慶應義塾大学学術情報リポジトリ

Keio Associated Repository of Academic resouces

Title	Effect of detoxin D on blasticidin S uptake in bacillus cereus
Sub Title	
Author	島津, 昭(Shimazu, Akira) 八巻, 寛(Yamaki, Hiroshi) 降旗, 桂子(Furihata, Keiko) 遠藤, 豊成(Endo, Toyoshige) 大岳, 望(Otake, Noboru) 米原, 弘(Yonehara, Hiroshi)
Publisher	共立薬科大学
Publication year	1981
Jtitle	共立薬科大学研究年報 (The annual report of the Kyoritsu College of Pharmacy). No.26 (1981.) ,p.97- 100
Abstract	
Notes	抄録
Genre	Technical Report
URL	http://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN00062898-00000026 -0097

Effect of detoxin D on blasticidin S uptake in Bacillus cereus^{1.2*}

AKIRA SHIMAZU, HIROSHI YAMAKI, KEIKO FURIHATA, TOYOSHIGE ENDŌ, NOBORU ŌTAKE and HIROSHI YONEHARA

島津 昭**, 八巻 寬**, 降旗桂子**, 遠藤豊成, 大岳 望**, 米原 弘**

Summary. The active transport of blasticidin S into the cells of Bacillus cereus was significantly inhibited by the additition of detoxin D or poisons of energy metabolism.

Detoxin D is a selective antagonist of blasticidin S, an antibiotic used as a fungicide in the treatment of rice blast disease. The antibiotic activity of blasticidin S is antagonized by detoxin D in *Bacillus cereus*, *Candida albicans*, plants and animals, but not in *Piricularia oryzae* and some other microbes.³⁻⁵⁾ Chemical structures of detoxin D, which contains detoxin D₁ as a main and most active component,⁵⁻⁷⁾ are entirely distinct from that of blasticidin S⁸⁾. Blasticidin S was reported to inhibit protein synthesis by binding to 50S ribosomal subunits and blocking peptidyltransferase activity in a cell-free system from *E. coli*.⁹⁻¹¹⁾ The inhibition of protein synthesis by blasticidin S in *B. cereus* was reversed by the addition of detoxin D only in intact cells or in protoplasts, but not in cell-free systems, suggesting an effect of detoxin D on blasticidin S transport. The effect of detoxin D on the uptake of ¹⁴C-blasticidin S by the cells of *B. cereus* was examined in this paper.

Materials and methods. Detoxin D used in these experiments was a mixture of detoxin D group substances^{6,7}; the concentration was kept at 10 μ g/ml. ¹⁴C-Blasticidin S (labeled by L-methionine-methyl-¹⁴C; sp. act. 8.40 mCi/mmole) was supplied by Dr I. Yamaguchi, Institute of Physical and Chemical Research, Wako City 353, Japan.

B. cereus IAM 1729 was cultured in Spizizen's minimal medium¹², supplemented with 1% glucose and 0.2% polypeptone (Daigo) at 37°C. Cells in late-log phase were harvested and washed twice with 33 mM Tris-buffer (pH 7.3), then resuspended in 2% glucose minimal medium without polypeptone at 7 mg dry cells per ml and chilled until use.

The reaction mixture (1 ml) used for the determination of blasticidin S uptake consisted of cell suspension containing various amounts of ¹⁴C-blasticidin S and detoxin D or other agents. The cell suspension was preincubated at 37°C for 10 min before the addition of detoxin D and ¹⁴C-blasticidin S; if not indicated otherwise detoxin D was added 5 min prior to ¹⁴C-blasticidin S. Blasticidin S uptake was followed by removing 0.1 ml aliquots of the reaction mixture and transferring the samples rapidly into 2 ml of ice-cold washing solution, consisting of 150 mM NaCl, 10 mM Tris buffer (pH 7.3) and 0.5 mM MgCl₂. The

^{*} 本報告は Experientia 37, 365 (1981), Birkhauser Verlag. Basel (Schweiz) に発表

^{**} 東大応微研

No. 26 (1981)

cells were collected on a Millipore filter saturated with cold blasticidin S and washed twice with 2 ml of the same solution. Radioactivity on the filter was determined with a liquid scintillation counter (Beckman, Type LS-230) using 5 ml of Bray's solution. The amount of blasticidin S taken up within a given time was determined by radioactivity measurements at the time points shown in figure 1. Initial rate of uptake was measured at 1 min after addition of ¹⁴C-blasticidin S. All data are expressed as the mean values of duplicate experiments.

Results and discussion. The time course of blasticidin S uptake by the cells of *B. cereus* is shown in figure 1. When detoxin D was added to the reaction system 5 min prior to the addition of ¹⁴C-blasticidin S, the rate of uptake was reduced to 8% of the control value, and consequently low constant cell internal levels were attained. However, when detoxin D was added at the same time as blasticidin S or shortly afterwards, the amount of blasticidin S already taken up by the cells began to decrease and finally the same low basic level was reached. These data suggest that detoxin D caused leakage or efflux of blasticidin S from the cells and that the constant level of blasticidin S within the cells induced by detoxin D corresponded to the equilibrium concentration with the surrounding medium. This assumption is supported by the results shown in figure 2. The level of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be proportional to the concentration of blasticidin S in the cells was found to be prop

Fig. 1. Effect of deoxin D and sodium azide on blasticidin S uptake.
1.2 mM of ¹⁴C-blasticidin S was used for the substrate. Arrows indicate the addition times of detoxin D or sodium azide. Reaction conditions are described in the text. ○ control. ● detoxin D (10 µg/ml). △ detoxin D (10 µg/ml). □ detoxin D (10 µg/ml). ▼ Na N₃ (30 mM).

No. 26 (1981)

Fig. 2. Blasticidin S uptake at different substrate concentrations a amount of uptake at final level induced by deoxin D, b initial rate of uptake. ¹⁴C-blasticidin S (0.12, 0.3, 0.6, 1.2 and 2.4 mM) was used as substrate. The cells were preincubated with or without detoxin D (10 μ g/ml) for 5 min. The amount of uptake was measured in 10 min reaction (a). The initial rate was measured in 1 min reaction (b).

in the absence of detoxin D and that the presence of detoxin D inhibited this transport.

The initial rate of blasticidin S uptake increased with increasing substrate concentration in the presence or absence of detoxin D, approaching a maximum rate of zero order with respect to the concentration of blasticidin S (figure 2, b). In the presence of 10 mM Nethylmaleimide, a SH-blocking agent of proteins, the amount of blasticidin S taken up within the first 10 min was reduced in the presence and in the absence of detoxin D to 9-9.5% of the control value, which was lower than in the presence of detoxin D only. Preincubation of the cells with detoxin D or poisons of energy metabolism led to a strong reduction of the amount taken up; the reduced uptake was 27.5% with the addition of $10 \ \mu g/ml$ detoxin D, 31.8% with 30 mM sodium azide, 36.3% with 20 mM 2-thenoyltrifluoroacetone and 35.9% with 20 mM 2,4 dinitrophenol (data not shown). The effect of 30 mM sodium azide on the time course of blasticidin S uptake was the same as that obtained with $10 \ \mu g/ml$ detoxin D (figure 1). These results suggest that blasticidin S is taken up by *B. cereus* both by a carrier-mediated passive transport, namely facilitated diffusion, and active transport, and that detoxin D interferes only with the latter.

- 2) This is Part VII of "Studies on Detoxin Complex, the Selective Antagonists of Blasticidin S." For Part VI, see the preceding report.
- H. Yonehara, H. Seto, S. Aizawa, T. Hidaka, A. Shimazu and N. Ötake, J. Antibiotics 21, 369 (1969).

No. 26 (1981)

- 4) H. Yonehara, H. Seto, A. Shimazu, T. Hidaka, K. Kakinuma and N. Ötake, Agr. Biol Chem. 37, 2771 (1973).
- 5) N. Ötake, H. Seto, K. Kakinuma, A. Shimazu and H. Yonehara, Proc. 1st Intersectional Congr. of IAMS, Vol. 5, p. 428, 1975.
- 6) N. Ötake, K. Kakinuma and H. Yonehara, Agr. Biol. Chem. 37, 2777 (1973).
- 7) K. Kakinuma, N. Ötake and H. Yonehara, Agr. Biol. Chem. 38, 2529 (1974).
- 8) N. Ötake, S. Takeuchi, T. Endö and H. Yonehara, Agr. Biol Chem. 30, 126, 132 (1966).
- 9) H. Yamaguchi, C. Yamamoto and N. Tanaka, J. Biochem. 57, 667 (1965).
- 10) H. Yamaguchi and N. Tanaka, J. Biochem. 60, 632 (1966).
- 11) T. Kinoshita, N. Tanaka, and H. Umezawa, J. Antibiotics 23, 288 (1970).
- 12) J. Spizizen, Proc. Natl. Acad. Sci. USA, 44, 1072 (1958).