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Abstract

Mobile Edge Computing (MEC) has emerged as a prospective computing paradigm to
provide pervasive computing and storage services for mobile and big data applications.
In MEC, many small cell base stations (sBSs) are deployed to establish a mobile edge
network (MEN). These sBSs can be usually accessed directly by mobile users. The
computational tasks are first offloaded from mobile users to the MEN and then executed
in one or several specific sBSs in the MEN. While the offloading decision has been
well studied, the task execution delay on the MEN side is overlooked. This paper aims
at reducing the task execution delay by task scheduling in MENs. Specifically, we
jointly consider the task properties, the user mobility and network constraints. The
problem is formalized as a constraint satisfaction problem and a lightweight heuristic
solution is proposed for fast scheduling. We conduct simulation experiments to study
the performance of the proposed work. The results show that our work is able to
significantly reduce the task execution delay in MENs and thus reduces the end-to-end
delay for MEC tasks.

Keywords: Mobile Edge Computing, Task Assignment, User Mobility, Offloading

1. Introduction

Modern mobile devices are becoming more and more powerful and the mobile ap-
plications are becoming increasingly computation-intensive and delay-sensitive, such
as real-time online gaming [1], augmented/virtual reality (AR/VR) [2], image/video
processing APPs [3] and the vehicle networking systems [4]. These applications
can often introduce a large amount of traffic and computational workload, which can
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potentially cause the battery drain problem on mobile devices [5]. To deal with the
resource constraints of mobile devices, Mobile Edge Computing (MEC) has emerged
as a promising computing paradigm. In MEC, a number of small cell base stations
(sBSs) with computation and storage capability [3] are deployed to construct a network
termed as the mobile edge network (MEN). The MENs provide computation and
storage services in close proximity to subscribers to meet the high-workload and
low-latency requirements [6]. Some projects such as TROPIC[7] and SESAME[8]
introduce powerful sBSs, like picocells or femtocells, to share their enhanced high
performance computing capabilities for high-performance edge computing. In the
MEC paradigm, computational tasks are first offloaded from mobile users to the
MENs and then executed in one or several specific sBSs in the network. Compared
to traditional cloud computing, MEC is more close to users and incurs much less
computational and transmission delay. The deployment of MEC can also provide more
flexible resource scheduling for the mobile tasks.

The current research works on MEC often focus on the offloading decision problem
on mobile devices [9, 10]. For example, X. Chen et al. [9] employed a game-theoretic
computation offloading approach for multi-user systems. S. Guo et al. [10] proposed a
dynamic offloading and resource scheduling policy to reduce energy consumption and
the application completion time. Some other works such as [11] aimed at utilizing the
synergy between the computation resources of MEC and the mobile devices. These
works can effectively reduce the computational delay on mobile devices. Although
the user-end delay is reduced, we notice that much delay is consumed at the MEC
end. Different from the traditional cloud computing where execution delay is stable
[12], it can be highly diverse in MEC because the tasks may be executed in different
sBSs which have different resource situations. There are several research works on
optimizing the task execution delay in MENs [13, 14]. Among the problems, the task
assignment in the MENs plays an essential role in reducing the execution delay, i.e.,
assigning the tasks to appropriate sBSs to achieve minimized execution delay in MENs.

The user mobility, which is a fundamental characteristic in MEC, have a large
impact on the task execution in two ways. First, mobile users lead to time-varying
workload distribution. Different sBSs have different numbers of connected mobile
users. Second, mobile users often upload tasks and receive results via different sBSs,
involving in-MEN communications and computation workload. However, the existing
works often overlook the impact of user mobility and assign tasks to the directly
connected sBSs. Some works consider mobility based on intuitive models, which may
not reflect the exact impact of user mobility and thus yield inefficient task executions
[13].

To address the impact of user mobility on task execution within MENs, we consider
task assignment based on user trajectory prediction [15, 16]. By jointly considering the
user mobility, task properties and the resource distribution in the MEN, we formally
model the problem as a constraint satisfaction problem. We then proposed a lightweight
heuristic approach to the problem. Based on the task assignment/scheduling scheme,
we further propose a delay estimation for MEC tasks to support accurate task offloading
on mobile devices. Considering MEC is usually deployed in scenarios such as flight
terminals, shopping malls, etc., the user mobility can be highly predictable [16]. We
conduct extensive simulation experiments and the results show that the proposed work
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can significantly reduce the execution time of tasks in MEC networks.
The major contributions of this paper are summarized as follows:

1. We formally model the problem of task assignment as a constraint satisfaction
problem, which jointly considers the user mobility, task properties and the
resource distributions in the MEC network.

2. We propose a lightweight algorithm for the problem, which supports fast delay
estimation of the execution delay.

3. Based on the proposed assignment, we propose an accurate delay estimation
scheme which can support accurate offloading decisions on mobile devices.

4. We conduct simulation experiments and show that the proposed work outper-
forms the existing works in terms of task execution delay.

This rest of the paper is organized as follow. Section 2 summarizes the related
works. Section 3 presents the proposed model and algorithm. Section 4 presents the
evaluation of the proposed work. Section 5 concludes this work and points future
directions.

2. Related Work

A large number of existing works have studied the optimization problems on mobile
edge computing. Most of these works focus on the decision making problem for task
offloading at the user end. These works will first estimate the expected delay or energy
consumption for target tasks and then offload them to the mobile edge if the delay or
energy consumption is reduced. According to the optimization goal, we divide these
works into two categories: works on optimizing energy consumption and works on
reducing the task delay. Our work falls into the second category and differs from the
existing works in that our aim is to reduce the delay at the network end instead of the
user end.

Works on optimizing energy consumption. K. Zhang et al. [17] presented
a multi-device computation offloading framework for MEC and formulated an
optimization problem that minimized the device energy consumption. A three-stage
offloading scheme was proposed to obtain the sub-optimal solution, which 1) classified
the mobile device, 2) determined the priority and 3) allocated the radio resource. X.
Chen et al. [9] further considered the interference and collisions when there were too
many users trying to offload tasks to the same sBS, which can significantly increase
the energy consumption of mobile devices. The offloading was formulated as a multi-
user game, which was proved always admitting a Nash equilibrium. W. Labidi et al.
[18] considered the time varying channel state for wireless offloading and proposed a
scheduling scheme for task offloading, which tried to make the best use of wireless
channels and user buffers to reduce the energy consumption.

Works on reducing the task delay. J. Liu et al. [11] tried to minimize the
execution delay for single users with one-dimensional search algorithm. The algorithm
outputted a policy for offloading decision according to the application buffer queuing
state. Besides, the characteristics of wireless channels were also considered. Y.
Mao et al. [19] jointly optimized the task offloading scheduling and transmitted
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power allocation problem to reduce the offloading delay. Plachy et al. [20] took the
spatial diversity of the sBSs into account in the offloading process. The sBS that was
responsible for task execution was chosen by the users. Then the results would be
returned to the users via the sBS with the highest RSSI of the wireless links. However,
the work was designed for single task offloading.

There are also some works that jointly optimize both energy and task delay.
Reducing task delay often adds additional energy consumption in MEC, especially for
the tasks that execute faster on mobile devices than on mobile edges. Some works set an
energy threshold and then minimize the execution delay without exceeding the energy
threshold. For example, Y. Mao et al. [14] proposed a dynamic offloading scheme
for single user to minimize the execution delay for energy harvesting devices, where
the energy harvesting technique added complexity to the offloading algorithms. A
lightweight approximation approach was proposed to achieve a good tradeoff between
complexity and the delay minimization. J. Yang et al. [21] used a multi-stage
sequential game model to meet the energy and delay requirements at the same time.

Different from the aforementioned works, our work emphasizes on minimizing the
delay within the MENs. The delay in MENs not only adds to the overall task execution
delay but also impacts the decision making process at the user end. We propose a novel
in-network task scheduling approach to reduce the task execution delay, where task
information, resource information and user mobility are jointly considered. Different
from the [13] which used the contact rate to capture user mobility, our work is built
on top of the user trajectory prediction [15, 16], which can accurately capture user
mobility in most MEC scenarios such as airports, shopping malls, etc. Besides, to deal
with the impact on offloading decision, we propose a novel delay estimation scheme
for mobile devices.

3. Mobility Aware Task Assignment for MEC

In this section, we present the application scenario for MEC, the motivation of
mobility aware design and the main algorithm design for task assignment in MEC.

3.1. Impact on task execution

A mobile edge network (MEN) contains multiple small cell base stations (sBSs)
and covers a certain area such as airport, shopping mall, library, etc. The mobile users
carry mobile devices that have computation-intensive tasks. The sBSs are connected
to construct a network providing storage and computational services. A mobile user
may move from one sBS to another sBS during the task execution time or the media
caching progress. For example, an AR navigator needs to load the indoor map and
monitors the user trajectory. The AR information such as shop vouchers needs to
be loaded and displayed in the users’ devices. Considering a user is roaming among
the sBSs, the computational results of the AR display should be delivered to the user
via different sBSs along the user’s moving path. In such cases, the tasks need to be
carefully scheduled to be executed in the most appropriate sBSs which need to be close
to the user’s position (time varying) and should have enough resource allocated to
finish the tasks before deadline. Intuitively, when the tasks are lightweight and can be
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Figure 1: System model

executed within the period of the user’s stay at the corresponding sBS, the task should
be executed immediately at the sBS and then returned to the mobile user. When the
tasks are heavyweight and cannot be finished in the stay period of the user, the tasks
should be split into many sub-tasks and transfer some tasks to the successive sBSs
along the user’s trajectory. As a result, many tasks can be processed in parallel and
the user can keep receiving the task results along the path without waiting for the task
executions. In a nutshell, all the sBSs along the user’s path can be utilized for executing
the offloaded tasks. Therefore, the delay can be reduced compared to the case where
only one specific sBS is selected for executing all tasks.

3.2. Impact on the offloading decisions

Apparently, if the tasks are dynamically scheduled at the MEN end, the current
delay estimation on the execution delay is no longer applicable. The challenge for
the mobile user to estimate the task execution delay lies in that the resource at the
MEN end is unknown to the mobile users. Therefore, different from the existing
schemes, we need to either estimate the resource usage at the MEN end or establish
a feedback mechanism to notify the mobile user about the resources or execution delay
information. Besides, there may be other users that offload multiple tasks to the MEN,
which also has a large impact on the delay estimation at the user end.

3.3. Design

The MEC system is illustrated in Figure 1 for the indoor scenario. The mobile
users offload their computation-intensive and delay-sensitive tasks to the mobile edge
networks which consist of a number of sBSs. In the system, we consider a set N = {1,
2, 3, . . . , N} of sBSs which is followed a mesh topology that is similar to [22] cover
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data distribution in the network. All the sBSs are capable for receiving, executing and
transferring the offloaded tasks. We also assume software-defined network architecture
is used in the MEN. All sBSs are controlled and monitored by a central controller.
The users move round the area and their trajectories can be predicted using existing
approaches [16, 23]. Our goal is to minimize the execution time in the MEN end by
scheduling the multiple tasks from multiple users. The task offloading information is
first uploaded to the sBSs and then collected to the central controller. After that, the
central controller computes the best strategy for scheduling the offloaded tasks. Before
presenting the model, we first summarize the notations as in Table 1.

Table 1: Input & Output

Parameter Description
si The size of data for offloading task i
ci CPU cycles required for task i
t l
i The local execution time for task i (on the user’s device)

Pi The set of sBSs on user i’s path
Ti The set of tasks of user i
U The set of all users with offloading tasks

di, j The offloading decision for task j of user i, di, j ∈ {0,1}
de
(i, j),k The task assignment for task j of user i on sBS k, de

(i, j),k ∈ {0,1}
De The task assignment set for all sBS, De = {de

(i, j),k|i ∈U, j ∈ Ti,k ∈ Pi}
fi The CPU frequency for executing task i

sBSi The i-th small base station
tedge
i, j The total time spent on the edge sBSs for task ti, j

te
(i, j),k The execution time of task i on sBS j on sBS k

tq
(i, j),k The queuing time for task (i, j) on sBS k
tt
i, j The task transferring time for ti, j

rui The uploading transmission rate for task i
rdi The downloading transmission rate for task i
rti The transmission rate for task transfer among sBSs
ηi The ratio of input/output data size for task i

We consider a set of users U and each user i has a bunch of computation tasks Ti =
ti, j| j = 1,2, ...|Ti|, which can be offloaded to the MEN. For each user i, the trajectory Pi
consists of a number of sBSs. To reduce the delay at the user end, the tasks at the users
are offloaded to the MEN. Next we need to assign the offloaded tasks from multiple
users to the sBSs along the corresponding paths. de

(i, j),k = 1 if the task (i, j) is assigned
to the sBS sBSk.

Our aim now is to find the most appropriate De = {de
(i, j),k|i ∈U, j ∈ Ti,k ∈ Pi} to

maximize the total gains of MEC, i.e., the average delay reduction for all users. Then
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the task scheduling can be modeled as an optimization problem as follows:

max
De

1
|U | ∑i∈U

∑
j∈Ti

di, j(t l
i, j− tedge

i, j )

s.t. ∀ti, j, ∑
k∈Pi

de
(i, j),k ≤ 1

(1)

As depicted in the above equations, each task (i, j) should be executed no more than
once along the user i’s trajectory Pi. Our job now is to determine de

(i, j),k for all i ∈U ,
j ∈ Ti and k ∈ Pi.

The time spent on the edges tedge
i, j is given by:

tedge
i, j = ∑

k∈Pi

tq
(i, j),k + te

(i, j),k + tt
i, j (2)

where the task transferring time tt
i, j is given by:

tt
i, j =

si, j

rui, j
+

ηi, jsi, j

rdi, j
+(∑

k∈Pi

(w(i, j),k
si, jηi, j

rti, j
+(1−w(i, j),k)

si, j

rti, j
)− si, j

rti, j
) (3)

where the first item denotes the time for task uploading, the second item denotes the
time for results downloading, the last item denotes the time for in-MEN task transfer. It
is worth noting that rui, j and rdi, j are determined by the specific sBSs that are selected
for uploading and downloading the tasks. w(i, j),k is an indicator to check whether task
(i, j) has already been executed before arriving sBSk. w(i, j),k = 1 if the task has been
executed before sBSk and w(i, j),k = 0 otherwise. The output data size is calculated as
ηi, jsi, j. As the first item already accounts the time of task transfer from the user to the
first sBS, we need to eliminate an extra in-MEN task transfer time (as calculated in the
last item).

The queuing time for task (i, j) on sBSk equals to the time of the execution time for
all tasks that are before t(i, j),k. and is given by:

tq
(i, j),k =

idx(t(i, j),k)

∑
n=1

te
n (4)

where idx(t(i, j),k) denotes the index for task (i, j) in sBSk. te
n denotes the execution time

for task n and is given by ln
fk

. ln denotes the execution load of task n and fk denotes the
CPU frequency of sBSk.

3.4. The heuristic algorithm
The above optimization problem is a constraint satisfaction problem, which is NP-

complete [24]. To solve the problem, we propose a heuristic as follows.
Each user first upload a summary of their tasks including the data size, execution

load (# of CPU instructions, which is known for a specific application), the local
execution time and the expected output data size. Once received the information, the
central controller of MEN processes each task by assigning it to the sBS that achieves
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the lowest delay. During the process of updating the queue time on a sBS, the criteria
of choosing which task that will be served preferentially when the conflict happens is
to select the task with minimal execution time. If the task execution delay with the best
sBS is still larger than the local execution time, the task will be rejected and executed
locally. When all tasks have been assigned an sBS or rejected, the assignment progress
is finished. The above algorithm is shown in Alg. 1.

Algorithm 1 The Assignment Scheme
Input:

1. The task information for each task (i, j):
the local execution time {t l

i, j};the input data size and the output ratio, si, j and
ηi, j;

2. The sBS information:
the involved sBSs along user i’s trajectory Pi; the CPU frequency for each sBS i,
fi; the transmission rates ru,rd,rt;

Output: The decision matrix for all tasks and all sBSs, De

1 for each i ∈U do
2 for each j ∈ Ti do
3 for each k ∈ Pi do
4 de

(i, j),k = 0 //initiation before assignment

5 end
6 kt = argk min tedge

i, j

if tedge
i, j < t l

i, j then
7 de

(i, j),kt
= 1

8 end
9 else

10 de
(i, j),kt

= 0 //the task will not be offloaded to the MEN

11 end
12 end
13 end

Next we use an illustrating example in Figure 2 to elaborate our scheme. There are
three sBSs and five tasks (t0 ∼ t4) which need to be assigned. The task information is
shown in the table, and the queue buffer is left empty before assignment.

At first, we calculate the tedge for each task on all sBSs along its path and then
select the sBS with the minimal tedge to allocate the task. Next, we check the conflict
when more than one tasks are allocated to the same sBS. For example, in Figure 2 step
2, we can see the T4 is conflicted with T0 and T1 is conflicted with T3. So, we need to
update the queue time and re-calculate the tedge for those conflict tasks. The sBS will
choose the task with minimal execution time as a prior one. Therefore, the queue time
can be updated through Eq.(4). After updating the queue time, we need to re-calculate
the tedge for those conflicting tasks, which can be seen in step 3. The tasks can be
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Task Path 
Task Input Data 

(si) 

Upload & Download 

Time 

(si/rui & ƞ*si/rdi,) 

Task & Result 

Transmit 

Time 

(si/rti & ƞ*si/rti) 

sBS 

Execution 

Time 

(te) 

Local 

Execute Time 

(tl) 

T0 sBS0 -> sBS1-> sBS2 25MB 2.5s & 0.5s 0.25s & 0.05s 10s 100s 

T1 sBS1 -> sBS2 30MB 3.0s & 0.6s 0.30s & 0.06s 8s 80s 

T2 sBS2 -> sBS1-> sBS0 30MB 3.0s & 0.6s 0.30s & 0.06s 5s 50s 

T3 sBS1 -> sBS2 20MB 2.0s & 0.4s 0.20s & 0.04s 9s 90s 

T4 sBS0 -> sBS1 15MB 1.5s & 0.3s 0.15s & 0.03s 4s 40s 

1. Calculate t         for tasks on 
different sBSs along the path 
according to Eq.(2)
---------------------------------------
For example:

T0(13.05s; 13.25s; 13.55s); 

(Ps:13.05 = 10+2.5+0.5+0.05)

edge

2. Start allocating

sBS0

T4(5.8)

T0(17.05)

sBS1

T1(11.66)

T3(19.44)

sBS2

T2(8.6)

4. Re-allocate

sBS0

T4(5.8)

sBS1

T1(11.66)

T0(13.25)

sBS2

T2(8.6)

T3(11.64)

sBS0

T4(5.8)

T0(17.05)

sBS1

T1(11.66)

sBS2

T2(8.6)

T3(16.64)

sBS0

T4(5.8)

T0(13.05)

sBS1

T1(11.66)

T3(11.44)

sBS2

T2(8.6)

Conflict

Conflict

3. Re-calculate t        after updating the 
queue time
(queue: prior serve the task with the 
minimal execution time)
---------------------------------------------
For example:

T0(17.05s; 13.25s; 13.55s); 

(Ps:17.05 = 4+10+2.5+0.5+0.05)

edge

6. Allocation
Finished

5. Repeat step 3
and step 4 until 

all tasks are 
allocated to the 

optimal sBSs

Figure 2: Illustration for the proposed algorithm

re-allocated to the more optimal sBSs after updating their tedge in step 4, and then the
process repeats above steps until all tasks are allocated to the optimal sBSs. Finally, T4
and T0 are executed at sBS0, T1 is executed at sBS1, T2 and T3 are executed at sBS2.

Studies in [15] and [16] presented the user mobility prediction which can achieve an
accuracy about 90% to map a moving path for users with their proposed algorithm by
using Lagrange′s interpolation and non-parametric approach based on kernel density
estimation, respectively. These methods may be more accurate under an indoor scene
like our scenario. In Figure 3, we illustrate the comparison between the allocation
considering mobility and that without considering mobility. In the left part, at first,
two tasks will be allocated to the sBS according to our algorithm based on the mobility
prediction, and the tasks are finally allocated to the sBSs along the user moving path
with minimal delays. In the right part, the same tasks will be allocated to the sBS
according to the random sBS selection algorithm, which does not consider the user
mobility. Ta chooses sBS1 as the serving sBS. The serving sBS1 computes the execution
delays, and it chooses it own as computing sBS due to the shortest delay. However, Tb
chooses sBS1 as the serving sBS and randomly selects sBS0 as the computing sBS to
avoid the queue time which is caused by sBS1 executing Ta. As a result, the delays of
Ta and Tb by using the method which does not consider the user mobility is larger than
our scheme.
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Task Path 
Task Input Data 

(si) 

Upload & Download

Time 

(si/rui & ƞ*si/rdi,) 

Task & Result 

Transmit 

Time 

(si/rti & ƞ*si/rti) 

sBS 

Execution 

Time 

(te) 

Local 

Execute Time 

(tl) 

Ta sBS1 -> sBS2 25MB 2.5s & 0.5s 0.25s & 0.05s 10s 100s 

Tb sBS1 -> sBS2 30MB 3.0s & 0.6s 0.30s & 0.06s 12s 120s 

Ta(13.05)

Tb(25.72)

Ta(13.05) Tb(15.90)

Ta(sBS1, 13.05;
     sBS2, 13.25)
Tb(sBS1, 15.66;
     sBS2, 15.90)

sBS0  sBS1  sBS2

sBS0        sBS1        sBS2

Re-allocate

Ta(13.05)

Tb(25.72)

Tb(16.02) Ta(13.05)

Ta(sBS1, 13.05;
     sBS2, 13.25)
Tb(sBS1, 15.66;
     sBS2, 15.90)

sBS0  sBS1  sBS2

sBS0  sBS1  sBS2

Re-allocate

Allocation with mobility Allocation without mobility

Figure 3: Illustration for the mobility comparison

4. Evaluation

In this section, we use simulation experiments to numerically evaluate our proposed
work. Table 2 shows the parameters used for the simulation. These settings are in
line with the recommendations for small cell networks defined by 3GPP and the open
source data from telecom operators [25].

Given the small coverage of small cell base station and the Multi-Hop Cognitive
Radio Networks in [26], we consider the Orthogonal Frequency-Division Multiple
Access (OFDMA) used for communication in downlink and the Single-Carrier
Frequency-Division Multiple Access (SC-FDMA) used for uplink. As a result, the
interference among users could be ignored. We assume that the input data size of
each task ranges from 1MB to 30MB, and the CPU cycles requirement ranges from
2 ∗ 109 cycles per task (cpt) to 2 ∗ 1010 cpt for different type of applications. Besides
the different CPU frequency between sBS and user device, we additionally consider
the impact of acceleration rate on CISC and RISC for different type of devices. Based
on the parameter presented in Table 2, we assume that user mobility is a constant speed
following the predicted path P that we describe in 3.3 . The users upload their tasks to
the closest sBS with the best wireless link quality and obtain the results from the output
sBS according to the assignment result.

Similar to the SDN architecture, all sBSs are directly connected to a central
controller. The task information is gathered at the controller and all tasks are assigned
at the controller. It is worth mentioning that the delay for information collection
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Table 2: Simulation settings

Parameter value/range
Small cell base station (sBS) uplink/downlink 80Mbps/80Mbps

Intra MEN transmission rate 1000Mbps
sBS CPU frequency & instruction set 2G Hz & CISC

sBS coverage radius 10 meters
User device CPU frequency & instruction set 2G Hz & RISC

Moving speed of the mobile users 1 m/s
Input data size 1~30MB

CPU cycles required by one task 2*109~2*1010

Acceleration ratio between CISC and RISC 10~50
The ratio of input/output data size 5:1

Number of users & sBSs for experiment 1 200 & 0~30
Number of users & sBSs for experiment 2 0~600 & 10

and the assignment itself is not considered in the simulation because the amount of
the summary information is very small and the assignment is done in the powerful
central controller. Although we do not assume the wireless information from different
users, the problem can be solved using the existing solutions [27, 28, 29]. Since we
consider the end-to-end uploading/downloading delay in the model, the existing works
on collision resolution can be directly incorporated in our model. The only difference
will be the estimation of the uploading and downloading rates ru and rd.

We use four different policies for comparison.

1. All tasks are executed at the user end.
2. Optimized assignment without considering the user mobility (trajectories). The

tasks executed at the task uploading sBS and the results are sent to the user via
sBSs along the user path (can be directly connected to users).

3. Optimized assignment considering mobility with maximal optimized execution
time (maximizing the optimization time) for each task.

4. Our scheme - Optimized assignment considering mobility with prior serving the
task with minimal execution time.

It is worth noting that the sequence for processing the tasks has important impact on
the end-to-end performance. The third policy uses a criteria for first executing the task
with maximal difference between the local and the edge. We repeat our experiments
for 100 times to get the average execution time under different conditions.

Figure 4 shows the average task delays for different network scales in terms of
sBSs. We can see that 1) the local execution achieves the largest delay and our optimal
optimization with mobility achieves the lowest delay. The reason is straightforward as
follows. For local execution, the MEC resources are not used at all; For optimization
that utilizes the MEC resource: if mobility is not considered, only the sBS directly
connected to the user is utilized and much queuing delay will be incurred. When
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Figure 4: The average delay for different network scales

mobility is considered and multiple sBSs are utilized along the user trajectory, the
delay can be further reduced. 2) The delay reduction increases as the network scale
increases. The reason is that when there are more sBSs, more resources can be utilized
to enhance the performance for mobile devices. 3) The speed for delay reduction
decreases as the network scale increases. This is because that as more and more tasks
from mobile devices are offloaded to the MEN, there are fewer resources left to be used
for optimization. As a result, the speed of reduction is reduced. 4) The third policy
achieves sub-optimal result. The reason is that different sequence for task assignment
may cause that some computation-intensive tasks are assigned to resource constrained
sBSs and lightweight tasks are assigned to more powerful sBSs or be rejected, which
is a waste of MEC resource.

Figure 5 shows the averaged delay for different user scales with the same MEN.
The MEN consists of ten sBSs. The user size grows from 50 to 600 and the trajectories
are randomly generated. It can be inferred that as there are more and more users, the
delay reduction becomes less. This is because there will be less resource available
for each task as the number of users keeps growing. This simulation result can also
be used to guide the sBS deployment for a given number of mobile users. We can
also compared to the case with fixed number of users (Figure 4), the delay reduction
of optimization considering mobility compared to optimization without mobility is
enlarged. The reason is that when there are multiple tasks and multiple users, the
parallelism of the sBSs can have more optimization space compared to that with small
number of tasks and users.

We dig into the decision process of the proposed algorithm. Figure 6 shows the
acceptance rates for tasks in different situations that if we consider the mobility or not.
The MEN consists of ten sBSs. The user size grows from 50 to 600 and the trajectories
are randomly generated. We can see that all tasks are accepted by the MEN at first, and
the acceptance rate maintains 45.6% when the number of users expand to 600, which
means the delay can be effectively reduced for tasks using our optimization scheme
considering mobility. Differently, only 15% users are accommodated in the MEN
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when there are 600 users for optimization without considering mobility. Therefore,
our scheme is more appropriate for the dense MEN with more users.

5. Conclusion

In this paper, we investigate the problem of task assignment in Mobile Edge
Computing for multi-task multi-user scenarios. We model the assignment as a
constraint satisfaction problem and propose a lightweight algorithm, where the
task information, small base station information and the user mobility are jointly
considered. We conduct simulation experiments to study the performance of the
proposed work. The results show that compared to the works without considering
user mobility, the proposed work can greatly reduce the task execution delay. We will
focus on finding the optimal sequence for task assignment and further optimize the task
delay by considering the wireless collisions among different users.
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1. The problem of task assignment and integrate user mobility as well as the small base 
station network computing resources is modeled. 
2. A lightweight algorithm to the optimization problem is proposed, which supports fast 
delay estimation of the execution delay under the big data in Mobile Edge Network.  
3. Extensive simulation experiments is conduct and the results show that the proposed 
work outperforms the work without considering user mobility in terms of task 
execution delay. 
 


