
Abstract
RPC-FPGA implements the Open Network Computing ONC-RPC remote
procedure call protocol specification for use in FPGA accelerators. The
compiler generates a High-Level Synthesis (HLS) interface to call a
hardware procedure and to stream the data between the processor and
the FPGA. The major benefits of RPC-FPGA are:
• hardware procedures running on an FPGA accelerator become

accessible for any client in the network,
• the development time of the communication interface between the

processor and the FPGA is greatly reduced.

Using RPC-FPGA a speedup gain of 17 to 20 is demonstrated on a square
matrix multiplication of N=4096 with network speeds 100 Mbps and 1
Gbps respectively.

Motivation
High-Level Synthesis (HLS) languages define the interface between Host
and FPGA using proprietary pragmas (Vivado HLS) , language constructs
(OpenCL) or message passing (MPI). Some limitations of current
host/fpga interfaces are:
• the hw/sw interface has to be defined and managed by the user
• DMA data transfer requires explicit coding
• data type serialization support is limited
• interfacing leads to substantial programming overhead

Methodology
The interface is defined in a protocol description file (.x) consisting of
the arguments declaration and the procedure prototype, following the
ONC-RPC syntax. Example: see the protocol description of a dot product.

RPC-Model
We use a 2-stage Remote Procedure Call:
• 1st stage: connect network client and server via ONC-RPC
• 2nd stage: connect server with attached FPGA via RPC-FPGA

The client procedure call is relayed to a server with an attached FPGA by
stubs generated from the protocol file proto.x using a) RPCGEN for the
network and b) RPCFPGA for the reconfigurable hardware core.

Interfaces
• TCP/IP or TCP/UDP transport between network client and server
• DMA channels (AXI4) between processing system (PS) and

programmable logic (PL)

RPCFPGA
HLS Template
• defines the hardware interface between PS and PL
• declares hw data types and structures of the procedure arguments
• creates logic for streaming data transfer
• manages marshalling of data types and serialization of arrays
• optimizes pipelined throughput to stream at 1 element per cycle
• includes TODO mark to insert procedure body
Example: the HLS template dotproduct.c generated from dotproduct.x

Server code linking network to FPGA
• service procedure on the server calls the hardware procedure on

behalf of the ONC-RPC client
• I/O arguments are sent as uint 32 or 64-bit words from DDR (PS) to

BLOCKRAM (PL) using DMA

RPC extension to multiple dimensions
• HLS optimizations operate on multidimensional arrays
• ONC-RPC supports only one-dimensional arrays

Results
• Case study: dense NxN square matrix multiplication
• Zynq 7020 SoC Zedboard ARM (PS) + FPGA (PL)

PL performance
• Available BlockRAM limits matrix size to N=128
• Maximum from HLS report: 5.08 GFLOPS (only PL)
• Measured on PetaLinux: 2.09 GFLOPS (includes driver overhead)

Block matrix computation
PS+PL algorithm
• Increases matrix size up to N=4096 on Zedboard
• Block matrix multiply on PL (blocks of 128x128)
• Summation of blocks on PS

• Uses the ARM processor under PetaLinux
• PS-PL block communication is minimized by Gray code ordering
• Performance = 1.62 GFLOPS for N= 128 (PS+PL)
• Performance = 2.37 GFLOPS for N=4096 (PS+PL)

Speedup comparison
1. PS+PL : execution on ARM+FPGA under PetaLinux
2. RPC+PS+PL : execution on network using RPC call
3. Local i7 : execution on i7@2.93GHz processor

Performance analysis
PL = block matrix multiplication in FPGA
PS = sending and receiving block matrices between PS and FPGA;
 summation of blocks matrices in PS
RPC = sending and receiving matrix between network client and server

References
[1] Oracle, “ONC+RPC Developer’s Guide,” Oracle, 2016.
[2] Xilinx, “PetaLinux Tools Documentation: Reference Guide,” 2016.
[3] Erik D’Hollander, Bruno Chevalier and Koen De Bosschere “Calling

hardware procedures in a reconfigurable accelerator using RPC -
FPGA”, Proc. Field Programmable Technology, FPT 2017

[4] Erik.D’Hollander, “High-Level Synthesis Optimization for Blocked
Floating-Point Matrix Multiplication,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 4, pp. 74–79, 2016.

REMOTE PROCEDURE CALL COMPILER FOR FIELD PROGRAMMABLE
GATE ARRAYS

DEPARTMENT OF ELECTRONICS AND INFORMATION SYSTEMS

Erik H. D’Hollander, Bruno Chevalier and Koen De Bosschere Ghent University, Ghent, Belgium

36%

41%

23%

PL PS RPC 100Mbps

43%

50%

7%

PL PS RPC 1 GBps

#ifdef RPC_HDR
%#define N 20
#endif

typdef T float;

struct data_in {
 T a[N];
 T b[N];
};
struct data_out {
 T result;
};

program prog {
 version proc_fpga {
 data_out dotproduct (data_in)
= 1;
 } = 1;
} = 0x31230000;

1. common client/server header

2. type definitions

3. structure of I/O arguments

4. remote procedure declaration

Protocol description file dotproduct.x

Network Server sw stub FPGA hw stub

main () {
 out = rpc_1(in);
}

proto.x

out rpc (in) {
 stream read (in);
 calculate;
 stream write(out);
return; }

RPCGEN RPCFPGA

server stub client stub

Client

ONC-RPC RPC-FPGA

Protocol compilers RPCGEN and RPCFPGA

0.00

0.50

1.00

1.50

2.00

2.50

128 256 512 1024 2048 4096

GF
LO

PS

Matrix dimension

PS + PL

RPC+PS+PL

Local i7

Generated sw stub for the server (PS)

DMA channels

Stream PS PL

Stream PL PS

data_out *
 dotproduct_1_svc (data_in *data_in, struct svc_req *req) {
// Open streams to/from FPGA
 int fdr = open("/dev/xillybus_read_32", O_RDONLY);
 int fdw = open("/dev/xillybus_write_32", O_WRONLY);
// stream data "data_in" to FPGA
 write(fdw, (void *) data_in, sizeof(data_in));
// stream data "data_out" from FPGA
 read (fdr, (void *) &data_out, sizeof(data_out));
 return &data_out;
}

RPC protocol file RPCGEN generates RPCFPGA generates

 T array<DIM>;

struct {
 int array_len;
 T *array_val;
} array;

struct {
 int array_len;
 T array_val[DIM];
} array;

 T mat<R><C>; not allowed struct {
 int mat_len[2];
 T mat_val [R][C];
} mat;

RPCFPGA handling of variable length multidimensional arrays

𝐶𝑖𝑗 = 𝐴𝑖𝑘
𝑚−1

𝑘=0
⋅ 𝐵𝑘𝑗

CPU FPGA

Block matrix CPU-FPGA computation

Performance 100 Mbps 1 Gbps

 N = 128 0.18 GFLOPS 0.21 GFLOPS

 N = 4096 1.84 GFLOPS 2.21 GFLOPS

Impact of network bandwidth @ N=4096

procedure call
serialize + send

Client
 client code client stub

procedure return

Server (PS)
 server stub sw stub

deserialize +
call procedure

return results

FPGA (PL)
 hw stub + HLS

stream to FPGA

stream from FGPA

Calculate

ONC-RPC RPC-FPGA

TCP/IP DMA

serialize + send

Stubs and transport layers

Interface definition

Declarations

Stream input

Calculate

Stream output

void dotproduct(uint_t *in, uint_t *out) {
// streaming interface definition
#pragma HLS INTERFACE axis port=in
#pragma HLS INTERFACE axis port=out
#pragma HLS INTERFACE ap_ctrl_none port=return
// argument and marshalling variables
 int tmp_int;
 T tmp_T;
 data_in data_in;
 data_out data_out;
// read data_in; type conversion
 int u0, u1;
 for(u0 = 0; u0 < N; u0++)
#pragma HLS PIPELINE
 data_in.a[u0] = (tmp_int = *in++,*((T *) &tmp_int));
 for(u1 = 0; u1 < N; u1++)
#pragma HLS PIPELINE
 data_in.b[u1] = (tmp_int = *in++,*((T *) &tmp_int));
/*** TODO insert procedure body ****/
/********************************/
// write data_out; type conversion
 *out++ = (tmp_T = data_out.result, *(int *) &tmp_T);
 return;
}

Generated HLS hw stub for the programmable logic (PL)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/153399229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

