
Abstract 
RPC-FPGA implements the Open Network Computing ONC-RPC remote 
procedure call protocol specification for use in FPGA accelerators. The 
compiler generates a High-Level Synthesis (HLS) interface to call a 
hardware procedure and to stream the data between the processor and 
the FPGA. The major benefits of RPC-FPGA are:  
• hardware procedures running on an FPGA accelerator become 

accessible for any client in the network,  
• the development time of the communication interface between the 

processor and the FPGA is greatly reduced.  

Using RPC-FPGA a speedup gain of 17 to 20 is demonstrated on a square 
matrix multiplication of N=4096 with network speeds 100 Mbps and 1 
Gbps respectively. 

Motivation 
High-Level Synthesis (HLS) languages define the interface between Host 
and FPGA using proprietary pragmas (Vivado HLS) , language constructs 
(OpenCL) or message passing (MPI). Some limitations of current 
host/fpga interfaces are: 
• the hw/sw interface has to be defined and managed by the user 
• DMA data transfer requires explicit coding 
• data type serialization support is limited 
• interfacing leads to substantial programming overhead 

Methodology 
The interface is defined in a protocol description file (.x) consisting of 
the arguments declaration and the procedure prototype, following the 
ONC-RPC syntax. Example: see the protocol description of a dot product. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RPC-Model 
We use a 2-stage Remote Procedure Call: 
• 1st stage: connect network client and server via ONC-RPC 
• 2nd stage: connect server with attached FPGA via RPC-FPGA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The client procedure call is relayed to a server with an attached FPGA by 
stubs generated from the protocol file proto.x using a) RPCGEN for the 
network and b) RPCFPGA for the reconfigurable hardware core. 

Interfaces 
• TCP/IP or TCP/UDP transport between network client and server 
• DMA channels (AXI4) between processing system (PS) and 

programmable logic (PL) 
 

 
 
 
 
 
 
 
 
 
 

RPCFPGA 
HLS Template 
• defines the hardware interface between PS and PL 
• declares hw data types and structures of the procedure arguments 
• creates logic for streaming data transfer 
• manages marshalling of data types and serialization of arrays 
• optimizes pipelined throughput to stream at 1 element per cycle 
• includes TODO mark to insert procedure body 
Example: the HLS template dotproduct.c generated from dotproduct.x 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Server code linking network to FPGA 
• service procedure on the server calls the hardware procedure on 

behalf of the ONC-RPC client 
• I/O arguments are sent as uint 32 or 64-bit words from DDR (PS) to 

BLOCKRAM (PL) using DMA 
 
 
 
 
 
 
 
 
 

RPC extension to multiple dimensions 
• HLS optimizations operate on multidimensional arrays 
• ONC-RPC supports only one-dimensional arrays 

 
 
 
 
 
 
 
 

Results 
• Case study: dense NxN square matrix multiplication 
• Zynq 7020 SoC Zedboard ARM (PS) + FPGA (PL) 

PL performance 
• Available BlockRAM limits matrix size to N=128 
• Maximum from HLS report: 5.08 GFLOPS (only PL) 
• Measured on PetaLinux: 2.09 GFLOPS (includes driver overhead) 

Block matrix computation 
PS+PL algorithm 
• Increases matrix size up to N=4096 on Zedboard 
• Block matrix multiply on PL (blocks of 128x128) 
• Summation of blocks on PS 

 
 

 
 
 
 
• Uses the ARM processor under PetaLinux 
• PS-PL block communication is minimized by Gray code ordering 
• Performance = 1.62 GFLOPS for N=   128 (PS+PL) 
• Performance = 2.37 GFLOPS for N=4096 (PS+PL) 

Speedup comparison 
1. PS+PL : execution on ARM+FPGA under PetaLinux 
2. RPC+PS+PL : execution on network using RPC call 
3. Local i7 : execution on i7@2.93GHz processor 

 
 
 
 
 

 
 
 
 
 
 
 
 

Performance analysis 
PL = block matrix multiplication in FPGA 
PS = sending and receiving block matrices between PS and FPGA; 
           summation of blocks matrices in PS 
RPC = sending and receiving matrix between network client and server 
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PL PS RPC 1 GBps

#ifdef RPC_HDR 
%#define N 20 
#endif 
 
typdef T float; 
 
struct data_in { 
 T a[N]; 
 T b[N]; 
}; 
struct data_out { 
 T result; 
}; 
 
program prog { 
  version proc_fpga { 
     data_out dotproduct (data_in) 
= 1; 
  } = 1; 
} = 0x31230000; 

1. common client/server header 

2. type definitions 

3. structure of I/O arguments 

4. remote procedure declaration 

Protocol description file dotproduct.x 

Network  Server sw stub FPGA hw stub 

main () { 
   out = rpc_1(in); 
} 

proto.x 

out rpc (in)  { 
  stream read (in); 
  calculate; 
   stream write(out); 
return; } 

RPCGEN RPCFPGA 

server stub client stub 

Client 

ONC-RPC RPC-FPGA 

Protocol compilers RPCGEN and RPCFPGA 
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Generated sw stub for the server (PS) 

DMA channels 

Stream PS  PL 

Stream PL  PS 

data_out * 
   dotproduct_1_svc (data_in *data_in, struct svc_req *req) { 
// Open streams to/from FPGA 
    int  fdr = open("/dev/xillybus_read_32", O_RDONLY); 
    int fdw = open("/dev/xillybus_write_32", O_WRONLY); 
// stream data "data_in" to FPGA 
     write(fdw, (void *) data_in,  sizeof(data_in)); 
// stream data "data_out" from FPGA 
     read (fdr, (void *) &data_out, sizeof(data_out)); 
     return &data_out; 
} 

RPC protocol file RPCGEN generates RPCFPGA generates 

 T array<DIM>; 
 

struct { 
      int  array_len; 
      T   *array_val; 
} array; 

struct { 
      int array_len; 
      T  array_val[DIM]; 
} array; 

 T mat<R><C>; not allowed struct { 
      int mat_len[2]; 
      T   mat_val [R][C]; 
} mat; 

RPCFPGA handling of variable length multidimensional arrays 
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CPU FPGA 

Block matrix CPU-FPGA computation 

Performance 100 Mbps 1 Gbps 

    N =   128 0.18 GFLOPS 0.21 GFLOPS 

    N = 4096 1.84 GFLOPS 2.21 GFLOPS 

Impact of network bandwidth @ N=4096 

procedure call 
serialize + send 

Client 
 client code client stub 

procedure return 

Server (PS) 
 server stub sw stub 

deserialize +  
call procedure 

return results 

FPGA (PL) 
 hw stub + HLS 

stream to FPGA 

stream from FGPA 

Calculate 

ONC-RPC RPC-FPGA 

TCP/IP DMA 

serialize + send 

Stubs and transport layers 

Interface definition 

Declarations 

Stream input 

Calculate 

Stream output 

void dotproduct(uint_t *in, uint_t *out) {  
// streaming interface definition  
#pragma HLS INTERFACE axis port=in  
#pragma HLS INTERFACE axis port=out  
#pragma HLS INTERFACE ap_ctrl_none port=return  
// argument and marshalling variables  
    int tmp_int;  
    T    tmp_T;  
    data_in data_in;  
    data_out data_out;  
// read data_in; type conversion  
   int u0, u1;  
   for(u0 = 0; u0 < N; u0++)  
#pragma HLS PIPELINE  
       data_in.a[u0] = (tmp_int = *in++,*((T *) &tmp_int));  
   for(u1 = 0; u1 < N; u1++)  
#pragma HLS PIPELINE  
       data_in.b[u1] = (tmp_int = *in++,*((T *) &tmp_int));  
/*** TODO insert procedure body  ****/ 
/********************************/ 
// write data_out; type conversion 
   *out++ = (tmp_T = data_out.result, *(int *) &tmp_T);  
   return;  
}  

Generated HLS hw stub for the programmable logic (PL) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/153399229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

