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Abstract
Functions and their relations can affect numerous properties and metrics of a functional program.
To identify and represent the functions and their calling connections, software analysers commonly
apply semantic function analysis, which derives the static call graph of the program, based on its
source code. Function calls however may be dynamic and complex, making it difficult to statically
identify the callee. Dynamic calls are determined just at run-time, static analysis therefore cannot
be expected to fully identify every call.
Nevertheless, by utilising the results of a properly performed data-flow analysis as well as taking
ambiguous references into account, numerous dynamic calls are discoverable and representable.
We consider cases where the identifiers of the callee are statically determined, but they flow into
the call expression from a different program point, and also, we manage to handle function calls
whose identifiers are not fully identifiable at compile-time. By utilising the improved reference
analysis, we extend the static call graph with various information about dynamic function calls.
We investigate such a function call analysis in the programming language Erlang.

1. Introduction

To overview the components of the software,
to identify relations and dependencies, and to
find out properties, we can apply static source
code analysis. The analysis can be followed by
semi-automatic code transformations correcting
design weaknesses, based on the analysis results.
Both software transformation tools and reverse
engineering techniques operate on programs, and
involve many sorts of static code analysis.

Consider the case of refactoring tools [1, 2],
where code transformations never should change
the semantics of the program being refactored.
Despite the fact that such automatic code trans-
formation tools often involve user interaction,
the code modifications made are directed mostly
by the information gathered from the source
code. Consequently, the correctness of the trans-
formations highly depends on the accuracy of

the static analysis carried out before the actual
transformation steps.

In this paper we focus on the analysis of
inter-procedural relationships. In different pro-
gramming languages there are different call con-
structs, including dynamic ones that may be
unidentifiable at compile-time and therefore usu-
ally are omitted by static analysers. However,
the data bindings that determine dynamic calls
may be looked up by use of static data-flow
analysis, and if the function identifiers are stat-
ically given in the code, we can successfully lo-
cate them and identify the referred function. We
concentrate on the analysis of call constructs
present in Erlang [3, 4], a dynamically typed
functional programming language. The presented
approach aims to refine function call graphs [5]
by means of static analysis of dynamic func-
tion calls. By utilising the more sound call
graph we can improve different sorts of static
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analysis as well as refactoring code transforma-
tions.

In the next sections we introduce the main
types of function call constructs – including dy-
namic ones – and also we precisely define the
connection between call expressions and function
entities in terms of formal semantic rules. In ad-
dition, concepts of ambiguous dynamic calls and
opaque functions are introduced in order to rep-
resent partially unidentifiable function references
as well. Finally, we define formal relationships
between the function entities, merging all the
call information into the call graph and show
a simple case study.

2. Call constructs

We suppose that the functions of a program are
grouped into modules and are dynamically typed
(like in Erlang). With this, a function may be
identified by a 3-tuple (so-called MFA) that in-
cludes the name of the module the function is
located in, the name of the function, and the
number of its formal parameters (called ’function
arity’). This function descriptor can be written
in the form of module:function/arity.

MFA-call Apply-call

identifiers as literals static dynamic

identifiers as expressions dynamic dynamic

Figure 1. Static and dynamic calls

Call constructs are sorted in order to ease
their analysis; Figure 1 shows the main groups.
Syntactically, we consider two types of function
call: MFA-calls and apply-calls. The former one
is the common way to invoke a subroutine, while
apply-calls may be regarded as symbolic calls
so that they refer to a special function named
’apply’ which then results in another call. For this
use, both the function to be called and its argu-
ments are specified within the arguments of the
apply-call. When called, it executes the named
function on the specified arguments and then
returns its result. Basically, apply-calls behave
very similarly to MFA-calls, however, the main

difference in use lies in the way the parameters
are constructed and then passed to the callee.

Beside the syntactic grouping, we make a dis-
tinction between static and dynamic call meth-
ods. Function calls may affect the data-flow
within the program, and interestingly, data-flow
may also take effect on function calls so that
function calls may be constructed by means
of run-time data. Programming languages usu-
ally support meta-programming techniques like
handling the program itself as data or creat-
ing statements at run-time (’eval’ methods).
A special case of the latter technique is the
run-time construction of function calls, where
the identifier(s) of the called routine may
be determined just at execution-time, simi-
larly to the construction of actual function pa-
rameters. There are many programming lan-
guages that support meta-programming (and
dynamic call constructs), including script lan-
guages (like JavaScript, Ruby, Python) as well
as functional languages, such as Erlang and
Scheme.

2.1. MFA-calls

In Erlang, MFA function calls provide the stan-
dard way of executing a function from inside
another one. These call expressions can be writ-
ten using the following syntax:
module_name:function_name(arg1, ...,argN)

Each of module_name and function_name must
be either an identifier (atom literal) or an Er-
lang expression that evaluates to an identifier
determining the name of the callee. Observe that
the arity is fully defined at compile-time, with
the number of parameters actually enumerated
between the parentheses. When a call is written
in the above syntax and both function identi-
fiers are given as atom literals, we say that the
function call is a static MFA-call. It is said to
be static because the identifiers of the function
are given statically, at the location of the call.
Most static analyser software can successfully
observe such call constructs and can build the
corresponding call graph, however, they simply
omit dynamic call methods.
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In dynamic MFA-calls, either the module
name or the function name is given with
non-literal expressions (for instance, with vari-
ables). Static analysis of such calls requires some
kind of data-flow analysis which uncovers the
origin of the data (for example, the values bound
to the variables).

2.2. Apply-calls

As we already mentioned, there is another call
construct in Erlang, the so-called apply-call,
which is based on a built-in higher-order func-
tion called apply. (We note that similar call
constructs exist in various programming lan-
guages.) This construct is dynamic by nature,
since the identifiers of the called function are
given by means of the arguments of another rou-
tine, which is evaluated certainly just at run-time.
The apply-calling expressions can be written us-
ing the following syntax:
apply(module_name,function_name,arg_list)
where arg_list ≡ [arg1, ...,argN ]

The call primarily refers to a built-in func-
tion called apply that is located in the module
erlang (one may refer to it as erlang:apply/3 ).
Its parameters determine the secondarily referred
function that is being called at run-time. Each
of module_name and function_name must be
either an identifier (atom literal) or an Erlang
expression that evaluates to an identifier, while
arg_list should evaluate to an Erlang list whose
length precisely determines the arity of the callee
at run-time.

Listing 1 shows a simple apply-call. Since the
identifiers are given as atom literals, one may
regard this simple case as a static apply-call.
However, as we already stated, apply-calls are
dynamic by their nature, so in this paper we will
treat and analyse apply-calls as fully dynamic
constructs. In Listing 2 a more complex example
shows a function call referring to the same func-
tion whilst demonstrating possible difficulties of
static analysis implemented on dynamic function
calls. Note that we already came to the need of
data-flow analysis and additional static analysis
methods, which motivates us to examine our pos-

sibilities on static analysis of dynamic function
calls.

Listing 1. Simple apply-call
apply(io, format , ["hello", []]).

Listing 2. More complex apply-call
f() -> {format , io}.
g() -> {F, M} = f(),

Rest = [[]],
Args = ["hello" | Rest],
apply(M, F, Args).

3. Static analysis of function calls

In the context of static, context-insensitive call
analysis, “function” stands for an identifier (or
a signature) of a routine, that is a (possibly mini-
mal) set of data that can unambiguously identify
the routine. Basically, static function analysis
aims to extract these function descriptors and
their calling connections into a sound function
call graph, which can be used within further
analysis or program transformations. We assume
that each routine of the program under analysis
has such a function descriptor (also referred to
as semantic function entity).

In the following sections we define the con-
nection between expressions of the source code
and semantic function entities involved in the
program, in terms of formal semantic rules. While
describing the semantics, we suppose that the
program code is represented by an abstract syn-
tax tree, so semantic rules instance syntax ele-
ments as subtrees of the semantic program graph
(3-layered, labelled extension of the abstract syn-
tax tree, including the static semantics of the
program). Most of the concepts described in
the paper have been implemented in Refactor-
Erl [2], a source code analyser and transformer
tool, wherein many other kinds of static seman-
tic analysis can be carried out on Erlang pro-
grams [6].
Data-flow analysis. The analyser framework
of RefactorErl includes, in addition to many kind
of analysis, a data-flow analyser, which is able to
carry out 0th order and 1st order data-flow anal-
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ysis [7]. Its backward data-flow reaching relation
returns all the expressions affecting the queried
one. However, in the case of dynamic call analysis
we only need the ends of the reaching paths, that
is, those nodes that may potentially uncover the
possible values of expressions. We introduce the
concept of compact data-flow reaching, which
performs pure closure on the data-flow relation
and consequently returns only the nodes in which
the reaching terminates. If such an expression
is a literal, we found a possible value of the ex-
pression. Within the dynamic call analysis, we
use the 0th order compact backward data-flow
reaching relation.
Auxiliary definitions. Previously we shortly
introduced the syntax of Erlang function call
expressions. In this paper we only use a small
subset of the language syntax, on which we build
in the course of defining semantic rules, so the
syntax of the whole language is not specified by
formal means. Basically, Erlang programs consist
of forms (mostly functions) grouped into mod-
ules, where each function embodies a sequence of
expressions. In Erlang programs, atoms (named
constants) are used to identify entities, e.g. mod-
ules and functions.
In the rest of the paper,
– EAtom denotes the set of Erlang atom literal

expressions
– EList is the set of all expressions that con-

struct list values
– E denotes the set of all Erlang expressions

(including EAtom and EList as well).
We define some sets of semantic values (domains):
– Atom = set of possible atom values
– Atom′ = Atom ∪ {⊥}
– N≥ = {n≥|n ∈ N} where n≥ ≡ [n..∞)
– N′ = N ∪ N≥ ∪ {⊥}
And also, we define a total ordering on the ele-
ments of N≥ (n, m ∈ N):

n≥ ≤ m≥ if n ≤ m

Now, the following functions are defined over the
syntactic elements and map onto the semantic
domains, giving the bridge between syntax and
semantics.

V al : EAtom 7→ Atom
V al(e) returns the value given by the evalua-
tion of the atom expression e.

Length : EList 7→ N′
Length(e) gives the length of the Erlang list
value represented by the expression e. Note
that it maps to N′ and therefore may return
either a concrete number, a lower bound, or
the ⊥ symbol.
If the list length is only partially analysable
and thus a lower bound is calculable, then
Length(e) ∈ N≥. Also, if we cannot calculate
the list length at all, then Length(e) = ⊥.

0fcb
;⊆ E × E

e1
0fcb
; e2 means that the value of e1 flows into

e2 in 0th order using compact reaching [7].
Finally, we define the set of semantic function
entities and define a function that returns such
entities based on their 3-tuple descriptor. Note
that each of the function identifiers may be un-
defined (⊥).
SemFun

The semantic function entities involved in the
analysed program

Function : Atom′ ×Atom′ × N′ 7→ SemFun
Function(m, f, a) returns the function entity
identified by its module name, function name
and arity.

In the following, e1
L

−−−→ e2 denotes a binary
relation between e1 and e2, which is a directed
graph edge (being labelled by L) between the
two graph nodes (e.g. expression occurrences) on
the implementation level.

3.1. Semantics of MFA-calls

In order to define the syntax of MFA-calls, we
use the previously introduced sets of language
elements. The abstract syntax of an MFA-call is
the following.

eMFA ≡ eMN :eFN (e1, . . . ,en)
In the above line, eMFA is a node belonging to an
MFA-call expression referring to a function with
exactly n parameters. We only assume that the
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module name (eMN ), the function name (eFN ),
and the actual parameters (e1, . . . , en) are given
as Erlang expressions.

eMFA, eMN , eFN , e1, . . . , en ∈ E

The following semantic rules define relations
between syntactic elements and semantic entities.
We have already seen that the parameters of an
MFA-call are explicitly enumerated within the
call, thus the arity of the callee is easy to calcu-
late. Consequently, the potential difficulties may
arise during the analysis of module and function
names, since they may flow into the expressions
eMN and eFN from an arbitrarily far point of the
program (e.g. from another module or another
application). Our goal is to uncover the possible
values of these expressions by use of data-flow
analysis in order to refine the call graph with the
dynamic call relations.

Static calls. First of all, we define the rule of
static MFA-calls, shown in rule MFA1. It is pretty
straightforward, but apparently a necessary part
of the model. In this case both the module name
and the function name are given as atom literals,
so the identifiers are given just at the point of
the call. One can see that the values of the atom
expressions together with the parameter count
exactly identify the function being referred. The
call expression is linked to the function entity
labelled by funref (static function reference).
Fully identifiable dynamic calls. When the
module name or the function name is not explic-
itly given as an atom literal, however, by applying
data-flow reaching we can successfully find out
some possible values of the expression(s), we can
identify some possible callee. Such references are
said to be dynamic and unambiguous.

The call expression is linked to all the possible
functions, labelled by dynref (dynamic function
reference). Listing 3 shows a dynamic MFA-call
in which the identification of the module name re-
quires data-flow analysis. The name comes from
another function call, the outer call is analysed
by using the rule MFA2.

Listing 3. Fully identifiable dynamic MFA-call
iomodule () -> io.
f() -> (iomodule ()): format ("hello ",[]).

Ambiguous function calls. Now let us define
a previously not detailed kind of call reference.
Namely, in the case if an element of the func-
tion descriptor cannot be determined by using
data-flow analysis either, we are not able to fully
identify the potentially referred functions. The
reason why we are not able to calculate, for exam-
ple, a function name, is that the data-flow path
ends not in an atom literal but in another kind
of expression from which the reaching cannot be
continued. In order to be able to consider such
cases, we introduce the concept of ambiguous
function references, where one identifier of the
callee is unable to be precisely calculated. List-
ing 4 demonstrates a call whose module reference
is unknown. Even in this case we note a function
reference, however, not to a fully defined function.
Instead, we define opaque functions and create
references to these special function entities.

We note that we do not deal with function
calls not specifying at least two of the three main
identifiers of a function (module name, function
name, and arity). Opaque functions consequently
only have exactly one undefined field in their de-
scriptor. In addition, there is a special case that
may appear during the analysis of apply calls,
namely, when the argument list is only partially
present, and based on it we can calculate a lower
bound of the function arity. This issue will be
detailed in the section of apply-call analysis. An
overview of dynamic/ambiguous calls and their
analysis is present in Figure 2.
Partially identifiable MFA-calls. As we men-
tioned, in the case of ambiguous references one
of the three main function identifiers is unable to
be determined by means of static analysis. Since
the arity is exactly given by syntax of MFA-calls,
the uncertainty may come from the identification
of the names.

Suppose that the function name is deter-
minable. If there is a case in which we cannot
determine the name of the referred module, we
cannot completely identify the potentially re-
ferred functions. In order to indicate this, we
create a reference that points to an opaque func-
tion whose module name is unknown (⊥). See
rule MFA3.
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If the module name is determinable and the
function name is not, we analogously get to the
rule for MFA-calls with unidentifiable function
names (see rule MFA4).

Listing 4 demonstrates a function call where
the function name comes from a case expression
and can be either “foo” or an arbitrary atom
read from the standard input. Observe that while
analysing this example we should apply each of
rule MFA2 and rule MFA4, since the first case
clause gives a fully identified name, in contrast
with the second one, which refers to a value that
is unknown at compile-time. Consequently, the
call expression is related to two different func-
tions: with dynref to a fully defined function,
and with ambref to an opaque function entity.

Listing 4. Ambiguous MFA-call
Fun = case read_int () == 0 of

false -> foo;
true -> read_atom ()

end ,
module:Fun(ok, 0)

In Listing 5 we show a call that is skipped
during the function analysis in order to avoid
storing calling relations that are not specified
enough and would excessively expand the call
graph.

Listing 5. Unanalysed MFA-call
{Mod , Fun} = {read_atom(), read_atom ()},
Mod:Fun(0)

3.2. Semantics of apply-calls

An apply-call may be regarded as a meta-call that
primarily refers to the erlang:apply/3 built-in
function and secondly refers to the function spec-

ified in the call parameters. The abstract syntax
of apply-calls is the following.

eAPP ≡ apply(eMN ,eFN ,eArgs)
In the above line, eAPP is a node belonging to an
apply-call expression. We only assume that the
module name (eMN ), the function name (eFN ),
and the actual list of parameters (eArgs) are given
as legal Erlang expressions (thus the argument
list does not have to be a list expression actually).

eAPP, eMN , eFN , eArgs ∈ E

The following semantic rules define dynamic call
relations between call expressions and function
entities.
Fully identifiable apply-calls. In case of
apply-calls, the module and function names as
well as the argument lists may be constructed
arbitrarily far from the call point. Provided that
applying data-flow reaching we can successfully
find out the possible value of the name expres-
sion(s) as well as the length of the argument list,
we can fully identify the callee. Such cases are
called to be dynamic, unambiguous references.
The call expression is linked to all the possibly
referred functions, labelled by dynref. Listing 6
shows an apply-call that requires data-flow anal-
ysis, but it is still possible identify the callee by
using rule APP1.

Listing 6. Fully identified apply-call
MN = io,
FN = format ,
Args = ["hello"],
apply(MN, FN, Args)

Partially identifiable apply-calls. Similarly
to MFA-calls, apply-calls may be ambiguous,
which means we cannot certainly identify every
callee. Any component of the 3-tuple identifying

MFA-call Apply-call

all identifiers are calculable dynamic dynamic

one of the identifiers is incalculable ambiguous ambiguous

module and function names plus a lower bound of the arity are calculable — ambiguous

at least two key identifiers are incalculable skipped skipped

Figure 2. Dynamic call types in detail
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eMN ∈ EAtom, eFN ∈ EAtom

eMFA
funref
−−−→ Function(V al(eMN ), V al(eFN ), n) (MFA1)

ex
0fcb
; eMN ey

0fcb
; eFN

eMN /∈ EAtom ∨ eFN /∈ EAtom, ex ∈ EAtom, ey ∈ EAtom

eMFA
dynref
−−−→ Function(V al(ex), V al(ey), n)

(MFA2)

ez
0fcb
; eMN ex

0fcb
; eFN ex ∈ EAtom, ez ∈ E \ EAtom

eMFA
ambref
−−−→ Function(⊥, V al(ex), n)

(MFA3)

the function may be incalculable at compile-time,
resulting in uncertain function references. In-
terestingly, due to the way the arguments are
passed to the function, there may appear situa-
tions where only a lower bound of the function
arity is calculable.

Suppose that the function name along with
the arity are determinable. If there is a case in
which the name of the referred module cannot
be calculated by use of data-flow analysis either,
we cannot fully identify the potentially referred
functions. In order to indicate this, the call ex-
pression is linked to an opaque function entity
whose module name is undefined (see rule APP2).
The rest of the identifiers are read out from the
code, while the relation is labelled by ambref
(ambiguous function reference).

We analogously construct a rule for ambigu-
ous apply-calls with an incalculable function
name (see rule APP3). The expression eAPP is
linked to an opaque function whose containing
module name and arity can be read out from the
code, however, its name is set to ⊥ (undefined).
The reference is labelled by ambref.

Listing 7. Ambiguous apply-call
MN = io,
FN = if read_int () == 1 -> format;

true -> read_stdin ()
end ,

apply(MN, FN, ["hello "])

Listing 7 shows an example in which the func-
tion name comes from a conditional statement.
The analysis uncovers that it may have the value
format, but on the other hand, it may come from
the standard input as well. This results in two

relations, based on the rules APP1 and APP3:
a dynamic reference goes to io:format/1 and an
ambiguous one to io:⊥/1.

Now suppose that the module name and the
function name are determinable. If we cannot
gather any information about the arity of the
function by use of data-flow analysis either, a ref-
erence points to an opaque function whose arity
component is unknown (⊥), indicating that the
function reference is ambiguous in the arity (see
rule APP4).

Sometimes, even if we cannot determine the
arity, we still have a chance to calculate a lower
bound of the parameter count (it happens if the
length of the tail of an argument list is incalcu-
lable). If we can uncover such a bound, it will
be indicated beside the fact that the function
reference is ambiguous. To avoid creating lots of
opaque functions, we do not associate separate
functions to each different lower bound of the
arity the call may refer to. Instead, we identify
the greatest lower bound and we link only one
opaque function to the call, using the minimum
of the lower bounds as arity. Let us define the
following predicate.

AL(eList) = eList
0fcb
; eArgs ∧ Length(eList) ∈ N≥

So AL(e) is true if and only if e flows into the
argument list of the call and its length is not fully
known, but its lower bound can be calculated
with static analysis.

By utilising the AL predicate, we can give
the rule for the calls with lower-bounded arities
(see APP5). The rule shows that even if many
lower-bounds of the arity are calculable, we unify
them into a single one, which is actually the
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ex
0fcb
; eMN ez

0fcb
; eFN ex ∈ EAtom, ez ∈ E \ EAtom

eMFA
ambref
−−−→ Function(V al(ex),⊥, n)

(MFA4)

ex
0fcb
; eMN ey

0fcb
; eFN eL

f0cb
; eArgs

ex, ey ∈ EAtom, eL ∈ EList, Length(eL) ∈ N
eAPP

dynref
−−−→ Function(V al(ex), V al(ey), Length(eL))

(APP1)

ez
0fcb
; eMN ex

0fcb
; eFN eL

f0cb
; eArgs

ex ∈ EAtom, ez ∈ E \ EAtom, eL ∈ EList, Length(eL) ∈ N
eAPP

ambref
−−−→ Function(⊥, V al(ex), Length(eL))

(APP2)

greatest lower bound of the arity. As N≥ is a to-
tally ordered set, the function minimum can be
used to get the minimal element.

Listing 8. Lower bounded arity in an apply-call
msg() -> if is_young(user ()) ->

[$h,$i,$ |read_stdin ()];
true ->

[$h,$e,$l,$l,$o,$ |read_stdin ()]
end.

f() -> apply(io, format , msg ()).

In listing 8 we demonstrate the use of
rule APP5. In this example there are two dif-
ferent lower-bounded argument lists belonging
to the call: one with length 3≥, and another one
having 6≥ elements. Consequently, the greatest
lower bound is 3, and thus the arity of the am-
biguously referred opaque function is 3≥.

The “may be” relation

Let us define
mfa : SemFun 7→ Atom′ ×Atom′ × Int′

where mfa(f) results in the 3-tuple function de-
scriptor identifying f . We claim that

mfa(Function(m, f, a)) = (m, f, a)
In the previous sections we have introduced dy-
namic and ambiguous function references, which
relate expressions to function entities. Also, we
presented the use of opaque functions, giving

the opportunity to precisely represent ambigu-
ous references. However, these opaque functions
are special, they may not be regarded as legal
elements of the function call graph.

To integrate opaque functions into the call
graph, the first step we do is associating these
functions to fully defined ones. This relation is
called may_be, and it connects opaque functions
to non-opaque ones that are potential targets
of ambiguous calls. Namely, if the unambiguous
and the ambiguous functions are identical in the
two identifier components defined in the opaque
function, the concrete function corresponds to
the opaque one. In other words, the concrete
function may only differ in the one identifier that
is undefined in the opaque function. This relation
is defined by rule MAY1.

A special kind of opaque function has a lower
bound of its arity. While looking for possible
may_be connections, one has to take into account
not only the names but also the lower bound of
the opaque function. A concrete function entity
may be associated with a fully defined one only
if their names are equal and the concrete arity
complies with the lower bound (see rule MAY2).

With the above relation we successfully in-
cluded the information about ambiguous refer-
ences and opaque functions into the model of
semantic functions by associating opaque enti-
ties with concrete ones. Thus we do not have to
consider and directly handle opaque functions
during further analyses.



Static analysis of function calls in Erlang 73

ex
0fcb
; eMN ez

0fcb
; eFN eL

f0cb
; eArgs

ex ∈ EAtom, ez ∈ E \ EAtom, eL ∈ EList, Length(eL) ∈ N
eAPP

ambref
−−−→ Function(V al(ex),⊥, Length(eL))

(APP3)

ex
0fcb
; eMN ey

0fcb
; eFN eL

f0cb
; eArgs

ex ∈ EAtom, ey ∈ EAtom, eL ∈ EList, Length(eL) = ⊥
eAPP

ambref
−−−→ Function(V al(ex), V al(ey),⊥))

(APP4)

ex
0fcb
; eMN ey

0fcb
; eFN eList

f0cb
; eArgs

ex, ey ∈ EAtom, eList ∈ EList, Length(eList) ∈ N≥

eAPP
ambref
−−−→ Function(V al(ex), V al(ey), Arity)

(APP5)

where Arity = min{Length(eList) | eList ∈ EList ∧AL(eList)}

Extending the call graph

Let us define the function
Body : SemFun 7→ P (E)

where Body(f) contains all expressions that are
inside the function body of f (if f is actually
defined in the code). If f has no definition, then
Body(f) is an empty set.

Consider a function call expression e and the
function entity that contains this expression (that
is, f ∈ SemFun and e ∈ Body(f)). The basic
part of the call graph is built upon the informa-
tion gathered about static MFA-calls. Namely, if
the expression inside f refers to the function f ′,
the call graph contains an edge from f to f ′.

e
funref
−−−→ f ′

e ∈ Body(f)
f

funcall
−−−→ f ′

However, in our representation there are other
kinds of function calls registered, so to be able to
distinguish the different call types, we label the
edges of the call graph. Static calls are labelled
by funcall.

Another group of function calls that we can
successfully identify is the unambiguous dynamic
call. In such calls the identifiers of the callee may
be defined not at the call but at another program
part, provided that they are fully calculable with
data-flow reaching.

e
dynref
−−−→ f ′

e ∈ Body(f)
f

dyncall
−−−→ f ′

In our call graph the unambiguous dynamic calls
are labelled by dyncall. These references are as
certain as static ones are, that is, neither ap-
proximation nor heuristics are applied during
analysis.

The third kind of analysed references are am-
biguous references. A such function reference
always points to an opaque function entity, which
is not fully defined. We do not include opaque
functions into the call graph, instead, we asso-
ciate such functions with fully defined ones. The
latter relation is called may_be. Consequently,
the combination of the ambiguous reference and
the may_be relation determines the ambiguous
function calls.

e
ambref
−−−→ f ′ f ′

may_be
−−−→ f ′′

e ∈ Body(f)
f

ambcall
−−−→ f ′′

By applying this rule, a function with an
ambiguous call expression will be linked to all
the functions the call may refer to. Apparently, a
call may only refer to exactly one function, how-
ever, static analysis cannot determine which of
the ambiguously called functions will be actually
called at run-time.



74 Dániel Horpácsi, Judit Kőszegi

mfa(f) = (⊥, n, a) ∨mfa(f) = (m,⊥, a) ∨mfa(f) = (m, n,⊥) mfa(f ′) = (m, n, a)
m, n ∈ Atom, a ∈ N

f
may_be
−−−→ f ′

(MAY1)

mfa(f) = (m, n, i≥) mfa(f ′) = (m, n, j)
m, n ∈ Atom, i, j ∈ N, j ≥ i

f
may_be
−−−→ f ′

(MAY2)

4. Use cases in the RefactorErl
refactoring tool

By refining the call graph with dynamic invo-
cations, we get a deeper and more accurate in-
sight into the inter-procedural relationships of
the system under analysis. While performing dif-
ferent code analysis, refactoring transformations,
or cyclic dependency examination, we can utilise
the refined function call information. Basically,
the refined call relation influences the preciseness
of almost every function-related refactoring steps
and code analysis (also including code clustering,
whose result highly depends on call relations).

Side effect analysis. So far, in the case of
expressions containing dynamic calls, we could
not decide whether they have side effects or not,
since we did not know which function is being
called within the expression (potentially having
side effects). By default, the Refactorerl tool
regards every dynamic call as side effected until
any analysis has successfully proved the contrary.

With the new call analysis results we are able
to refine the static analysis of side effects. When
an unambiguous dynamic call is recognised, we
can identify the callee and propagate its side ef-
fects related properties. In the example below we
have a function named f which calls the function
foo via an apply-call. If foo is provably side effect
free, then f is certainly side effect free as well.

f(S) -> apply(m, foo , [S]).

Refactoring. The result of the side effect
analysis obviously has impact on code refactor-
ing transformations, since they are based on the
static code analysis. For instance, when we re-
order the arguments of a function, the actual
parameters in the calls to this function should
also be reordered. However, if any of the parame-
ters might have side effects, we do not allow the

transformation, as it might violate the behaviour
preservation principle of refactoring (note that
in Erlang, the arguments of a call are evaluated
strictly from left to right). Now with the help of
dynamic function call analysis we can reduce the
number of the expressions with indeterminate
dirtiness, thus we can allow much more transfor-
mations to perform.

As an other example, in case of renaming
a function we should replace all occurrences of
the old function name with the new one. If we did
not recognise the dynamic references of a func-
tion, we would not be able to change the function
name inside those expressions and consequently
we would completely modify the meaning of the
program. Listing 9 shows a module whose func-
tion plus is called dynamically. We rename plus
to add (Listing 10). If we did not have dynamic
call analysis, no references would be renamed,
resulting in undefined function calls and run-time
errors.

5. Conclusions

In this paper we presented that the function
analysis and the data-flow analysis can be effec-
tively combined and we also defined how static
function call graphs of Erlang programs can be
extended with dynamic call references uncov-
ered by use of data-flow analysis. We successfully
classified the dynamic call constructs of the lan-
guage both on the syntax level and based on
the way the function identifiers and call argu-
ments are constructed and passed to the call.
We defined static and dynamic calls, as well as
MFA-calls, apply-calls, whose syntax definition
was formally discussed. Also, we formally defined
the connection between dynamic call expressions
and their callee, and we introduced the concept
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Listing 9. Original
-module(m).

plus(A,B) -> A + B.

f(A,B) -> apply(m,plus ,[A,B]),
Fun = plus ,
m:Fun(A,B).

Listing 10. Renaming plus to add
-module(m).

add(A,B) -> A + B.

f(A,B) -> apply(m,add ,[A,B]),
Fun = add ,
m:Fun(A,B).

of ambiguous calls. Ambiguous references are
not calculable at compile-time and therefore are
not fully identified by static analysis, but we
presented a method that represents ambiguous
calls by opaque function entities and may_be
relations in order to include them into the call
graph. Finally, we precisely formalised how the
newly defined references can refine the static call
graph.

6. Related results

As far as we are aware of existing static anal-
yser tools for the Erlang programming language,
only TypEr (Type Annotator of Erlang Code [8])
extends its call graph — built from static func-
tion calls — with a subset of possible dynamic
calls. Unlike other Erlang type analyses (e.g.
soft-typing by Nystrom [9] and sub-typing by
Marlow and Wadler [10]), the success typing
method of TypEr is present in the Erlang/OTP
environment. In case of dynamic MFA-calls it
tries to use the result of a kind of data-flow
analysis to gather out the module and function
names. In contrast to our analysis method, it
extends the call graph with a dynamic call only
if both the module and function names are clearly
deducible, while apply-calls and ambiguous calls
are completely ignored.

Other dynamically typed functional (and
scripting) languages provide similar dynamic
function call constructs. There are a large
number of papers investigating static analy-
sis and typing of dynamically typed languages.
For JavaScript [11] as well as for Scheme [12]
well-defined typing, data- and control-flow anal-
ysis methods have been developed. Nevertheless,

to our best knowledge, none of these has detailed
the consideration of dynamic call constructs.

In imperative languages, a commonly applied
method to construct dynamic calls is using func-
tion pointers (variables that point to the address
of functions). Building call graphs in the face of
pointers requires points-to analysis to provide
accurate results, which means we have to esti-
mate the contents of pointer variables by prop-
agating pointer assignments, copies, and arith-
metic across program data flows. There is a large
body of theoretical work on various pointer anal-
yses [13] and their application for call-graph
construction with different degrees of cost and
precision [14,15].

7. Future work

We presented how data-flow analysis can help to
refine the function call graph, however, data-flow
relations can also be adjusted according to the
new information about dynamic calls. Conse-
quently, the data-flow analysis and the function
analysis mutually influence each other. It would
be interesting to define an iterative algorithm
that produces more and more precise data-flow
information and call graph, to examine the cost
and result of each iteration step, and to give
a reasonable termination condition.

When function references cannot be identi-
fied with the use of data-flow analysis either, we
may apply analyses taking run-time details into
account. Possibilities include symbolic evaluation
as well as dynamic analysis.

Further development steps could deal with
eval expressions, which are applicable for evalu-
ating any Erlang code stored in a string. Such
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constructs could result in additional dynamic
function calls, as the evaluated string may con-
tain function calls to be analysed in some way.
The static analysis of eval constructs present in
Erlang is an open question.
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