

Event Router-Scheduler for the Modular Anatomy of
Service-oriented Automation Components

J. M. Mendes1, J. de Sousa2, P. Leitão3, A. W. Colombo4, F. Restivo1

1Department of Informatics Engineering, Faculty of Engineering - University of Porto, Rua Dr. Roberto Frias
s/n, 4200-465 Porto, Portugal

2Department of Electrical and Computers Engineering, Faculty of Science and Technology, New University of
Lisbon, Quinta da Torre, 2825-114 Caparica, Portugal

3Department of Electrical Engineering, Polytechnic Institute of Bragança, Quinta Sta Apolónia, Apartado
1134, 5301-857 Bragança, Portugal

4Schneider Electric GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany

Abstract
Automation and production systems are evolving in the direction of autonomous and collaborative
components, approaching the idea of an ecosystem. A single habitant of this system is responsible for
different and concurrent activities and thus it requires a special adapted anatomy that is balanced for the
several requirements. This work introduces an anatomical-like structure for the development of functional
and reusable modules of service-oriented automation components. The central attention will be given to their
internal structure and the mechanism that bind the modules together, called the Event Router-Scheduler.
The resulting software automation components are customized for different tasks due to the inclusion and
management of the specialized functional modules and provide the ability to operate in a service-oriented
automation and production environment.

Keywords:
Service-oriented Architecture, Distributed and Component-based Automation and Production Systems

1 INTRODUCTION
In distributed automation and especially in the branch of
production systems, the set of equipment and other
components in the system may be comparable under
some circumstances to a society of living beings. Taken
a closer look into a component itself, its internal
mechatronical organization may correspond to functional
organs that are responsible for specific tasks, providing
the "vital" properties to be able to fulfill its requirements.
A central question is how these functional modules or
“organs” may be integrated, controlled and able to pass
impulses between them and therefore to form complex
and operational structures.
Service-oriented systems are one approach to specify
the environments for heterogeneous “organisms” that
require interaction. Service ecosystems are well known in
the field of business and electronic commerce (see [1,2])
but in industrial automation and production systems
(especially concerning distributed devices) it is a
relatively new research area with promising results. One
of the major starting points was the EU Research Project
SIRENA [3] which goal was to develop a service
infrastructure for real time embedded networked
applications. The implementation of the service
framework was developed in conformance to the Device
Profile for Web Services (DPWS) specification to permit
the communications between resource constrained
embedded devices [4]. Since then, other projects are
centering in service-oriented devices and supporting
environment, such as the EU Research Project
SOCRADES [5].
An important issue for these systems is where the control
is located and how its granularity and distribution are
affected. Since the introduction of the common
Programmable Logic Controller (PLC), significant effort
has been done in research and development to
overcome the PLC’s limitations in terms of centralized
usage. Solutions to this challenge may come from
different directions such as Multi-Agent Systems [6, 7],

Holonic Systems [8-10] and recently Service-oriented
principles [3,11].
Architectures for devices and control software have also
been focus of research, commonly dealing with the
IEC61131-3 languages [12-15], the IEC 61499 function
blocks for distributed control and automation [16-18] and
other control techniques such as Petri Nets [19, 20]. For
service-oriented distributed devices, the control method
is partially open to any control approach, but should also
consider specific requirements of service-orientation.
Serving different functionalities, a single service-oriented
control device should be ready for multiple activities, and
thus requires a special adapted internal framework that
handles differentiate and concurrent processes.
This work introduces an anatomical-like structure for the
development of functional and reusable modules of a
component, part of a service-oriented automation
system. The central focus will be directed to its internal
structure and especially to the mechanism that tie
functional modules together, called the Event Router-
Scheduler (ER-S). The ER-S can be compared to the
nervous system of living beings in sense of carrying
impulses from and to different organs and so maintaining
the dynamic information flow. Intelligent behavior can be
reached when these nerves are linked to the “brain”, that
provides static control based on workflow processes and
also autonomy to respond to unexpected events,
undocumented situations and internal objectives. Being
inserted in a service-oriented environment, interaction
with other components is achieved only by providing and
requesting services to reach local and global objectives.
The paper is organized in the following way: after the
introductory notes, Section 2 describes the scope and
domain of the work, namely the environment of Service-
oriented Automation Components, and Section 3
resumes the internal anatomy of the components. The
Event Router-Scheduler is explained in section 4 and a
prototype implementation and operation is presented in
the Section 5. Finally, Section 6 rounds up the paper with
conclusions.

Intelligent Computation in Manufacturing Engineering - 6

2 THE SOCIETY OF SERVICE-ORIENTED
AUTOMATION COMPONENTS

Production and automation systems are heterogeneous
in nature, made of different components with
distinguished roles. It is therefore predictable that the
specifications of those systems are moving from the
traditional central-controlled manner to the corresponding
distributed counterpart, assimilating the natural
appearance and layout of the real system.
Thus, one promising guideline in this respect is to have a
conglomerate of distributed, autonomous, intelligent,
fault-tolerant, and reusable manufacturing units, which
operates as a set of co-operating entities. Each entity is
capable to dynamically interact with each other to
achieve both local and global manufacturing objectives,
from the physical/machine control level on the shop floor
to the higher levels of the factory management systems
[8]. This new generation of systems is referenced as
Intelligent Manufacturing Systems (IMS) [21].
One of the rising solutions to adapt the majority of the
concepts behind IMS into feasible principles is Service-
oriented Architectures (SoA). The concept SoA has
gained significant attraction in just a few years and will
undoubtedly have a major impact in many branches of
technology. According to [4], “A service-oriented
architecture is a set of architectural tenets for building
autonomous yet interoperable systems.” and this
proposal is facing one of the challenges of IMS, namely
providing interoperability between autonomous systems.
Adapting the service-orientation concepts to the
automation and production “ecosystem” at the shop floor
and considering the principles of IMS, a “society” of
service-oriented automation components is born. Each
participant in the system is referred as Service-oriented
Component and in some extends, Service-oriented
Automation Component (when it has automatic control
duties). Components may have different roles (e.g.
production, transportation and monitoring) and operate
autonomously. Since services are the main guide, these
components should have the need of requesting services
and also the desire in providing services to the
community. Services itself are a form of providing
resources and actions that are shared in some
circumstances, much similar to the real-life services.
Fig. 1 shows the basic description of a Service-oriented
Component and its integration into the environment of
automation and production shop floor. The given
example is a component that represents a physical
conveyor (Mediator of: Conveyor) and has the
transportation role (Role: Transportation). Implicitly, the
communication to the outside world would be via services
(Orientation: Services), being able to provide and request
services when needed. The integration into the IT-
enterprise is also reached by the service-orientation. A
component has a set of tasks or activities (Tasks:
Transport, Monitoring, etc.) and those may be used as
services provided by the component.

Figure 1: Service-oriented Automation Component and

its environment.

Interaction between components is done by the two-way
service orientation, in sense of requesting and providing
services. It is expected in production and automation that
heterogeneous components work together for mutual
benefit and global objectives. This can be distinguished
as symbiosis, similar to the interactions between different
biological species [22]. It is also possible that
components may compete with each other for resources
(services), but in the end the global goal must be
respected.
In some situations Service-oriented Components can be
seen as software agents according to the definition given
by Schoop et al. [7], adapted from Jennings and
Wooldridge [6], to flexible production systems:
“An agent is considered a software entity situated in a
flexible production environment, with enough intelligence
that is capable of autonomous control actions in this
environment and of co-operation relationships by
participating in associations’ agreements with other
entities in order to meet its design objectives”.
Moreover, Multi-agent Systems (MAS) [23] are of special
interest since these systems bring the idea of
collaborative agent society, in which each of them can
take autonomous actions over their environment or over
the system that they represent. On the other hand and
differentiating from the agent concepts, the true meaning
of service-orientation is centered in the requirement of
providing services and in the necessity of requesting
services by a component in the system. The real
architecture, habitat and objectives of the system are
truly open to the developer and thus it may adopt
different strategies to cover the requirements. For more
information about some discussion points and
applications of MAS with SoA, the user can consult the
following documentation: [24-27].
The specification of an internal anatomy of components
that may simplify their development remains an open
issue. Since Service-oriented Components may have
different and sometimes concurrent activities, it may be
useful to consider a functional and independent structure
in favor of reusability and easy development. The
following section describes an anatomical-like structure
to develop service-oriented components.

3 INTERNAL ANATOMY OF COMPONENTS
Each Service-oriented Component may be implemented
independently and differently. The only requirement is
that it should share its functions as services and obey to
the protocols of communication and processes. To be
able to construct and deploy these components in a
simple but functional way, an anatomical-like framework
was specified.
A general component is structured in an anatomical form
comprising several “organs” (functional modules) that are
responsible for individual tasks, as illustrated in Fig. 2:
Logic Controller, Decision and Exception Handler,
Communication, Device Interface and Event Router-
Scheduler. These modules are included in the control
component according to its needs and possibly
implemented using different technologies. It is also
possible to develop and integrate other modules for
diverse functionalities, if they respect the rules provided
by the framework for the integration (task of the Event
Router-Scheduler).
The Event-Router-Scheduler and Communication
modules are the kernel modules to develop a Service-
oriented Component based on the proposed anatomy.
They are responsible, respectively, for the main
framework of the component (event-based inter-module

communication and integration) and external
communication with other components (service-oriented
inter-component communication). Other modules may be
added to the structure according to the component’s
requirements.

Figure 2: Concept of a modular anatomy for a Service-

oriented Component.
In more detail, the Communication module provides the
necessary functions to expose the services from the
associated component and request services from other
components. Other functions include, among others,
discovery and negotiation mechanisms. The remaining
modules of the component may use the Communication
module to access these functions through impulses
(events) provided by the Event Router-Scheduler module.
As an example, a conveyor may provide the Transfer
service to handle the movement of pallets, which is
controlled by the Logic Controller module and accessed
by the Device Interface module. The Transfer service
may be used by the other components, but the
component itself can also call external services when
needed (e.g. to be connected to other conveyor it
requests the Transfer service of another conveyor) [28].

A suitable technological solution to implement the
service-oriented communication module is to use Web
technology, and most specifically Web services. At its
core, Web services technology is quite simple and it is
designed to move XML (eXtended Markup Language)
documents between service processes using standard
Internet protocols. This simplicity helps Web services to
achieve the primary goal of interoperability and also
means that it is necessary to add other technologies to
build complex distributed applications. A profile has been
specified for adopting Web services at the device level
known as Device Profile for Web Services (DPWS) [4].
The remaining modules are described briefly in Fig. 2.
The goal to include the other modules is to provide an
example of a Service-oriented Automation Component
that is mediator of some physical equipment with control
capabilities. For example, the resulting component of Fig.
2 represents a smart controller of a conveyor device, by
providing several features such as control and access
over the physical device, ability to decide in unexpected
and undocumented situations and also the possibility of
service-oriented communication to other components.
Other example is a service-oriented PLC-like controller,
which may interpret control models (e.g. in IEC61131-3
languages) and give the necessary orders to other
components via the invocation of the provided services
by them. In this case, it is not necessary to have the
Device Interface module, since it does not command
directly the devices.
Finally, the “nervous system” of the anatomy represented
in Fig. 2 is managed by the Event Router-Scheduler.
More detail to this module follows in the next section.

4 THE EVENT ROUTER-SCHEDULER MODULE
Components and devices that implement several of the
expressed aspects of service-orientation require a
consistent anatomy to deal with the different function
modules (“organs”) in order to fulfill the necessary
requirement. Other problems may arise from the
asynchronously operating modules, possible data
inconsistencies and concurrent processes/threads. For
this purpose, it is proposed a mechanism to provide an
“impulse” (event) passing and scheduling feature to
guide the impulses to different modules, thus permitting
the synchronized communication between them. The
heart of the component is the Event Router-Scheduler
(ER-S) module.
During the design phase it was clear that the ER-S
should meet the following objectives:

 • Common event routing/scheduling mechanism for the
communication and integration of modules;

 • Provide some transparent functions for creating and
managing modules;

 • Suitable for software application that are deployed
both in traditional PC and embedded systems;

 • High performance, especially in critical situations and
targeting real-time applications;

 • Use of C language, aiming to balance between
performance, portability and features;

 • Tread safety and management of data concurrency;

 • Easy to use by developers, in sense of building
modules and how events are processed.

The function of the ER-S is comparable in some
parameters to the nervous system of living beings,
including humans. H. Gray wrote in his book “Gray's
Anatomy of the Human Body” [29]:
“The Nervous System is the most complicated and highly
organized of the various systems which make up the
human body. It is the mechanism concerned with the
correlation and integration of various bodily processes
and the reactions and adjustments of the organism to its
environment.”
In the case of Service-oriented Components, the
“environment” is captured and manipulated by specific
modules (e.g. Communication and Device Interface), but
the natural equilibrium with impulses (events) of the
several modules and their integration is reached with the
help of the ER-S.
Fig. 3 shows the generic conceptual structure of the
Event Router-Scheduler. The feature groups are
separated in blocks that correspond to the Scheduling
and Routing of Events, Hardware/Software Abstraction,
Threading and Data Consistency and Template/Interface
for Event-based Modules.

Figure 3: Structure of the Event Router-Scheduler.

The main feature is to provide event-based
communication between functional modules and the
corresponding routing and scheduling of events (see

Scheduling and Routing of Events block of Fig. 3). From
the practical point of view, the component’s internal
impulses (events) between its functional modules are
integrally managed by the ER-S. The ER-S allows
synchronous and asynchronous event calling between
any modules (which is extremely important in real-time
applications), and offers several additional procedures to
realize more complex operations, like events generated
by other events and time-triggered events. In the most
basic form, a sender module must only emit an event to a
specific destination (other module) and the ER-S routes it
to the destination. There are also other options for
sending and processing events, such as events with
reply and multicast events to several destination modules
(see Fig. 4).

Figure 4: Different types of sending events by a module

through the ER-S.
An event is a structure with all the information a module
needs to know regarding various possible situations.
Besides the standard information as the pretended action
and the parameters from who the event came, it can ask
for a reply, for an information forwarding, can have a fault
message’s receiver, and the event’s receiver can check if
it is a reply. Also, an event sent more than once, by error,
is detectable.
The ER-S uses lists as a way of transmitting and queuing
events between the modules, so the number of events
waiting to be processed is only limited by the available
memory. The ER-S uses some techniques to avoid
memory fragmentation, because the creation and
elimination of new data is a very frequent operation in the
modules, as the world is constantly changing. In some
cases when the number of events is high, the ER-S
offers the possibility to give different priorities to the
events. Like this, an event sent to a certain module will
always pass by all the waiting events of that module
which have lower priority than the sent one.
Being capable of both synchronous and asynchronous
operations, the asynchronous ones are managed using
threads. The synchronous operations can be either
freezing or non-freezing for the receiver. For example, on
event reading the operation can be a module-freezer or
not. In case of the freezing mode, the module freezes
until any event arrives for it. After that, the module
continues its normal proceeding, as shown in Fig. 5(a).
This is a very low CPU resource-taking procedure, useful
for embedded devices. However, it is not useful for real-
time multi-task modules, as this kind of module should
not freeze. On the other hand, the non-freezing event-
reading always receives an event. However, it can be an
invalid event. An invalid event means that there were no
events for the module, so it can continue its other tasks.
Obviously, if it is a valid event, the module should
process it. This is represented in Fig. 5(b).
Asynchronous event triggering is also possible.
Callbacks are used to perform this type of operation, as it
must occur when it is called. However, the event is not
triggered immediately, because of data-protecting, and it

should only occur when the module activates an
authorization (mutex) to allow callbacks, which will
possibly change the module’s data. Each module has its
mutex for this matter, and developers who want to enable
asynchronous event handling should be very careful with
this protection.

Figure 5: Event reading: (a) module-freezing (b) non-

freezing.
The remaining blocks of Fig. 3 are responsible for
adjacent tasks of the Scheduling and Routing of Events
block, specifically to its and other modules’ management.
The Hardware/Software Abstraction provides some
functions transparent to the system architecture that can
be accessed by all modules. Since the ER-S and other
modules are in a multi-functional and concurrent
environment, a special block of the ER-S, namely the
Threading and Data Consistency block, introduces
simple thread manipulation and data protection (such as
mutex).

Finally, the Template/Interface for Event-based Modules
block provides the basis for creating functional modules
and associates them to the ER-S. Each module can be
programmed independently. This means that it is
possible to remove, replace, upgrade or add new
modules. This makes a program using the ER-S very
flexible. The module ID is the module’s identification and
it is unique for each module. This variable is what the
other modules need to know to send an event to a
specific module. It is comparable to the code that the
nerves carry to reach some organ. However, it is also
possible to search a module by its type like “controller” or
“user interface”, as this way is much more practical for a
developer to reach a module without many information.

5 IMPLEMENTATION AND OPERATION
A prototype implementation has been done to test the
proposed framework, integrally coded using the C
programming language and compatible with Windows
and GNU/Linux operating systems (targeting also others,
such as VxWorks). Some implementation details are
given next.
The functions provided by the framework to develop and
operate components are explained with an example
component representing a mechanical arm (articulated
robot to move small objects) made of three modules
(besides the ER-S), represented in Fig. 6. The modules
correspond to a subset of the ones in Fig. 2 (excluding
the Decision and Exception Handler module) that are
briefly commented in section 3. The major difference is
that it is connected to the mechanical arm via the Device
Interface module, instead of the conveyor of Fig. 2.
In terms of data structures, the ER-S includes several
structure types for storing and relating different
information about modules, events and other aspects.
The Module Structure, which represents a module in the
program, identifies its module by a unique ID. It also
provides storage for local information such as the

module’s incoming events list, which is where the module
is going to get the events sent by the other modules and
a pointer to the module’s callback implemented function,
which is triggered by new events when the asynchronous
mode is activated. The Event Structure has all the
information to handle an event: action name, parameters,
who is sending/sent it (module ID), and some variables
for reply handling, an ID of the event and ID of the reply.
Finally, the Database Structure of the ER-S is where
pointers to all modules are allocated.
First the modules must be created. Thus, the respective
function shall be called, and each module must have an
ID and type, as seen below:
module_create(1,DEVICE_INTERFACE);

module_create(2,LOGIC_CONTROLLER);

module_create(3,COMMUNICATION);

Sending and receiving events is very straightforward. For
example, to send an event from module 1 to module 2,
the developer must create an event, put the sender, the
action and the parameters, and then send it with low or
high priority, to the destiny, using the event_send()
function. To read an event, presuming that callbacks are
disabled, module 2 must call the synchronous event
handle by either freezing while there are not events, or
not freezing. This variable is a parameter when calling
the event-reading function, as it can be something like
event_get(2, FREEZE) or event_get(2, NO_FREEZE).

The not-freezing way of getting an event always returns
an event, but it may be an invalid event. On this case,
valid events always have valid senders, this is, the from
variable, which corresponds to the sender ID, is always
bigger than zero. So, invalid events have negative sender
IDs. If the module 2’s callback is ON instead, and if the
callback mutex allows it, the new event would
immediately trigger the callback, so it would run the
function pointed on the module 2’s structure.
More flexible operations can be done with multicasting
and reply to events. In case of multicasting, there is a
special function to emit an event to several destination
modules: event_send_multicast(). One of the parameters
is a list of destination modules that are intended to
receive the event. Some events may expect replies and
this can be done in two ways: asynchronously (non-
freezing) using the event_send() function with the
attribute reply_id and synchronously (freezing) using the
special event_send_with_reply() function.

For the example, the modules of the mechanical arm
component have simple functionalities. The Device
Interface provides the access to the mechanical arm in
sense of calling the programs of pick & place to move the
objects from one place to another. Its Communication
module uses a service-oriented infrastructure, described
in [30], based on a DPWS (Device Profile for Web
Services) implementation, namely SoA for Devices
(SOA4D). Through the communication module, the

component provides one service, Transfer, to be called
externally in case objects are available to be transported.
Finally, the Process Controller module is responsible for
coordinating the components activity, generally
synchronizing service calls with the pick & place program
execution of mechanical arm.
A simple algorithm is presented in Fig. 6 inside the Logic
Controller module. Each time a function is required by
one module to another one, events are sent through the
ER-S. In case of the algorithm of Fig. 6, an instance of it
is executed when the Transfer service is requested and
then the Communication module of the component emits
an event to the Logic Controller. It is assumed that the
Transfer service is called when an object is ready to be
moved. From the other hand, the operation of pick &
place program can only be started if the mechanical arm
is not occupied and if the destination where to place the
object is free. For the sake of simplification, these
checking functions are represented in the algorithm but
their behavior is absent in Fig. 6., which would involve
sending/receiving events to/from the Device Interface
and possible also an entity representing the destination
place. On successful conclusion of the pick & place
program of then Device Interface, an event is sent back
to the Logic Controller, and by its turn to the
Communication module that then notifies the external
component and thus concludes the service usage.

6 CONCLUSIONS
This paper presents a framework for developing service-
oriented automation systems, specially dedicated to the
mechanism of passing events between the different
functional modules that build up the component. The
adoption of this “bio-inspired” modular structure makes
possible to design and develop modules with distinct and
independent functions but complementary to each other,
forming complex, intelligent and social components. The
resulted component’s structure may help in decreasing
the development time and effort in the integration into the
system. The prototype development shows the feasibility
and features of the concept, providing the possibility to
develop reusable and functional modules and deploy
them into service-oriented components.
Future work is to enhance both concept and
development, and also provide a case scenario based on
real equipment that represents a production system. A
special case is to enhance the flexibly in the deployment
of components and its modules, by developing a
specification of metadata for modules that would permit
the creation of them without worrying about how the
information comes from the other modules.

Figure 6: Example component of a mechanical arm and its operation.

7 ACKNOWLEDGMENTS
The authors would like to thank the partners of the
Innovative Production Machines and Systems (I*PROMS)
Network of Excellence (http://www.iproms.org) and the
EU project SOCRADES (http://www.socrades.eu), for
their support.

8 REFERENCES
[1] Barros, A., Dumas, M., 2006, The Rise of Web

Service Ecosystems, IT Professional, 8: 31-37
[2] Sawatani, Y., 2007, Research in Service

Ecosystems, International Center for Management
of Engineering and Technology, Portland, 2763-
2768

[3] Jammes, F., Smit, H., 2005, Service-oriented
architectures for devices - the SIRENA view, 3rd
IEEE International Conference on Industrial
Informatics, 140-147

[4] Jammes, F., Mensch, A., Smit, H., 2005, Service-
oriented device communications using the devices
profile for web services, Proc. of the 3rd
international workshop on Middleware for pervasive
and ad-hoc computing, ACM Press, 1-8

[5] Taisch, M., 2007, The Socrades European project
(Service-Orientated Cross-layer InfRAstructure for
Distributed Smart Embedded Devices),
Presentation at the Second World Congress on
Engineering Asset Management and The Fourth
International Conference on Condition Monitoring

[6] Jennings, N. R., Wooldridge, M., 1998, Applications
of intelligent agents, Springer-Verlag New York,
Inc., 3-28

[7] Schoop, R., Neubert, R., Colombo, A., 2001, A
multiagent-based distributed control platform for
industrial flexible production systems, 27th Annual
Conference of the IEEE Industrial Electronics
Society, 1: 279-284

[8] Colombo, A., Neubert, R., Schoop, R., 2001, A
solution to holonic control systems, Proceedings of
the 8th IEEE International Conference on Emerging
Technologies and Factory Automation, 2: 489-498

[9] Deen, S, 2003, Agent-based manufacturing:
advances in the holonic approach, Springer Verlag
Berlin Heidelberg.

[10] Leitao, P., Colombo, A., Restivo, F., 2005,
ADACOR: a collaborative production automation
and control architecture, IEEE Intelligent Systems,
20/1: 58-66

[11] Colombo, A., Jammes, F., Smit, H., Harrison, R.,
Lastra, J., Delamer, I., 2005, Service-oriented
architectures for collaborative automation, 32nd
Annual Conference of IEEE Industrial Electronics
Society, 6

[12] Bonfatti, F., Gadda, G., Monari, P. D., 1995, Re-
usable software design for programmable logic
controllers, SIGPLAN Not., ACM, 30/11: 31-40

[13] Erickson, K., 1996, Programmable logic controllers,
IEEE Potentials, 15/1: 14-17

[14] Aramaki, N., Shimokawa, Y., Kuno, S., Saitoh, T.,
Hashimoto, H., 1997, A new architecture for high-
performance programmable logic controller, 23rd
International Conference on Industrial Electronics,
Control and Instrumentation, 1: 187-190

[15] Huang, J., Li, Y., Luo, Z., Liu, X., Nan, K., 2003, The
design of a new-type PLC based on IEC61131-3,
International Conference on Machine Learning and
Cybernetics, 2: 809-813

[16] Thramboulidis, K. C., 2003, Towards an engineering
tool for implementing reusable distributed control
systems, ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held
jointly with 11th ACM SIGSOFT international
symposium on Foundations of software
engineering, ACM, 351-354

[17] Hall, K., Staron, R., Zoitl, A., 2007, Challenges to
Industry Adoption of the IEC 61499 Standard on
Event-based Function Blocks, 5th IEEE
International Conference on Industrial Informatics,
2: 823-828

[18] Hirsch, M., Gerber, C., Hanisch, H., Vyatkin, V.,
2007, Design and Implementation of
Heterogeneous Distributed Controllers According to
the IEC 61499 Standard - A Case Study, 5th IEEE
International Conference on Industrial Informatics,
2: 829-834

[19] Murata, T., Komoda, N., Matsumoto, K., Haruna, K.,
1986, A Petri Net-Based Controller for Flexible and
Maintainable Sequence Control and its Applications
in Factory Automation, IEEE Transactions on
Industrial Electronics, 33/1: 1-8

[20] Nascimento, P. S. B., Maciel, P. R. M., Lima, M. E.,
Santana, R. E., Filho, A. G. S., 2004, A partial
reconfigurable architecture for controllers based on
Petri nets, SBCCI '04: Proceedings of the 17th
symposium on Integrated circuits and system
design, ACM, 16-21

[21] Hayashi, H., 1993, The IMS International
Collaborative Program, Proceedings of the 24th
ISIR, Japan Industrial Robot Association

[22] Moran, N. A., 2006, Symbiosis, Current Biology,
Cell Press, Elsevier Inc., 16/20: 866-871

[23] Wooldridge, M., 2002, Introduction to MultiAgent
Systems, Wiley

[24] Huhns, M., 2002, Agents as Web services, IEEE
Internet Computing, 6/4: 93-95

[25] Ardissono, L., Goy, A., Petrone, G., 2003, Enabling
conversations with web services, AAMAS '03:
Proceedings of the second international joint
conference on Autonomous agents and multiagent
systems, ACM Press, pp. 819-826

[26] Shen, W., Li, Y., Hao, Q., Wang, S., Ghenniwa, H.,
2005, Implementing collaborative manufacturing
with intelligent Web services, The Fifth International
Conference on Computer and Information
Technology, CIT 2005, 1063-1069

[27] Blanchet, W., Stroulia, E., Elio, R., 2005, Supporting
adaptive Web-service orchestration with an agent
conversation framework, IEEE International
Conference on Web Services.

[28] Mendes, J. M., Leitão, P., Colombo, A. W., Restivo,
F., 2008, Service-oriented Control Architecture for
Reconfigurable Production Systems, to appear in
the Proceedings of the 6th IEEE International
Conference on Industrial Informatics

[29] Gray, H., 2000, Gray's Anatomy of the Human
Body, 20th Edition (Original by Philadelphia: Lea and
Febiger, 1918), New York: Bartleby.com

[30] Mendes, J. M, Rodrigues, A., Leitão, P., Colombo,
A. W., Restivo, F., 2008, Distributed Control
Patterns using Device Profile for Web Services,
Submitted to the 13th IEEE International
Conference on Emerging Technologies and Factory
Automation

