochondrial matrix have a significant growth advantage over DL1Mn−YEp-C,F cells with E. coli FeSOD in the IMS, when grown on a nonfermentable carbon source. Cells from the S. cerevisiae strains DL1Mn−YEp-C,F (MnSOD-deficient mutant with E. coli FeSOD targeted to the IMS, s), DL1Mn−Fe⁺-P (MnSOD-deficient mutant with E. coli FeSOD targeted to the mitochondrial matrix, m), and DL1Mn−YEp (MnSOD-deficient mutant which carries only the plasmid YEp/PGK, µ) were grown in YPE medium at 28°C. Each point represents the mean of three independent determinations. Error bars are ± 1 SD and appear where sufficiently large.

FIG. 5. Sensitivity to menadione of MnSOD-deficient yeast cells with cloned FeSOD targeted either to the mitochondrial matrix or the IMS. Strains DL1Mn−YEp-C,F (MnSOD-deficient mutant with E. coli FeSOD targeted to the IMS, ▲), DL1Mn−Fe⁺-P (MnSOD-deficient mutant with E. coli FeSOD targeted to the mitochondrial matrix, ●), and DL1Mn−YEp (MnSOD-deficient mutant which carries only the plasmid YEp/PGK, ▢) were exposed to a wide range of menadione concentrations (1 to 6 mM) in YEPD medium for 1 h, followed by plating of resuspended cells on minimal medium plates to study cell viability. Data are the mean of triplicates from a representative experiment. Error bars are ± 1 SD and appear where sufficiently large.
dium in air and exposed to the normal flux of O_2^- indicates the potential appearance of O_2^- in the mitochondrial IMS of the cells where its elimination by SOD is beneficial to the cells. However, since the greater protection against oxidative stress to the MnSOD-deficient yeast cells occurs when FeSOD is targeted to the matrix, the actual generation of O_2^- seems to occur on the inner side of the inner membrane, thus confirming what has been previously suggested (23, 24). This does not preclude the possibility of some generation of the superoxide radical on the outer side of the inner membrane. Other possibilities may include leakage of the superoxide radical from the matrix through the inner membrane (25), especially in strains deficient in MnSOD, and scavenging of superoxide radical coming from the cytosol (26).

In summary, we have shown (i) that in vivo, the mitochondrial IMS of yeast cells can support the function of a targeted SOD with resultant protection to the MnSOD-deficient yeast cells growing in minimal medium in air, when exposed to the normal flux of O_2^-; and (ii) that this IMS-located SOD cannot replace the matrix SOD not only in protecting the cells against induced oxidative stress, but also when the yeast cells are growing on a non-fermentable carbon source, thus confirming the suggestions that the generation of O_2^- occurs mainly on the inner side of the mitochondrial inner membrane, without precluding the possibility of damaging appearance of some O_2^- in the mitochondrial IMS.

ACKNOWLEDGMENTS

We thank Professor D. Touati for providing us with plasmid pHSl-8 and the antibody for E. coli FeSOD and Professor S. Oliver for supplying us with the S. cerevisiae DL1Mn strain and the plasmid vector YEpPGK. We also thank Professor G. Schatz for supplying us with the plasmid vector pDVL45, antibodies for yeast mitochondrial marker proteins, and hexokinase and especially for his advice and support. This work was supported by a Research Fund Grant from the University of Malta.

REFERENCES