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Multilocal Programming and Applications

A. . Pereira, O. Ferreira, S. P. Pinho and Edite M. G. P. Fataa

Abstract Multilocal programming aims to identify all local maximizeof uncon-
strained or constrained nonlinear optimization problefige multilocal program-
ming theory relies on global optimization strategies cameli with simple ideas
that are inspired in deflection or stretching techniquesstodaconvergence to the
already detected local maximizers. The most used methodslte this type of
problems are based on stochastic procedures. In genepallgtion-based methods
are computationally expensive but rather reliable in ithging all local solutions.
Stochastic methods based on point-to-point strategidaster to identify the global
solution, but sometimes are not able to identify all theroptisolutions of the prob-
lem. To handle the constraints of the problem, some pentitiegies are proposed.
A well-known set of test problems is used to assess the pedioce of the algo-
rithms. In this chapter, a review on recent techniques fah lmconstrained and
constrained multilocal programming is presented. Somiewedd multilocal pro-
gramming problems based on chemical engineering proceggd@oplications are
described.
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1 Introduction

The purpose of this chapter is to present recent technigquesofving constrained
Multilocal Programming Problems (MPP for short) of the d@ling form

max f(x)
st.gix)<0,j=1,....m Q)
li<x <u,i=1...,n

where at least one of the functiofisg; : R" — R is nonlinear, and# = {x € R":

i <x <u,i=1,..,n9jX) <0,j=1,...,m} is the feasible region. Problems
with equality constraintsh(x) = 0, can be reformulated into the above form by
converting into a couple of inequality constraihfx) — v < 0 and—h(x) —u <0,
whereuv is a small positive relaxation parameter. Since concasityot assumed,
may possess many global and local (non-global) maxim# inn MPP, the aim is
to find all pointsx* € .# such thatf (x*) > f(x) for all x € ¥¢(x*) N.#, where¥g (x*)
represents the neighborhoodfwith radiuse > 0. It is also assumed that problem
(1) has a finite number of isolated global and local maxinsiz&he existence of
local maximizers other than global ones makes this problgreat challenge. Here,
we use the following notatiorNl is the number of solutions of the problem (1) and
X*={x3,%,...,X\} is the set that contains those solutions. The algorithmsiter
presented for MPP aim at finding all the maximizgfsc, ..., x; € % such that

fmax— f(¢) < & foralls=1,....,r (r <N) 2

whered is a small positive constant arfghax = max{ f(x3),..., f(x")}.

The MPP can be considered as defining a class of global optiimizproblems
and are frequently encountered in engineering applicatjery. [8, 15, 32]). Some
algorithms for solving this type of problem require substdmradient information
and aim to improve the solution in a neighborhood of a givétieimpproximation.
When the problem has global as well as local solutions, dabkical optimization
techniques can be trapped in any local (non-global) saluhoglobal optimization
strategy is indeed the most appropriate to solve multilpcagjramming problems.
When the objective function is multimodal, the probabilitiyomnvergence to an
already detected local solution is very high and dependsoclesely on the provided
initial approximation. Methods that avoid converging teealdy identified solutions
have been developed and integrated into a variety of clggimbal methods.

This study is focused on the analysis of the practical bemafi stochastic and
deterministic methods for the computation of multiple siolus of the problem in
the form (1). A penalty technique is chosen to tackle the ttaimgs of the problem.
Furthermore, challenging problems in the chemical engingarea, such as those
that aim to evaluate if a multicomponent liquid mixture islghlly stable regarding
the separation in two or more liquid phases, by minimizing tdingent plane dis-
tance function for the Gibbs free energy of mixing, are fulscribed and solved.



Multilocal Programming and Applications 3

The remainder of this paper is organized as follows. Se&iprovides a review
on two particular classes of global optimization methods ttan be extended to
solve bound constrained MPP, presents the correspondjogtaims and illustrates
their performance using three examples. In Section 3, tmalpefunction-based
technique is addressed and various penalty functions asepted, tested and com-
pared using a selected set of problems. Section 4 illustthe use of numerical
methods to solve very demanding real problems in the chémiggineering area
and Section 5 contains the conclusions.

2 Bound Constrained Multilocal Programming

In this section, we address a simpler problem known as boomsti@ined multilocal
programming problem. The problem is presented in the fatigviorm

max f(x)
sthh<x<u,i=1,...,n 3
where the feasible region is just defined 5y = {x e R": |; < x < u;, i =
1,...,n}. The two main classes of methods for solving the multilocabpamming
problem (3) are the stochastic and the deterministic, whighpresented below
[16, 20, 28, 39, 44, 45].

2.1 Stochastic methods

A stochastic method available in the literature to solveamstrained and bound
constrained global optimization problems will be desalide general, each run of
a stochastic global method finds just one global solutionuAvesy on stochastic
methods is presented in the textbook [62]. To be able to céenpultiple solutions
in just one run, where each of them is found only once, sptsiahiques have to be
incorporated into the global methods. These techniquesaaiavoiding repetitive
identification of the same solutions. Well-known examples the clustering me-
thods [50, 51, 52]. Other techniques that aim to escape fr@viqusly computed
solutions, in general local solutions, are based on coctitigiauxiliary functions
via a current local solution of the original problem [55, 63]. Deflecting function
and function stretching techniques can also be appliedeiepit convergence to an
already detected local solution [38, 39, 40, 53].

Clustering techniques rely on the multistart algorithme Tiultistart is a stochas-
tic algorithm where, in a repetitive manner, a local seaschpplied to a point that
is randomly selected from the feasible region. Since theesimeal solution may
be selected over and over again, the clustering technique & avoid the loca-
tion of already detected solutions. A cluster contains aofg@iints, defining the



4 A. . Pereira, O. Ferreira, S. P. Pinho and E. M. G. P. Fereand

so-called region of attraction, that terminate in a paléicgolution after applying a
local search procedure. In this way only one local searchdsired to locate that
solution. This process is able to limit the number of locarsk applications [50].
Another use of a region of attraction based on a multistgarithm is the therein
called Ideal Multistart [52]. This method applies a locadisd procedure to an ini-
tial randomly generated point to reach the first solutignand the corresponding
region of attraction is then define8;. Then points are successively randomly gen-
erated from the feasible region until a point that does nlarigeto A; is found. The
local search is then applied to obtain the second solujaand then the region of
attractionA; is defined. After this, points are randomly generated anda kearch
is applied to the first point that does not belong\ia A, to obtainx; (and themg),
and so on. The definition of the so-called critical distarmcednstruct the cluster is
an important issue in clustering-based multistart methiodsome cases, the second
derivative information of the objective function is reqedr In others, like [3], the
critical distance becomes adaptive and does not requirs@awsial property of the
objective function. The therein proposal is embedded withsimulated annealing
(SA) algorithm to obtain a global algorithm that convergastér than the SA itself.

Deflection and stretching techniques rely on the conceptotforming the ob-
jective function in such a way that the previously detectdtfon is incorporated
into the form of the objective function of the new problem 8k techniques were
mainly developed to provide a way to escape from local smhstiand to drive the
search to a global one. For example, in [53], a deflectingtfan¢echnique was pro-
posed in a simulated annealing context. The transformafitme objective function
f(x) works as follows. The deflecting function of the origirfaht a computed ma-
ximizer x*, herein denoted af,, is defined by

fa(x) = £(x*) = 0.5[sign(f (x") — F(x)) = L (f () — f(x")). (4)

All the maximizers which are located belofyx*) disappear although the max-
imizers with function values higher thafr(x*) are left unchanged. An example is
provided to show the deflected effect.

Example 1. Consider the one-dimensional problem where the objedtimetion is
f(x) = —xsin(x), for x € [-8,8],

which has 3 maxima in the spt8, §].

Figure 1 shows the plot of (x) using a solid line. Lek* = —4.9132 be the first
computed maximizer, wheri(x*) = 4.8145. The plot of the deflecting function (4)
atx* = —4.9132 is shown with a dashed line in the left plot, where all\hkies
with f(x) < f(x*) are deflected. All the maximizers are alleviated and the-func
tion becomes a line when the deflecting function techniguapjdied on a global
maximizer. In the right plot, the deflecting technique is laapto f at the local
maximizerx* = 0, with f (x*) = 0 and as can be sedf(x), represented by a dashed
line, keeps the values of points that havi(x) > f(x*).
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Fig. 1 Plot of f and fg atx* = —4.9132 (left plot) and ax* = 0O (right plot).

On the other hand, the function stretching technique ctmsita two-phase
transformation [38, 39, 40]. The first transformation sthets the objective function
downwards in a way that all the maxima with smaller values tthee previously
detected maximum are eliminated. Then, the second phawsddrens the detected
maximum into a minimum. All the other maxima (with larger wa$ than the de-
tected maximum) are unalteredxifis an already detected maximumfafthen the
first transformation is defined by

f1(x) = f(x) — %IIX—X"II [sign(f (x") — f(x)) +1] (5)
and the second by

Op[sign( f(x*) — f(x)) +1]
2tanh(k (f1(x*) — f1(x)))

where;, & andk are positive constants. To illustrate the effects of thesest
formations as the parameters vary, we use Example 1. Figahe®&s the plot of
f(x) using a solid line. Based on the computed local maximizer 0 and applying
the transformation (5) witl®; = 1.5, we get the functiorf1(x) which is plotted in
the figure with a dotted line, and applying (6), widd = 0.5 we get the function
f2(x), displayed in both plots of the figure with a dashed line. Tl pn the left
corresponds ta = 0.1 and the one on the right correspondxte- 0.05. Function
f1(X) comes out after the first transformation (5) and the biggediithe greater
the stretch is. See the plots on the right of Figs. 2 and 3.nretex &, defines the
range of the effect (see the plots on the left of Figs. 2 anch@)the parametex
defines the magnitude of the decreasd @ix* (see both plots of Fig. 2).

In a multilocal programming context, global as well as logan-global) solu-
tions need to be computed. Implementing the function dthegctechnique locally
aims at stretching downwards the objective functfoonly in a neighborhood of
an already detected maximizer, leaving all the other maxinghanged. The suc-
cessive application of this technique prevents the comverg to the solutions com-
puted thus far. Therefore, this local stretching technigae be used when both

fz(X) = fl(X) —

(6)
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Fig. 3 Plot of f, f, f, with & = 1.5,8, = 1.5,k = 0.1 (on the left) andd; = 3,5, = 0.5,k = 0.05
(on the right).

global and local solutions are required since the stratbgyiates only the detected
solutions. We now accept that the following assumption §old

Assumption 1 All optimal solutions of problem (3) areisolated points.

Here we present a proposal that applies locally the funaimiching technique
and uses a simulated annealing algorithm. The method istaldetect sequen-
tially the global and local solutions instead of ramblingepthe feasible region
attracted by previously identified solutions. After the gutation of a solution, the
objective function of the current problem is transformethgdhe function stretch-
ing technique. A sequence of global optimization problerttk gtretched objective
functions is iteratively defined and solved by the SA aldon{44, 45].

The SA is a point-to-point stochastic algorithm that dogsequire derivative in-
formation and is able to guarantee convergence to a globhal@owith probability
one [22]. In fact, the practical implementation of the herpresented Stretched
Simulated Annealing (SSA) method makes use of one of the effesitive variants
of SA known as Adaptive Simulated Annealing (ASA) algoritf2d].
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The main steps of the ASA algorithm are resumed in Algorithimeliow. For
details on the algorithm convergence analysis, see [23, 724 ASA method can
be easily described using five phases: the generation @l g@tint, the ‘acceptance
criterion’, the redefinition of the control parameters, teeuction of the control
parameters and the stopping condition.

Algorithm 1 ASA algorithm

1: Given: x2, NQ and the initial control parameter values. 8et 0 andj =0
2: While the stopping condition is not verifietb

2.1 Based onX, randomly generate a trial poipte [I,u] andj = j+1
2.2 \Verify the ‘acceptance criterion’
23 Ifj<NKthen j=j+landgoto2.2
else updateNk andj = 0
2.4 Update control parameters
25 Setk=k+1

The generation of a trial point is one of its crucial phasediashould provide
a good exploration of the search region as well as a feasditg.prhe parameter
NK in the Algorithm 1 aims at adapting the method to the problehe ‘acceptance
criterion’ allows the ASA algorithm to avoid getting stuak lbcal solutions when
searching for a global one. For that matter, the procesptpeints whenever an
increase of the objective function is verified

kil _ { y if & <Ay (ch)

Xt = )
XK otherwise

wherex¥ is the current approximation to the global maximunis the trial point,
& is a random number drawn frobh(0, 1) andAXk’y(c',‘A) is the acceptance function.

This function represents the probability of accepting thinpy whenxX is the cur-
rent point, and it depends on a positive control paraméteAn usual acceptance

function is
_ -1y

Axk,y(cﬁ)—min{l,e A },

known as Metropolis criterion. This criterion accepts alirs with objective func-
tion values equal or greater thaéfx¥). However, iff (y) < f(x¥), the pointy might
be accepted with some probability. During the iterativecpss, the probability of
descent movements decreases slowly to zero. Differenptaroee criteria are pro-
posed in [24]. The control paramete’j, also known as temperature or cooling
schedule, must be updated in order to define a positive d@ngeaequence. To
speed up the search, the ASA algorithm considers the relimped the process,
meaning that the control parameters are redefined duringettagive process (see
details in [24]). In general, the stopping condition for th8A method is based on
the idea that the algorithm should terminate when no fuithanges occur. Another
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stopping criterion limits the number of function evaluatoor defines a lower limit
for the value of the control parameter.

We now describe the details concerning the SSA algorithra.ldtal application
of the function stretching technique aims to prevent theveagence of the ASA al-
gorithm to previously detected solutions. bétbe the first detected solution. Func-
tion stretching technique is then applied only locally, der to transformf (x) in
a neighborhood of;, Vg, (X;), with radiuse; > 0. Thus,f(x) is reduced only inside
the regionVg, (xj) leaving all the other maxima unchanged. The maximiu(xi)
disappears but all the others remain unchanged. Each gipbiadization problem
of the sequence is solved by ASA. The multilocal procedumaitzates when, for a
predefined set of consecutive iterations, no more solutoasletected [42, 44]. To
illustrate this SSA procedure the following problem is ddesed.

Example 2. Consider the function
f(X) = —cog(x1) — sirf(xz) wherex € [-5,5]?,

which has 12 global maxima in the set5,5]%. In Fig. 4, the objective function
of Example 2 and the functiofy that comes out after applying transformations (5)
and (6) to the previously computed global maximizgrdefined by(7,0), are dis-
played. Transformations (5) and (6) stretch the neighbumattaf x3, with radiusez,
downwards assigning smaller function values to those painprevent convergence
to that previously computed solution [44]. As can be obsirtiee other maxima are
left unchanged (see Fig. 4).

e
i

i

ALY
it

it

55 -5 -5

Fig. 4 Plot of f(x) (left) and f2(x) (right) in Example 2.

Thus, the SSA method, at each iteration, solves a globaranoming problem
using the ASA algorithm, where the objective function of piheblem resulted from
alocal application of the function stretching techniqueg ims to eliminate the pre-
viously detected maximizer leaving the other maximizershamged. This process
is repeated until no other solution is encountered. The ema#tical formulation of
the j + 1-order problem in the sequence of problems is the following
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(%) if x € Ve; (%),
f1(x) otherwise

max f1+1(x) = { 7)

1<x<u

wherex] is the solution detected in theorder problem, and the following notation

is used:f2J is the stretched function obtained frofh after transformations (5) and
(6), for anyj, wherefl = f, andf} = f,.

Algorithm 2 below presents, in summary, the strategy SSABP (3). As pre-
viously stated the algorithm terminates when no more swigtare detected during
a predefined number of consecutive iteratidfg,, or a maximum number of func-
tion evaluations is reachedfnhax. The conditions for the inner cycle (in Step 2.2)
aim at defining an adequate radiug)(for the neighborhood of each solution com-
puted in Step 2.1, in order to adjust for eaghthe convenient neighborhood. In the
final stage of the algorithm, a local search procedure isieghpd each computed
solution to improve accuracy.

Algorithm 2 SSA algorithm

1: Given: &, €, Emax Setfmax= f1(l), j=1andp=0
2: While the stopping conditions are not o

2.1 Compute = argmax<x<u f1(x) using Algorithm 1 withf(x) defined in (7)
2.2 SetA =¢g
2.3 While |fi(x)) — fma < & of A > gmaxdo

Setp= p+1andA = pg

Randomly generatg € Va(X),i=1,...,2n

2.4 Update the optimal s&t* and set; = A
25 Setj=j+landp=0

3: Apply a local search procedure to the optimabéet

Example 3. Consider the classical optimization problem known as Bragsrob-
lem [20].

max f(x) = — ( x S I 2—10 1- L cogx;) — 10
o\ At Tt 8 ! ’

where the feasible region is definedZis= {x € R? : =5 < x; < 10A 0 < x, < 15}.
This problem has three global maximizérsr, 12.2750), (11,2.2750 and(9.4248
2.475) with a maximum value of-0.39789.

The SSA algorithm solves this problem iM8 seconds, needs 2442 function
evaluations and detects the following maximizerS8.141€E + 00,1.227% + 01),
(9.4248& +00,2.475CE +00) and(3.141€ + 00, 2.275C + 00), with global value
—3.978%E — 01. Since the SSA algorithm is a stochastic technique, thblgm
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was solved thirty times. In this case all the solutions wdemtified in all runs. The
results were obtained using a Intel Core 2 Duo, T8300, 2.4 @itir4 GB of RAM.
The parameters of the algorithm are set as follodys= 5.0, &g = 0.1, Enax= 1.0,
Kiter = 5 andnfpyax = 100 000.

2.2 Deterministic methods

Deterministic methods for global optimization are abledtys a problem with a re-
quired accuracy in a finite number of steps. Unlike stochas#thods, the outcome
of the algorithm does not depend on pseudo random varidblgeneral, they pro-
vide a theoretical guarantee of convergence to a globahapti. When compared to
stochastic methods, they may rely on structural infornmadibout the problem and,
in some cases, they require some assumptions on the objéatistion such as, for
example, the Lipschitz continuity df over the feasible region [14, 20, 21, 31].

There are deterministic methods that combine the brandHsannd method
with successive refinement of convex relaxations of théingtroblem [15], others
use a non-differentiable technique based on the methodtwhalpset partitioning
[27], and in [28] partitioning ideas are combined with soneeihtive information.
An important subclass of methods for locating the solutignaximizers and mini-
mizers) of a continuous function inside bound constraliks,problem (3), consist
of two phases: first, a partition of the feasible set is madkeaset of finite points are
generated and evaluated in order to detect good approxingatd solution points;
then, a local search method is applied in order to improveattoeiracy of the ap-
proximations found in the first phase (e.g. [10, 11, 48, 51]).

DIRECT is a deterministic method that has been designed dalfia global so-
lution of bound constrained and non-smooth problems wheernivative informa-
tion is needed [14, 25, 26]. DIRECT is an acronym for DIvidRECTangles and is
designed to completely explore the search space, everoafesr more local solu-
tion have been identified. The algorithm begins by scalimgdbmain into the unit
hypercube and the objective function is evaluated at theecefithe domain, where
an upper bound is constructed. DIRECT computes the obgefifivction at points
that are the centers of hyperrectangles. At each iteratiew, hyperrectangles are
formed by dividing those that are more promising, in the edhat they potentially
contain a required global solution, and the objective fiomcis evaluated at the cen-
ters of those hyperrectangles. Based on those objectiatidmrvalues, the method
is able to detect new promising hyperrectangles.

Another interesting subclass of deterministic methodsgiobal optimization
is based on the idea of branch and bound. Methods based amaingmalysis
[2, 19, 61] fall in this subclass. Interval analysis arisesf the natural extension
of real arithmetical operations to interval operations uise for global optimization
was presented in 1992 [19]. Using interval operations, rikerval algorithm splits,
successively, the initial feasible regifinu] into small subintervals. The subintervals
that do not contain the global solution are discarded andtthers are further subdi-
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vided and analyzed. This process terminates when the widtiesubintervals are
below a predefined accuracy or no interval remains to be gigadi. Interval meth-
ods have high computational costs since the complexitg Bgponentially with the
dimension of the problem [19, 20].

The most known and used deterministic method is the brandksaund (BB)
method. It has been mainly used in discrete optimizatiore fain idea in a BB
method is the recursive decomposition of the original probinto smaller disjoint
subproblems until the required solution is detected. Ia tmintext, smaller means
either a strict smaller problem dimension or a strict smalasible region. The
partition of the feasible region is the most used branchirg in continuous pro-
gramming. This decomposition should guarantee that thieagolution is at least
in one of the generated subproblems. The method compardswie and upper
bounds for fathoming each subregion. The subregion thatomthe optimal so-
lution is found by eliminating subregions that are provetitoa@ontain the optimal
solution.

BB-type methods are characterized by four natural rulesndiring, selection,
bounding and elimination. Branching is concerned withHartrefinement of the
partition. The selection rule is also very important, gseaffects the performance
of the algorithm and aims at deciding which subregion shbeléxplored next.

The method starts with a st that contains the feasible region assumed to be a
compact set. An algorithm should be provided to compute @euipound valuefy,
such thatfy > f(x) for all x € [I, u] that will be improved as subproblems are solved.
At each iteration, the method has a ligt of subsets® of 1°. An upper boundf§
of the maximum objective function value ohis computed for every subset i#f.

A global lower boundf_ of the maximum function value over the feasible region is
defined by thef value of the best feasible solution found.

Fig. 5 Branching applied to the continuous Example 1.

Figure 5 illustrates a branching rule applied to the funciio Example 1. The
set!% = [-8,8] was partitioned intd®,12 and 3. f(x) is represented by a solid
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line. The lower boundsf, are the higher function values at the boundaries of the
subintervals and are represented by dashed lines. The bppeds f¥, represented
in the figure by dotted lines, are computed using a simpleqaioe. In this case,
all the subintervals should be explored and subdividedndggaihe branching rule,
since no upper bound is lower than any lower bound.

A subregionl X can be removed from the lis¥ if:

i) it cannot contain any feasible solution;

i) it cannot contain the optimal solution sincfé < fi;

iii)there is no use in splitting since the size of the set is smaller than a predefined
toleranced.

A crucial parameter of the BB method is the positiderecision. This tole-
rance is used in the stopping criteria in a way that a soluwtithin a -precision is
obtained. The algorithm also stops when the#5is empty. When solving discrete
problems, the parametércan be set to zero and the BB algorithm is finite. However,
in continuous optimization, the bounding operation is rexpito be consistent, i.e.,
any infinitely decreasing sequence of successive refineitigas | ¥ on 1° satisfies

lim (f¥—f5)=0
k—o00

where f,‘_( and fl'j are the lower and upper bounds, respectively, of the proklgm
feasible regiorik. This consistency condition implies that the requidegdrecision
solution is achieved after a finite number of steps and the IB&ithm is therefore
finite.

In the multilocal programming context, to compute the doha of (3), the BB
method is combined with strategies that keep the solutibas dre successively
identified during the process. The method also avoids rgsithose subproblems

which are known not to contain a solution [20, 21]. The maepsif the proposed
multilocal BB method is to solve a sequence of subproblerssriteed as

maxf(x) for xe I andi=1,...,n; (8)

wherel'] = [I7Y,up’] x - x [I5*, uj’], and the subset$], fori =1,...,n;, belong
to a list, herein denoted h¥’!, that can have a local solution that satisfies condition
(2).

The method starts with the list’®, with the set 10 = [I, u], as the first element
and stops at iteratiof, when the listZ/+1 is empty. The generic scheme of the
multilocal BB algorithm can be formally described as showmligorithm 3. Fur-
thermore, the algorithm will always converge due to the faladck on the width of
the subinterval® (see the stopping conditions in Step 3 of the algorithm). Adix
value,d > 0, is provided in order to guarante@gprecision solution.

To illustrate the practical behavior of Algorithm 3, the plem presented in Ex-
ample 3 is used. The multilocal BB algorithm solves this peobin 37.1 seconds,
needs 9331 function evaluations and finds the following mézers (3.141€6E +
00,2.275C + 00), (—3.141€ +00,1.2275% + 01) and(9.424& + 00,2.475CE +
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Algorithm 3 Multilocal BB algorithm
1: Given: & >0,0 >0

2: Considerf? the solution of problem (8), far:? = [I,u], setj = 0 andno = 1
3: While £1+1 0 and max{||u"] —1M||} > & do
3.1 Spliteach sdtl into intervals, fori = 1,...,nj; set.Z I+t = {|1I+1 sty

3.2 Solve problem (8), for all subsets.iffi 2.

3.3 Setfl,..., f"+ to the obtained maxima values N

3.4 Setf?=max { f'} fori=0,...,nj;1. Select the subsets!*+! that satisfy the condition:
10— 1] < &

3.5 Reorganize the lis¥i*1; updaten; 1
36 Setj=j+1

00) with global value—3.978% — 01. As expected, the multilocal BB algorithm is
computationally more demanding than the SSA algorithm.

2.3 Numerical experiments

This subsection reports the results of applying Algorithrto Zolve bound con-
strained MPP. The Algorithm 3 was not used because it is high tonsuming.
First, an experiment with a varied dimensional problem islyred for five differ-
ent values oh. Then, a large dimensional problem is solved by the SSA #lgor
The problems were solved using a Intel Core 2 Duo, T8300, X4 Gith 4 GB
of RAM. The parameters in the algorithm are set as folloggs= 20.0, g = 0.1,
Emax = 1.0, Kiter = 5 andnfmax = 100 000.

2.3.1 Experiment with avaried dimensional problem

Example 4. Consider the classical optimization problem knownnadimensional
Test -dT) [12]:

n n
maxf (x) = — %_Z(xﬁ —16x2+5x) + w_zl(xi —2.90353?
I= 1=
st.-5<x<5/i=1...,n

for @ = 0 (classical problem) andr = 0.3 (modified). This problem has'2ocal
maxima in the seft-5,5|" and the global is located &£2.9035..., —2.9035). The
2-dT function for the classical problem with= 2 is plotted in Fig. 6. The global
maximizer is(—2.9035 —2.9035 with a value off = 78332 and the local maxima
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are located at—2.90362.7468 (with f = 64.196), (2.7468 —2.9035 (with f =
64.196) and(2.7468 2.7468 (with f = 50.059).

05 (x*~16 %> +5x +x‘ - 167 +5x)

gyl
f /Il;'/II;;’I/Z'III/,,‘,,‘“
////,,I;II///////////////// I
iy
'Wm“\
i)

W

R
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A ‘\‘\\‘\‘\\{(&t&‘%ﬁ%&‘&““““‘m\ \‘
Aol
fig it

Fig. 6 Plot of the classical 2-dT problem.

Results regarding the classical problem in Example 4fer2,4,6,8,10 are shown
in Table 1. The table depicts a summary of the results ohfdiyethe SSA algo-
rithm. The average value of the solutions found for the dlof@ximum, in all the
runs, f3, the average number of function evaluations (obtained BOaluns, when
computing the globalpfg\‘,’g", the average (over all runs) of the CPU time required
to converge to all the solutions identified by the algorithimsgconds), CPU(s), the
best solution found for the global maximum during the 30 rurisand the average
number of solutions identified by the algorithmy,, are displayed. Table 2 reports
the same results for the modified problem £ 0.3) in Example 4. The SSA al-
gorithm was able to identify several maximizers during thecpss, in both tested
problems (classical and modified), although not all maxerszare detected in all
runs. We may conclude that the efficiency of the algorithroisgneatly affected by
the dimension of the problem.

Table 1 Results of the SSA algorithm for Example 4, considemmg: O.

Problem favg nfod CPU(s) f* Nsol

2-dT  7.8332E+01 1067 0.17 7.8332E+01
4-dT  1.5667E+02 3159 0.29 1.5667E+02
6-dT  2.3500E+02 10900 0.75 2.3500E+02
8-dT  3.1333E+02 36326 2.28  3.1333E+02
10-dT 3.9166E+02 58838 3.71 3.9166E+02

R R NDNDN
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Table 2 Results of the SSA algorithm for Example 4, consideimng: 0.3.

Problem favg nfed CPU(s) f* Nsol

2-dT  9.8911E+01 1386 0.34 9.8911E+01
4-dT  1.9782E+02 2796 0.25 1.9782E+02
6-dT  2.9673E+02 10110 0.69 2.9673E+02
8-dT  3.9426E+02 30641 1.95 3.9426E+02
10-dT  4.9456E+02 56604 3.58  4.9456E+02

[ I N\ \V )

2.3.2 Experiment with alarge dimensional problem

Here we analyze the performance of the SSA algorithm whevirgph large di-
mensional MPP.

Example 5. Consider the following optimization problem with a multiced objec-
tive function [30]:

maxf(x) = —_isin(xi) +sin (2;('>

st.3<x<13i=1,....n

which has an analytical global optimum of21én. Figure 7 contains the plot of
f(x) whenn = 2. The global maximizer is located é8.36225.3622). The other
maximizers in[3,13? are: (10.454,5.3622 (with f = 1.4393), (5.362210.454)
(with f = 1.4393) and(10.454,10.454) (with f = 0.4467). The other optimum is

a minimum withf = —0.4467 at(8.3961 8.3961). Table 3 contains the results ob-
tained by the SSA algorithm for two different valuesrof0 and 100. Clearly, the
SSA algorithm is able to solve large-dimensional probledetecting some solu-
tions, in a reasonable time. The number of function evadnatand the CPU time
are smaller in the case af= 100. We remark that these results were obtained with
nfmax =1 000 000.

Table 3 Results of the SSA algorithm for Example 5.

n favg nfaal  CPU(s) f* Nsol

50 6.0799E+01 944761 287 6.0799E+01 4
100 1.2160E+02 383038 104 1.2160E+02 6




16 A. . Pereira, O. Ferreira, S. P. Pinho and E. M. G. P. Fetean

~(sin(x ) +sin(x)+sin(2 x/3)+sin(2 %/3))

it
Uil ters 7 \
i oSS
U2 KIN
U S
NN

9
SR |
R )
N
RN
Ay ‘|\‘\| Ay
\{\\\\\:“\\ it

77
Z

2227
77
77
7

Z
Z:
77
=
72
7z

NN
oy

77

Y
2

ey

Fig. 7 Plot of f(x) of Example 5 fom = 2.

3 Constrained Multilocal Programming

In general, constrained optimization problems are morigcdif to solve than un-
constrained or bound constrained problems, specially whesfeasible region is not
convex and is very small when compared with the whole segrahes There is a
metricp given by the ratio between the feasible region and the segate that can
be used to measure the difficulty of solving a problem. Withoglsastic method,
p can be estimated by the ratio between the number of feasihiéians and the
total number of solutions randomly generated [29]. Feasibyions made of dis-
jointed regions are also difficult to handle, in particulgrgsadient-based methods.
Stochastic methods are in general well succeeded whemgdhis type of difficult
problems. Different constrained search spaces have ndithe development of
a variety of constraint-handling techniques. The threennakasses of methods to
handle constraints are:

e methods that use penalty functions;
e methods based on biasing feasible over infeasible sokition
e methods that rely on multi-objective optimization coneept

We refer the reader to [34, 54] and to the references theneinded. There are
also other techniques that aim at repairing infeasiblet®wis. In [60], a method
that uses derivative information from the constraint seefeair infeasible points is
proposed in a hybrid particle swarm optimization context.

Penalty function-based methods are the most well-knowssaotd methods to
handle constraints in nonlinear optimization problemsesehtechniques transform
the constrained problem into a sequence of unconstraingoraiems by penal-
izing the objective functiorf whenever constraints are violated. Then, the goal is
to force constraint violation to zero — adding a positive glezation in minimiza-
tion problems, or subtracting a positive penalization irximmézation problems. The
penalty method relies on a penalty function, which depemdthe objective func-
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tion of the problem, a penalty term and a (at least one) pesitenalty parameter.
This is an iterative process where the solutions of the usicaimed subproblems
are approximations to the solution of the constrained bl

To solve the constrained MPP in the form presented in (1),estimory and
practice of penalty methods is addressed in the remainirigopthis section.

3.1 The penalty function method

A variety of sophisticated penalties exist in the class aigiy function meth-
ods [20, 36, 57]. They were developed to efficiently addrbesdsue related with
constraint-handling in problems with different structignd types of constraints.
Additive penalties define a penalty function of the form

PO H) = f(x) = 2(9(x), )

where f (x) is the objective function in problem (1) an#, known as the penalty
term, depends on the constraint functi@fx) and a positive penalty paramefer
The penalty term should be zero when the point is feasibletemip(x; 1) = f(x),
and is positive when the point is infeasible. The penaltjntaims at penalizing the
constraint violation, directing the search towards theifda region and, at the same
time, looking upwards for a point with the largefstOn the other hand, multiplica-
tive penalties have the form

P06 H) = f(X) Pmun(9(x), 1)

where Znuir(9(x), () is a function that should take the value one when the point is
feasible and smaller than one for infeasible points. Themispecial rule to design

a penalty function. Experiments show that penalties thaedd on the distance
from feasibility are better than those that rely on the nunteriolated constraints
alone.

Different penalty terms have been devised including thetdesatic, dynamic,
annealing and adaptive penalties. Death and adaptivetenaie appropriate for
population-based stochastic algorithms. Death penaltg dot require any penalty
parameter although can be computationally expensivegnyiriind feasible points
when the problem is highly constrained. Static penaltieaataddepend on the cur-
rent iteration number and a constant value is set to all gifid& points. With a dy-
namic penalty, the penalty parameter increases with thatibe number and with
the distance to feasibility. Most of the time, the dynamiogléy term also relies on
other parameters that depend on the problem at hand, andat &n easy task to
determine the best values for those parameters. Well sdedegpplications of dy-
namic penalties within particle swarm optimization al¢jfums appear in [30, 41].
Annealing penalties depend on a parameter known as tempetagt approaches
zero as iterations proceed. In methods based on adaptiadtipenthe penalty pa-
rameters are updated every iteration according to infaomajathered from the
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whole population of points. Adaptive penalties are propdse[5] in conjunction
with a genetic algorithm. A penalty adapting algorithm ug&ith an ant colony op-
timization aiming at eliminating the need for trial-anderpenalty parameter de-
termination is proposed in [1]. We refer to [9] for detailsicerning these penalties,
advantages and drawbacks during implementation.

Another common classification of penalty functions in diesisoptimization is
based on interior and exterior penalty functions [6, 7].dextr penalties are used
more often than interior penalties since an exterior pgriaftction does not require
an initial feasible point to start the iterative processitiermore, algorithms based
on interior penalty functions are more complex since allegated points should
be maintained inside the feasible region throughout theleviterative process. A
well-known interior penalty is the logarithmic barrier fttion and works only with
inequality constraints.

Here, we are specially interested in exterior penalty fiomst of the additive
type. Three different penalty functions are described astet with a benchmark
set of problems. Although setting the initial value for trenplty parameter as well
as its updating scheme are usually critical in algorithnegg@rmance, they are not
yet well-defined issues. Nevertheless, these issues aresaed since convergence
to the solution is to be promoted and accelerated. Thusijsletancerning the most
appropriate strategies for updating the penalty and otatad parameters are pre-
sented.

Our implementation of the penalty framework intends to figazonly the in-
equality constraints. Each subproblem of the sequenceighsdlved for a fixed
value of the penalty is the bound constrained multilocal optimization problem

max @(x; 1)
stli<x<u,i=1,..n 9)

To illustrate the effect on the penalty functignas the penalty parameter in-
creases, a one-dimensional example is used.

Example 6. Consider the problem
maxf(x) = e —x* s.t. x< 1andx e [-5,5].

Figure 8 shows, on the left plot, the penalty functigrthat depends on the penalty
term & (x,u) = pmax{0,x— 1} and, on the right plot, the, that depends on the
penalty term#?(x, i) = p(max{0,x — 1})?, for the three values g = 1,10,100.
As can be seen, in the feasible regiefb, 1], the penalty function coincides with
f(x), the functiong, is smoother ax = 1 (the solution of the problem) tham, and
the larger theu the more difficult the problem is.

L1/> penalty function. A variant of a dynamic nonstationary penalty function is
herein used to solve constrained MPP [30, 41]. In these paparticle swarm op-
timization algorithms are implemented in conjunction witle penalty technique.
The penalty term of the herein simplified variant, denotedyypenalty function,
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Fig. 8 Plot of f(x) and¢ (on the left) andp, (on the right) relative to Example 6.

is defined as

3

Do) =p'y (max{0,g;(x)})" %% (10)
=1

where the power of the constraint violatioy(.), may be a violation dependent
constant. The simplest approach sgt® = 1 if z< 0.1, andy(z) = 2, otherwise.
This is a nonsmooth function and derivative-free methodsikhbe applied when
solving problem (9). Unlike the suggestions in [30] and [4k penalty parameter

in (10) will not be changing dynamically with the iteratiommber. To define an
appropriate updating scheme for one has to consider a safeguarded scheme to
prevent the subproblems (9) from becoming ill-conditionsdhe penalty parameter
increases [7]. An upper bounghax is then defined and the update is as follows:

pktl = min{wk,umax} , for T > 1 andpmax >> 1, (11)

given an initial valueu® > 0, wherek represents the iteration counter. Thus, the
sequence of solutionis¢* (uk)}, from (9), will converge to the solutioxt of (1) and
QX" (HX); U¥) — f(x") ask — oo.

L »>-exponential penalty function. We now extend the use of a continuoys |
exponential penalty function to the constrained multilamatimization problem.
This penalty function was previously incorporated into duaion-type method for
solving semi-infinite programming problems [43]. The pé&nsrm depends on the
positive penalty parametgr and two other fixed positive parametexs vs:

exp _ VA (o0 _q) L V2 (o0 1)
P5P(x,v1, V2, 1) I (e“ 1)+ > (e“ 1) ; (12)

wheref(x) = maxj—1, . m[gj(X)]+ and thelg; (x)] - represents mgX, gj(x) }. Clearly,

0(x) is the infinity norm of the constraint violation. The tuninfjtbe penalty pa-
rameter previously described in (11) also applies to thigfig function.
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Hyperbolic penalty function. Another proposal uses the 2-parameter hyperbolic
penalty function [56]. This is a continuously differentiafiunction that depends on
two positive penalty parameters, in general different facheconstraintpy j and

p2j, j=1,...,m

@hypxul,uz Zﬂljgj JF\/IJ“ [9j(x +U22’j~ (13)

This penalty works as follows. In the initial phase of the q@®s,; increases,

causing a significant increase of the penalty at infeasibietp, while a reduction

in penalty is observed for points inside the feasible regidns way the search is
directed to the feasible region since the goal is to mininti@epenalty. From the
moment that a feasible point is obtained, the penalty paemg decreases. Thus,
the parametergy j andpy j are updated, for each=1,...,m, as follows:

k+1

it = T;L/Jl] andustt = uzj, if max{0,g;(x¢)} >0
st = T2 p andpgt = pk;, otherwise

foreachj =1,...,m, wherer; > 1 andt, < 1.

Multilocal penalty algorithm. The multilocal penalty (MP) algorithm can be im-
plemented using the stretched simulated annealing ahgorithen solving subprob-
lem (9), or the multilocal BB, both previously described imbSections 2.1 and 2.2,
respectively. Details of the main steps of the algorithmsirewn in Algorithm 4.
The algorithm is described for the simpler penalty functieee (10). Adjustments
have to be made when the penalty functions (12) and (13) &k us

Algorithm 4 MP algorithm

: Given: IJO, Hmax: T, &0, €0, Emax- Setk=0

: Whilethe stopping conditions are not no
: Settk=0andj =
: Whileinner stopplng conditions are not nokd

A WN P

41 Setp=0andj=j+1 4
4.2 Compute(]f(uk) = argmaX<x<y @' (X; uk) using Algorithm 2 or Algorithm 3
4.3 While ‘(pi (x]f(uk),,uk> — @nax] < % Or A > Emax do

Setp= p+1andA = pg

Randomly generatd € Va(Xj),i=1,...,2n

Find qznax—max L., zn{<P‘ (X| e}
4.4 SetX=1*+1andg =

5 g = min{Tu*, tmax}
6: SetX* « X*(uk) andk=k+1
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3.2 Numerical experiments

Here, we aim to compare the effectiveness of the SSA algonithen coupled with
a penalty function method to compute multiple solutionse @bove listed penalty
functions, | , penalty, b-exponential penalty and the hyperbolic penalty are tested

Stopping conditions. The stopping conditions for the multilocal penalty algionit
are:
Hx*(uk) _x*(ukfl)H < & or k> kmax

and the inner iterative process (in Step 2 of Algorithm 4jnieates ifLX does not
change for a specified number of iteratiokg,, or a maximum number of function
evaluations is reachedfmax.

Setting parameters. In this study, the selected values for the parameters esbult
from an exhaustive set of experiments. Here is thedjst: 102, kmax= 1000 and
the parameters for the b penalty function ar@l® =10, tmax= 10° andt = 10. The
parameters used in thg-éxponential penalty function arg = 100 andv, = 100.
The parameters used in the Hyperbolic penalty functionpé’yje: ugj =10 for

j=1,....m 11 = V10 andt, = 0.1. The parameters of the SSA algorithm are
set as followsdy = 5.0, &g = 0.1, &max = 1.0, Kjter = 5 andnfpnax = 100 000. The
problems were solved in a Intel Core 2 Duo, T8300, 2.4 GHz wi®B of RAM.

Experiments. For the first part of our comparative study, we use a well-kmow
problem described in Example 7.

Example 7. Consider the camelback objective function

X
f(x) = — (4— 2.4 + 31) Xi —xuXe +4(1—X5)%

which has four local maxima and two minima in the s& <x; < 2,i =1,2. The
two global maxima are located at (0.089842, -0.712656) @ah@i§9842, 0.712656).
Here, we define the constrained problem:

max f(x)

sit. g( )E <0, (14)

and illustrate the behavior of the MPA when using SSA algaonito solve the bound
constrained subproblems. Figure 9 shows the 3D plot anduotihes of f (x) as
well as ofg(x) < 0. This nonconvex problem has three maxima in the interithef
feasible region.

The problem in (14) was solved using the MP algorithm conmdbingth the hy-
perbolic penalty function. The method identified two glosalutions(—8.9842& —
02,7.126€E —01) and(8.984E — 02, —7.126€E — 01) with the global value D316 +
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Fig. 9 Plot of f(x) andg(x) < 0 in Example 7.

00. The local maximizet—1.703€ + 00,7.960& — 01) with value 21546 — 01
was also detected. To solve this problem, the MP algoritheded 214 seconds of
CPU time and 10535 functions evaluations, both average atsnb 30 runs.

To further analyze the performance of the multilocal pgnalgorithm when
coupled with SSA, a set of six benchmark problems, desciib&dl detail in [29],
is used. In this study, small dimensional problems<(10 andm < 13) with a
nonlinear objective function, simple bounds and inequaliinstraints were tested.
They are known in the literature as g04, g06, g08, g09, g12yd8d Details of the
selected problems are displayed in Table 4, where ‘Probiefers to the problem
number, ‘type off (x)’ describes the type of objective functiorfyp-global’ is the
known global solution (all are minimization problems)s the number of variables
andmis the number of inequality constraints.

Table 4 Details of the constrained problems selected from [29].

Problem type off (x) fopt-global n m
go4 quadratic —3.066FE+04 5 6
g06 cubic —6.961&+03 2 2
g08 general —9582F-02 2 2
g09 general BO6E+02 7 4
gl2 quadratic DOOE+00 3 1
gls quadratic —8.660F—-01 9 13

Table 5 contains the results obtained with the penaltigs,, 225" ° and 2P,
when combined with the SSA algorithm. THé is the best solution found for the
global minimum during all the 30 runefae\‘,’g' indicates the average number of func-
tion evaluations required to obtain the global minimum ¢ave 30 runs) andg
represents the number of solutions identified by the algorit
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Table5 Results for the MP algorithm, combined with SSA.

P 75 a0

f* n fg\\,lgl Nsol f* n fg\\,/gal Nsol f* n fae\\,lgl Nsol

904 —3.067E+04 156154 12 -3.067E+04 62337 1 —-3.067E+04 18352 1
g06 —6.962E4+03 27550 1 —6.96E 403 6472 —6.962E+03 15766
g08 —9.58E —-02 79771 5 -958%FE-02 67753 —9.58%E - 02 8624
g09 G787E+02 309719 1 &87E+02 183806 &87E+02 117638
gl2 1000E+00 202219 1 DOCE +00 302134 DOCE+00 313211
g18 —8.660E—-01 945000 2 —8.660E—01 845375 —8.660E -01 339213

N N
N L

4 Engineering Applications

In the last part of the chapter, an application of multilqmalgramming in the engi-
neering field is presented. Phase stability studies ardlonat programming prob-
lems frequently found in the chemical engineering area spibcial interest in pro-
cess design and optimization. These studies, still a custdyect for scientists and
engineers, are specially difficult, since the feasibleards very small and not con-
vex. In this section the mathematical formulation of thebpem is initially given
as well as a very brief summary of the strategies and optiinizéechniques used
so far. Following, some numerical results are presentedimudissed, and the main
findings outlined.

4.1 Phase stability

Separation processes are fundamental and ubiquitoustiopesrén the chemical

based industries. However, to design and optimize suchapaoperations, ther-
modynamic equilibrium conditions must be known. A sevebpm causing enor-
mous difficulties in this regard is that the number and idgraf phases present
at equilibrium are generally not known [46], which makes s#hatability analysis

obligatory. At a fixed temperature, pressure and global asitipn the problem is,

therefore, to evaluate if the system is globally stablendigg the separation in two
or more liquid phases.

The phase stability criteria based on the Gibbs free endrgwang, or derived
properties, are multiple, but the minimization of the tamgglane distant function
(TPDF), firstly proposed by Baker et al. [4], and first implementgdMiichelsen
[35], is usually applied, and accepted to be a reliable andrpanethodology for
stability studies. Considering the Gibbs free energy ofingxAG) of a multi-
component mixture, at a given temperatuf§ &and pressureR), to be described
asAg(x) = % = f(T,Px), wherex is the vector oh mole fraction compositions
characterizing that mixture ariRlis the ideal gas constant. For an initial feed com-
position,z, at a fixed system pressure and temperature, the tangeet @ipmmtion
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(Agp) at that point is

Agip(x) = Ag(2) +i (%AXIQ>

In this way, the tangent plane distance functio®DF) is calculated by

(X —z).

X=z

TPDF (x) = Ag(X) — AGip(X).

Among the several thermodynamic models possible to appif,INmodel [47] is
one of the most successful in the representation of eqiulibproperties of mul-
ticomponent liquid mixtures, and is frequently found in guoarcial software for
process simulation and design. Therefore, NRTL model is bpplied for which

n

o [Eew
Ag=$xIn(x)+$x | S—n0
22 T

> Giix
“

wherertj; andG;j; are interaction parameters between compongatsli, calculated
by Gji = exp(—ai;jiT;i), beinga the non-randomness parameter. They are all readily
available in the open literature.

To evaluate if a mixture of a given global composition showage instability
the following nonlinear multilocal optimization problemust be solved

min TPDF (x)
s.t. 'Zl(Xi) -1=0

6§xi <1 and i=1,...,n

The necessary and sufficient condition for stability is #itahe global minimum the
TPDF(x) function is nonnegative. Phase instability will be obsdre¢herwise. In

that event the following step is to find the number of phasesjinlibrium as well

as the composition of each phase.

Due to the mathematical complexity of the thermodynamic et&dthe mini-
mization of theT PDF and location of all the stationary points are demandingstask
requiring robust numerical methods, since these functiwesmultivariable, non-
convex, and highly nonlinear [8]. Strictly speaking, to ckhehase stability only
the global minimum is needed. However, the identificatioalb$tationary points is
very important because the local minimaTliPDF are good initial guesses for the
equilibrium calculations [13, 49].

Floudas and Gounaris [16] have very recently reviewed wdiffestrategies and
optimization technigues for phase stability and phase libguim calculations.
Thus, only aspects of relevance for the optimization metfzodi examples explored
in this section are briefly mentioned. In fact, the vast migjasf the researchers
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state that many techniques are initialization dependet,raay fail by converg-
ing to trivial solutions or be trapped in local minima [8, 1%, 33, 49], features
which are under attention in the numerical examples givaheérfollowing pages.
Hence, the performance analysis of new numerical techsigustill of enormous
importance concerning phase stability and equilibriaistud

Particularly, several variants of the simulated anneatieghod have been widely
applied, and importantly studies have been performed ecoimge the so-called
‘cooling schedule’, by fixing the control parameters to tlestbvalues [13, 46, 58,
66]. Naturally, a compromise must be made between efficiandyreliability, ana-
lyzing the probability of obtaining the global minimum wiitha reasonable compu-
tational effort. On the other hand, a branch and bound alyarhas been used with
several thermodynamic models [59, 65]. These authors dlztnit can effectively
solve the global stability problem, but only a few studiegehbeen carried out.

4.2 Numerical experiments

Due to space limitations, only two relevant examples are p@gented using SSA
algorithm.

Example 8. Consider the binary system water (1) + butyl glycol (2) €5 It might
seem a simple example, but this is a canonical example, whaeltiple stationary
points and local solutions can be found. Additionally, fomge compositions, in [37]
it was concluded that the stationary points found in [17ingshe interval Newton
method, are not true roots as shown by the simulated angeakthod.

The NRTL parameters used in the calculations are given ife&hwhile Table 7
compiles the results obtained at four different global cosifonsz.

Table6 NRTL parameters in Example 8 [17].

Components i | Tij Tji aij = aji

water/butyl glycol 1 2 1.2005955 1.4859846 0.121345

Confirming the results from [37], at the first two composisamly one stationary
point was found, giving the indication that only one liquitlgse will be formed. On
the contrary, the other two compositions present a negatiltee of theTPDF at
the global minimum, suggesting phase instability. At thabgl composition (0.25,
0.75) it must be noted the closeness of two stationary poiiigch can introduce
difficulties when applying the stretched technique as wetha small magnitude of
the function at the stationary point. The performance of3B8& can be assessed by
verifying that all the 30 runs converge to the function va(fi&) at the stationary
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Table 7 Numerical results for the binary system water + butyl glycol.

z CPU(s) f* X"

(5.00E-02, 9.50E-01) 0.22  0.0000E+00 (5.00E-02, 9.50E-01
(1.00E-01, 9.00E-01) 0.27  0.0000E+00 (1.00E-01, 9.00E-01
(2.50E-01, 7.50E-01)  0.30  -9.2025E-02 (8.79E-01, 1.21F-0
0.0000E+00  (2.50E-01, 7.50E-01)
8.4999E-05 (2.96E-01, 7.04E-01)
(5.00E-01,5.00E-01) 0.20  -3.4091E-02 (1.43E-01, 8.5TF-0
-2.7355E-02 (8.36E-01, 1.64E-01)
0.0000E+00  (5.00E-01, 5.00E-01)

point (x*). It also must be stressed that the average time is muchromifchen
comparing with the results in [37] and [17].

Example 9. Consider now the ternary system n-propanol (1) + n-buta2jot (wa-
ter (3) at 25°C. The NRTL parameters needed are compiled in Table 8.

Table8 NRTL parameters in Example 9 [66].

Components i j Tij Tji aij = aj

propanol/butanol 1 2 -0.61259 0.71640 0.30
propanol/water 1 3 -0.07149 2.74250 0.30
butanol/water 2 3 0.90047 3.51307 0.48

This is also a reference system in the study of phase stalpitiésenting, like in
the previous example, multiple stationary points. Tableelents a complete list of
the results found for two global compositions. In both cakes PDF function is
negative indicating phase splitting. It must again be stdghe closeness of some
stationary points and the very small magnitude of the famctirhe average time
although longer than in the previous example is still verifarm.

Table9 Numerical results for the ternary system n-propanol + n-butaneéter.

z CPU(s) f* x*

(1.20E-01, 8.00E-02, 8.00E-01) 2.42  -7.4818E-04 (5.92F2(82E-02,9.12E-01)
-3.0693E-06 (1.30E-01, 8.91E-02, 7.81E-01)
0.0000E+00 (1.20E-01, 8.00E-02, 8.00E-01)

(1.30E-01, 7.00E-02, 8.00E-01) 2.34 -3.2762E-04 (7.38E3003E-02, 8.96E-01)
-8.6268E-07 (1.38E-01, 7.56E-02, 7.87E-01)
0.0000E+00 (1.30E-01, 7.00E-02, 8.00E-01)
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5 Conclusions

Several approaches aiming at computing multiple solutiafisound constrained
MPP are addressed. The first proposal is a stochastic metwsdi lon a function
stretching technique and the simulated annealing algorifhdeterministic method
is also proposed. It relies on a branch-and-bound-type adetiat is able to keep
the solutions found so far. The results reported with-a@imensional problem show
that the performance of the SSA algorithm is not greatlyciéfe by problem’s di-
mension. The computational cost of implementing the nodél BB algorithm is
much higher than that of the SSA algorithm. The ability of @A algorithm to
tackle large dimensional problems was investigated usiclgssical example with
various dimensions.

This work also describes some important issues relatedetintplementation
of penalty function methods in classical optimization. Aoposal, focused on a
penalty framework, is shown when multiple solutions of ¢oaised optimization
problems are required. Three penalty functions have beesepted and discussed.
The numerical results obtained when the penalty functiothotkis used to solve
constrained MPP are reported. A comparison between the theralty functions
is included. The subproblems that emerge from the multilpeaalty strategy are
bound constrained MPP and they may be solved by the two pedpstsategies,
either the SSA algorithm or the multilocal BB algorithm. Hewer, the reported nu-
merical experiments use the MP algorithm which relies orsthetched simulating
annealing, since this is by far the most efficient version.Wafee shown that the
penalty function method is effective in solving constraifdPP, in particular when
some penalty functions are used.

Finally, the phase stability of two mixtures was studiediffecent global com-
positions using the SSA algorithm. It proved to be very tdézand robust even in
the cases where the stationary points are very close. Addity, it was possible to
find short CPU times for all the six conditions investigat€de results found so far
will soon be checked and extended to compositions near #iepalint and, also, to
systems containing three liquid phases, hardly ever cersit{18], or to quaternary
systems with multiple stationary points.
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