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Abstract
The paper presents an analysis of 83 versions of industrial, open-source and academic projects. We
have empirically evaluated whether those project types constitute separate classes of projects with
regard to defect prediction. Statistical tests proved that there exist significant differences between
the models trained on the aforementioned project classes. This work makes the next step towards
cross-project reusability of defect prediction models and facilitates their adoption, which has been
very limited so far.
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1. Introduction

Assuring software quality is known to require
time-consuming and expensive development pro-
cesses. The costs generated by those processes
may be minimized when the defects are predicted
early on, which is possible by means of defect
prediction models [1]. Those models, based on
software metrics, have been developed by a num-
ber of researchers (see Section 2). The software
metrics which describe artifacts of the software
development process (e.g. software classes, files)
are generally used as the models’ input. The
model output usually estimates the probability
of failure, the occurrence of a defect or the ex-
pected number of defects. The predictions are
made for a given artifact. The idea of building
models on the basis of experienced facts, called
inductive inference, is discussed in the context of
software engineering by Samuelis [2].

Defect prediction models are extraordinarily
useful in software testing process. The available
resources are usually limited and, therefore, it
may be difficult to conduct the comprehensive

tests on, and the reviews of, all artifacts. Defect
prediction models are extraordinarily useful in
the software testing process. The available re-
sources are usually limited and, therefore, it may
be difficult to conduct the comprehensive tests
on, and the reviews of, all artifacts [1]. The pre-
dictions may be used to assign varying priorities
to different artifacts (e.g. classes) under test [3,4].
According to the 80:20 empirical rule, a small
amount of code (often quantified as 20% of the
code) is responsible for the majority of software
defects (often quantified as 80% of the known
defects in the system) [5, 6]. Therefore, it may
be possible to test only a small amount of arti-
facts and find a large amount of defects. In short,
a well-designed defect prediction model may save
a lot of testing efforts without decreasing software
quality.

The defect prediction models may give sub-
stantial benefits, but in order to build a model,
a software measurement program must be
launched. According to Kaner and Bond [7], only
few companies establish such programs, even
fewer succeed with them and many of the com-
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panies use them only to conform to the criteria
laid down in the Capability Maturity Model [8].
The costs may be one of the reasons behind the
limited adoption of the defect prediction mod-
els, e.g. an average overhead for metrics collec-
tion was estimated to be 4–8% of the overall
value [8, 9]. Using cross-project defect prediction
could reduce the expenditure, since one model
may be used in several software projects, which
means that it is not necessary to launch a com-
pletely new software measurement program for
each project. The cross–project defect predic-
tion is also helpful with solving the problems
connected with the lack of historical data indis-
pensable to train a model [10]. Unfortunately,
the body of knowledge of cross–project defect
prediction does not support us with the results
that are advanced enough to be used (details in
the next section). The intention of this work is
to reveal the facts regarding high level predic-
tion boundaries, particularly the possibility of
using prediction models across different project
code ownership models. The conducted exper-
iments aiming at verifying whether cluster of
projects can be derived from the source code
ownership model, where the cluster is a group of
software projects that share a common predic-
tion model. Such finding eases the application
of defect prediction by removing the necessity of
training the model. It is enough to identify the
cluster a given project belongs to and use the
common model.

This study investigates whether there is a rel-
evant difference between industrial, open-source
and academic software projects with regard to
defect prediction. In order to explore that po-
tential disparity, the data from 24 versions of 5
industrial projects, 42 versions of 13 open-source
projects and 17 versions of 17 academic projects
were collected. Several defect prediction models
were built and the efficiency of the predictions
was compared. Statistical methods were used in
order to decide whether the obtained differences
were significant or not. It is worth mentioning
that a somehow related question of suitability of
software quality model for projects within differ-
ent application domains was raised by Villalba
et al. [11], whereas the results of other works

which investigate the cross-project defect predic-
tion (i.e. [12,13]) suggest that the code ownership
model might be a relevant factor with regard to
the prediction performance.

The rest of this paper is organized as follows:
subsequent sections describe related work, the
design of empirical evaluation used in this study
(including the details of data collection and analy-
sis methodology), the descriptive statistics of the
collected data, the results of empirical evaluation,
threats to the validity of the empirical study, and
conclusions.

2. Related Work

Cross-project reusability of defect prediction
models would be extremely useful. Such general-
ized prediction models would serve as a starting
point in software development environments that
cannot provide historical data and, as a result,
they would facilitate the adoption of defect pre-
diction models.

A preliminary work in this area was conducted
by Subramanyam and Krishnan [14]. The authors
investigated a software project where C++, as
well as Java, were employed and found substantial
differences between classes written in different
programming languages with regard to defect
prediction, e.g. the interaction effect (the defect
count grows with the CBO value for C++ class
but decreases for the Java classes; the relation
was calculated with respect to the DIT metric).
Hence, the results indicate issues with regard to
cross-language predictions. The authors investi-
gated only one project, nevertheless, similar dif-
ficulties might arise in cross-project predictions.

Nagappan et al. [15] analyzed whether defect
predictors obtained from one project history are
applicable to other projects. It turned out that
there was no single set of metrics that would
fit into all five investigated projects. The defect
prediction models, however, could be accurate
when obtained from similar projects (the similar-
ity was not precisely defined, though). The study
was extended by Zimmerman et al. [12], who
performed 622 cross-project predictions for 12
real world applications. A project was considered
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as a strong predictor for another project when
all precision, recall, and accuracy were greater
than 0.75. Only 21 cross-project validations sat-
isfied this criterion, which sets the success rate
at 3.4%. Subsequently, the guidelines to assess
the cross-project prediction chance of success
were given. The guidelines were summarized in
a decision tree. The authors constructed separate
trees for assessing prediction precision, recall, and
accuracy, but only the tree for precision was given
in the paper.

A study of cross-company defect prediction
was conducted by Turhan et al. [10]. The authors
concluded that there is no single set of static
code features (metrics) that may serve as defect
predictor for all the software projects. The ef-
fectiveness of the defect prediction models was
measured using probability of detection (pd) and
probability of false alarm (pf). Cross-company
defect prediction dramatically increased pd as
well as pf. The authors were also able to decrease
the pf by applying the nearest neighbor filtering.
The similarity measure was the Euclidean dis-
tance between the static code features. However,
there was still a drawback for cross-company de-
fect prediction models: the project features which
might influence the effectiveness of cross-company
predictions were not identified.

In an earlier paper [13], we presented an em-
pirical study showing that data mining tech-
niques may be used to identify project clus-
ters with regard to cross-project defect predic-
tion. The k-means and Kohonen’s neural net-
works were applied to correlation vectors in or-
der to identify the clusters. The correlation vec-
tors were calculated for each version of each
project respectively and represented Pearson’s
correlation coefficients between software metrics
and numbers of defects. Subsequently, a defect
prediction model was created for each identi-
fied cluster. In order to validate the existence
of a cluster, the efficiency of the cluster model
was compared with the efficiency of a general
model. The general model was trained using
data from all the projects. Six different clus-
ters were identified and the existence of two of
them was statistically proven. The clusters char-
acteristics were consistent with Zimmerman’s

findings [12] about the factors that are criti-
cal in cross-project prediction. In our paper, we
make a step towards simplifying the setup of
defect prediction in the software development
process. The laborious activities regarding cal-
culation of correlation vectors and mining the
clusters are not needed as it is obvious from
the very beginning to which cluster a project
belongs. A subset of the same data set had al-
ready been analysed in [16,17]. In [16] 5 industrial
and 11 open–source projects were investigated.
The study was focused on the role of the size
factor in defect prediction. The other paper was
focused on the cross-project defect prediction.
In [17], published in Polish, being a preliminary
study to this one, we focused on the differences
and similarities between industrial, open–source
and academic projects, whereas in this paper, we
additionally performed a comprehensive statisti-
cal analysis. As a result, new projects may take
advantage of the prediction models developed
for the aforementioned classes of the existing
projects.

It is also worth mentioning that a different ap-
proach, based on the idea of inclusion additional
software projects during the training process, can
provide a cross-project perspective on software
quality modelling and prediction [18].

A comprehensive study of cross-project defect
prediction was conducted by He et al. [19]. The
authors investigated 10 open source projects to
check whether training data from other projects
can provide better prediction results than train-
ing data from the same project – in the best
cases it was possible. Furthermore, in 18 out of
34 cases the authors were able to obtain a Recall
greater than 70% and a Precision greater than
50% for the cross-project defect prediction.

3. Empirical Evaluation Design

3.1. Data Collection

The data from 83 versions of 35 projects was col-
lected and analyzed. It covers 24 versions of 5 in-
dustrial projects, 42 versions of 13 open–source
projects and 17 versions of 17 academic projects.
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The number of versions is greater than the num-
ber of projects because there were projects in
which data from several versions were collected.
For example, in the case of the Apache Ant
project (http://ant.apache.org), versions 1.3, 1.4,
1.5, 1.6 and 1.7 were analyzed. For each of the
analysed versions there was an external release,
which was visible to the customer or user.

Each of the investigated industrial projects
is a custom-built enterprise solution. All of the
industrial projects have already been success-
fully developed by different teams of 10 to 40
developers and installed in the customer envi-
ronments. All of them belong to the insurance
domain but implement different feature sets on
top of Java-based frameworks. Each of the in-
dustrial projects were developed by the same
vendor.

The following open-source projects were in-
vestigated: Apache Ant, Apache Camel, Apache
Forrest, Apache Log4j, Apache Lucene, Apache
POI, Apache Synapse, Apache Tomcat, Apache
Velocity, Apache Xalan, Apache Xerces, Ckjm
and Pbeans.

The academic projects were developed by the
fourth and the fifth-year graduate MSc computer
science students. The students were divided into
the groups of 3, 4 or 5 persons. Each group de-
veloped exactly one project. The development
process was highly iterative (feature driven de-
velopment). Each project lasted one year. During
the development for each feature UML documen-
tation was prepared. Furthermore, high level of
test code coverage was obtained by using the
latest testing tools, e.g. JUnit for unit tests, Fit-
Nesse for functional tests. The last month of
development was used for additional quality as-
surance and bug fixing; the quality assurance was
conducted by an external group of subjects (i.e.
not the subjects involved in the development).
The projects were from different domains, were
built using different frameworks, had different
architectures and covered different sets of func-
tionalities, nonetheless all of them were written
in Java.

The objects of the measurement were soft-
ware development products (Java classes). The
following software metrics were used in the study:

– Chidamber & Kemerer metrics suite [20]:
Weighted Method per Class (WMC), Depth of
Inheritance Tree (DIT), Number Of Children
(NOC), Coupling Between Object classes
(CBO), Response For a Class (RFC) and Lack
of Cohesion in Methods (LCOM);

– a metric suggested by Henderson-Sellers [21]:
Lack of Cohesion in Methods (LCOM3);

– Martin’s metrics [22]: Afferent Couplings (Ca)
and Efferent Couplings (Ce).

– QMOOD metrics suite [23]: Number of Public
Methods (NPM), Data Access Metric (DAM),
Measure Of Aggregation (MOA), Measure of
Functional Abstraction (MFA) and Cohesion
Among Methods (CAM);

– quality oriented extension of Chidamber
& Kemerer metrics suite [24]: Inheritance
Coupling (IC), Coupling Between Methods
(CBM) and Average Method Complexity
(AMC),

– two metrics which are based on the McCabe’s
cyclomatic complexity measure [25]: Maxi-
mal Cyclomatic Complexity (Max_CC) and
Average Cyclomatic Complexity (Avg_CC),

– Lines Of Code (LOC),
– Defects — the dependent variable; in the case

of industrial and open source projects the
sources of the defect data were testers and
end users, in the case of academic projects
the source of the defect data were students
(not involved in a development of a partic-
ular projects) who validated the developed
software against the specification during the
last month (devoted to testing) of the 1-year
project.
Definitions of the metrics listed above can

be found in [16]. In order to collect the met-
rics, we used a tool called Ckjm (http://gromit.
iiar.pwr.wroc.pl/p_inf/ckjm). The version of
Ckjm employed here was reported earlier by
Jureczko and Spinellis [16]). The defect count
was collected with a tool called BugInfo (http:
//kenai.com/projects/buginfo). The collected
metrics are available online in a Metric Repository
(all metrics: http://purl.org/MarianJureczko/
MetricsRepo, metrics used in this research:
http://purl.org/MarianJureczko/MetricsRepo/
IET_CrossProjectPrediction). Data sets related
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to the analyzed software defect prediction models
are available from the R package [26] to streamline
reproducible research [27,28].

The employed metrics might be considered
as the classic ones. Each of them has been in use
for at least several years. Hence, the metrics are
well known, already recognized by the industry
and have a good tool support. There is a number
of other metrics, some of them very promising in
the field of defect prediction, e.g. the cognitive,
the dynamic and the historical metrics [15,29,30].
A promising set of metrics are process metrics
analysed by Madeyski and Jureczko [31]. Some
of them, like Number of Distinct Committers
(NDC) or Number of Modified Lines (NML), can
significantly improve defect prediction models
based on classic software product metrics [31].
Nevertheless, we decided not to use them, since
those metrics are not so popular yet (especially in
the industry) and the collecting process could be
challenging. One may expect that the limited tool
support would result in decreasing the number of
investigated projects, which is a crucial factor in
cross-project defect prediction. We fully under-
stand and accept the value of using metrics that
describe a variety of features. Furthermore, we
are involved in the development of a tool which
includes support for the historical metrics [32].
We are going to use the tool to collect metrics
for future experiments.

3.2. Data Analysis Methodology

The empirical evaluation described further was
performed to verify whether there is a difference
between industrial, open–source and academic
projects with regard to defect prediction. Sta-
tistical hypotheses were formulated. The defect
prediction models were built and applied to the
investigated projects. The efficiency of prediction
was used to evaluate the models and to verify
the hypotheses.

To render that in a formal way, it is neces-
sary to assume that E(M, v) is the evaluation
function. The function assesses the efficiency of
prediction of the model M on the version v of
the investigated software project. Let c1, c2, ..., cn
be the classes from the version v in descending

order of predicted defects according to the model
M , and let d1, d2, ..., dn be the number of de-
fects in each class. Di is the

∑
(d1, ..., di) , i.e.,

the total defects in the first i classes. Let k be
the smallest index so that Dk > 0.8 ∗Dn, then
E(M,v) = k/n ∗ 100%. Such evaluation function
has been used as it clearly corresponds with the
software projects reality we faced. It is closely
related to the quality goal: detect at least 80% of
defects. The evaluation function shows how many
classes must be tested (in practice it corresponds
well to how much effort must be committed) to
reach the goal when testing according to predic-
tion model output. The properties of the group
of evaluation functions that the one selected by
us belongs to have been analysed by Weyuker et
al. [33].

The empirical evaluation is defined in
a generic way which embraces three investigated
classes of software projects. Let A,B and C be
those classes (i.e. industrial, open–source and aca-
demic, respectively). Let us interpret the classes
of software projects as the sets of versions of
software projects. Let A be the object of the
current empirical evaluation. B and C will be
investigated in subsequent experiments using the
analogous procedure. Let a be a member of the
set A, a ∈ A. Let Mx be the defect prediction
model which was trained using data from ver-
sions that belong to set X. Specifically, there are
MA, MB, MC and MB∪C(B ∩ C = ¬A). Subse-
quently, the following values were calculated for
each a ∈ A:
– E(MA, a) – let us call the set of obtained

values EA,
– E(MB, a) – let us call the set of obtained

values EB,
– E(MC , a) – let us call the set of obtained

values EC ,
– E(MB∪C , a) – let us call the set of obtained

values EB∪C .
The following statistical hypothesis may be

formulated with the use of EA, EB , EC and EB∪C
sets:
– H0,A,B – EA and EB come from the same

distribution.
– H0,A,C – EA and EC come from the same

distribution.
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Table 1. Descriptive statistics of metrics in different projects classes (X – mean; s – standard
deviation; r – Pearson correlation coefficient; ∗ – correlation significant at 0,05 level)

Industrial Open–source Academic
X s r X s r X s r

WMC 5.2 8.6 0.13∗ 10.5 13.7 0.29∗ 9.7 10.8 0.38∗
DIT 3 1.7 −0.07∗ 2.1 1.3 −0.01 2.1 1.7 0.29∗
NOC 0.6 8.8 0 0.5 3.4 0.03∗ 0.2 1.5 −0.04
CBO 15.1 20.8 0.26∗ 10.3 16.9 0.20∗ 8 8.1 0.25∗
RFC 24.7 27.5 0.28∗ 27.1 33.3 0.34∗ 26 30.6 0.53∗

LCOM 37.6 660.2 0.03∗ 95.2 532.9 0.19∗ 62 276.5 0.37∗
Ca 2.8 17.7 0.16∗ 5.1 15.3 0.11∗ 3.8 6.7 0.19∗
Ce 12.3 10.3 0.24∗ 5.4 7.4 0.26∗ 4.7 5.9 0.38∗

NPM 3.4 7.9 0.08∗ 8.4 11.5 0.22∗ 7.4 8.7 0.08∗
LCOM3 1.4 0.6 −0.04∗ 1.1 0.7 −0.07∗ 1.1 0.6 −0.11∗

LOC 170.4 366.7 0.26∗ 281.3 614.7 0.29∗ 248.1 463.4 0.53∗
DAM 0.2 0.3 0.02∗ 0.5 0.5 0.06∗ 0.6 0.5 0.07∗
MOA 0.1 1 0.03∗ 0.8 1.8 0.27∗ 0.8 1.6 0.27∗
MFA 0.6 0.4 −0.06∗ 0.4 0.4 −0.02∗ 0.3 0.4 0.16∗
CAM 0.6 0.2 −0.13∗ 0.5 0.3 −0.19∗ 0.5 0.2 −0.17∗

IC 1.1 1.1 −0.04∗ 0.5 0.8 0.06∗ 0.3 0.5 −0.03
CBM 1.7 2.4 −0.03∗ 1.5 3.1 0.10∗ 0.5 1.5 0.02
AMC 30.4 39.8 0.14∗ 28.1 80.7 0.07∗ 21.2 24.7 0.24∗

Max_cc 3.3 5.7 0.17∗ 3.8 7.5 0.17∗ 3.2 5.5 0.31∗
Avg_cc 1.3 1.5 0.13∗ 1.3 1.1 0.12∗ 1.1 0.8 0.17
Defects 0.232 0.887 0.738 1.906 0.382 1.013

– H0,A,B∪C – EA and EB∪C come from the
same distribution.
The alternative hypothesis:

– H1,A,B – EA and EB come from different dis-
tributions.

– H1,A,C – EA and EC come from different dis-
tributions.

– H1,A,B∪C – EA and EB∪C come from different
distributions.
When the alternative hypothesis is accepted

and mean(EA) < mean(EX), there is a signifi-
cant difference in prediction accuracy: the model
trained on the data from set A gives a signifi-
cantly better prediction than the model trained
on the data from set X. The predictions are made
for all the project versions which belong to the
set A. Hence, the data from set X should not
be used to build defect prediction models for the
project versions which belong to set A.

The hypotheses were evaluated by the para-
metric t-test for dependent samples. The general
assumptions of parametric tests were investigated
beforehand. The homogeneity of variance was
tested using Levene’s test and the normality of

distribution was tested using the Shapiro-Wilk
test [34]. All hypotheses were tested on the de-
fault significance level: α = 0.05.

4. Experiments and Results

4.1. Descriptive Statistics

The three aforementioned classes of software
projects, namely: industrial, open–source and
academic, were described in Table 1. The descrip-
tion provides information about the mean value
and standard deviation of each of the analyzed
software metrics. Each metric is calculated per
Java class, and the statistics are based on all Java
classes in all projets that belong to a given class
of projects. Moreover, the correlations with the
number of defects were calculated and presented.
Most of the size related metrics (WMC, LCOM,
LOC, Max_cc and Avg_cc) had higher values
in open-source projects, while coupling metrics
(CBO and Ce) had the greatest values in the
industrial projects. In the case of eachof the in-
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Table 2. The number of classes per project

Industrial Open–source Academic
X s X s X s

No of classes 2806.3 831.7 302.6 219.4 56.4 58.4

Table 3. The number of defects
per Java class

Type X s

Open–source .7384 1.9
Industrial .2323 .9
Academic .3816 1.0

vestigated project classes, the RFC metric has a
higher correlation coefficient with the number of
defects. However, there are major differences in
its value (it is 0.28 in the case of the industrial
projects, and 0.53 in the case of the academic
projects) and in the sets of other metrics that
are highly correlated with the number of defects.

Collected data suggest that in all kinds of the
projects (industrial, open–source and academic)
the mean LOC per class follows the rule of thumb
presented by Kan in his book [35] (Table 12.2 in
Chapter 12) that LOC per C++ class should be
less than 480. A similar value is expected for Java.
Bigger classes would suggest poor object-oriented
design. Low LOC per class does not mean that
the code under examination is small. To give
an impression with regard to the size of the in-
vestigated projects Table 2 presents numbers of
classes per project.

The number of defects per Java class is pre-
sented in Table 3. It appears that the number of
defects per Java class in industrial and academic
projects is close with regards to standard devi-
ation and mean, while open source projects are
characterized by higher standard deviation as well
as mean. A plausible explanation is that lower
standard deviations in academic and industrial
projects come from a more homogeneous develop-
ment environment than in open source projects.

4.2. Empirical Evaluation Results

The empirical evaluation has been conducted
three times. Each time a different class of soft-
ware projects was used as the object of study.

4.2.1. Industrial Projects

The descriptive statistics are summarized in Ta-
ble 4. The models that were trained on the data
from the industrial projects (’Industrial models’

in Table 4) gave the most accurate prediction.
The predictions were made only for the indus-
trial projects. Furthermore, the mean value of the
evaluation function E(M, v) was equal to 50.82
in the case of the ’Industrial models’. In the case
of the other models, the mean values equaled
53.96, 55.38 and 73.59. A smaller value of the
evaluation function implies better predictions.

The predictions obtained from the models
trained on the data from the industrial projects
were compared with the predictions from the
other models. The predictions were made only for
the industrial projects. The difference was statis-
tically significant only in the case of comparison
with the predictions from models trained on the
data from the academic projects (see Table 5).
In this case the calculated effect size d = 1.56
is extremely high (according to magnitude la-
bels proposed by Cohen d effect size equal to
.2 is considered small, equal to .5 is considered
medium, while equal to .8 is considered high)
while the power of a test (i.e., the probability
of rejecting H0 when in fact it is false) is equal
to 1. This important finding shows that there
exist significant differences between industrial
and academic software projects with respect to
defect prediction.

4.2.2. Open–source Projects

The descriptive statistics of the results of ap-
plying defect prediction models to open–source
projects are presented in Table 6. The mod-
els, which were trained on the data from the
open–source projects (’Open–source models’ in
Table 6), gave the most accurate prediction.

Table 7 shows the t–test statistics, power
and effect size calculations for the open-source
projects.

In all of the cases p-value is lower than .05.
However, instead of coming to the conclusions
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Table 4. Models evaluations for the industrial projects

Model Non–industrial Open–source Academic Industrial

X 53.96 55.38 73.59 50.82
s 13.29 12.01 9.68 9.86

Table 5. Dependent samples t-test for the industrial
projects.

H0,ind,open∪acad H0,ind,open H0,ind,acad

t, df = 23 −.979 −1.482 −7.637
p .338 .152 .000

effect size d .200 .302 1.559
power .244 .418 1

Table 6. Models evaluations for the open–source projects.

Model Industrial Non-open–source Academic Open–source

X 57.67 57.26 65.17 54.00
s 19.22 18.02 14.31 16.66

now we suggests performing the Bonferroni cor-
rection (explained in Section 4.2.4) beforehand.
The calculated effect sizes are between medium
and small int the first two cases, while medium to
large in the last case which is an important find-
ing suggesting serious differences between open
source and academic projects with respect to
defect prediction. The power of a test is cal-
culated as well very high (close to 1) proba-
bility of rejecting H0 is suggested when in fact
it is false.

4.2.3. Academic Projects

The descriptive statistics of the results of apply-
ing defect prediction models to academic projects
are presented in Table 8. The obtained results are
surprising. The ’Academic models’ gave almost
the worst predictions. Slightly worse were only
the ’Industrial models’, whilst the ’Open–source
models’ and ’Non–academic models’ gave defi-
nitely better predictions.

The analysis presented in Table 9 is based on
the t–test for dependent samples. The predictions
obtained from the models which were trained on
the data from the academic projects, were com-
pared with predictions from the other models.
The predictions were made only for the academic

projects. The differences were not statistically
significant, the effect sizes were below small (in
the first and third case) and between small and
medium in the second case.

4.2.4. Bonferroni Correction

Since several different hypotheses were tested
on the same data set, the following kinds of
errors were likely to occur: errors in inference,
including confidence intervals which fail to in-
clude their corresponding population parame-
ters, or hypothesis tests that incorrectly reject
the null hypothesis. Among several statistical
techniques that have been developed to pre-
vent such instances is the Bonferroni correc-
tion. The correction is based on the idea that
if n dependent or independent hypotheses are
being tested on a data set, then one way of
maintaining the familywise error rate is to test
each individual hypothesis at a statistical sig-
nificance level of 1/n times. In our case n = 9
as there are nine different hypotheses. Hence,
the significance level should be decreased to
0.05/9 = 0.0055. Consequently, the H0,ind,acad

and H0,open,acad hypotheses will be rejected but
H0,open,ind and H0,open,ind∪acad hypotheses will
not be rejected.



Cross–Project Defect Prediction with Respect to Code Ownership Model: an Empirical Study 29

Table 7. Dependent samples t–test for the open–source
projects.

H0,open,ind H0,open,ind∪acad H0,open,acad

t, df = 41 −2.363 −2.193 −4.325
p .023 .034 .000

effect size d .365 .338 .667
power .752 .695 .995

Table 8. Models evaluations for the academic projects.

Model Industrial Open–source Non–academic Academic

X 56.34 50.60 53.19 55.02
s 20.71 15.56 18.54 20.21

Table 9. Dependent samples t–test for the academic projects.

H0,acad,ind H0,acad,open H0,acad,ind∪open

t, df = 16 0.312 −1.484 −0.696
p .759 .157 .496

effect size d .076 .360 .169
power .009 .412 .164

4.3. Which Metrics are Relevant?

There is some evidence that the three investigated
code ownership models differ with respect to de-
fect prediction. Therefore, it could be helpful for
further research to identify the casual relations
that drive those differences. Unfortunately, the
scope of software metrics (independent variables
of the defect prediction models) does not cover
many aspects that may be a direct cause of de-
fects. Let us assume that there is an inexperienced
developer who gets a requirement to implement
and he does something wrong, he introduces a de-
fect into the system. The true cause of the defect
is a composition of several factors including the
developer’s experience, requirement complexity
and the level of maintainability of the parts of
the system that were changed by the developer.
Only a fraction of the aforementioned factors can
be covered by the metrics available from software
repositories and hence many of them must be
ignored by the defect prediction models. Taking
into consideration the above arguments we de-
cided not to define the casual relations upfront,
but investigate what emerges from the models we
obtained. Since it does not follow the commonly

used procedure (start with a theory and then
look for confirmation in empirical data), it is
important to keep in mind that results of such
analysis do not indicate casual relations, but only
a coexistence of some phenomena.

The analysis is based on the relevancy of
particular metrics in models obtained for differ-
ent code ownership types. The defect prediction
model has the following form:

ExpectedNumberOfDefects = a1∗M1+a2∗M2 . . .

where ai represents coefficients obtained from re-
gression, Mi software metrics (independent vari-
ables in the prediction). For each metric we cal-
culated its importance factor (the factors are
calculated for each code ownership model respec-
tively) using the following form:

IFMi =
ai ∗Mi∑

j

|aj ∗Mj |

whereMi is the average value of metricMi in the
type of code ownership for which the factor is cal-
culated (the averages are reported in Tab. 1). The
above definition results in a factor that shows for
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Model Industrial Open–source Academic
WMC −0.06 0 0
DIT −0.08 0 0.08
NOC −0.01 0 0
CBO 0.17 0 −0.36
RFC 0.19 0.35 0.04
LCOM 0 0 0
Ca 0 0.05 0.17
Ce 0 0.17 0.20
NPM 0 0 0.01
LCOM3 0.13 0 −0.05
LOC 0.05 0.14 0
DAM −0.01 −0.17 −0.04
MOA 0 0.12 0
MFA 0.05 0 −0.02
CAM −0.16 0 0
IC 0 0 −0.02
CBM −0.03 0 0.01
AMC −0.04 0 0
Max_cc 0.01 0 0
Avg_cc 0 0 0

Table 10. Importance of metrics in different code ownership models.

given metric what part of the prediction model
output is driven by the metric and additionally
preserves the sign of the metric’s contribution.
The obtained values of importance factors are
reported in Tab. 10.

The importance factors show that there are
similarities as well as differences between the
prediction models trained for different types of
code ownership. In all of them an important role
is played by the RFC metric and all of them
take into consideration coupling related metrics.
However, in the case of academic projects these
are Ca and Ce, in the case of open–source Ce
is much more important than Ca and for in-
dustrial projects only CBO matters. There are
also metrics with positive contribution in only
one type of projects (positive contribution means
that the metric value grows with the number
of expected defects), i.e. LCOM3 for industrial
projects (as well as the mentioned earlier CBO),
MOA and LOC for the open–source projects,
DIT for the academic ones. More significant dif-
ferences have been observed with regard to neg-
ative contribution. The greatest negative con-
tribution for academic projects have CBO and
LCOM3, for open–source DAM and for indus-
trial CAM.

5. Threats to Validity

5.1. Construct Validity

Threats to construct validity refer to the extent
to which the measures accurately reflect the theo-
retical concepts they are intended to measure [34].
The mono-method bias reflects the risk of a sin-
gle means of recording measures. As a result, an
important construct validity threat is that we
cannot guarantee that all the links between bugs
and versioning system files, and, subsequently,
classes, are retrieved (e.g. when there is no bug
reference identifier in the commit comment), as
bugs are identified according to the comments in
the source code version control system. In fact,
this is a widely known problem and the method
that we adopted is not only broadly used but
also represents the state of the art with respect
to linking bugs to versioning system files and
classes [36,37].

A closely related threat concerns anonymous
inner classes. We cannot distinguish whether
a bug is related to anonymous inner classes or
their containing class, due to the file-based nature
of source code version control systems. Hence, it
is a common practice not to take into consider-
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ation the inner classes [38–40]. Fortunately, the
inner classes usually constitute a small portion
of all classes (in our study it was 8.84%).

Furthermore, the guidelines of commenting
bugfixes may vary among different projects.
Therefore, it is possible that the interpretation
of the term bug is not unique among the investi-
gated projects. Antoniol et al. [41] showed that
a fraction of issues marked as bugs are problems
unrelated to corrective maintenance. We did our
best to remove such occurrences manually but in
future research we plan to apply the suggestion
by Antoniol et al. to filter the non-bug issues out.

It is also worth mentioning that it was not
possible to track operations like changing the
class name or moving the class between pack-
ages. Therefore, after such a change, the class is
interpreted as a new one.

5.2. Statistical Conclusion Validity

Threats to statistical conclusion validity relate to
the issues that affect the validity of inferences. In
our study we used robust statistical tools: SPSS
and Statistica.

5.3. Internal Validity

The threats to internal validity concern the true
causes (e.g., external factors) that may affect
the outcomes observed in the study. The exter-
nal factor we are aware of is the human factor
pointed out by D’Ambros et al. [38]. D’Ambros
et al. decided to limit the human factor as far as
possible and chose not to consider bug severity
as a weight factor when evaluating the number
of defects. We decided to follow this approach as
Ostrand et al. reported how those severity ratings
are highly subjective and inaccurate [42].

Unfortunatley, each of the investigated clus-
ters (i.e. code ownership models) has limited vari-
ability. All academic projects were developed at
the same university. However, they differ a lot
with respect to requirements and architecture.
Only two open–source projects (PBeans and
ckjm) do not come from Apache and all of them
can be classified as a tool or library what is in
opposition to industrial projects which are en-

terprise solutions that employ database systems.
Furthermore, all the industrial projects were de-
veloped by the same vendor which poses a major
threat to external validity. In consequence, it is
possible to define an alternative hypothesis that
explains the differences between clusters, e.g. the
open–source cluster can be redefined into tools
& libraries, while the industrial cluster can be
redefined into enterprise database oriented solu-
tion and then a hypothesis that regards difference
between such clusters may be formulated. Un-
fortunately, those alternative hypotheses cannot
be invalidated without additional projects and
even with additional projects we cannot avoid
further alternative hypotheses with more fancy
definitions of cluster boundaries. The root cause
of this issue is the sample selection procedure
which does not guarantee random selection. Only
a small part of the population of software projects
is available for researchers and collecting data
for an experiment is a huge challenge taking
into account how difficult is to get access to the
source code or software metrics of real, industrial
projects. We were addressing this issue by taking
into consideration the greatest possible number
of projects we were able to cover with a common
set of software metrics. It does not solve the
issue, but reduces the risk of accepting wrong
hypothesis due to some data constellations that
are a consequence of sample selection.

5.4. External Validity

The threats to external validity refer to the gen-
eralization of research findings. Fortunately, in
our study we considered a wide range of different
kinds of projects. They represent different own-
ership models (industrial, open source and aca-
demic), belong to different application domains
and have been developed according to different
software development processes. However, our
selection of projects is by no means representa-
tive and that poses a major threat to external
validity. For example, we only considered software
projects developed in the Java programming lan-
guage. Fortunately, thanks to this limitation all
the code metrics are defined identically for each
system, so we have alleviated the parsing bias.
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6. Conclusions

Our study has compared three classes of soft-
ware projects (industrial, open–source and aca-
demic) with regard to defect prediction. The
analysis comprised the data collected from 24
versions of 5 industrial projects, 42 versions of
13 open–source projects, and 17 versions of 17
academic projects. In order to identify differ-
ences among the classes of software projects listed
above, defect prediction models were created and
applied. Each of the software project classes was
investigated through verifying three statistical hy-
potheses. The following two noteworthy findings
were identified: two of the investigated hypotheses
were rejected: H0,ind,acad and H0,open,acad. In the
case of H0,open,ind∪acad and H0,open,ind p-values
were below .05, but the hypotheses can not be
rejected due to the Bonferroni correction. Such
results are not conclusive due to threats to ex-
ternal validity discussed in Secton 5.4, as well
as the possibility that even small changes in the
input data may change the decision regarding
hypothesis rejection in both directions and thus
we encourage further investigation.

As a result, we obtained some evidence
that the open–source, industrial and academic
projects may be treated as separate classes of
projects with regard to defects prediction. In
consequence, we we do not recommend using
models trained on the projects from different
code ownership model, e.g. making predictions
for an industrial project with a model trained
on academic or open–source projects. Of course
the investigated classes (i.e. academic, industrial
and open-source) may not be optimal and smaller
classes could be identified in order to increase the
prediction performance. Identification of smaller
projects classes constitutes a promising direction
for further research.

The prediction models trained for each of the
investigated classes of projects were further anal-
ysed in order to reveal key differences between
them. Let us focus on the differences between
open–sources and industrial ones as we have very
limited evidence to support the thesis that aca-
demic projects constitutes a solid class of projects
with respect to defect prediction. However, the

analysis revealed an almost self–explaining fact
with regard to this class of projects. Namely, the
deeper the inheritance tree the more likely it is
that a student will introduce a defect in such a
class. Typically, API of a class with a number
of ancestors is spread among the parent classes
and thus a developer that looks at only some
of them may not understand the overall concept
and introduce changes that are in conflict with
the source code of one of the other classes. In
consequence, we may expect that inexperienced
developer, e.g. a student, will miss some impor-
tant details.

The differences between open–source and in-
dustrial projects can be explained by the so called
crowd–driven software development model com-
monly used in open–source projects. High value
of the model output in those projects is mainly
driven by the LOC and MOA metrics. The first
of them simply represents the size of a class and
it is not surprising that it could be challenging
to understand a big class for someone who com-
mits to a project only occasionally. Furthermore,
the MOA metric can be considered in terms of
the number of classes that must be known and
understood to effectively work with a given one,
which creates additional challenges for developers
that do not work in a project in a daily manner.
There also is the negative contribution of the
DAM metrics which also fits well to the picture
as high values of this metric correspond with
low number of public attributes and thus nar-
rows the scope of source code that a developer
should be familiar with. Both, industrial and
open–source models use the RFC metric, how-
ever, in the case of open–source its more relevant
which also supports the aforementioned hypoth-
esis regarding crowd-driven development. The
industrial projects are usually developed by peo-
ple who know the project under development very
well. That does not mean that everyone knows
everything about each class. When it is neces-
sary to be familiar with a number of different
classes to make a single change in the project it
is still likely to introduce a defect. However, in
the case of industrial projects the effect is not
so strong. Furthermore, the industrial prediction
model uses metrics that regard flaws in the class
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internal structure, i.e. LCOM3 and CAM), which
make challenges in the development regardless of
developer knowledge about other classes.

The models that were trained on the academic
projects usually gave the worst predictions. Even
in the case of making predictions for academic
projects, the models trained on the academic
projects did not perform well. It was not the pri-
mary goal of the study, but the obtained results
made it possible to arrive at that newsworthy
conclusion. The academic projects are not good
as a training set for the defect prediction models.
Probably, they are too immature and thus have
too chaotic structure. The obtained results point
to the need of reconsidering the relevancy of the
studies on defect prediction that rely solely on the
data from the academic projects. Academic data
sets were used even in the frequently cited [43–45]
and recently conducted [46,47] studies.

Detailed data are available via a web–based
metrics repository established by the authors
(http://purl.org/MarianJureczko/MetricsRepo).
The collected data may be used by other re-
searchers for replicating presented here experi-
ments as well as conducting own empirical studies.
The obtained defect prediction models related
to the conducted empirical study presented in
this paper are available online (http://purl.org/
MarianJureczko/IET_CrossProjectPrediction).
However, we recommend using the models for
cross–project defect prediction with great cau-
tion, since the obtained prediction performance
is moderate and presumable in most cases can
be surpassed by a project specific model.
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