
e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 9–29, DOI 10.5277/e-Inf160101

ABC-CAG: Covering Array Generator for Pair-wise
Testing Using Artificial Bee Colony Algorithm

Priti Bansala, Sangeeta Sabharwala, Nitish Mittala, Sarthak Arorab
aNetaji Subhas Institute of Technology, University of Delhi

bSchool of Computer Science and Engineering, Vellore Institute of Technology, Tamil Nadu
bansalpriti79@gmail.com, ssab63@gmail.com, nitishmittal94@gmail.com,

sarthak10193@gmail.com

Abstract
Testing is an indispensable part of the software development life cycle. It is performed to improve
the performance, quality and reliability of the software. Various types of testing such as functional
testing and structural testing are performed on software to uncover the faults caused by an incorrect
code, interaction of input parameters, etc. One of the major factors in deciding the quality of
testing is the design of relevant test cases which is crucial for the success of testing. In this paper we
concentrate on generating test cases to uncover faults caused by the interaction of input parameters.
It is advisable to perform thorough testing but the number of test cases grows exponentially with
the increase in the number of input parameters, which makes exhaustive testing of interaction
of input parameters imprudent. An alternative to exhaustive testing is combinatorial interaction
testing (CIT) which requires that every t-way interaction of input parameters be covered by at least
one test case. Here, we present a novel strategy ABC-CAG (Artificial Bee Colony-Covering Array
Generator) based on the Artificial Bee Colony (ABC) algorithm to generate covering an array and
a mixed covering array for pair-wise testing. The proposed ABC-CAG strategy is implemented in
a tool and experiments are conducted on various benchmark problems to evaluate the efficacy of
the proposed approach. Experimental results show that ABC-CAG generates better/comparable
results as compared to the existing state-of-the-art algorithms.

Keywords: combinatorial interaction testing, pair-wise testing, covering array, artificial
bee colony

1. Introduction

Testing plays a critical role in the software devel-
opment life cycle (SDLC). It helps to improve the
performance of the software system and ensure
the delivery of quality and a reliable system. Often
more than 50% of the entire software development
resources are allocated to testing [1]. As the com-
plexity of the software system increases so does
the cost of testing, therefore testing the software
effectively within a reasonable time and budget
continues to be a challenge for the software testing
community. One of the major factors in determin-
ing the quality of testing is the design of relevant
test cases. Various types of testing techniques such

as white-box testing and black-box testing are
performed to detect faults in the software system.
In black-box testing, test cases are generated
from the specification of the system under test
(SUT), whereas in the case of white-box testing,
they are determined from the internal structure.
However, in both cases the primary focus of the
software testing community is to design a set of
optimal test cases to uncover maximum faults in
the software system within a reasonable time.

In a complex software system it has been
found that the interaction of input parameters
may cause interaction errors and to uncover these
interaction errors, it is necessary to generate test
cases that test all possible combinations of in-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IO PWr

https://core.ac.uk/display/153541772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art1.pdf

10 Priti Bansal et al.

put parameters. A software system with m input
parameters, each having n values, will require
a total of nm test cases to exhaustively test all
the possible interactions among input parameters.
Furthermore, the number of test cases increases
exponentially with the increase in the number
of parameters, which makes exhaustive testing
impractical for large software systems. In the ex-
isting literature it has been reported that nearly
100% of the failures are triggered by interactions
among 6 parameters. This is the main motivation
behind Combinatorial Interaction Testing (CIT)
which selects values of input parameters and com-
bines them to generate test cases so as to test all
t-way interactions of input parameters. CIT is
a black-box testing technique which only requires
information about the input parameters of the
software system and their values. Empirical stud-
ies [2–5] show that a test set covering all possible
2-way combination of input parameter values is
effective for software systems and can find a large
percentage of the existing faults. Kuhn et al. [6]
examined fault reports for many software systems
and concluded that more than 70% of the faults
are triggered by 2-way interaction of input pa-
rameters. Testing all 2-way interactions of input
parameters values is known as pair-wise testing.
The effectiveness of pair-wise testing in detecting
a comparable number of faults early was a key
factor driving the research work presented in this
paper.

Covering Arrays (CAs) are combinatorial
objects that are used to represent test sets
for a system where the cardinality of values
taken by each input parameter is the same.
However, in a system with varying cardinali-
ties of input parameter values, Mixed Cover-
ing Arrays (MCAs) are employed, which are
a generalization of CAs that are used to rep-
resent test sets. The rows of CA/MCA corre-
spond to test cases. As design of test cases
is a crucial factor in determining the qual-
ity of software testing, the aim of CIT is to
generate an optimal CA/MCA that provides
100% coverage of t-way interactions of input
parameters. Lei and Tai [7] have shown that
the problem of constructing optimal CA for
pair-wise testing is NP complete. Many greedy

[2, 3, 8–22] and meta-heuristic based optimiza-
tions algorithms/tools [23–34] have been devel-
oped by the researchers in the past with the
aim of generating a near optimal CA/MCA.
Both greedy and meta-heuristic techniques have
merits and demerits. Greedy techniques are effi-
cient as compared to their meta-heuristic coun-
terparts in terms of CA/MCA generation time
whereas meta-heuristic techniques generate op-
timal CA/MCA as compared to their greedy
counterparts. The impressive results of existing
meta-heuristic optimization algorithms to gener-
ate optimal CA/MCA motivated us to explore
yet another optimization algorithm, namely the
Artificial Bee Colony algorithm (ABC). It is pro-
posed by Karaboga [35] and has been used to
find an optimum solution for many optimization
problems [36].

In this paper, we propose ABC-CAG (Ar-
tificial Bee Colony-Covering Array Generator)
strategy that implements the ABC algorithm to
generate optimal CA/MCA for pair-wise test-
ing. The main contribution of this paper is to
propose a strategy that integrates greedy ap-
proach and meta-heuristic approach thereby ex-
ploiting the strength of both techniques, to gen-
erate CA/MCA.

The remainder of this paper is organized as
follows. In Section 2, we briefly describe combi-
natorial objects: CA and MCA. Section 3 dis-
cusses the existing state-of-the-art algorithms for
constructing CA/MCA for pair-wise testing. In
Section 4, we present a brief overview of ABC.
Section 5 describes the proposed ABC-CAG strat-
egy to generate CA for pair-wise testing. Section 6
describes the implementation of the proposed ap-
proach and presents empirical results to show the
effectiveness of the proposed approach. Section 7
discusses threats to validity. Section 8 concludes
the paper and future plans are discussed.

2. Background

This section discusses the necessary background
related to combinatorial objects.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 11

2.1. Covering Array

A covering array [37] denoted by CAλ(N ; t, k, v),
is an N × k two dimensional array on v symbols
such that every N × t sub-array contains all or-
dered subsets from v symbols of size t at least
λ times. If λ = 1, it means that every t-tuple
needs to be covered only once and we can use the
notation CA(N ; t, k, v). Here, k represents the
number of values of each parameter and t is the
strength of testing. An optimal CA contains the
minimum number of rows to satisfy the properties
of the entire CA. The minimum number of rows is
known as a covering array number and is denoted
by CAN(t, k, v). A CA of size N × k represents
a test set with N test cases for a system with k
input parameters each having an equal number
of possible values.

2.2. Mixed Covering Array

A mixed covering array [38] denoted by
MCA(N ; t, k, (v1, v2, . . . , vk)), is an N × k two
dimensional array, where v1, v2, . . . , vk is a cardi-
nality vector which indicates the values for every
column. An MCA has the following two proper-
ties: i) Each column i (1 ≤ i ≤ k) contains only
elements from a set Si with |Si| = vi and ii) The
rows of each N × t sub-array cover all t-tuples
of values from the t columns at least once. The
minimum N for which there exists an MCA is
called a mixed covering array number and is de-
noted by MCAN(t, k, (v1, v2, . . . , vk)). A short-
hand notation can be used to represent MCAs
by combining equal entries in vi : 1 ≤ i ≤ k. An
MCA(N ; t, k, (v1, v2, . . . , vk)) can be represented
as MCA(N ; t, k, (wq11 , w

q2
2 , . . . , w

qs
s)), where k =∑s

i=1 qi and wj |1 ≤ j ≤ s ⊆ {v1, v2, . . . , vk}.
Each element wqij in the set {wq11 , w

q2
2 , . . . , w

qs
s }

means that qi parameters can take wj values each.
A MCA of size N×k represents a test set with N
test cases for a system with k components each
with a varying domain size.

3. Related Work

Over the past two decades mathematicians and re-
searchers in computer science have proposed var-
ious algorithms and tools to generate CA/MCA.
Mathematicians use algebraic methods to gen-
erate CA [39–42]. These methods are extremely
fast, however, they are mostly designed to gen-
erate CAs only. Researchers in the field of soft-
ware testing have designed greedy algorithms
to construct optimal CAs and MCAs. Greedy
algorithms use two approaches to construct
CA/MCA: one-test-at-a-time and one-parame-
ter-at-a-time. In one-test-at-a-time [2, 3, 8–21],
CA is constructed by generating one test at
a time until all the uncovered combinations are
covered. Each subsequent test is generated in
such a way that it can cover the maximum
possible number of uncovered combinations. In
the case of one-parameter-at-a-time approach,
such as ACTS [22], a pair-wise test set is con-
structed by generating a pair-wise test set for
the first two parameters and then extending it
to generate a pair-wise test set for three param-
eters and continues to do so for each additional
parameter.

Recently, meta-heuristic techniques such as
simulated annealing (SA), particle swarm opti-
mization (PSO), tabu search (TS), ant colony
optimization (ACO), hill climbing (HC), genetic
algorithm (GA) and cuckoo search (CS) have
been used by researchers to generate optimal
CA/MCA. Meta-heuristic search techniques start
from a pre-existing CA/MCA or a population
of CA/MCA and apply a series of transfor-
mations on them until until a CA/MCA that
covers all the uncovered combinations is found.
Greedy algorithms generate CA/MCA faster
as compared to meta-heuristic techniques, how-
ever, meta-heuristic techniques usually generate
smaller CA/MCA [38]. Table 1 gives a summary
of existing tools/algorithms for constructing op-
timal CA/MCA.

12 Priti Bansal et al.

Table 1. List of existing tools/algorithms to construct CA/MCA for pair-wise testing

S.
No. Tool/Algorithm

Maximum
strength
support(t)

Technique employed
Test

generation
strategy

Constraint
handling

1 Test cover [39] 4

algebraic
one

parameter at
a time

3

2 TConfig [40] 2 7

3 CTS [41] 4 3

4 Algebraic
method [42] 2 7

5 AETG [2] 2

greedy one test at
a time

3

6 TCG [8] 2 3

7 ITCH [9] 6 3

8 TVG [10] 6 3

9 AllPairs [11] 2 7

10 PICT [12] 6 3

11 Jenny [13] 8 3

12 Density [14] 3 7

13 DA-RO [15] 3 7

14 DA-FO [15] 3 7

15 TSG [16] 3 7

16 G2Way [17] 2 7

17 GTWay [18] 12 7

18 MT2Way [19] 2 7

19 EPS2Way [20] 2 7

20 CASCADE [21] 6 3

21 ACTS (IPOG) [22] 6 greedy
one

parameter at
a time

7

22 Paraorder [14] 3 7

23 GA [23] 3

meta-heuristic

genetic algorithm

test based
generation

7

24 ACA [23] 3 ant colony optimization 7

25 PSO [24] 2 particle swarm optimization 7

26 TSA [25,26] 6 tabu search 7

27 SA [27] 6 simulated annealing 7

28 PPSTG [28] 6 particle swarm optimization 7

29 CASA [29] 3 simulated annealing 3

30 GAPTS [30] 2 genetic algorithm 7

31 PWiseGen [31] 2 genetic algorithm 7

32 GA [32] 2 genetic algorithm 7

33 CS [33] 6 cuckoo search 7

34 FSAPSO [34] 4 adaptive particle swarm optimization 7

35 PSO [24] 2 meta-heuristic particle swarm optimization
parameter
based

generation
7

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 13

4. Artificial Bee Colony (ABC)
Algorithm

The application of Artificial Intelligence (AI)
based algorithms to solve various optimization
problems in the field of software testing is an
emerging area of research. AI based algorithms
can be classified into different groups depending
upon the criteria being considered such as pop-
ulation based, iterative based, stochastic based,
deterministic, etc. [43]. Population based algo-
rithms commence with a population of individ-
uals (initial solutions) and evolve the popula-
tion to generate a better solution by performing
various recombination and mutation operations.
Population based AI algorithms are further cat-
egorized as evolutionary algorithms (EA) and
swarm intelligence (SI) based algorithms. The
well-known EAs are Genetic Algorithm (GA),
Genetic Programming (GP), Evolutionary Pro-
gramming (EP), Evolution Strategy (ES) and
Differential Evolution (DE). SI based algorithms
are inspired by the collective behaviour of so-
cial insect colonies and other animal societies
[44]. Various algorithms have been developed by
researchers by modelling the behaviour of dif-
ferent swarms of social insects such as ants and
bees, flocks of birds or schools of fishes. The well
known SI based algorithms are Particle Swarm
Optimization (PSO), Ant Colony Optimization
(ACO) and algorithms based on the specific in-
telligent behaviour of honey bee swarms such
as honey bee mating optimization (HBMO) [45],
ABC [36], Bee Colony optimization (BCO) [46]
and Bee Swarm optimization(BSO) [47].

ABC is a swarm-based algorithm which simu-
lates the intelligent foraging behavior of a honey
bee swarm. Many researchers have compared the
performance of ABC with other optimization
algorithms such as GA, PSO, ACO and DE by
evaluating their performance on various numeri-
cal functions which consist of unimodal and mul-
timodal distributions [48]. In [49], Mala et al.
proposed parallel ABC to generate optimal test
suites for white box testing of software systems
with path coverage, state coverage and branch
coverage as test adequacy criteria and compared
the performance of parallel ABC with sequential

ABC, GA and random testing. The results of
comparison showed that ABC is more effective
than other optimization algorithms. Optimiza-
tion algorithms are characterized by a trade-off
between two mechanisms, namely exploration
and exploitation and it is desirable to have a suit-
able balance between the two. the exploration
process refers to the ability of the algorithm to
look out for a global optimum whereas; exploita-
tion process refers to the ability of applying the
knowledge of previous solutions to look for bet-
ter solutions (local search). In the ABC algo-
rithm, an artificial bee colony is divided into three
groups: employed bees, onlooker bees and scouts.
Exploitation is done by means of employed bees
and onlooker bees, and exploration is done by
means of scouts. The number of employed bees
or onlooker bees is equal to the number of indi-
viduals (solutions) in the population. In ABC the
position of a food source represents a possible
solution to the optimization problem and the
nectar amount of the food source corresponds
to the fitness (quality) of the food source. The
various steps of ABC are as follows:
Step 1: Generation of initial population – ABC
starts by generating an initial population of SN
possible solutions to the given optimization prob-
lem randomly. Each solution xi {i = 1, . . . , SN}
is a D-dimensional vector, where D is the number
of optimization parameters.
Step 2: Employed Bees Phase – Each employed
bee selects a solution xi {i = 1, . . . , SN} and tries
to produce a new solution vi {i = 1, . . . , SN} by
updating the selected solution xi using Equa-
tion (1). It then applies a greedy selection be-
tween the old solution and the newly generated
solution and selects the one which has higher
fitness (nectar amount of the food source).

vij = xij + φij(xij − xkj) (1)

Here,
xij (or vij) denotes the jth dimension of xi (or
vi),
j ∈ {1, 2, . . . , D} is a randomly selected dimen-
sion,
xk is a randomly selected neighbour of xi|k ∈
{1, 2, . . . , SN},

14 Priti Bansal et al.

generate initial population
iteration=1
while (solution not found and iteration ≤ maximum number of iterations)

employed bees phase
onlooker bees phase
scout phase
memorize the best solution achieved so far
iteration = iteration + 1

end while

Figure 1. ABC algorithm

SN is the number of food sources (solutions) in
the population.
Although k is determined randomly, it has to be
different from i. φij is a random number between
[−1, 1]. Subsequently, once all employed bees have
performed the search operation, a probability is
assigned to each solution xi|1 ≤ i ≤ SN which
is calculated using Equation (2).

P (xi) =
fitness(xi)∑SN
n=1 fitness(xn)

(2)

Step 3: Onlooker Bees Phase – The ensuing
phase of onlooker bees selects a solution based on
the probability assigned to them and performs
modification on the selected solution using Equa-
tion (1). Then a greedy selection is applied as
done in case of employed bees.
Step 4: Scout Phase – Scouts look out for a so-
lution which has not been improved by employed
bees or onlooker bees through a predefined num-
ber of cycles called the limit and replaces it with
a randomly generated solution.
Step 2 – Step 4 are repeated until a solution
is found or a maximum number of iterations is
reached. For further explanation of the ABC al-
gorithms, readers can refer to [35, 43]. ABC is
good at exploration but poor in exploitation as
employed bees and onlooker bees only modify
a small part of the solution instead of taking the
global best, which may lead to the trapping of the
ABC in local minima [48]. In order to maintain
a good balance between exploration and exploita-
tion, various variants of ABC namely GABC [50],
I-ABC [48] and PS-ABC [48] were proposed by
researchers.
The outline of ABC is shown in Figure 1.

5. ABC-CAG Strategy
to Generate CA

In this paper, we propose aa ABC-CAG strategy
which applies ABC, a stochastic search based
optimization algorithm to solve the problem of
constructing an optimal CA/MCA for pair-wise
testing. From now onwards CA refers to both
CA and MCA unless mentioned explicitly. We
start by defining a search space, which in our case
consists of the input domain of all input parame-
ters of the SUT. Let us consider a SUT having
k input parameters. For each input parameter
IPj | 1 ≤ j ≤ k, the possible values of IPj are
represented by an integer number between [0, vj)
where vj is the maximum number of values that
IPj can have. We start by generating an initial
population of PS individuals where an individual
in our case is a CA that corresponds to a food
source in ABC and represents a possible solu-
tion to the given problem. Each covering array
CAi | i ∈ {1, 2, . . . , PS} in the population is
a N ×k dimensional array. Let us consider a web
based application where the customer has differ-
ent options of the operating system, browsers,
display, processor and memory which they may
use as shown in Table 2.

In order to test the system thoroughly, we
need to test the system on all possible config-
urations, e.g. Android, Safari, 240 × 320, dual
core, 512 MB, etc. which would require a total of
5× 3× 3× 3× 4 = 540 test cases, whereas only
20 test cases will be required to test all pair-wise
combinations of features. A possible solution (set
of test cases/MCA) to the test pair-wise interac-
tions of features in Table 2 is shown in Figure 2.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 15

Table 2. A web based application

Operating System Browser Display Processor Memory

Android Opera mini 128×160 single core 256 MB
iOS Safari 240×320 multi core 512 MB

Windows Chrome 800×1280 dual core 1 GB
Blackberry 2 GB
Symbian

Blackberry Safari 800×1280 single core 256 MB
iOS Opera mini 800×1280 dual core 256 MB
.
.

Windows Chrome 126×160 multi core 512 MB

Figure 2. MCA of size 20× 5 for pair-wise testing

When generating the initial population of
N × k CAs, N is unknown at the start of the
search process. So there are two possibilities. The
first one is to use the method suggested by Star-
dom [51], where we set loose lower bound (LB)
and upper bound (UB) on the size of an optimal
CA and then apply binary search repeatedly to
find the smallest CA. The second one, in case the
size of N is known in advance, i.e. best bound
achieved in the existing state-of-the-art, we start
with the known size and try to optimize it further.

As discussed in Section 4, the fitness of a CA
in the population is the measure of its quality. In
our case, the fitness of a CA is defined as the total
number of distinct 2-way interactions covered by
it and is calculated using Equation (3) as:

fitness(CAi) =

|{2− way interactions covered by CAi}|
∀ i ∈ {1, . . . , PS} (3)

The aim of ABC-CAG is to generate a cover-
ing array that maximizes the objective function
f |f : CAi → I+, where I+ represents a set of
positive integers. The objective function f tells
us, how good a solution it is for a given prob-
lem. In our case f can be calculated as shown in
Equation (4):

f(CAi) = fitness(CAi) | i ∈ {1, . . . , PS} (4)

Now, ABC-CAG tries to generate a covering array
CAmax that maximizes the objective function f
as shown in Equation (5):

CAmax = CAi |f(CAi) = max(f(CAi)

∀ i ∈ {1, . . . , PS}) (5)

Having defined the problem representation
and the fitness calculation, the next sub-section
describes the various steps of the ABC-CAG
strategy.

5.1. Generation of Initial Population

In EA’s the role of the impact of the initial popu-
lation on their performance cannot be ignored as
it can affect the convergence speed and quality of
the final solution [52]. Many population initializa-
tion methods exist to generate initial population.
The most common method used to generate the
initial population in EA is the random method.
ABC-CAG uses the Hamming distance approach
proposed by Bansal et al. [32] to generate a good
quality initial population of CAs. The motive be-
hind the use of the Hamming distance approach is
to generate test cases in a CA in such a way that
each new test case covers the maximum number
of possible distinct 2-way interactions not cov-
ered by the previous test cases. The Hamming
distance between two test cases (rows) in a CA is
the number of positions in which they differ. Let
PS be the population size and N be the size of CA.
For each CA in PS, 50% (first N/2) of the test
cases are created randomly. Let tc1, tc2, . . . , tci
represent the test cases in CA generated till now.
To create the next test case tcj where j = i+ 1,

16 Priti Bansal et al.

a candidate test case tc is generated randomly
and the Hamming distance of tc from tck, for
all k : 1 ≤ k ≤ i, denoted by distance(tc), is
calculated as:

distance(tc) =
i∑

k=1

HD(tck, tc) (6)

Where, HD(tck, tc) is the Hamming distance be-
tween tck and tc. An average distance denoted
by avg_distance(tc) is calculated as follows.

avg_distance(tc) = distance(tc)/(j − 1) (7)

Candidate test case tc is included in the test set
TS only if

avg_distance(tc) ≥ α×NIP (8)

Where, α is a diversity factor whose value ranges
from 0.3 to 0.4 and NIP is the number of input
parameters. Equation (8) implies that a candi-
date test case tc is included only if it covers at
least 30%-40% of distinct input parameter values
as compared to those covered by the existing test
cases. The process is repeated until the remain-
ing N/2 test cases are generated for the CA. The
use of the Hamming distance to create N/2 test
cases in each CA enhances the quality of initial
population as compared to one generated using
the random technique.

5.2. The Employed Bees Phase

The number of employed bees is equal to the
population size PS. In ABC, each employed bee
selects a dimension of a food source randomly and
uses the local information to modify the solution
using Equation (1). The new solution replaces
the old one only if the former is better than the
latter. However, in ABC-CAG each employed
bee uses a greedy approach to select a test case
(dimension) of a CAi (solution). The impetus
behind the greedy selection of test case in a CAi

by an employed bee is to formulate a new CA′
i

from the selected CAi in such a way that CA′
i

contains all the test cases of the selected CAi

except its worst test case. The worst test case of
CAi is replaced in CA′

i by a test case generated
using the information of a randomly selected

neighbouring CAm in an attempt to increase the
overall coverage of 2-way interactions between
input parameters. To select the worst test case
in CAi the fitness of each test case in CAi is cal-
culated by counting the number of distinct pairs
covered by each one of them. For instance, sup-
pose we have a CA with nine test cases as shown
in Figure 3, for the system shown in Table 2.

We calculate the number of distinct pairs
covered by each test case as shown in Table 3
and an employed bee selects the test case that
covers the least number of distinct pairs (test
case TC8 in Table 3). The value of each input
parameter IPj{j = 1, 2, . . . , k} of the test case
covering the least number of distinct pairs is
modified based on the values of the respective
input parameters in the corresponding test case
of the randomly selected neighbouring CA, i.e.
CAm using Equation (9).

CA′
iqj = CAiqj +φiqj(CAiqj −CAmqj) (9)

Here, i ∈ {1, 2, . . . , PS}, q ∈ {1, 2, . . . , N}
represent the index of the worst test
case in CAi, j ∈ {1, 2, . . . , k} and m ∈
{1, 2, . . . , PS} | m 6= i. Since φiqj is a random
number between [−1, 1], it is quite possible that
a non-integral value may get generated as a result
of calculation performed using Equation (9). To
avoid such a condition, whenever a non-integer
value is generated for an input parameter, it gets
rounded to the nearest integer number. After
rounding off the value, if it does not fall in the
range [0, vj) then a value is selected randomly
from the input domain of the respective param-
eter and it replaces the existing value of the
selected parameter.

5.3. The Onlooker Bees Phase

Subsequently, the fitness of each CA in the search
space is calculated and a probability is assigned to
each of them using Equation (2). In ABC-CAG,
to select a CA on the basis of the probability
assigned to them, a random number is generated
in the range [0, 1] and based on the interval in
which the random number falls; a covering array
CAi is selected by an onlooker bee. Unlike the
traditional ABC which is good at exploration but

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 17

iOS Chrome 240×320 dual core 1 GB
Android Chrome 800×1280 multi core 256 MB

Blackberry Safari 800×1280 multi core 256 MB
Blackberry Chrome 128×160 single core 2 GB
Symbian Opera mini 128×160 multi core 512 MB
Windows Safari 800×1280 dual core 512 MB

iOS Opera mini 800×1280 multi core 2 GB
Android Chrome 128×160 multi core 512 MB

Blackberry Opera mini 240×320 single core 1 GB

Figure 3. CA of size 9×5

Table 3. Calculation of distinct pairs covered by each test case of CA

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

iOS,
Chrome

Android,
Chrome

Blackberry,
Safari

Blackberry,
Chrome

Symbian,
Opera mini

Windows,
Safari

iOS,
Opera mini

Android,
Chrome

Blackberry,
Opera mini

iOS,
240×320

Android,
800×1280

Blackberry,
800×1280

Blackberry,
128×160

Symbian,
128×160

Windows,
800×1280

iOS,
800×1280

Android,
128×160

Blackberry,
240×320

iOS,
dual core

Android,
multi core

Blackberry,
multi core

Blackberry,
single core

Symbian,
multi core

Windows,
dual core

iOS,
multi core

Android,
multi core

Blackberry,
single core

iOS,
1 GB

Android,
256 MB

Blackberry,
256 MB

Blackberry,
2 GB

Symbian,
512 MB

Windows,
512 MB

iOS,
2 GB

Android,
512 MB

Blackberry,
1 GB

Chrome,
240× 320

Chrome,
800× 1280

Safari,
800×1280

Chrome,
128×160

Opera mini,
128×160

Safari,
800×1280

Opera mini,
800×1280,

Chrome,
128×160

Opera mini,
240×320

Chrome,
dual core

Chrome,
multi core

Safari,
multi core

Chrome,
single core

Opera mini,
multi core

Safari,
dual core

Opera mini,
multi core

Chrome,
multi core

Opera mini,
single core

Chrome,
1 GB

Chrome,
256 MB

Safari,
256 MB

Chrome,
2 GB

Opera mini,
512 MB

Safari,
512 MB

Opera mini,
2 GB

Chrome,
512 MB

Opera mini,
1 GB

240×320,
dual core

800×1280,
multi core

800×1280,
multi core

128×160,
single core

128×160,
multi core

800×1280,
dual core

800×1280,
multi core

128×160,
multi core

240×320,
single core

240×320,
1 GB

800×1280,
256 MB

800×1280,
256 MB

128×160,
2 GB

128×160 ,
512 MB

800×1280,
512 MB

800×1280,
2 GB

128×160 ,
512 MB

240×320,
1 GB

dual core,
1GB

multi core,
256 MB

multi core,
256 MB

single core,
2 GB

multi core,
512 MB

dual core,
512 MB

multi core,
2 GB

multi core,
512 MB

single core,
1 GB

Distinct pairs covered by each test case:
9 4 6 8 6 9 8 3 8

poor at exploitation, ABC-CAG takes advantage
of the global best CA denoted by CAbest in the
population (based on gbest-guided ABC (GABC)
developed by Zhu and Kwong [50]) to guide the
search of a candidate solution and modifies the
selected CAi. Like an employed bee, an onlooker
bee selects the worst test case (dimension) of the
selected CAi and replaces it with a test case that
is generated by using the information of the global
best CA i.e., CAbest and a randomly selected
neighbouring CA i.e., CAm using Equation (10).

CA′
iqj = CAiqj +φiqj(CAiqj −CAmqj)+

ψiqj(CAbest
qj −CAiqj) (10)

Here, CAbest
qj is the value of jth parameter of

qth test case of the global best CAbest, ψiqj is
a uniform random number in [0, C], where C is
a non-negative constant. The GABC technique
drives the new candidate solution CA′

i towards
the global best solution, thereby improving its
exploitation capabilities.

18 Priti Bansal et al.

However, in case the best CA i.e., CAbest gets
selected per se, based on the generated random
number; the ABC-CAG modifies it by replacing
its worst test case by a smart test case. A smart
test case is constructed by selecting the value
for each parameter greedily. For each parameter,
the value whose occurrence in the best CA is
minimum is selected. The replacement of the
worst test case in the best CA by a smart test
case is done to make sure that certain new pairs
get covered by this replacement. An example to
illustrate the selection and modification done by
onlooker bees phase is shown in Table 4.

Let us consider a system having configuration
(N ; 2, 2233) as shown in Table 4a.

The total number of distinct 2-way interac-
tions in this system is 67. Let our population size
PS be 8 which means that the population consists
of 8 CAs and let us assume that the size of each
CA array is 7×5 which means that a CA consists
of 7 test cases. After an initial population of CAs
is generated, each employed bee modifies a CA
as discussed in Section 5.2. The fitness and the
probability assigned to each CA generated after
being modified by the employed bee is shown in
Table 4b.

Here, CA4 is the global best CA. Let a ran-
dom number ’r’ be generated to select a CA by
the onlooker bee. There are two cases:
Case 1: When the global best CA is different from
the CA selected by the onlooker bee – let r be
0.8. Based on the value of r, covering array CA7

gets selected by the onlooker bee and lets CA1

be the randomly selected neighbour of CA7. Also
according to the fitness values, CA4 is CAbest.
The test cases of CA1, CA4 and CA7 are shown
in Tables 4c–4e.

After calculating the number of distinct pairs
covered by each test case of CA7, it is clear that
TC2 covers the least number of distinct pairs
i.e., 1. So the value of each parameter in the test
case TC2 of CA7 is modified using Equation (10).
For performing calculations, the values of each
input parameter have been mapped to integer
values (0/1/2) and the new covering array CA′

7

generated after modification is shown in Table 4f.
After modification by the onlooker bee based

on the global best CA and the randomly selected

neighbouring CA, the fitness of the newly gen-
erated covering array CA′

7 increases by 2 and
becomes 47.
Case 2: When the global best CA and the CA
selected by the onlooker bee is the same – In
this case the worst test case of the global best
covering array CAbest is replaced by a smart
test case. However, in our case the global best
covering array CA4 has three test cases: TC1,
TC3 and TC4 that cover the least number of
distinct pairs. Here, ABC-CAG selects a test
case randomly from the three test cases cover-
ing the least number of distinct pairs. Let the
randomly selected test case be TC3. Now, TC3
will be replaced by a smart test case which
in this case is ’b1 b2 b3 c4 b5’ as these val-
ues have the least number of occurrences in
CA4. The replacement of the worst test case
of CA4 by the smart test case increases its fit-
ness by 2.

The above procedure is repeated for each on-
looker bee.

5.4. The Scouts Phase

ABC’s exploration strategy is effectuated by
scout bees replacing a food source abandoned
by an employed bee with a randomly generated
food source. To further enhance the exploration
capability of ABC, we use a greedy approach to
select a CA instead of the primitive approach
followed by ABC. In ABC-CAG, a scout replaces
the worst CA (least fitness) in the population by
a new CA. In ABC, the food sources that cannot
be improved through a predetermined threshold
called the limit are abandoned. The aforemen-
tioned abandoned food sources are thereupon
replaced by randomly created new food sources
by an artificial scout. ABC-CAG necessitates
setting the frequency of the scout operation with
discretion: a very high value of frequency will
proliferate diversity of the population and avoid
getting stuck in local minima but concurrently
makes it difficult to converge to a good solution,
whereas a lower value of frequency will result in
early convergence leading to a suboptimal solu-
tion. Hence, it is required to set the frequency
of scout denoted by fscout to an optimal value.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 19

Table 4. Example: the selection and modification done by the onlooker bees phase

a) A (N ; 2, 2233) system

IP1 IP2 IP3 IP4 IP5
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

c3 c4 c5

b) The fitness and the probability assigned to each CA

CA CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

Fitness 49 47 51 52 45 44 45 47
Probability 0.119 0.114 0.134 0.137 0.118 0.116 0.118 0.114

c) CA1 (randomly selected neighbouring CA)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 a4 b5 b1 a2 b3 a4 c5 a1 a2 c3 a4 c5 a1 b2 a3 c4 b5 a1 b2 a3 a4 c5 b1 a2 c3 b4 b5 b1 b2 b3 c4 a5

d) CA4 (best CA)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 b4 b5 a1 a2 c3 b4 b5 b1 b2 c3 b4 c5 a1 a2 b3 a4 c5 a1 a2 c3 c4 c5 a1 b2 a3 c4 c5 b1 a2 a3 a4 c5

e) CA7 (CA selected by onlooker on the basis of probability)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 b4 b5 a1 a2 c3 b4 b5 b1 b2 c3 b4 c5 a1 a2 b3 a4 c5 a1 a2 c3 c4 c5 a1 b2 a3 c4 c5 b1 a2 a3 a4 c5

Minimum distinct pairs covered by each test case:
2 1 6 5 2 4 4

f) CA′7 (CA7 after modifications)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 b4 b5 b1 a2 b3 c4 c5 b1 b2 c3 b4 c5 a1 a2 b3 a4 c5 a1 a2 c3 c4 c5 a1 b2 a3 c4 c5 b1 a2 a3 a4 c5

ABC-CAG replaces the worst CA by a randomly
generated CA after every fscout generation. For
example, in the example given in Section 5.3,
a scout will replace the worst covering array i.e.,
CA6 by a randomly created new CA.

All the three phases, namely the employed
bees phase, the onlooker bees phase and the scout
phase are perpetuated until a solution is found or
the maximum number of generations is reached.

6. Evaluation

We start our evaluation by presenting three re-
search questions in Section 6.1. Then we outline
our implementation and experimental design in
Section 6.2. The results and analysis are shown
in Section 6.3.

6.1. Research Questions

Many greedy and meta-heuristic techniques have
been proposed by researchers in the past with the
aim of generating an optimal CA. The ultimate
goal of the research work presented in this paper
is to develop a strategy that generates optimal
CA as compared to existing state-of-the-art al-
gorithms/tools. Our first objective is therefore
to measure the effectiveness of the proposed
approach:
RQ1: (Comparison of ABC-CAG with ex-
isting techniques) How effective is ABC-CAG
in generating an optimal CA with respect to the
existing state-of-the art algorithms/tools?

In addition to evaluating the effectiveness
of ABC-CAG, it is important to check whether
ABC-CAG is comparable in terms of runtime

20 Priti Bansal et al.

a) Command Line Interface (CLI) b) Graphical User Interface (GUI)

Figure 4. ABC-CAG interfaces

with the state-of-the art algorithms. Our next
research question is:
RQ2: (Efficiency of ABC-CAG) How effi-
cient is ABC-CAG in generating an optimal CA?

ABC is a meta-heuristic search algorithm and
all search algorithms are randomized in nature.
Randomized algorithms are used to solve prob-
lems where it is not possible to solve the problem
in a deterministic way within a reasonable time
and they are associated with a certain degree
of randomness as part of their logic. Due to the
randomized nature of search algorithms, running
them on the same problem instance multiple
times produces different results. It is therefore
important to analyse their results and compare
them against simpler alternatives. This motivates
our next research question:
RQ3: (Effectiveness of ABC-CAG) How ef-
fective is ABC-CAG when applied to the problem
of generating an optimal CA for pair-wise testing
as against existing meta-heuristic techniques?

6.2. Experimental Design

To answer the research questions asked in Sec-
tion 6.1, we have implemented ABC-CAG using
Java. Two types of external interfaces have been
provided: Command Line Interface (CLI) and
Graphical User Interface (GUI) which are shown
in Figure 4a and Figure 4b, respectively.

ABC-CAG takes population size PS and max-
imum number of iterations NI as input. As dis-

cussed in Section 5, in ABC-CAG there is an
option of whether we want to start from a known
N or we want to start with a large random array
whose size is calculated as suggested by Stardom
[51]. If we start with a known N, then the user has
to supply the value of N as input to ABC-CAG.

To answer RQ1 and RQ2, three sets of
experiments were conducted. In the first ex-
periment, a Traffic collision avoidance system
(TCAS) benchmark, which has been used by
many researchers [25,26,53] in the past to com-
pare CA generation strategies, is taken to eval-
uate the performance of ABC-CAG with re-
spect to the existing state-of-the-art algorithms.
TCAS has 12 control parameters with 2 pa-
rameters having 10 values, 1 having 4 values,
2 having 3 values and 7 having 2 values each.
It can be represented by an MCA instance
MCA(N ; 2, 12, 102413227).

In the second experiment, we took a case
study of various features of a printer that are
available while printing a document as shown in
Figure 5. The printer case study is a practical
example that models and illustrates the concept
of combinatorial testing.

It is clear from Figure 5 that there are
7 features that a user can set during print-
ing. However, the feature ’Resolution’ is only
for information and a user cannot change
its value. So, we consider only 6 features
and regard them as input parameters. Out
of these 6 input parameters, 3 parameters

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 21

have 2 values each, 2 parameters have 3 val-
ues each whereas the remaining 1 parameter
has 4 values as shown in Table 5. This prob-
lem can be represented by an MCA instance
MCA(N ; 2; 5; 233241).

Figure 5. Various features of a printer

To ensure fair comparison and to evaluate
the effectiveness of ABC-CAG, in the third ex-
periment we took a dataset that consists of 20
benchmark problems selected carefully from the
existing literature [25–28,38,54] on pair-wise test-
ing as shown in Table 6. Each benchmark problem
in the dataset is either an instance of CA or MCA.
For example the problem 33 in Table 6 represents
a CA instance CA(N ; 2, 3, 33) which means that
the system has 3 input parameters each having
3 possible values and the strength of testing is
2. Similarly the problem 513822 in Table 6 rep-
resents an MCA instance MCA(N ; 2, 11, 513822)
which means that the system has 11 input pa-
rameters with 1 parameter having 5 values, 8
parameters having 3 values and 2 parameters
having 2 values each and the strength of test-
ing is 2.

As CA size is absolute and is independent
of the system configuration, to answer RQ1, we
compared CA sizes based on the data available
in the existing literature [21, 25–28,33,34,38, 54].
However, CA generation time is dependent on

the system configuration, so to answer RQ2 and
to ensure a fair comparison, we limited our
comparison based on CA generation time to
only those algorithms whose implementations
are publicly available, which includes greedy al-
gorithms based tools, namely AllPairs, Jenny,
TVG, ACTS(IPOG), and meta-heuristic algo-
rithms based tools namely CASA, PWiseGen [55].
The CA generation time was obtained by execut-
ing the dataset of Table 5 on these tools under
Windows using an INTEL Pentium Dual Core
1.73 GHZ processor with 1.00 GB of memory.

To answer RQ3, we need to perform
a statistical test to compare ABC-CAG
with meta-heuristic techniques. We compared
ABC-CAG with two meta-heuristic tools namely
PWiseGen and CASA.

PWiseGen starts with a known array size
N and tries to generate a CA that covers 100%
pair-wise combinations of input parameter values.
Therefore, to compare ABC-CAG and PWiseGen
we ran each problem on both of them 30 times
and noted down the fitness of the CAs/MCAs
obtained during these runs. The value of N was
kept the same for a problem during these 30 runs.
To compare ABC-CAG and CASA, we ran each
problem on ABC-CAG and CASA 30 times and
noted down the size of generated CA/MCA.

6.3. Results and Analysis

Here we present the results of experiments con-
ducted to answer RQ1, RQ2 and RQ3.

6.3.1. Comparison of ABC-CAG with Existing
Techniques (RQ1)

Results: The result of experiments performed to
compare ABC-CAG with the existing techniques
for TCAS, the printer case study and the dataset
shown in Table 6 are shown in Table 7, Table
8 and Table 9 respectively. Entries marked ‘–’
mean that the results are not available. Since
ABC-CAG is a randomized algorithm and it gives
different results when run multiple times on the
same problem instance, therefore we report the
best as well as average CA size obtained over
multiple runs.

22 Priti Bansal et al.

Table 5. Various features of a printer

HP Real Life
Technologies

Borderless
Printing

Print in max
DPI

Pages per sheet
layout

Print in
grayscale Pages to print

On Print with
border No Left then down Off Print all pages

Off Print
borderless Yes Down then left High quality

grayscale
Print even
pages only

Right then
down Black ink only Print odd

pages only

Down then
right

Table 6. Dataset

Sno. Benchmark
Problems

k (number of input
parameters)

Total number
of pairs

1 33 3 27
2 34 4 54
3 313 13 702
4 510 10 1125
5 1020 20 19000
6 2100 100 19800
7 4534 9 454
8 513822 11 492
9 7262423222 10 854
10 82726252 8 1178
11 644527 16 1556
12 514431125 21 1944
13 6151463823 19 1992
14 624929 20 2052
15 655534 14 2074
16 716151453823 19 2175
17 694327 19 3000
18 674823 18 3004
19 415317229 61 14026
20 41339235 75 17987

Analysis: It is clear from Tables 7–9 that
ABC-CAG generates CA of smaller size as com-
pared to greedy algorithms. When compared to
meta-heuristic techniques, ABC-CAG generates
comparable results in the case of TCAS and the
printer case study, whereas it outperforms GA,
ACA, PSO, PPSTG, PWiseGen and CS in the
case of benchmark problems given in dataset of
Table 6. When compared to CASA, it can easily
be seen from Table 9 that in 60% cases the size
of CAs generated by ABC-CAG and CASA are
the same. In 25% of cases ABC-CAG generates
smaller CAs whereas in only 15% of cases CASA

outperforms ABC-CAG. In the case of TS, the re-
sults are comparable. Overall, ABC-CAG outper-
forms all greedy and most of the meta-heuristic
techniques and generates a smaller size CA for
pair-wise testing.

6.3.2. Efficiency of ABC-CAG (RQ2)

Results: The time (in seconds) taken by each of
the publicly available tools, namely Jenny, All-
Pairs, TVG, ACTS (IPOG), CASA, PWiseGen,
and the proposed algorithm ABC-CAG for gen-
erating CA for TCAS, the printer case study and

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 23

Table 7. Comparison of MCA sizes generated for TCAS

Problem
Instance Pairs ACTS

(IPOG) PICT AllPairs ITCH Jenny TConfig TVG TSA CASA PWise-
Gen

ABC-CAG
best avg. best avg.

102413227 837 100 100 100 120 108 108 100 100 100 100 101 100 100

Table 8. Comparison of MCA sizes generated for printer case study

Problem
Instance Pairs ACTS

(IPOG) PICT AllPairs Jenny TVG CASA PWise-
Gen

ABC-CAG
best avg. best avg.

322341 105 12 14 16 14 13 12 12 12 12 12

Table 9. Comparison of CA/MCA sizes generated for the 20 benchmark problems

Benchmark
Problems AETG TCG All-

Pairs PICT Jenny CAS-
CADE

ACTS
(IPOG) GA ACA PSO TS PPSTG CASA PWise-

Gen CS FSAPO ABC-CAG
best avg. best avg.

33 – – 9 10 9 – 9 – – 9 – – 9 9 9 9 9 9 9

34 9 – 9 12 11 9 9 9 9 9 – 9 9 9 9 9 9 9 9

313 15 20 17 20 18 – 19 18 18 18 – 17 16 16.24 16 20 16 15 15.93

510 – – 47 47 45 – 45 – – – – 45 38 39.7 43 – – 41 41.6

1020 180 218 197 216 193 – 227 227 232 213 – – 192 193.33 224 – – 210 211.5

2100 10 16 14 16 16 – 16 14 14 – – – 11 11 11 – – 10 10.43

4534 – – 22 26 26 – 24 – – – 19 – 19 20 21 – – 19 19.83

513822 20 20 20 20 23 – 19 17 17 17 15 21 15 16.24 16 21 18 15 15.96

7262423222 – – 54 56 57 – 53 – – – – – 49 49.3 50 – – 49 49.6

82726252 – – 64 80 76 – 72 – – – 64 – 64 65.13 72 – – 64 64.4

644527 – – 45 55 53 – 44 – – – 38 – 41 52.8 47 – – 39 41.9

514431125 30 30 27 32 32 – 26 26 27 27 22 – 22 23.7 26 – – 22 23.9

6151463823 34 41 34 38 40 – 36 33 34 35 30 39 30 30.26 33 43 35 30 30.2

624929 – – 38 41 44 – 39 – – – 36 – 36 36.4 39 – – 36 36.16

655534 – – 53 59 56 – 56 – – – 50 – 47 49.33 55 – – 51 52.5

716151453823 45 45 43 46 50 – 43 43 43 43 42 49 42 42 43 51 – 42 42.16

694327 – – 59 67 64 – 61 – – – 51 – 52 53.23 61 – – 51 51.66

674823 – – 53 63 63 – 54 – – – 47 – 48 49.86 57 – – 47 48.1

415317229 37 33 35 38 39 – 33 38 38 38 30 30 30 30.53 33 – – 30 30.43

41339235 27 – 26 29 31 – 28 29 28 27 22 – 22 22.9 24 – – 22 22.73

the dataset of Table 6 are shown in Table 10,
Table 11 and Table 12, respectively.

Analysis: It is evident from Tables 10–12
that meta-heuristic techniques take a longer time
to generate CA as compared to their greedy
counterparts. However, the extra time taken by
meta-heuristic techniques allows them to gener-
ate smaller CA/MCA than greedy algorithms.
When we compare the time taken by CASA,
PWiseGen and ABC-CAG, it has been observed
that out of the three meta-heuristic techniques,
CASA takes the minimum time to generate
CA whereas the time taken by PWiseGen and
ABC-CAG is comparable.

6.3.3. Effectiveness of ABC-CAG (RQ3)

Results: To compare ABC-CAG and PWiseGen,
we performed a statistical test namely Welch’s
t-test on the fitness of CAs/MCAs generated
during 30 runs for each benchmark problem in

the dataset except the two benchmark problems
CA (33) and CA (34), TCAS and the printer
case study, as the fitness of CAs generated dur-
ing 30 runs of TCAS, the printer case study
and the two aforementioned benchmark prob-
lems were the same for both techniques. Hence,
there is no reason for performing the Welch
t-test on these two problems. Each problem was
run 30 times as a minimum of 30 data points
are required for Welch’s t-test [56]. From Ta-
ble 7 and Table 9, it is evident that ABC-CAG
generates smaller CAs than PWiseGen, how-
ever by performing Welch’s t-test we try to
assess whether the difference is significant or
not. To do this, we formulate null hypothe-
sis H0 as:
There is no difference between the average fitness
of CAs generated by ABC-CAG and the average
fitness of CAs generated by PWiseGen.
When a statistical test is performed, two types of
errors are possible: (I) we reject the null hypothe-

24 Priti Bansal et al.

Table 10. Comparison of time (in seconds) to generate MCA for TCAS

Problem
Instance

ACTS
(IPOG) AllPairs Jenny TVG CASA PWiseGen ABC-CAG

102413227 0.07 0.13 0.545 0.09 0.726 20.34 0.5

Table 11. Comparison of time (in seconds) to generate MCA for the printer case study

Problem
Instance

ACTS
(IPOG) AllPairs Jenny TVG CASA PWiseGen ABC-CAG

322341 0.01 0.016 0.015 0.10 0.269 0.32 0.15

Table 12. Comparison of time (in seconds) to generate CA/MCA for the 20 benchmark problems

Problem
Instance

ACTS
(IPOG) AllPairs Jenny CASA PWiseGen ABC-CAG

33 0.047 0.059 0.034 0.104 0.0546 0.06
34 0.002 0.012 0.027 0.151 4.392 0.106
313 0.014 0.018 0.144 2.23 29.428 70.98
510 0.003 0.013 0.309 3.608 47.017 123.708
1020 0.53 0.009 2.615 10852.35 675.168 2057.943
2100 0.078 0.071 1.208 4.6985 701.25 1654.17
4534 0.001 0.012 0.15 0.6785 20.88 37.2
513822 0.002 0.013 0.095 0.8145 22.62 47.1
7262423222 0.001 0.01 0.141 2.54 135.42 91.2
82726252 0.003 0.007 0.183 10.28 50.04 100.5
644527 0.006 0.01 0.329 26.36 83.52 133.4
514431125 0.015 0.016 0.202 3.15 84.12 74.9
6151463823 0.016 0.009 0.229 11.2 40.68 78.65
624929 0.016 0.009 0.247 2.21 46.38 180.8
655534 0.015 0.015 0.249 106.56 87.18 246.87
716151453823 0.016 0.016 0.383 1.44 50.58 66.24
694327 0.016 0.015 0.319 7.06 152.82 633.23
674823 0.016 0.015 0.295 140.323 135.42 315.34
415317229 0.031 0.017 0.741 65.8 705.921 1843.56
41339235 0.016 0.031 1.96 122.2 752.35 2143.23

sis H0 when it is true and (II) we accept the null
hypothesis H0 when it is false. These two types
of errors are conflicting means minimizing the
probability of one increasing the probability of
the other. In general there is more emphasis on
not committing a type I error. When performing
Welch’s t-test, the p-value denotes the probability
of type I error. The significant level α of a test
is the highest p-value that can be accepted to
reject H0. Traditionally, α = 0.05 is used during
experimentation. We have conducted the Welch
t-test at both α = 0.05 and α = 0.01.The results
of the Welch t-test performed to compare aver-
age fitness of CAs/MCAs obtained by ABC-CAG

and PWiseGen at α = 0.05 and at α = 0.01 are
shown in Table 13. For space reason, we show
the graphs depicting the t-values and p-values of
only few benchmark problems at α = 0.05 and at
α = 0.05 in Figure 6 and Figure 7, respectively.

As discussed in Section 6.3.1, the performance
of ABC-CAG and CASA is comparable in around
60% cases. So we calculated the standard devi-
ation of the sizes of each CA obtained over 30
runs of TCAS, the printer case study and each of
the 20 benchmark problem on both ABC-CAG
and CASA to quantify the amount of dispersion
or variation of the CA size obtained over these
runs on the two meta-heuristic techniques. For

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 25

Table 13. Results of the Welch t-test to compare ABC-CAG and PWiseGen

Benchmark
Problems

α = 0.05 α = 0.01
p (2-tailed) t-critical t-stat df p (2-tailed) t-critical t-stat df

33 – – – – – – – –
34 – – – – – – – –
313 0.028

2.00

2.247 58 0.028

2.66

2.247 58
510 0.006 2.852 45 0.006 2.85 45
1020 2.02 × 10−11 8.355 56 2.02 × 10−11 8.35 56
2100 4.4 × 10−05 4.416 58 4.44 × 10−05 4.41 58
4534 2.33 × 10−06 5.25 57 2.33 × 10−06 5.25 57
513822 4.83 × 10−07 5.716 54 2.43 × 10−07 5.71 54
7262423222 1.67 × 10−06 5.33 58 1.67 × 10−06 5.33 58
82726252 1.6 × 10−10 7.86 54 1.6 × 10−10 7.86 54
644527 5.05 × 10−06 5.04 56 5.05 × 10−06 5.047 56
514431125 3.07 × 10−09 7.24 48 3.07 × 10−09 7.24 48
6151463823 5.9 × 10−04 3.65 53 5.9 × 10−04 3.65 53
624929 1.79 × 10−05 4.96 35 1.7 × 10−05 4.96 35
655534 9.7 × 10−09 6.95 55 4.04 × 10−09 6.5 56
716151453823 3.49 × 10−08 6.37 57 3.49 × 10−08 6.37 57
694327 6.9 × 10−08 6.193 57 6.92 × 10−08 6.19 57
674823 2.3 × 10−07 5.889 56 2.3 × 10−07 5.88 56
415317229 4.2 × 10−04 3.744 57 0.0004 3.74 57
41339235 2.44 × 10−05 4.59 57 2.44 × 10−05 4.59 57

a) CA(313) b) CA(510) c) CA(1020)

d) MCA(4534) e) MCA(415317229) f) MCA(41339235)

Figure 6. Results of the Welch t-test of the selected benchmark problems at α = 0.05

TCAS and the printer case study, the size of CA
generated in each of the 30 runs on ABC-CAG
is the same. The same is true for CASA as well.
Therefore, we plotted the average standard devi-
ation of only the benchmark problems given in
Table 6 when run multiple times on ABC-CAG
and CASA as shown in Figure 8.

Analysis: It is evident from Table 13 and
Figure 6 that at α = 0.05, the value of t-stat >
t-critical and p < α for each benchmark problem.
Similarly, from Table 13 and Figure 7, it can
be seen that at α = 0.01, the value of t-stat >

t-critical and p < α for each benchmark problem
except CA (313). So, we reject the null hypoth-
esis H0 and conclude that there is a significant
difference between ABC-CAG and PWiseGen.

From Figure 8, it can be seen that for most of
the benchmark problems, the average standard
deviation of the sizes of CA/MCA obtained over
multiple runs of a problem instance on ABC-CAG
is smaller than that of CASA. Even in the case
of those problems where the best sizes generated
by both ABC-CAG and CASA are the same, the
standard deviation of ABC-CAG is smaller than

26 Priti Bansal et al.

a) CA(313) b) MCA(513822) c) MCA(6151463823)

d) MCA(655534) e) MCA(694327) f) MCA(674823)

Figure 7. Results of the Welch t-test of the Selected Benchmark Problems at α = 0.01

Figure 8. Average standard deviation of sizes of CAs obtained over multiple runs

CASA for 8 problems out of 10. On this basis it
can be inferred that ABC-CAG is more stable as
compared to CASA.

In summary, we can conclude that ABC-CAG
performs better than greedy algorithms and most
of the meta-heuristic techniques except TS where
the results are comparable, and the outcome of
statistical testing proves the validity of the re-
sults generated by ABC-CAG and the standard
deviation shows that ABC-CAG is more stable
as compared to CASA when run multiple times
on the same problem instance.

7. Threats to Validity

An important threat to validity is that we use
only 30 runs of the stochastic algorithms namely

ABC-CAG, CASA and PWiseGen because of
time and resource constraints. Though more runs
are unlikely to change the qualitative answer
to the research questions, they may affect the
magnitude of the algorithmic differences.

8. Conclusion and Future Work

In this paper we have presented the Artificial Bee
Colony – Covering Array Generator (ABC-CAG)
that deals with the problem of constructing op-
timal covering arrays for pair-wise testing. The
key feature of ABC-CAG is the integration of
greedy and meta-heuristic algorithms which en-
able ABC-CAG to exploit the advantages of both
techniques. Second, the use of the global best CA
during onlooker bees’ phase derives the solution

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 27

towards global best thereby improving the ex-
ploitation capability of onlooker bees. In addition
to this, the use of smart test cases to replace the
worst test case of the global best CA during the
onlooker bees’ phase further enhances the per-
formance of ABC-CAG. Experiments conducted
on various benchmark problems and a real world
problem show that the proposed strategy gener-
ates smaller CA as compared to its greedy and
meta-heuristic counterparts except TS where the
results are comparable.

In future, we plan to construct CA for
strength t greater than 2 and incorporate con-
straint handling feature in ABC-CAG.

References

[1] J.M. Glenford, The art of software testing. John
Willey & Sons, 2011.

[2] D.M. Cohen, S.R. Dalal, A. Kajla, and G.C.
Patton, “The automatic efficient test generator
(AETG) system,” in Proceedings of the 5th In-
ternational Symposium on Software Reliability
Engineering. IEEE, 1994, pp. 303–309.

[3] D.M. Cohen, S.R. Dalal, M.L. Fredman, and
G.C. Patton, “The AETG system: An approach
to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, Vol. 23,
No. 7, 1997, pp. 437–444.

[4] K. Burr and W. Young, “Combinatorial test
techniques: Table-based automation, test gen-
eration and code coverage,” in Proceedings of the
International Conference on Software Testing
Analysis & Review, San Diego, 1998.

[5] S.R. Dalal, A. Jain, N. Karunanithi, J. Leaton,
C.M. Lott, G.C. Patton, and B.M. Horowitz,
“Model-based testing in practice,” in Proceedings
of the 21st international conference on Software
engineering. ACM, 1999, pp. 285–294.

[6] D.R. Kuhn, D.R. Wallace, and A.M. Gallo Jr,
“Software fault interactions and implications for
software testing,” IEEE Transactions on Soft-
ware Engineering, Vol. 30, No. 6, 2004, pp.
418–421.

[7] Y. Lei and K.C. Tai, “In-parameter-order: A test
generation strategy for pairwise testing,” in
Proceedings of the Third IEEE International
High-Assurance Systems Engineering Sympo-
sium. IEEE, 1998, pp. 254–261.

[8] Y.W. Tung and W.S. Aldiwan, “Automating test
case generation for the new generation mission

software system,” in Proceedings of the IEEE
Aerospace Conference, Vol. 1. IEEE, 2000, pp.
431–437.

[9] A. Hartman, T. Klinger, and L. Raskin, “IBM
intelligent test case handler,” Discrete Mathe-
matics, Vol. 284, 2010, pp. 149–156.

[10] J. Arshem, Test vector generator (TVG), (2010).
[Online]. https://sourceforge.net/projects/tvg/

[11] AllPairs, (2009). [Online]. http://sourceforge.
net/projects/allpairs/

[12] J. Czerwonka, “Pairwise testing in the real world:
Practical extensions to test-case scenarios,” in
Proceedings of the 24th Pacific Northwest Soft-
ware Quality Conference, 2006, pp. 419–430.

[13] B. Jenkins, jenny: a pairwise testing tool,
(2005). [Online]. http://burtleburtle.net/bob/
math/jenny.html

[14] Z. Wang, B. Xu, and C. Nie, “Greedy heuristic
algorithms to generate variable strength combi-
natorial test suite,” in The Eighth International
Conference on Quality Software. QSIC’08. IEEE,
2008, pp. 155–160.

[15] Z. Wang and H. He, “Generating variable
strength covering array for combinatorial soft-
ware testing with greedy strategy,” Journal of
Software, Vol. 8, No. 12, 2013, pp. 3173–3181.

[16] S.A. Abdullah, Z.H. Soh, and K.Z. Zamli,
“Variable-strength interaction for t-way test gen-
eration strategy,” International Journal of Ad-
vances in Soft Computing & Its Applications,
Vol. 5, No. 3, 2013.

[17] M.F. Klaib, K.Z. Zamli, N.A.M. Isa, M.I. Younis,
and R. Abdullah, “G2Way a backtracking strat-
egy for pairwise test data generation,” in 15th
Asia-Pacific Software Engineering Conference,
APSEC’08. IEEE, 2008, pp. 463–470.

[18] K.Z. Zamli, M.F. Klaib, M.I. Younis, N.A.M. Isa,
and R. Abdullah, “Design and implementation
of a t-way test data generation strategy with
automated execution tool support,” Information
Sciences, Vol. 181, No. 9, 2011, pp. 1741–1758.

[19] K.F. Rabbi, A.H. Beg, and T. Herawan,
“MT2Way: A novel strategy for pair-wise test
data generation,” in Computational Intelligence
and Intelligent Systems. Springer, 2012, pp.
180–191.

[20] K. Rabbi, S. Khatun, C.Y. Yaakub, and
M. Klaib, “EPS2Way: an efficient pairwise test
data generation strategy,” International Journal
of New Computer Architectures and their Ap-
plications (IJNCAA), Vol. 1, No. 4, 2011, pp.
1099–1109.

[21] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, “Gen-
erating combinatorial test suite using combinato-

https://sourceforge.net/projects/tvg/
http://sourceforge.net/projects/allpairs/
http://sourceforge.net/projects/allpairs/
http://burtleburtle.net/bob/math/jenny.html
http://burtleburtle.net/bob/math/jenny.html

28 Priti Bansal et al.

rial optimization,” Journal of Systems and Soft-
ware, Vol. 98, 2014, pp. 191–207.

[22] R. Kuhn, Advanced combinatorial test-
ing system (ACTS), National Institute of
Standards and Technology, (2011). [On-
line]. http://csrc.nist.gov/groups/SNS/acts/
documents/comparison-report.html#acts

[23] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using
artificial life techniques to generate test cases
for combinatorial testing,” in Proceedings of the
28th Annual International Computer Software
and Applications Conference. IEEE, 2004, pp.
72–77.

[24] X. Chen, Q. Gu, J. Qi, and D. Chen, “Applying
particle swarm optimization to pairwise test-
ing,” in IEEEProceedings of the 34th Annual
Computer Software and Applications Conference.
IEEE, 2010, pp. 107–116.

[25] L. Gonzalez-Hernandez, N. Rangel-Valdez, and
J. Torres-Jimenez, “Construction of mixed cov-
ering arrays of variable strength using a tabu
search approach,” in Combinatorial Optimization
and Applications. Springer, 2010, pp. 51–64.

[26] L. Gonzalez-Hernandez, N. Rangel-Valdez, and
J. Torres-Jimenez, “Construction of mixed cov-
ering arrays of strengths 2 through 6 using a
tabu search approach,” Discrete Mathematics,
Algorithms and Applications, Vol. 4, No. 03, 2012,
p. 1250033.

[27] H. Avila-George, J. Torres-Jimenez, V. Hernán-
dez, and L. Gonzalez-Hernandez, “Simulated an-
nealing for constructing mixed covering arrays,”
in Distributed Computing and Artificial Intelli-
gence. Springer, 2012, pp. 657–664.

[28] B.S. Ahmed, K.Z. Zamli, and C. Lim, “The devel-
opment of a particle swarm based optimization
strategy for pairwise testing,” Journal of Artifi-
cial Intelligence, Vol. 4, No. 2, 2011, pp. 156–165.

[29] B.J. Garvin, M.B. Cohen, and M.B. Dwyer,
“Evaluating improvements to a meta-heuristic
search for constrained interaction testing,” Em-
pirical Software Engineering, Vol. 16, No. 1, 2011,
pp. 61–102.

[30] J.D. McCaffrey, “Generation of pairwise test sets
using a genetic algorithm,” in Proceedings of
the 33rd Annual IEEE International Computer
Software and Applications Conference, Vol. 1.
IEEE, 2009, pp. 626–631.

[31] P. Flores and Y. Cheon, “PWiseGen: Generating
test cases for pairwise testing using genetic algo-
rithms,” in Proceedings of the International Con-
ference on Computer Science and Automation
Engineering, Vol. 2. IEEE, 2011, pp. 747–752.

[32] P. Bansal, S. Sabharwal, S. Malik, V. Arora, and

V. Kumar, “An approach to test set generation
for pair-wise testing using genetic algorithms,”
in Search Based Software Engineering. Springer,
2013, pp. 294–299.

[33] B.S. Ahmed, T.S. Abdulsamad, and M.Y. Potrus,
“Achievement of minimized combinatorial test
suite for configuration-aware software functional
testing using the cuckoo search algorithm,” Infor-
mation and Software Technology, Vol. 66, 2015,
pp. 13–29.

[34] T. Mahmoud and B.S. Ahmed, “An efficient strat-
egy for covering array construction with fuzzy
logic-based adaptive swarm optimization for soft-
ware testing use,” Expert Systems with Applica-
tions, Vol. 42, No. 22, 2015, pp. 8753–8765.

[35] D. Karaboga, “An idea based on honey bee
swarm for numerical optimization,” Erciyes Uni-
versity, Engineering Faculty, Computer Engineer-
ing Department, Tech. Rep. TR-06, 2005.

[36] D. Karaboga and B. Basturk, “Artificial bee
colony (ABC) optimization algorithm for solving
constrained optimization problems,” in Foun-
dations of Fuzzy Logic and Soft Computing.
Springer, 2007, pp. 789–798.

[37] A.S. Hedayat, N.J.A. Sloane, and J. Stufken,
Orthogonal arrays. Springer Science & Business
Media, 2012.

[38] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, and
C.J. Colbourn, “Constructing test suites for in-
teraction testing,” in Proceedings of the 25th In-
ternational Conference on Software Engineering.
IEEE, 2003, pp. 38–48.

[39] G. Sherwood, Testcover.com, (2006). [Online].
http://testcover.com/

[40] A.W. Williams, “Determination of test configura-
tions for pair-wise interaction coverage,” in Test-
ing of Communicating Systems. Springer, 2000,
pp. 59–74.

[41] A. Hartman, “Software and hardware testing
using combinatorial covering suites,” in Graph
theory, combinatorics and algorithms. Springer,
2005, pp. 237–266.

[42] N. Kobayashi, T. Tsuchiya, and T. Kikuno,
“A new method for constructing pair-wise cover-
ing designs for software testing,” Information
Processing Letters, Vol. 81, No. 2, 2002, pp.
85–91.

[43] D. Karaboga and B. Basturk, “A powerful and
efficient algorithm for numerical function opti-
mization: artificial bee colony (ABC) algorithm,”
Journal of global optimization, Vol. 39, No. 3,
2007, pp. 459–471.

[44] E. Bonabeau, M. Dorigo, and G. Theraulaz,
Swarm intelligence: from natural to artificial

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html#acts
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html#acts
http://testcover.com/

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 29

systems. Oxford University Press, 1999.
[45] O.B. Haddad, A. Afshar, and M.A. Mariño,

“Honey-bees mating optimization (HBMO) al-
gorithm: a new heuristic approach for water
resources optimization,” Water Resources Man-
agement, Vol. 20, No. 5, 2006, pp. 661–680.

[46] D. Teodorović and M. Dell’Orco, “Bee colony op-
timization – a cooperative learning approach to
complex transportation problems,” in Advanced
OR and AI Methods in Transportation: Proceed-
ings of 16th Mini–EURO Conference and 10th
Meeting of EWGT. Poznań: Publishing House
of the Polish Operational and System Research,
2005, pp. 51–60.

[47] H. Drias, S. Sadeg, and S. Yahi, “Cooperative
bees swarm for solving the maximum weighted
satisfiability problem,” in Computational Intelli-
gence and Bioinspired Systems. Springer, 2005,
pp. 318–325.

[48] G. Li, P. Niu, and X. Xiao, “Development and
investigation of efficient artificial bee colony al-
gorithm for numerical function optimization,”
Applied soft computing, Vol. 12, No. 1, 2012, pp.
320–332.

[49] D. Jeya Mala, V. Mohan, and M. Ka-
malapriya, “Automated software test optimi-
sation framework – an artificial bee colony

optimisation-based approach,” IET Software,
Vol. 4, No. 5, 2010, pp. 334–348.

[50] G. Zhu and S. Kwong, “Gbest-guided artificial
bee colony algorithm for numerical function op-
timization,” Applied Mathematics and Computa-
tion, Vol. 217, No. 7, 2010, pp. 3166–3173.

[51] J. Stardom, “Metaheuristics and the search for
covering and packing arrays,” Ph.D. dissertation,
Simon Fraser University, 2001.

[52] B. Kazimipour, X. Li, and A. Qin, “A review
of population initialization techniques for evolu-
tionary algorithms,” in IEEE Congress on Evo-
lutionary Computation (CEC). IEEE, 2014, pp.
2585–2592.

[53] D.R. Kuhn and V. Okun, “Pseudo-exhaustive
testing for software,” in Proceedings of the
30th Annual IEEE/NASA Software Engineering
Workshop. IEEE, 2006, pp. 153–158.

[54] Pairwise testing, (2016). [Online]. http:
//www.pairwise.org/

[55] P. Flores, PWiseGen, (2010). [Online].
https://code.google.com/p/pwisegen/

[56] A. Arcuri and L. Briand, “A practical guide for
using statistical tests to assess randomized algo-
rithms in software engineering,” in Proceedings
of the 33rd International Conference on Software
Engineering. IEEE, 2011, pp. 1–10.

http://www.pairwise.org/
http://www.pairwise.org/
https://code.google.com/p/pwisegen/

	Introduction
	Background
	Covering Array
	Mixed Covering Array

	Related Work
	Artificial Bee Colony (ABC) Algorithm
	ABC-CAG Strategy to Generate CA
	Generation of Initial Population
	The Employed Bees Phase
	The Onlooker Bees Phase
	The Scouts Phase

	Evaluation
	Research Questions
	Experimental Design
	Results and Analysis
	Comparison of ABC-CAG with Existing Techniques (RQ1)
	Efficiency of ABC-CAG (RQ2)
	Effectiveness of ABC-CAG (RQ3)

	Threats to Validity
	Conclusion and Future Work
	References

