
e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

A Novel Test Case Design Technique Using
Dynamic Slicing of UML Sequence Diagrams

Philip Samuel∗, Rajib Mall∗
∗Department of Computer Science and Engineering, Indian Institute of Technology,

Kharagpur(WB),India-721302

philips@cusat.ac.in, rajib@cse.iitkgp.ernet.in

Abstract
We present a novel methodology for test case generation based on UML sequence dia-
grams. We create message dependence graphs (MDG) from UML sequence diagrams.
Edge marking dynamic slicing method is applied on MDG to create slices. Based on
the slice created with respect to each predicate on the sequence diagram, we generate
test data. We formulate a test adequacy criterion named slice coverage criterion. Test
cases that we generate achieves slice coverage criterion. Our approach achieves slice test
coverage with few test cases. We generate effective test cases for cluster level testing.

1 Introduction

Ever since Weiser [51] introduced program slicing, researchers have shown considerable
interest in this field probably due to its application potential. Slicing is useful in software
maintenance and reengineering [15, 35], testing [19, 28, 42], decomposition and integration
[23], decompilation [10], program comprehension [38, 20], and debugging [39]. Most of the
works reported on slicing concerns improvements and extensions to algorithms for slice
construction [37, 21, 33, 14, 6]. Even though dynamic slicing is identified as a powerful
tool for software testing [33, 42], reported work on how dynamic slicing can be used in
testing is rare in the literature. In 1993, Kamkar et al. [28] reported how dynamic slicing
can be applied to interprocedural testing. This work is reported in the context of testing
procedural code. To the best of our knowledge, no work is reported in the literature that
describes how dynamic slicing can be used for test case generation in the object oriented
context. In this paper, we propose a method to generate test cases by applying dynamic
slicing on UML sequence diagrams.

As originally introduced, slicing (static slicing) considers all possible executions of a
program. Korel and Laski [32] introduced the concept of dynamic slicing. Dynamic slicing
considers a particular execution and hence significantly reduces the size of the computed
slice. A dynamic slice can be thought of as that part of a program that “affects" the com-
putation of a variable of interest during a program execution on a specific program input
[33]. A dynamic slice is usually smaller than a static slice, because run-time information
collected during execution is used to compute the slice. In a later work, Korel has shown
that slicing can be used as a reduction technique on specifications like UML state models

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IO PWr

https://core.ac.uk/display/153541829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

72 Philip Samuel, Rajib Mall

[34].

The goal of software testing is to ensure quality. Software testing is necessary to produce
highly reliable systems, since static verification techniques suffer from several handicaps in
detecting all software faults [5]. Hence, testing will be a complementary approach to static
verification techniques to ensure software quality. As software becomes more pervasive
and is used more often to perform critical tasks, it will be required to be of very high
quality. Unless more efficient ways to perform effective testing are found, the fraction of
development costs devoted to testing will increase to unacceptable levels [45].

The most intellectually challenging part of testing is the design of test cases. Test cases
are usually generated based on program source code. An alternative approach is to gener-
ate test cases from specifications developed using formalisms such as UML models. In this
approach, test cases are developed during analysis or design stage itself, preferably during
the low level design stage. Design specifications are an intermediate artifact between re-
quirement specification and final code. They preserve the essential information from the
requirement, and are the basis of code implementation. Moreover, in component-based
software development, often only the specifications are available and the source code is
proprietary. Test case generation from design specifications has the added advantage of
allowing test cases to be available early in the software development cycle, thereby mak-
ing test planning more effective. It is therefore desirable to generate test cases from the
software design or analysis documents, in addition to test case design using the code.

Now, UML is widely used for object oriented modeling and design. Recently, several
methods have been proposed to execute UML models [48, 41, 47, 18, 13, 11]. Executable
UML [41, 47] allows model specifications to be efficiently translated into code. Executable
UML formalizes requirements and use cases into a set of verifiable diagrams. The models
are executable and testable and can be translated directly into code by executable UML
model compilers. Besides reducing the effort in the coding stage, it also ensures platform
independence and avoids obsolescence. This is so because the code often needs to change
when ported to new platforms or fine tuning the code on efficiency or reliability consid-
erations. It also allows meaningful verification of the models by executing them in a test
and debug environment. Our test generation approach can also work on executable UML
models.

UML-based automatic test case generation is a practically important and theoretically
challenging topic. Literature survey indicates, testing based on UML specifications is re-
ceiving an increasing attention from researchers in the recent years. In using UML in the
software testing process, here we focus primarily on the sequence diagrams where sequence
diagrams model dynamic behavior. This is because most of the activities in software test-
ing seek to discover defects that arise during the execution of a software system, and these
defects are generally dynamic (behavioral) in nature [52]. Software testing is fundamentally
concerned with behavior (what it does), and not structure (what it is) [27]. Customers
understand software in terms of its behavior, not its structure. Further, UML is used in

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 73

the design of object-oriented software, which is primarily event-driven in nature. In such
cases, the concept of a main program is minimized and there is no clearly defined integra-
tion structure. Thus there is no decomposition tree to impose the question of integration
testing order of objects. Hence, it is no longer natural to focus on structural testing orders.
Whereas, it is important to identify in what sequence objects interact to achieve a common
behavior. In this context, UML sequence diagrams forms an useful means by which we can
generate effective test cases for cluster level testing.

In this paper, we concentrate on UML sequence diagrams to automatically generate test
cases. This paper is organized as follows: A brief discussion on sequence diagrams is given
in the next section. In Section 3 we discuss few basic concepts. Section 4 describes our
methodology to generate test cases from sequence diagrams and explains our methodology
with an example. Section 5 discusses an implementation of our test methodology. Related
research in the area of UML based testing is discussed in the Section 6 and conclusions are
given in Section 7.

2 UML Sequence Diagrams

 Note
response()

message1(argu)
startmessage()

Life line

Activation

:object1 :object2 :object3

alt

asynchronous message4()

Interaction Operator

message2()
[x<25]message3()

[y>10]

[else]

Interaction Constraint

message5() Seperator
Interaction operand

Combined fragment
(alternative)

Condition

Figure 1: A Sequence Diagram Showing Various Notations

UML Sequence diagrams capture time dependent (temporal) sequences of interactions
between objects. They show the chronological sequence of the messages, their names and
responses and their possible arguments. A sequence diagram has two dimensions: the

74 Philip Samuel, Rajib Mall

vertical dimension represents time, and the horizontal dimension represents different in-
stances. Normally time proceeds from top to bottom [44]. Message sequence descriptions
are provided in sequence diagrams to bring forth meanings of the messages passed between
objects. Sequence diagrams describe interactions among software components, and thus
are considered to be a good source for cluster level testing. In UML, a message is a request
for a service from one UML actor to another, these is typically implemented as method
calls. We assume that each sequence diagram represents a complete trace of messages
during the execution of a user-level operation.

An example of a UML sequence diagram is shown in Fig. 1. The vertical dashed line
in the diagram is called a lifeline. A lifeline represents the existence of the corresponding
object instance at a particular time. Arrows between the lifelines denote communication
between object instances using messages. A message can be a request to the receiver object
to perform an operation(of the receiver). A synchronous message is shown with a filled
arrowhead at the end of a solid line. An asynchronous message is depicted with an open
arrowhead at the end of a solid line. Return messages are usually implied. We can ex-
plicitly show return messages using an open stick arrowhead with a dashed line as shown
in Fig. 1. An object symbol shown with a rectangle is drawn at the head of the lifeline.
An activation (focus of control) shows the period during which an instance is performing a
procedure. The procedure being performed may be labeled in text next to the activation
symbol or in the margin.

UML 2.0 also allows an element called note, for adding additional information to the
sequence diagram. Notes are shown with dog-eared rectangle symbols linked to object life-
line through a dashed line as shown in Fig.1. Notes are convenient to include pseudocode,
constraints, pre-conditions, post-conditions, text annotations etc. in sequence diagram.
However, in our approach we restrict the notes to contain only executable statements.
Messages in the sequence diagram are chronologically ordered. So we have numbered them
based on their timestamps. Further, we have numbered the notes in an arbitrary manner.

In UML 2.0, a set of interactions can be framed together and can be reused at other
locations. Different interaction fragments can be combined to form a combined fragment. A
combined interaction fragment defines an expression of interaction fragments. A combined
interaction fragment is defined by an interaction operator and corresponding interaction
operands. Through the use of combined fragments, the user will be able to describe a
number of traces in a compact and concise manner. A combined fragment with an operator
alt (for alternative) is shown in Fig. 1.

3 Basic Concepts

In this section, we discuss a few basic concepts that are useful to understand the rest of
this paper.

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 75

Class, Cluster and System Level Testing: In object oriented systems, generally testing
is done at different levels of abstraction: class level, cluster level and system level[9, 50, 30].
Class level testing tests the code for each operation supported by a class as well as all pos-
sible method interactions within the class. Class level testing also includes testing the
methods in each of the states that a corresponding object may assume. At cluster level
testing, the interactions among cooperating classes are tested. This is similar to integration
testing. The system level testing is carried out on all the clusters making up the complete
system.

Executable UML: Executable UML [41, 47] allows model specifications to be efficiently
translated into code. Executable UML can formalize requirements and use cases into a rich
set of verifiable diagrams. The models are executable and testable and can be translated
directly into code by executable UML model compilers. The benefits of this approach go
well beyond simply reducing or eliminating the coding stage; it ensures platform indepen-
dence, avoids obsolescence (programming languages may change, the model doesn’t) and
allows full verification of the models by executing them in a test and debug environment.

Test Case: A test case is the triplet (I,D,O) where I is the state of the system at which
the test data is input, D is the test data input to the system, and O is the expected output
of the system [2, 40, 43]. The output produced by the execution of the software with a
particular test case provides a specification of the actual software behavior.

4 Dynamic Slicing based Test Case Generation from Sequence
Diagrams

In this section we describe our proposed methodology for automatic test case generation
from UML sequence diagrams using dynamic slicing. We first define a few terms and the
relevant test coverage criteria.

4.1 Definitions

The following definitions would be used in the description of our methodology.

Message Dependency Graph (MDG): We define MDG as a directed graph with (N,E),
where N is a set of nodes and E is a set of edges. MDG shows the dependency of a given
node on the others. Here a node represents either a message or a note in the sequence
diagram and edges represent either control or data dependency among nodes. Here we have
assumed that notes are attached to objects and the statements on the notes are executed
when its corresponding lifeline is activated. MDG does not distinguish between control or
data dependence edges. It does however distinguish between stable and unstable edges.
Definitions of stable and unstable edges are given subsequently. The induced subgraph of
MDG of the sequence diagram in Fig.2 on the Node Set(3,4,5,6,7,8,9,10,11,12,13) is shown

76 Philip Samuel, Rajib Mall

in Fig.3. of Subsection 4.7.

Slicing Criteria: Slices are constructed based on a slicing criterion. Weiser’s slicing crite-
rion [51] consisted of a set of variables of interest and a point of interest within the original
program. Statements which cannot affect the values of variables at a point of interest in
the program are removed to form the slice. In our case, the slicing criterion (m, V) specifies
the location (identity) of a message m in its corresponding MDG and V is a set of variables
that are used by the conditional predicate on the message at m.

Dynamic Slice: A dynamic slice of a sequence diagram is defined with respect to its cor-
responding MDG. Consider a predicate in MDG on a message m in a sequence diagram.
A dynamic slice is the induced subgraph of MDG, induced by the set of nodes in MDG
that affect a predicate at m for a given execution. We call this slice as a dynamic slice of
sequence diagram. Those nodes of MDG that do not affect the predicate at m are removed
to form the slice, for the slicing criterion (m,V).

UseVar(x): It is the set of all nodes in MDG that uses the value of variable x. For ex-
ample, in the expression (n = x ∗ y) there is a use of the value of the variable x.

AllotVar(x): It is the set of all nodes in MDG that defines the variable x. In addition,
consider a conditional guard specifies a condition in a message using variable x. If x is used
to specify another condition in another message, such conditional guards are also treated as
members of AllotVar(x). We use the term allotment to indicate that a variable x is either
defined or if x is used to specify guards in the rest of paper. For example, consider nodes 4
and 8 in MDG as shown in Fig. 3. These nodes correspond to messages [y < 50]msg4 and
[y > 120]msg8 respectively in Fig. 2. For a particular input value for the variable y, only
one of these messages will take place. Hence, both nodes 4 and 8 are treated as members
of AllotVar(y). A use of y will require only one of the AllotVar(y), not both.

Dependence Edge: If node i is a member of usevar(x) and a node j is a member of
AllotVar(x), then there is a directed edge from node i to node j, this edge is also called a
dependence edge.

Dependency Path: A dependency path F from some node vi, to a node vk is a sequence
of nodes and edges in MDG from vi to vk.

Unstable Edge: Let M,Mi,Mj be three nodes in MDG. An outgoing dependence edge
(M,Mi) in MDG is said to be unstable if there exists an outgoing dependence edge (M,Mj)
with Mi not equal to Mj such that the statements Mi and Mj both are members of Al-
lotVar(x). For example, in Fig.2, the messages [y < 50]msg4 and [y > 120]msg8 will form
unstable edges with respect to the message [a + y > 20]msg11. These edges corresponds
to (4,11) and (8,11) respectively in the MDG shown in Fig.3.

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 77

Stable Edge: An edge in a dependency graph is said to be stable, if it is not an unstable
edge.

Slice Condition: Consider a slice S of a sequence diagram for the slicing criterion (m,V).
The slice condition of the slice S is the conjunction of all the individual predicates present
in the dynamic slice for a given execution.

Slice Domain: The slice domain of slice S is the set of all input data values for which the
slice condition of S is satisfied.

Boundary: A slice domain is surrounded by a boundary. A boundary is a set of data
points. A boundary might consist of several segments and each segment of the boundary
is called a border [17]. Each border is determined by a single simple predicate in the slice
condition. A border crossing occurs for some input where the conditional predicate changes
its Boolean value from true to false or vice versa.

4.2 Test Coverage

A software test data adequacy criterion (or coverage criterion) is used to find out whether
a set of test cases is sufficient, or "adequate," for testing a given software. Some of the
relevant test criteria are introduced in this section.

4.2.1 Slice Coverage Criterion

Several test coverage criteria such as message path criteria, full predicate coverage etc., have
been proposed in the literature[2]. Several other criteria such as slice coverage criterion
can easily be formulated based on these criteria. We extend slice coverage criterion from
path based criteria. Slice criteria is defined with respect to a dependency graph. We define
slice coverage criterion for sequence diagram as follows: Consider a test set T and an MDG
corresponding to a sequence diagram SD. In order to satisfy the slice coverage criterion, it
is required that T must cause all the dependency paths in MDG for each slice to be taken
at least once. Slice coverage ensures that all the dependency paths of an MDG (Message
Dependency Graph) are covered.

4.2.2 Full Predicate Coverage

Full predicate coverage criterion requires that each clause should be tested independently[43].
In other words, each clause in each predicate on every message must independently affect
the outcome of the predicate. Given a test set T and sequence diagram SD, T must cause
each clause in every predicate on each message in SD to take on the values of TRUE and
FALSE while all other clauses in the predicate have values such that the value of the pred-
icate will always be the same as the clause being tested. This ensures that each clause in
a condition is separately tested.

78 Philip Samuel, Rajib Mall

4.2.3 Boundary Testing Criterion

Testers have frequently observed that domain boundaries are particularly fault-prone and
should therefore be carefully checked[25]. Boundary testing criterion is applicable whenever
the test input domain is subdivided into subdomains by decisions (conditional predicates).
Let us select an arbitrary border for each predicate p. We assume that the conditional
predicates on the sequence diagram are relational expressions (inequalities). That is, all
conditional predicates are of the following form: E1opE2, where E1andE2 are arithmetic
expressions, and op is one of {<,≤, >,≥}. Jeng and Weyuker[25] have reported that an
inequality border can be adequately tested by using only two points of test input domain,
one named ON point and the other named OFF point. The ON point can be anywhere
on the given border. It does not even have to lie exactly on the given border. All that is
necessary is that it satisfies all the conditions associated with the border. The requirement
for the OFF point is that it be as close to the ON point as possible, but it should lie outside
the border.

The boundary testing criterion can now be defined as follows: The boundary testing
criterion is satisfied for inequality borders if each selected inequality border b is tested by
two points (ON-OFF) of test input domain such that, if for one of the points the outcome
of a selected predicate q is true, then for the other point the outcome of q is false. Also
the points should satisfy the slice condition associated with b and the points should be as
close as possible to each other [17].

Definitions of boundary testing criteria for equality and non-equality borders are defined
in [25, 17]. For conciseness, we do not consider them here. However they can easily be
considered in our approach. We use boundary testing as an extension of slice coverage
criterion. The number of test cases to be generated for achieving slice coverage criterion
can be very large if we use a random approach. We reduce this by using boundary testing
along with slice coverage. For example consider a the predicate (n < 400) shown in Fig.2.
In the example section we have shown two test data that can be used to test it and they are
[21,20] and [21,19] where, the test data has the values of [x,y] for the predicate (n < 400).
The slice condition consists of (x > 20), (y < 50), (n = x∗y) and the test data is generated
subject to slice condition. Instead of generating a set of test cases randomly and selecting
the test cases from this set that satisfies this slice condition, we generate two test cases
based on a simple predicate using boundary testing.

4.3 Overview of Our Approach

In our approach, the first step is to select a conditional predicate on the sequence diagram.
The order in which we select predicates is the chronological order of messages appearing in a
sequence diagram. For each message in the sequence diagram, there will be a corresponding
node in the MDG. For each conditional predicate, we create the dynamic slice for the slicing
criteria (m,V) and with respect to each slice we generate test data. The generated test
data for each predicate corresponds to the true or false values of the conditional predicate

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 79

and these values are generated subject to the slice condition. This helps to achieve slice
coverage. The different steps of our approach are elaborated in the following subsections.

4.4 Dynamic Slice of Sequence Diagrams

In our approach, a dynamic slice of a sequence diagram is constructed from its correspond-
ing MDG (Message dependency graph). An MDG is created statically and it needs to be
created only once. For each message in the sequence diagram, there will be a correspond-
ing node in the MDG. From MDG, we create the dynamic slice corresponding to each
conditional predicate, for the slicing criteria (m,V). For creating dynamic slices we use
an edge marking method. Edge marking methods are reported in [26, 42] for generating
dynamic slices in the context of procedural programs. Their edge marking methods uses
program dependence graph. We generate a message dependence graph from UML sequence
diagram and apply the edge marking technique on it. Edge marking algorithm is based on
marking and unmarking the unstable edges appropriately as and when dependencies arise
and cease at run time. After an execution of the node x at run-time, an unstable edge(x,y)
is marked if the node x uses the value of the variable v at node y and node y is a member
of AllotVar(v). A marked unstable edge(x,y) is unmarked after an execution of a node z
if the nodes y and z are in AllotVar(v), and the value of v computed at node y does not
affect the present value of v at node z. In our approach we generate test data that satisfies
all constraints corresponding to a slice.

Before execution of a message sequence M, the type of each of its edges in MDG is ap-
propriately recorded as either stable or unstable. The dependence associated with a stable
edge exists at every point of execution. The dependence associated with an unstable edge
keeps on changing with the execution of the node. We mark an unstable edge when its asso-
ciated dependence exists, and unmark when its associated dependence ceases to exist. Each
stable edge is marked and each unstable edge is unmarked at the time of construction of the
MDG. We mark and unmark edges during the execution of the message sequences, as and
when a dependencies arise or cease, and a stable edge is never unmarked. Let dslice(n)
denote the dynamic slice with respect to the most recent execution of the node n. Let
(n, x1), (n, x2), . . . , (n, xn) be all the marked outgoing dependence edges of n in the updated
MDG after an execution of the node n. It is clear that the dynamic slice with respect to
the present execution of the node is dslice(n) = x1, x2, . . . , xn∪dslice(x1)∪· · ·∪dslice(xn).

We now present the edge marking dynamic slicing algorithm for sequence diagrams in
pseudocode form. Subsequently this method is explained using an example.

Edge Marking Dynamic Slicing Algorithm for Sequence Diagrams

• Do before execution of the message sequence:-

– Unmark all the unstable edges.

– Set dslice(n) = NULL for every node n of the MDG.

80 Philip Samuel, Rajib Mall

• For each node n of the message sequence Do

– For every variable used at n, mark the unstable edge corresponding to its most
recent allotment. (Suppose there is a predicate x > 50 which is true for the given
execution step and inputs then the edge to that predicate is marked. If the predicate
is false then it remains unmarked.)

– Update dslice(n).

– If n is a member of AllotVar(x) and n is not a UseVar(x) node, then do the following
:-

∗ Unmark every marked unstable edge (n1, n2) with n1 ∈ UseV ar(x) and n2 is
a node that does not affect the present allotment of the variable var. Hence,
the marked unstable edge (n1, n2) representing the dependence of node n1 on
node n2 in the previous execution of node n1 will not continue to represent the
same dependence in the next execution of node n1.

For example, let x = 30, y = 45, p = 55, q = 40, a = 10 be a data set for the diagram
given in Fig. 2. For the slicing criteria (11,y), initially let edges (11,4) and (11,8) are
unmarked unstable edges as seen in Fig. 3. During the execution of node 11, for the
given data set, we mark the unstable edge (11,4) whereas the unstable edge (11,8) remains
unmarked as the value of y at present is 45. Hence the dynamic slice of node 11 for the
slicing criteria (11,y) is 4∪ dslice6 and do not include 8. Let at some other execution, the
data set is x = 30, y = 55, p = 45, q = 40, a = 10. In this case the dynamic slice of node
11 for the slicing criteria (11,y) is 8 ∪ dslice6 and do not include 4.

4.5 Generation of Predicate Function

Consider an initial set of data I0 that is randomly generated for the variables that affect
a predicate p in a slice S. As already mentioned in our approach, we compute two points
named ON and OFF for a given border satisfying the boundary testing criterion. We
transform the relational expressions of the predicates to a function F (Predicate Function).
If the predicate p is of the form (E1 op E2), where E1 and E2 are arithmetic expressions,
and op is a relational operator, then F = (E1 - E2) or (E2 - E1) depending on whichever
is positive for the data I0. Next we successively modify the input data I0 such that the
function F decreases and finally turns negative. When F turns negative, it corresponds to
the alternation of the outcome of the predicate. Hence as a result of the above predicate
transformation, the change in the outcome of predicate p now corresponds to the problem
of minimization of the function F. This minimization can be achieved through repeated
modification of input data value.

4.6 Test Data Generation

The basic search procedure we use for finding the minimum of the predicate function F
is the alternating variable method[31, 17] which consists of minimizing F with respect to
each input variable in turn. Each input data variable xi is increased/decreased in steps of

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 81

Uxi, while keeping all the other data variables constant. Here Uxi refers to a unit step of
the variable xi. The unit step depends on the data type being considered. For example,
the unit step is 1 for integer values. The method works with many other types of data such
as float, double, array, pointer etc. However the method may not work when the variable
assumes only a discrete set of values. Each predicate in the slice can be considered to be a
constraint. If any of the constraint is not satisfied in the slice, for some input data value,
we say that a constraint violation has taken place. We compute the value of F when each
input data is modified by Uxi. If the function F has decreased on the modified data, and
constraint violation has not occurred, then the given data variable and the appropriate
direction is selected for minimizing F further. Here appropriate direction refers to whether
we increase or decrease the data variable xi. We start searching for a minimum with an
input variable while keeping all the other input variables constant until the solution is
found (the predicate function becomes negative) or the positive minimum of the predicate
function is located. In the latter case, the search continues from this minimum with the
next input variable.

4.7 An Example

Consider an example sequence diagram as shown in Fig.2. We have selected this example as
it demonstrates the concepts in our approach. We illustrate our methodology by explaining
the test data generation for the predicate (n < 400) shown in Fig.2. Its corresponding MDG
is shown in Fig.3. Let the slicing criterion be (6,n). For this slicing criterion, the slice
contains of the set of nodes that corresponds to predicates (x > 20), (y < 50), (n = x ∗ y).
The function F will be the expression (n− 400). Let I0 be the initial data: [25,40] where
(x = 25, y = 40). The condition (n < 400) is false for I0 as (1000 < 400). The function F
will be the expression (n− 400) and F(I0) = 600. We should minimize F, in order to alter
the boolean outcome of predicate (n < 400), which is false initially.

First we decrease the value of data x in steps. In the first step, we take x =24 and the
value of F is calculated as 560 for [x,y] = [24,40]. Observe that the function F reduces by
reducing x. Therefore in the next step, the size of the step is doubled and hence the value
of variable x is decreased by 2. As we minimize F further in several iterations, we finally
arrive at two data points With [x,y] = [21,20], F is positive and the condition (n < 400) is
still false. So we take two data sets Iin as [x,y] = [21,20] that makes F positive (or zero)
and another data set Iout as [x,y] = [21,19] that makes F negative.

The test cases we generate for the predicate (n < 400) are (object1, [21,19], object2) and
(object1, [21,20], object1) correspond to different truth values of the predicate (n < 400).
Here test cases has the form (sender object, [test data], receiver object). Test data has
the values of [x,y] for the predicate (n < 400). These test cases are generated satisfying
the slice condition of the slice. With our proposed method we generate test cases for each
such conditional predicates on the sequence diagram.

82 Philip Samuel, Rajib Mall

{n=x*y} 12

{r=p+q} 13

object1 object3

[x>20]msg1
msg2

[p−q>=0]msg3
[y<50]msg4

[p>=20 and q<50]msg5

[n<400]msg6
[p<=120]msg7

[y>120]msg8

[r<150]msg9

[p>40]msg10

[a+y>20]msg11

object2

Figure 2: An Example Sequence Diagram

5 An Implementation

To the best of our knowledge, no full-fledged ready made tool exists that are publicly
available to execute UML models. Hence, for generating dynamic slices in our experimen-
tation, we have simulated the executions. We made a prototype tool that implements our
method. Fig. 4 shows the important classes that we used to generate test cases from
sequence diagram in our implementation. SliceGenerator class creates the message depen-
dency graph. It makes the sets defSet and useSet for each variable in the sequence diagram.
It forms slices based on the slicing criteria for each of the messages in the sequence diagram.
SliceRecord class keeps a record of slices.

DocumentParser class parses the XML file corresponding to a UML sequence diagram.
We used the Document Object Model (DOM) API that comes with the standard edition
of the Java platform, for parsing XML files. The package org.w3c.dom.*, provides the
interfaces for the DOM. The DOM parser begins by creating a hierarchical object model
of the input XML document. This object model is then made available to the application
for it to access the information it contains in a random access fashion. This allows an
application to process only the data of interest and ignore the rest of the document.

XmlBoundary is the class of the program from which the execution starts. It accepts an
XML file of sequence diagram from a user. Then it extracts the parent tag of the XML file
and passes the tag (called head) to the TestCaseController class. TestCaseController class
coordinates the different activities of the program. TestCaseBoundary class is responsible
for displaying the list of test cases for a collaboration diagram. The source and destination

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 83

Stable Edge

Unstable Edge

3

4

6

7

11

13

10

9

8

12

5

Figure 3: The Induced Subgraph of Dependency Graph of the Sequence Diagram in Fig.2 on the
Node Set(3,4,5,6,7,8,9,10,11,12,13)

objects as well as the slice condition is printed along with test data.

In our prototype implementation, we have considered only integer and Boolean variables
as part of the conditional expression in sequence diagrams. Other data types however can
easily be considered. Further, for the prototype implementation we have assumed that the
necessary constraints are available in notes instead of class/object diagrams. Extracting
data types of attributes, or constraints from class/object diagrams for our implementation
can be easily done. The GUI was developed using the swing component of Java. A GUI
screen along with a sample sequence diagram is shown in Fig. 5. The GUI gives the
flexibility to view the sequence diagram, its XML representation and the generated test
cases. Fig. 6 shows the UTG display of the XML file of example given in Fig. 5. The
corresponding test cases generated are shown in Fig. 7. Our tool allows storing the test
cases as text files for later processing.

We have implemented our method for generating test cases automatically from UML
sequence diagrams in a prototype tool named UTG. Here, UTG stands for UML behavioral
Test case Generator. UTG has been implemented using Java and can easily integrate with
any UML CASE tools like MagicDraw UML [24] that supports XML (Extensible Markup
Language) format. Since UTG takes UML models in XML format as input, UTG is
independent of any specific CASE tool. We have used the tool with several UML designs
and the tool was found effective in generating test cases. The generated test cases were
found to achieve the desired coverage.

84 Philip Samuel, Rajib Mall

Generator
Slice TestData

Record

TestCase
Controller

XmlBoundary

TestCase
Boundary

Document
Parser

Slice
Record

Stack

Figure 4: Class Diagram of UTG for Generating Test Cases From Sequence Diagrams

6 Related Work

Bertolino and Basanieri [4] proposed a method to generate test cases following the se-
quence of messages between components in a sequence diagram. They develop sequence
diagrams for each use case and use category partition method to generate test data. They
characterize a test case as a combination of all suitable choices of the involved settings and
interactions in a sequence of messages. In another interesting work, Basanieri, et al. [3]
describe the CowSuite approach which provides a method to derive the test suites and a
strategy for test prioritization and selection. CowSuite is mainly based on the analysis of
the use case diagrams and sequence diagrams. From these two diagrams they construct a
graph structure which is a mapping of the project architecture and this graph is explored
using depth-first search algorithm. They use category partition method [46] for generating
test cases. They construct test procedures using the information retrieved from the UML
diagrams.

Briand and Labiche [7] describe the TOTEM (Testing Object-orienTed systEms with
the Unified Modeling Language) system test methodology. Functional system test re-
quirements are derived from UML analysis artifacts such as use cases, their corresponding
sequence and collaboration diagrams, class diagrams and from OCL used in all these ar-
tifacts. They represent sequential dependencies among use cases by means of an activity
diagram constructed for each actor in the system. The derivation of use case sequences
from the activity diagram is done with a depth first search through a directed graph cap-
turing the activity diagram. They generate legal sequences of use cases according to the
sequential dependencies specified in the activity diagram. Abdurazik and Offutt [1] pro-
posed novel and useful test criteria based on collaboration diagrams for static checking
and dynamic testing based on collaboration diagrams. They recommended a criterion for
dynamic testing that involved message sequence paths. They adapt traditional data flow

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 85

Figure 5: The GUI Screen of UTG With an Example Sequence Diagram

coverage criteria (eg. all definition - uses) in the context of UML collaboration diagrams.

Linzhang, et al. [36] proposed a gray-box testing method using UML activity diagrams.
They propose an algorithm to generate test scenarios from activity diagrams. The informa-
tion regarding input/output sequence, parameters, the constraint conditions and expected
object method sequence is extracted from each test scenario. They recommend applying
category-partition method to generate possible values of all the input/output parameters
to find the inconsistency between the implementation and the design.

Among all UML diagrams, test case generation from state chart diagram has possibly
received maximum attention from researchers [8, 22, 29, 30, 43, 49]. Offutt and Abdurazik
[43] developed an interesting technique for generating test cases from UML state diagrams
which is intended to help perform class-level testing. Their method takes a state transi-
tion table as input, and generates test cases for the full predicate coverage criterion. It
processes each outgoing transition of each source state, generates a test case that makes
the transition taken, and then generates test cases that make the transition untaken. A
test case is designed corresponding to each variable in a transition predicate. To avoid
redundant test case value assignments, those variables that have already been assigned
values are not considered in the subsequent test case value assignment process. After all
test case values are generated, an additional algorithm is run on the test cases to identify

86 Philip Samuel, Rajib Mall

Figure 6: A Screen Shot of UTG with a Portion of the XML File Corresponding to example in
Fig. 5

and remove redundant test cases. Kansomkeat, et al. [29] have proposed an alternate
method for generating test sequences using UML state chart diagrams. They transform
the state chart diagram into an intermediate diagram called Testing Flow Graph (TFG)
which is used to generate test sequences. TFG is a flattened hierarchy structure of states.
The testing criterion they proposed is the coverage of states and transitions of TFG.

Kim, Y.G et al. [30] proposed a method for generating test cases for class testing using
UML state chart diagrams. They transform state charts to extended finite state machines
(EFSMs) to derive test cases. The hierarchical and concurrent structure of states is flat-
tened and broadcast communications are eliminated in the resulting EFSMs. Next data
flows are identified by transforming EFSMs into flow graphs to which conventional data
flow analysis techniques are applied. Hartmann et al. [22] augment the UML description
with specific notations to create a design-based testing environment. The developers first
define the dynamic behavior of each system component using a state diagram. The in-
teractions between components are then specified by annotating the state diagrams, and
the resulting global FSM that corresponds to the integrated system behavior is used to
generate the tests.

Scheetz et al. [49] developed an approach for generating system (black box) test cases
using an AI (Artificial Intelligence) planner. They used UML class diagrams and state di-

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 87

Figure 7: A Screen Shot of UTG with Dependency Graph and Generated Test Cases
Corresponding to the Example of Fig. 5

agrams to represent the conceptual architecture of a system under test. They developed a
representation method at the application domain level that allows statement of test objec-
tives at that level, and their mapping into a planner representation. Their method maps
the initial and goal conditions into a problem description for the planner. The planner
generates a plan based on this input. In the next step, they carry out a conversion of the
plan to produce executable test cases. The purpose of a test case in a goal directed view
is to try to change the state of the overall system to the goal state. The planner decides
which operators will best achieve the desired goal states. Cavarra, et al. [8] use UML class
diagrams, state diagrams, and object diagrams to characterize the behavior of a system.
These UML diagrams are translated into formal behavioral descriptions, written in a lan-
guage of communicating state machines and used as a basis for test generation. From this
they form a test graph, consisting of all traces leading to an accept state, together with
branches that might lead to invalid state.

Andrews et al. [2] describe several useful test adequacy criteria for testing executable
forms of UML. The criteria proposed for class diagrams include association-end multiplic-
ity criterion, generalization criterion and class attribute criterion. The interaction diagram
criteria like condition coverage, full predicate coverage, each message on link, all message
paths and collection coverage criteria are used to determine the sequences of messages that
should be tested. They also describe a test process. Ghosh et al. [16] present a testing

88 Philip Samuel, Rajib Mall

method in which executable forms of Unified Modeling Language (UML) models are tested.
In systematic design testing, executable models of behaviors are tested using inputs that
exercise scenarios. This can help reveal flaws in designs before they are implemented in
code. Their method incorporates the use of test adequacy criteria based on UML class
diagrams and interaction diagrams. Class diagram criteria are used to determine the ob-
ject configurations on which tests are run, while interaction diagram criteria are used to
determine the sequences of messages that should be tested. These criteria can be used to
define test objectives for UML designs. Engels et al. [12] discuss how consistency among
different UML models can be tested. They propose dynamic meta modeling rules as a
notation for the consistency conditions and provide the concept for an automated testing
environment using these rules.

In contrast with the above discussed approaches we generate actual test cases from se-
quence diagrams. Our approach can work on executable forms of UML design specifications
and is meant for cluster level testing where object interactions are tested. Corresponding
to each conditional predicate on the sequence diagram, we construct dynamic slice from
its MDG and with respect to the slice we generate test data. Our test data generation
scheme is automatic.

Kamkar et al. [28] explains how interprocedural dynamic slicing can be used to increase
the reliability and precision of interprocedural data flow testing. Harman and Danicic [19]
presents an interesting work that illustrates how slicing will remove statements which do
not affect a program variable at a location thereby simplifying the process of testing and
analysis. They also provide a program transformation algorithm to make a program ro-
bust. Slicing has been used as a reduction technique on specifications like state models
[34]. Anyhow this work [34] do not provide a scheme for test generation

Korel [31] generated test data based on actual execution of a program under test. He
used function minimization methods and dynamic data flow analysis. If during a program
run an undesirable execution flow is observed (e.g., the "actual" path does not correspond
to the selected control path), then function minimization search algorithms are used to
automatically locate the values of input variables for which the selected path is traversed.
This helps in achieving path coverage. In addition, dynamic data flow analysis is used to
determine those input variables that are responsible for the undesirable program behavior,
leading to significant speedup of the search process. Hajnal et al. [17] extended the work
done by Korel [31]. They reported the use of boundary testing that requires the testing
of one border only along a selected path. The test input domain may be surrounded by a
boundary and each segment of the boundary is called a border. The task to generate two
test data points considering only one border for each path, is much easier. Their testing
strategy can also handle compound predicates. Jeng and Weyuker [25] have reported that
an inequality border can be tested by only two points of test input domain, one named
ON point and another named OFF point. For borders in a discrete space containing no
points lying exactly on the border, their strategy allows the ON point to be chosen from
beneath the border as long as the distance between the ON and OFF points is minimized.

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 89

These works [28, 19, 31, 17, 25] discussed above have focused on unit testing of procedural
programs.

7 Conclusion

We have presented a novel method to generate test cases by dynamic slicing UML sequence
diagrams. Our approach is meant for cluster level testing where object interactions are
tested. Our approach automatically generates test data, which can be used by a tool to
carry out automatic testing of a program. Generation of MDG is the only static part in our
approach. We identify the conditional predicates associated with messages in a sequence
diagram and create dynamic slice with respect to each conditional predicate. We generate
test data with respect to each constructed slice and the test data is generated satisfying
slice condition. We have formulated a test adequacy criterion named slice coverage crite-
rion. We have implemented our methodology to develop a prototype tool which was found
effective in generating test cases. The test cases generated can also be used for confor-
mance testing of the actual software where the implementation is tested to check whether
it conforms to the design. The slicing approach was found to be especially advantageous
when the number of messages in the sequence diagram is large. We need to consider only
the slices for finding test cases instead of having to look at the whole sequence diagram.
If the sequence diagram is large it becomes very complex and difficult to find test cases
manually. If we know where to look for errors it becomes a great simplification and saves
a lot of time and resources. The slices help to achieve this simplification. The generated
test cases were found to achieve slice coverage.

Acknowledgements

The authors would like to thank Pratyush Kanth and Sandeep Sahoo for implementing
our approach presented in this paper.

References

[1] A. Abdurazik and J. Offutt. Using UML collaboration diagrams for static checking and test
generation. In Proceedings of the 3rd International Conference on the UML, Lecture Notes in
Computer Science, volume 1939, pages 383 – 395, York, U.K., October 2000. Springer-Verlag
GmbH.

[2] A. Andrews, R. France, S. Ghosh, and G. Craig. Test adequacy criteria for UML design
models. Software Testing Verification and Reliability, 13:97 – 127, 2003.

[3] F. Basanieri, A. Bertolino, and E. Marchetti. The cow suit approach to planning and deriving
test suites in UML projects. In Proceedings of the Fifth International Conference on the
UML, LNCS, volume 2460, page 383–397, Dresden, Germany, October 2002. Springer-Verlag
GmbH.

[4] A. Bertolino and F. Basanieri. A practical approach to UML-based derivation of integration
tests. In Proceedings of the 4th International Software Quality Week Europe and International
Internet Quality Week Europe, Brussels, Belgium, 2000. QWE.

90 Philip Samuel, Rajib Mall

[5] R. V. Binder. Testing object-oriented software: a survey. Software Testing Verification and
Reliability, 6(3/4):125 – 252, 1996.

[6] D. Binkley and K. Gallagher. Program Slicing, volume 43 of Advances in Computers. Academic
Press, 1996.

[7] L. Briand and Y. Labiche. A UML-based approach to system testing. In Proceedings of the
4th International Conference on the UML, LNCS, volume 2185, pages 194 – 208, Toronto,
Canada, January 2001. Springer-Verlag GmbH.

[8] A. Cavarra, C. Crichton, and J. Davies. A method for the automatic generation of test suites
from object models. Information and Software Technology, 46(5):309 – 314, 2004.

[9] H. Y. Chen, T. H. Tse, and T. Y. Chen. Taccle: a methodology for object-oriented soft-
ware testing at the class and cluster levels. ACM Transactions on Software Engineering and
Methodology, 10(4):56–109, January 2001.

[10] C. Cifuentes and A. Fraboulet. Intraprocedural static slicing of binary executables. In IEEE
International Conference on Software Maintenance (ICSM’97), page 188 – 195. IEEE Com-
puter Society Press, Los Alamitos, USA, 1997.

[11] T. T. Dinh-Trong. Rules for generating code from UML collaboration diagrams and activity
diagrams. Master’s thesis, Colorado State University, Fort Collins, Colorado, 2003.

[12] G. Engels, J. Hausmann, R. Heckel, and S. Sauer. Testing the consistency of dynamic UML
diagrams. In Proceedings of the Sixth International Conference on Integrated Design and
Process Technology(IPDT), USA, 2002. Society for Design and Process Science.

[13] G. Engels, R. Hucking, S. Sauer, and A. Wagner. UML collaboration diagrams and their
transformations to java. In Proceedings of the 2nd International Conference on the UML,
LNCS, volume 1723, pages 473 – 488, Berlin / Heidelberg, October 1999. Springer.

[14] F.Tip. A survey of program slicing techniques. Journal of Programming Languages, 3(3):121
– 189, June 1995.

[15] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance. IEEE
Transactions on Software Engineering, 17(8):751 – 761, August 1991.

[16] S. Ghosh, R. France, C. Braganza, N. Kawane, A. Andrews, and O. Pilskalns. Test adequacy
assessment for UML design model testing. In Proceedings of the 14th International Symposium
on Software Reliability Engineering (ISSRE’03), pages 332 – 343. IEEE Computer Society,
November 2003.

[17] A. Hajnal and I. Forgacs. An applicable test data generation algorithm for domain errors. In
ACM SIGSOFT Software Engineering Notes, Proceedings of ACM SIGSOFT International
Symposium on Software Testing and Analysis, volume 23, 1998.

[18] D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31
– 42, 1997.

[19] M. Harman and S. Danicic. Using program slicing to simplify testing. Software Testing
Verification and Reliability, 5(3):143 – 162, September 1995.

[20] M. Harman, C. Fox, R. M. Hierons, D. Binkley, and S. Danicic. Program simplification
as a means of approximating undecidable propositions. In 7th IEEE Workshop on Program
Comprehension, page 208 – 217. IEEE Computer Society Press, Los Alamitos, USA, 1999.

A Novel Test Case Design Technique Using Dynamic Slicing of UML Sequence Diagrams 91

[21] M. Harman and K.B.Gallagher. Program slicing. Information and Software Technology, 40:577
– 581, December 1998.

[22] J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-based integration testing. In ACM
SIGSOFT Software Engineering Notes, Proceedings of International Symposium on Software
testing and analysis, volume 25, August 2000.

[23] S. Horwitz, J. Prins, and T. Reps. Integrating non–interfering versions of programs. ACM
Transactions on Programming Languages and Systems, 11(3):345 – 387, July 1989.

[24] N. M. Inc. MagicDraw UML, Version 9.5. Golden, CO, www.magicdraw.com.

[25] B. Jeng and E. J. Weyuker. A simplified domain-testing strategy. ACM Transactions on
Software Engineering and Methodology(TOSEM), 3(3), 1994.

[26] J.Horgan and H. Agrawal. Dynamic program slicing. In Proceedings of the ACM SIGPLAN’90
Conference on Programming Languages Design and Implementation, volume 25, pages 246 –
256, White Plains, New York, 1990. SIGPLAN Notices, Analysis and Verification.

[27] P. C. Jorgensen and C. Erickson. Object-oriented integration testing. Communications of the
ACM, 37(9), September 1994.

[28] M. Kamkar, P. Fritzson, and N. Shahmehri. Interprocedural dynamic slicing applied to in-
terprocedural data flow testing. In Proceedings of the Conference on Software Maintenance,
page 386 – 395. IEEE Computer Society, Washington, DC, USA, 1993.

[29] S. Kansomkeat and W. Rivepiboon. Automated-generating test case using UML statechart
diagrams. In Proceedings of SAICSIT 2003, pages 296 – 300. ACM, 2003.

[30] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha. Test cases generation from UML state
diagrams. Proceedings: Software, 146(4):187 – 192, 1999.

[31] B. Korel. Automated software test data generation. IEEE Transactions on Software Engi-
neering, 16(8):870 – 879, 1990.

[32] B. Korel and J.Laski. Dynamic program slicing. Information Processing Letters, 29(3):155 –
163, October 1988.

[33] B. Korel and J. Rilling. Dynamic program slicing methods. Information and Software Tech-
nology, 40:647 – 659, 1998.

[34] B. Korel, I. Singh, L. H. Tahat, and B. Vaysburg. Slicing of state-based models. In Proceedings
of the 19th International Conference on Software Maintenance (ICSM), pages 34 – 43. IEEE,
2003.

[35] A. Lakhotia and J. C. Deprez. Restructuring programs by tucking statements into functions.
Information and Software Technology Special Issue on Program Slicing, 40:677 – 689, 1998.

[36] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guoliang. Generating
test cases from UML activity diagrams based on gray-box method. In Proceedings of the 11th
Asia-Pacific Software Engineering Conference (APSEC’04), pages 284 – 291. IEEE, 2004.

[37] A. D. Lucia. Program slicing: methods and applications. In First IEEE International Work-
shop on Source Code Analysis and Manipulation, page 142 – 149. IEEE, November 2001.

[38] A. D. Lucia, A. R. Fasolino, and M. Munro. Understanding function behaviours through
program slicing. In 4th IEEE Workshop on Program Comprehension, page 9 – 18. IEEE
Computer Society Press, Los Alamitos, USA, 1996.

92 Philip Samuel, Rajib Mall

[39] J. R. Lyle and M. Weiser. Automatic program bug location by program slicing. In 2nd
International Conference on Computers and Applications, page 877 – 882. IEEE Computer
Society Press, Los Alamitos, USA, 1987.

[40] R. Mall. Fundamentals of Software Engineering. Prentice Hall, 2nd edition, 2003.

[41] S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model Driven Architecture.
Addison-Wesley: Reading, MA, 2002.

[42] G. Mund, R. Mall, and S. Sarkar. An efficient program slicing technique. Information and
Software Technology, 44:123 – 132, 2002.

[43] J. Offutt and A. Abdurazik. Generating tests from UML specifications. In Proceedings of
the 2nd International Conference on UML, Lecture Notes in Computer Science, volume 1723,
pages 416 – 429, Fort Collins, TX, 1999. Springer-Verlag GmbH.

[44] OMG. Unified Modeling Language Specification, Version 2.0. Object Management Group,
www.omg.org, August 2005.

[45] L. Osterweil. Strategic directions in software quality. ACM Computing Surveys (CSUR),
28(4), December 1996.

[46] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating
fuctional tests. Communications of the ACM, 31(6), June 1998.

[47] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie. Model Driven Architecture with
Executable UML. Cambridge University Press, 2004.

[48] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe. The architecture of a uml virtual
machine. In Proceedings of the 16th ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications, volume 36, pages 327 – 341. ACM SIGPLAN
Notices, ACM Press, USA, October 2001.

[49] M. Scheetz, von A. Mayrhauser, and R. France. Generating test cases from an object oriented
model with an AI planning system. In Proceedings of the 10th International Symposium on
Software Reliability Engineering, ISSRE 99, pages 250 – 259. IEEE Computer Society Press,
1999.

[50] M. D. Smith and D. J. Robson. A framework for testing object-oriented programs. Journal
of Object-Oriented Programming, 5(3):45 – 53, June 1992.

[51] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352 – 357,
1984.

[52] C. E. Williams. Software testing and the UML. In Proceedings of the International Symposium
on Software Reliability Engineering, (ISSRE’99), Boca Raton, FL, November 1999.

