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This paper assesses the potential use of a hyperspectral camera for measurement of

yellow rust and fusarium head blight in wheat and barley canopy under laboratory con-

ditions. Scanning of crop canopy in trays occurred between anthesis growth stage 60, and

hard dough growth stage 87. Visual assessment was made at four levels, namely, at the

head, at the flag leaves, at 2nd and 3rd leaves, and at the lower canopy. Partial least

squares regression (PLSR) analyses were implemented separately on data captured at four

growing stages to establish separate calibration models to predict the percentage coverage

of yellow rust and fusarium head blight infection. Results showed that the standard de-

viation between 500 and 650 nm and the squared difference between 650 and 700 nm

wavelengths were found to be significantly different between healthy and infected canopy

particularly for yellow rust in both crops, whereas the effect of water-stress was generally

found to be unimportant. The PLSR yellow rust models were of good prediction capability

for 6 out of 8 growing stages, a very good prediction at early milk stage in wheat and a

moderate prediction at the late milk development stage in barley. For fusarium, pre-

dictions were very good for seven growing stages and of good performance for anthesis

growing stage in wheat, with best performing for the milk development stages. However,

the root mean square error of predictions for yellow rust were almost half of those for

fusarium, suggesting higher prediction accuracies for yellow rust measurement under

laboratory conditions.

© 2017 IAgrE. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the world's population estimated to reach 9 billion by

2050, sustainable approaches to increase crop yield are a ne-

cessity (Hole et al., 2005; Godfray et al., 2010). Current farming

practices are unsustainable, relying on external inputs and

high-yield varieties susceptible to disease (Hole et al., 2005).

Site specific management of inputs would reduce the amount

required (Wittry & Mallarino, 2004; Maleki, Mouazen, Ramon,

& De Baerdemaeker, 2007). Among these resources, fungi-

cide application may well be reduced by targeted site specific

spraying (FRAC, 2010). However, accurate measurement of

fungal diseases is a main requirement for sustainable appli-

cation of fungicides, and expected to contribute to the

reduction and prevention of the spread of crop disease and the

losses of quantity and quality incurred from them.

Fungal disease control is a large task for a successful pro-

duction of cereals worldwide. Both yellow rust and fusarium

are fungal diseases, which infect small cereal crops, and are

responsible for causing severe yield losses (de Vallavieille-

Pope, Huber, Leconte, & Goyeau, 1995; Bravo, Moshou, West,

McCartney, & Ramon, 2003). Yellow rust caused by Puccinia

striiformis is a foliar disease, which can reduce crop yields by

up to 40%. Alternatively known as stripe rust, the pathogen

produces yellow uredo spores on the leaves. Infection starts

with chlorosis occurring parallel to leaf veins, in a narrow

2 mm wide stripe, which develops later into multiple yellow

coloured rust pustules (de Vallavieille-Pope et al., 1995). Dis-

ease presence can vary considerably between plants. In severe

epidemics the yield can be reduced by up to 7 tonne ha�1

(Bravo et al., 2003). Fusarium head blight is one of the most

important pre-harvest diseases worldwide, reducing yield

quantity and quality. The most aggressive and prevalent

fusarium strain is Fusarium graminearum, which is a highly

pathogenic strain producingmycotoxins, which can become a

significant threat to both humans and animals. Fusarium

head blight symptoms in wheat and barley appear in the head

and peduncle tissues, causing discolouration and early

senescence. Disease presence can vary considerably between

plants (Brennan, Egan, Cooke, & Doohan, 2005; Desjardin,

2006; Leslie & Summerell, 2006; Rotter, Prelusky, & Pestka,

1996), hence, it is required to adopt site specific treatments

of fungal diseases.

Advanced methods for disease detection in crops are vital

for improving the efficacy of treatment, reducing infection

and minimising the losses to yield and quality. Traditionally,

disease detection is carried out manually, which is costly,

time consuming and requires relevant expertise (Schmale &

Bergstrom, 2003; Bock, Poole, Parker, & Gottwald, 2010).

Alternative methods of detection are needed to enable map-

ping the spatial distribution of yellow rust and fusarium head

blight. Among those methods, optical sensing methods are

recommended candidates since they are non-destructive and

allow for fast and repeated data acquisition throughout the

growing season without inhibiting crop growth. It was recog-

nised by West et al. (2003) that although optical technologies

are available for development into suitable disease detection

systems, many challenges are still needed to be overcome,

and this is still arguably the case. Spectroscopy and imaging
techniques have been used in disease and stress monitoring

(Hahn, 2009). One of the optical methods reportedly used to

measure disease in crops is hyperspectral imaging in the

visible (vis) and/or the near infrared (NIR) spectral ranges. The

reflectance at vis wavelength range is relevant to leaf

pigmentation whilst the NIR wavelength range provides in-

formation on the physiological condition of the plant. The

wavelength function for light intensity in hyperspectral im-

aging adds to the brightness information of the spectral

image, providing a rapid image-contrast (Huang et al., 2007).

Within the vis spectrum, the radiation reflectance from an

environmentally stressed plant will increase. This is due to an

increase in the incidence reflection within the leaf of a

stressed plant (Cibula & Carter, 1992). B�elanger, Roger,

Cartolaro, Viau, and Bellon-Maurel (2008) showed that dis-

ease could be quantified on detached leaves, and reported that

the ratio of blue (near 440 nm) over green (near 520 nm) in-

tensities between the healthy and diseased tissue was

significantly different shortly after inoculation. Using a vis-

NIR imaging, Bravo et al. (2003) detected early symptoms of

yellow rust on winter wheat, with a quadratic discriminant

model analysis, reporting a correct discrimination accuracy of

92e98%. To our knowledge none of the above studies incor-

porated the effect of water stress, in the prediction model of

yellow rust and fusarium head blight intensity in cereal crops.

Some studies have focused on bringing the technology to the

field. However, the first step towards field application is to test

the accuracy of the methods under laboratory conditions

(allowing more control and observation of the crop), where

disease and water stress are accounted for simultaneously.

The aim of this paper is to assess the potential imple-

mentation and performance of a hyperspectral imager for

recognition of yellow rust and fusarium head blight diseases

in winter wheat and winter barley under laboratory condi-

tions, with the intention to establish calibration models and

a spectral library for potential use under mobile on-line

measurement conditions. Both diseases and water stress

were introduced and accounted for.
2. Materials and methods

2.1. Wheat and barley cultivation and inoculation

Treated seeds of winter wheat Triticum sativum (Solstice vari-

ety) and winter barley Hordeum vulgare L. (Carat Variety) were

grown outdoors in 600� 400mm trays (depth of 120mm),with

100 seeds evenly sown and spaced in 5 parallel lines. After

seeding the trays were predominantly rain fed, to reduce

input of excess salts from treated tap water. Three treatments

were adopted, where each treatment was triplicated in three

separate trays. A total of 18 trays of wheat, and 18 trays of

barley were grown for each of the following three treatments:

1) Treatment 1 e Healthy: consisting of six trays of each that

were kept healthy by applying a broad spectrum fungicide

(Rubric and Epoxiconazole, at a rate of 1 l ha�1).

2) Treatment 2 e Naturally (non-inoculated) yellow rust

infected: consisting of six trays that were not treated with

fungicide, as these were to represent the more heavily

https://doi.org/10.1016/j.biosystemseng.2017.11.008
https://doi.org/10.1016/j.biosystemseng.2017.11.008


b i o s y s t em s e ng i n e e r i n g 1 6 6 ( 2 0 1 8 ) 1 0 1e1 1 5 103
infected yellow rust trays, and were not inoculated with

fusarium.

3) Treatment 3 e Fusarium inoculated: consisting of six trays

of each that were infected with fusarium as the crop first

reached anthesis growing stage (Fig. 1).

When the crop growth reached ‘booting’ growth stage 45

on the Zadoks scale (Zadoks, Chang, & Konzak, 1974), half of

trays in each treatment were water stressed using a trans-

parent tarpaulin and water content was monitored

throughout the growing season using a moisture-probe ML3

Thetakit (Delta-T Devices Ltd, Cambridge, UK). Yellow rust

occurred naturally in the crops as early as growth stage 30.

Therefore, half of the crop trays were treated early with

fungicide to fulfil treatments 2 and 3. This allowed for a dif-

ference in intensity of yellow rust disease. Fusarium inocu-

lation was applied to trays in treatment 3 at the anthesis crop

growth stage. The spores were first cultivated in the labora-

tory by using the following method. A 2% wheat agar was

produced using 100 ml distilled water, with 2 g agar and 2 g

milled wheat. This was autoclaved at 120 �C. Plates were

poured to a consistent depth, and inoculated with Fusarium

graminearum. The plates were grown for 5e7 days under UV

light as this was shown to help cause sporulation (Leach,

1967). The agar plates were subsequently agitated with

distilled water to suspend the spores with the concentration

increased as necessary by gentle use of the centrifuge. Spore

concentrations were standardised at approximately 106 ml�1

using serial dilutions and a haemocytometer. Every 1 m2 of

crop ear was inoculated with 100 ml of the suspension, which

is an adapted method from Lacey, Bateman and Mirocha

(1999). These trays were then kept under a high humidity

conditions for 24 h.

2.2. Disease assessments

A common approach for disease and general crop health

assessments is by visual inspection known as diagnosis

(Oberti et al., 2014). Chiarappa (1981) defined two distinct

quantitative disease measurements: 1) Disease incidence,
Fig. 1 e Fusarium inoculation of wheat and barley trays in the la

stage.
which is the percentage of infected plants to the healthy and

2) Disease severity, which is the amount of expressed disease

tissue of a plant. These disease parameters can be assessed

objectively, with some potential risk of subjectivity. In the

current work, we considered the disease severitymeasured as

% coverage. Each tray was assessed for both diseases at four

levels, namely, at the head (when present), at the flag leaves,

2nd and 3rd leaves (mid canopy), and at the lower canopy, as

explained next;

1) For fusarium infection, only the head of the crop was

assessed, since fusarium head blight symptoms in wheat

and barley usually only appear in the head and peduncle

tissues, causing discolouration and early senescence.

Earlier visual symptoms consist of a characteristic purple/

pink discolouration. The seed from fusarium head blight

affected crop is often shrunken, with a bleached appear-

ance (Andersen, 1948; Parry, Jenkinson, & McLead, 1995;

McMullen, Jones, & Gallenberg, 1997; Goswami & Kistler,

2004). Impey (2012) confirmed the presence of fusarium

leaf lesions in Herefordshire, the leaf lesions are very un-

usual, and found only in heavy infections.

The assessment of fusarium head blight considered both

early and later symptoms. During the course of the study the

wheat and barley ears were categorized as healthy (0% infec-

ted), early infection, where ears showed early symptoms with

half the ears expressing late symptoms (around 50% infected),

high infection (around 75% infected) and full infection, where

all the ears in the inoculated trays showed late symptoms

(around 100% infected).

2) For yellow rust infection, the three foliar levels were

assessed for percent coverage of yellow rust lesions.

Infection starts with chlorosis occurring parallel to leaf

veins, in a narrow 2 mm wide stripe, developing into

multiple yellow coloured rust pustules (de Vallavieille-

Pope et al., 1995). Average disease coverage was given for

all the plants in the assessment area at the three different

stages. As it's needed for each ground truth plot to have a
boratory. Inoculation took place at the anthesis crop growth

https://doi.org/10.1016/j.biosystemseng.2017.11.008
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singular assessment for the later analysis, the data from

each stage was combined and weighted appropriately ac-

cording to Home Grown Cereal Authority (2008) recom-

mendations; that 80% of a wheat yield can be calculated

from the top 3 leaves (Fig. 2).
2.3. Hyperspectral data capture

A push broom hyperspectral imager (spectrograph) (HS spec-

tral cameramodel fromGilden Photonics Ltd., UK) was used to

capture high-resolution (1608 pixels) line images over 1 s,

using a diode array detector. It is a 12 bit Basler piA 1600-35 gm

camera, with Schneider-Kreuznach XNP1.4/23 lens and has a

pixel pitch of 7.4 mm interpolated/averaged to 0.6 nm readings

with a spectral range of 400e1000 nm. The reflected light from

the target travels through the lens, past an entrance slit

through a series of inspector optics in the spectrograph and

then split by the prism dispersing element into different

wavelengths. This sensor was chosen for its potential for

being applied to crop canopy measurements, and was of a

lower price compared to comparable sensors, commercially

available in the market.

The spectral data was captured at three separate places

along the crop tray at slightly different positions. Captured in

the form of a line array, each pixel has a spectrum and one

detector per pixel across the swath. In order to compile a full

image, every line across a target must be captured (Gilden

Photonics Ltd, Glasgow, UK). When configured on a consistent

moving platform, the imager sweeps across an area to build

up an image. Due to practical constraints of applying a

consistent moving platform, the spectraSENS v3.3 (Gilden

Photonics Ltd, Glasgow, UK) software was adapted to record a

single line array, which required an additional RGB photo

taken by a 5megapixel camerawith a 3.85mm f/2.8 lens at the

same time of image capture, so that the scanned area could be

comprehended. Two laser pointers were added at each side of

the hyperspectral imager to indicate the area of the canopy to

be scanned (Fig. 3). The laser pointers were shut off when the

spectral image was captured to remove any interference. The
Fig. 2 e Illustrating influence of foliar health on yield (Home Gro

was as follows; flag leaf 55%, mid canopy 40%, and lower cano

associated to a tray. (For interpretation of the references to colo

version of this article.)
collected scans were corrected bymeans of a dark and a white

reference (spectralon 99% white reflectance panel) providing

the relative reflectance. The latter was used before spectral

capture, and at 10 min intervals until scanning was

completed. The optimal configuration of the push broom

hyperspectral imager including light sources was done in the

laboratory (Whetton, Waine & Mouazen, 2017). A schematic

illustration of the configurations can be observed in Fig. 3,

where two 500 W diffused broad spectrum halogen lamps

were positioned at either end of the crop sample tray. Light

angle was kept constant at 45�, which is suggested as the

optimal angle to provide the strongest response (Huadong,

2001). The optimal configuration adopted included integra-

tion time, light height, light distance, camera height, and

camera angle, of 50 ms, 1.2 m, 1.2 m, 0.3 m and 10�, respec-
tively (Whetton et al., 2017). These configurationswere used in

the current work, for crop canopy scanning that started at

booting growth stage 60 on Zadok's scale and continued until

reaching ripening at growth stage 87. Four scans collected at

four growth stages are considered in this study for both wheat

and barley: 1) at anthesis (GS 60), 2) at kernel development;

early milk (GS 72), 3) at kernel development; late milk (GS 77),

and 4) hard dough (GS 87) (Table 1).

2.4. Data pre-processing and modelling

If the spectral data are too noisy there is a risk that key fea-

tures of the spectrum are hidden, which necessitates

smoothing to remove noise. But, aggressive smoothing can

also remove significant features (Dasu& Johnson, 2003), hence

the need for a gentle smoothing to avoid losing of useful

spectral features. Furthermore, a noisy spectrum can result in

poor model performance, due to noise being considered a

feature. Thus, the first step towards successful measurement

should be to obtain a good quality spectrum. This was ensured

in the current work by adopting the optimal configurations

established in Whetton et al. (2017). The three lines of

captured spectral data from each tray at each time were

averaged first, before they were linked with the visual crop

assessment. The spectral range outside of the 400e750 nm
wn Cereal Authority, 2008). The weight given in this study

py 5%. This allowed a single yellow rust assessment to be

ur in this figure legend, the reader is referred to the web

https://doi.org/10.1016/j.biosystemseng.2017.11.008
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Fig. 3 e Schematic illustration of the laboratory configurations of hyperspectral camera and light source (Whetton et al.,

2017).
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range was removed as it was noisy. The first and last 320

pixels from each line scan were removed due to variation and

risk of overlapping the crop to the surrounding background.

Both these pre-processing steps of the data are in line with

Whetton et al. (2017). The spectral data was averaged to

reduce the number of wavelengths (variables), which was

successively followed by maximum normalisation, Savitz-

kyeGolay first derivative and smoothing (Mouazen, De

Baerdemaeker, & Ramon, 2006). Maximum normalisation is

typically used to get all data to approximately the same scale,

or to get a more even distribution of the variances and the

average values. The maximum normalisation is a normal-

isation that “polarizes” the spectra. The peaks of all spectra

with positive values scale to þ1, while spectra with negative

values scale to �1. Since all soil spectra in this study have

positive values, the peaks of these spectra scaled to þ1. This

scaled spectra between 0 and þ1. Using the SavitzkyeGolay

first derivative enables the computation of the first order
Table 1 e Hyperspectral scanning intervals of the wheat
and barley trays, at four growth stages (GS) according to
Zadoks scale (Zadoks et al., 1974).

Timing Growth stage

Barley 1 (T1) Anthesis (GS 60)

3 (T3) Kernel development; early milk (GS

72)

5 (T5) Kernel development; late milk (GS

77)

7 (T7) Hard dough (GS 87)

Wheat 2 (T2) Anthesis (GS 60)

4 (T4) Kernel development; early milk (GS

72)

6 (T6) Kernel development; late milk (GS

77)

8 (T8) Hard dough (GS 87)
derivative, including a smoothing factor, which determines

how many adjacent variables will be used to estimate the

polynomial approximation used for derivatives. A second

order polynomial approximation was selected. A 2:2 smooth-

ing was carried out after the first derivative to decrease noise

from the measured spectra. All pre-processing steps were

carried out using Unscrambler 10 software (Camo Inc.; Oslo,

Norway).

Analysis of variance (ANOVA) was used to analyse two

spectral indices (standard deviation (SD) of the 500e650 nm

range and squared difference (SQdiff) of 650 and 700 nm)

captured at growth stage 72. A factorial treatment structure

was incorporated to test for differences between disease type

(healthy, fusarium, yellow rust), water treatment (watered,

water-stressed) and crop type (barley, wheat). In addition, a

contrast was used to test for differences between healthy and

diseased trays and between the different diseases. Analysis of

the index SD was done on a log scale, whilst analysis of SQdiff

was done on a sqrt scale to ensure homoscedascity of vari-

ance. GenStat 18th Edition (© VSN International Ltd, Hemel

Hempstead, UK) was used to compute the ANOVA tables.

Principal component analysis (PCA)was used to investigate

the multivariate hyperspectral response over the different

scanning intervals for barley and wheat data separately. The

first two principal components accounted for 92% of the

variation in both the barley andwheat data. Consequently, for

both crops, PCA provides a reasonable summary of the

hyperspectral response in two dimensions.

Separate PLSR analyses were applied to each of the four

scanning intervals to establish quantitative models to predict

yellow rust and fusarium head blight infection (Table 1). This

means that for each crop four PLSR analyses were carried out.

Before PLSR analysis, data were divided into two sets of 80%

(e.g., 43 samples) and 20% (e.g., 11 samples), representing the

calibration and prediction data sets (Tables 2 and 3), respec-

tively. The pre-processed spectra and visual assessments of

https://doi.org/10.1016/j.biosystemseng.2017.11.008
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Table 2 e Statistics of % coverage of both fungal diseases
of wheat samples used in the partial least squares
regression (PLSR) analyses, with 80% and 20% of samples
were considered for cross-validation and prediction,
respectively, at four separate timings (growth stages).

Yellow rust Fusarium

T2 T4 T6 T8 T2 T4 T6 T8

Cross-validation

Sample Nr. 43 43 43 43 43 43 43 43

Maximum (%) 70 65 55 40 55 100 100 100

Minimum (%) 0 0 0 0 0 0 0 0

Mean (%) 30.4 20.8 17.4 15.9 17.5 24.1 30.1 31.5

SD (%) 21.4 11.8 11 11.3 23.0 32.4 43.2 45.0

Prediction

Sample Nr. 11 11 11 11 11 11 11 11

Maximum (%) 70 70 50 60 50 100 100 100

Minimum (%) 0 10 5 0 0 0 0 0

Mean (%) 33.6 30 19.4 17.9 12 40 47 34

SD (%) 20.1 26.1 19 16.3 20.4 47.6 49.7 44.5

SD is standard deviation; T2 is anthesis growth stage 60; T4 is early

milk growth stage 72; T6 is latemilk growth stage 77; and T8 of hard

dough growth sage 87 in wheat.
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yellow rust and fusariumhead blight of the calibration dataset

were subjected to PLSR with leave-one-out full cross-

validation to establish calibration models. The performance

of these models was evaluated by predicting crop disease

using the prediction dataset. Separate models for wheat and

barley were developed and evaluated for yellow rust and

fusarium head blight. The following models were developed

and validated:

1) Yellow rust prediction in wheat and barley, estimated as %

of disease symptoms spread on the leaves. This was

referred to as yellow rust % coverage.
Table 3 e Statistics of % coverage of both fungal diseases
in barley samples used in the partial least squares
regression (PLSR) models, with 80% and 20% of samples
were considered for cross validation and prediction,
respectively, at four separate timings (growth stages).

Yellow rust Fusarium

T1 T3 T5 T7 T1 T3 T5 T7

Cross validation

Sample Nr. 43 43 43 43 43 43 43 43

Maximum (%) 50 60 60 55 50 75 100 100

Minimum (0) 0 0 0 0 0 0 0 0

Mean (%) 15.6 14.3 13.2 9.5 16 22.3 26.8 29.2

SD (%) 9.5 10.7 13.3 13.5 22.1 31.6 39.2 41.2

Prediction

Sample Nr. 11 11 11 11 11 11 11 11

Maximum (%) 60 60 45 55 50 75 100 95

Minimum (%) 0 5 5 2 0 0 0 0

Mean (%) 17.7 18 17.3 14.3 16 17 31 24

SD (%) 18.8 15.4 14.2 16.4 22.1 30.4 45.5 37.1

SD is standard deviation; T1 is anthesis growth stage 60; T3 is early

milk growth stage 72; T5 is late milk growth stage 77; T7 is hard

dough growth sage 87 in barely.
2) Fusarium head blight prediction in wheat and barley,

estimated as % of infected ears. This was referred to as

fusarium % coverage.

For both models, a logit transformation of the % coverage

response was applied to ensure homoscedascity of variance.

The inverse LOGIT function (exp(p)/(1 þ exp(p))) was applied

before assessment of the prediction results. PLSR analysis was

carried out using Unscrambler 10 software (Camo Inc.; Oslo,

Norway). Outliers were detected, and removed to a maximum

of 5% of the total input data. The model performance was

evaluated in cross-validation and prediction by means of co-

efficient of determination (R2), root mean square error of

prediction (RMSEP) and ratio of prediction deviation (RPD),

which equals SD divided by the RMSEP. In order to compare

between the performances of the developed models we pro-

posed classifying RPD values into the classes mentioned in

Table 4. The entire pre-processed spectrum was used in both

the PCA and PLSR analyses.
3. Results and discussion

3.1. Crop canopy spectra

Example of crop canopy spectra for wheat and barley are

shown in Fig. 4. The spectral signatures were selected to

demonstrate clearly the variations in shape. An arrows have

been added to highlight wavelengths that define spectrum

regions containing the most visible variation between the two

crops. In Fig. 4, wheat has higher reflectance. This may be due

to the particular spectrum selected, as generally the reflec-

tance intensities of wheat and barley were witnessed to be

similar. However, it may also be attributed to the larger leaf

area of wheat, which reflected more light than barley, having

smaller surface area. Within the vis range of 400e550 nm,

there is low reflectance due to larger absorption of the light,

attributed to the photosynthetic pigments of the plant leaves,

governed by the abundance of chlorophyll, which absorbs

most of the light radiation (Gates, Keegan, Schleter, &

Weidner, 1965; Thomas & Gausman, 1977). Both plant chlo-

rophylls and carotenoids have strong absorption at 480 nm,

the waveband associated with blue colour (Hunt et al., 2013).

Another interesting band at 670 nm (associated with red
Table 4 e Classes of the ratio of prediction deviation (RPD)
and their suitability for predicting yellow rust and
fusarium head blight in cereal crops.

RPD range Class and prediction
capability

Prediction
Category

<1 Poor model predictions - not

useful.

A

1e1.5 Possibility to discriminate

between low and high values

B

1.5e2.0 Moderate prediction capability C

2.0e2.5 Good prediction capability D

2.5e3.0 Very good prediction capability E

>3.0 Excellent prediction capability F

https://doi.org/10.1016/j.biosystemseng.2017.11.008
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Fig. 4 e Example spectra of wheat and barley canopy, after white and dark corrections.
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colour band at 680 nm) can be linked with chlorophyll a ab-

sorption that also appears at 550 nm (Hunt et al., 2013). The

latter wavelength is designated as the green leaf reflectance

(Buscaglia & Varco, 2002; Zhao, Reddy, Kakani, Read, & Koti,

2005). The strongest absorption wavelength band appears at

the red edge around 715 nm, with deeper absorption in the

barley spectrum than in wheat. Raper and Varco (2015) found

that the strongest wavelength correlations with leaf nitrogen

concentration, yield and plant total nitrogen content are near

700 nm. Further analysis of these bands as linked with crop

diseases studied is discussed below.

Average spectra of healthy, yellow rust and fusarium head

blight infected wheat crop canopies at growth stage 72 are

plotted in Fig. 5. While plots a, b and c juxtapose irrigated and

water stressed spectra, plot d compares between healthy and

infected canopies under irrigated conditions. Generally, all

spectra are similar, although slight differences can be

observed by close examination of individual plots (Fig. 5, b and

c). The water-stressed spectra are less reflective than watered

spectra, particularly for yellow rust (Fig. 5a). Slight differences

in spectral shape can be observed in the healthy canopy (a),

which is in line with the findings from Earl and Davis (2003)

who attributed these differences to alterations in leaf inter-

nal structure, variations in leaf angle (due to wilting) and leaf

area index. Lower reflectance at the green edge (500e570 nm)

and red edge (670e750 nm) can be attributed to water stress.

However, these slight differences may indicate that water-

stress has only slight influence on crop canopy, hence, on

the performance of PLSR models in predicting yellow rust and

fusarium head blight. The influence of water stress on yellow

rust infected crop canopy is more obvious, where the water-

stressed spectrum is consistently of lower reflectance

(higher absorption) than the watered spectrum throughout

the entire waveband (Fig. 5b). This indicates that water stress

may have a considerable influence on yellow rust prediction.

However, spectra pre-processing e.g., maximum normaliza-

tion used in this study will eliminate difference in reflectance

e.g., due to scattering, as all spectra will be scaled between

0 and 1. Only a small deviation is observed between fusarium
head blight infected spectra (Fig. 5c), indicating little effect of

water stress on fusarium head blight prediction. This is sup-

ported by the statistical analysis of the indices discussed

below (Table 6).

A close examination of Fig. 5d indicates notable differ-

ences in spectra between healthy, yellow rust and fusarium

head blight infected crop canopies under watered conditions.

The healthy spectrum is of lower reflectance than both

infected spectra in the range between 400 and 700 nm. This

could be attributed to larger photosynthetic pigments of the

plants associated with chlorophyll (Gates et al., 1965; Thomas

& Gausman, 1977). Cibula and Carter (1992) reported larger

reflectance in infected leaves than healthy leaves, which is in

line with findings of the current study. Indeed, after crop

infection from foliar diseases, such as yellow rust, note-

worthy visual symptoms can usually be observed. Early

symptoms such as chlorosis, associated with a reduction in

chlorophyll results in increasing reflectance due to a reduc-

tion in light absorption (Lorenzen & Jensen, 1989). Therefore,

the sharpest increase in reflectance from 650 to 700 nm takes

place in the healthy spectrum. Figure 6 compares between

the average spectra of healthy, yellow rust and fusarium

head blight infected barley canopy at growth stage 72. The

water-stressed canopy spectrum shows more reflection or

less absorption than the watered canopy spectrum for the

healthy canopy in Fig. 6a. This may reflect the darker

(greener) canopy of the watered canopy resulting in larger

absorption of light. This is in line with findings of other re-

searchers, who have attributed the increased reflectance of

the healthy canopy to early senescence caused by drought,

and a reduction in chlorophyll absorption (Jamieson, Martin,

Francis, & Wilson, 1995; Hunt et al., 2013). With yellow rust

infected canopy (Fig. 6b), the opposite trend can be observed,

where higher reflectance is shown for the water-stressed

canopy. This trend is observed in both the wheat (Fig. 5b)

and barley (Fig. 6b) canopies, indicating a larger influence of

yellow rust on crop canopy when combined with water

stress, compared to fusarium (Figs. 5c and 6c), where the

differences between watered and water-stressed are
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Fig. 5 e Comparison of average wheat crop canopy (growth stage 72) spectra between watered (-) and water-stressed

(----) treatments for healthy (a), yellow rust infected (b) and fusarium infected (c) crop canopy. Panel d compares canopy

spectra under watered conditions of healthy (---), yellow rust (---) and fusarium (-). Watered yellow rust had an averaged

infection of 42%, water stressed yellow 45%, watered fusarium 83%, and water stressed fusarium 86%.
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minimal. As for wheat canopy, yellow rust infected canopy

has again the highest reflectance, compared to those of

fusarium head blight and healthy canopies (Fig. 6d). The %

coverages of yellow rust and fusarium head blight is larger in

wheat than in barley. In wheat, yellow rust watered canopy

have an average infection of 42%, yellow rust water stressed

45%, fusarium watered 83%, fusarium water stressed 86%,

whereas in barley, these are 36%, 33%, 48% and 52%,

respectively.

In order to quantify differences between healthy, yellow

rust and fusarium head blight infected spectra two indices

were taken into account in this study, namely, standard
deviation (SD) of all wavelengths in the 500e650 nm range and

squared difference (SQdiff) of 650 and 700 nm (Table 5).

Moshou et al. (2004) recommended the use of wavelength

range between 460 and 900 nm for successful yellow rust

detection. Bauriegel, Giebel, Geyer, Schmidt, and Herppich

(2011) recommends spectral analysis using the range in-

tervals of 500e533 nm (green), 560e675 nm (yellow),

682e733 nm (red) and 927e931 nm (red edge) for recognition of

Fusarium head blight infection (in growth stages 71e85, ac-

cording to zadoks scale). Krishna et al. (2014), suggested

particularly useful spectra wavelengths of 428, 672, and 1399,

for quantitative detection of yellow rust from healthy crop.
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Table 5 e Spectral differences indicated as standard
deviation (SD) of the 500e650 nm range and squared
difference (SQdiff) of 650 and 700 nm, calculated on the
maximum normalised spectra for healthy, yellow rust,
and fusarium infected wheat and barley canopies under
watered and water-stressed conditions.

SD 500e650
(nm)

SQdiff
of 650 & 700 (nm)

Wheat

Yellow rust watered 0.089 0.062

Yellow rust water-stressed 0.081 0.076

Healthy watered 0.057 0.15

Healthy water-stressed 0.063 0.14

Fusarium watered 0.16 0.10

Fusarium water-stressed 0.15 0.11

Barley

Yellow rust watered 0.056 0.08

Yellow rust water-stressed 0.061 0.077

Healthy watered 0.051 0.15

Healthy water-stressed 0.065 0.18

Fusarium watered 0.15 0.25

Fusarium water-stressed 0.13 0.18
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These two proposed indices show clear differences in

response both in the different crops and the different treat-

ments. The largest differences are observed between infection

type, a significant F statistic of F1,24 ¼ 1199 (p < 0.001) and

F1,24 ¼ 33 (p < 0.001) was observed for the comparison between

fusarium infection and yellow rust infection, for index SD and

SQdiff, respectively. Analysis of the index SD revealed signif-

icant differences in response in barley and wheat
Table 6 e Analysis of Variance (ANOVA) tables for the analysis
treatments. Analysis of the index the squared difference of 650
whilst analysis of the index standard deviation (SD) is done on

Index d.f.

log(SD)

Disease Status (Healthy vs Infected) 1

Water (Watered vs Water stressed) 1

Crop (Barley vs Wheat) 1

Disease Status:Disease Class (Fusarium vs Yellow rust) 1

Disease Status:Water 1

Disease Status:Crop 1

Water: Crop 1

Disease Status: Disease Class: Water 1

Disease Status:Disease Class:Crop 1

Disease Status:Water:Crop 1

Disease Status:Disease Class:Water:Crop 1

Residual 24

sqrt(SQdiff)

Disease Status (Healthy vs Infected) 1

Water (Watered vs Water stressed) 1

Crop (Barley vs Wheat) 1

Disease Status:Disease Class (Fusarium vs Yellow rust) 1

Disease Status:Water 1

Disease Status:Crop 1

Water:Crop 1

Disease Status:Disease Class:Water 1

Disease Status:Disease Class:Crop 1

Disease Status:Water:Crop 1

Disease Status:Disease Class:Water:Crop 1

Residual 24
(F1,24 ¼ 94.59, p < 0.001) and big differences between healthy

and diseased trays (F1,24 ¼ 874.11, p < 0.001). The largest dif-

ferences were observed between fusarium infection and yel-

low rust infection (F1,24 ¼ 1199.23, p < 0.001). In contrast, there

was no evidence of a significant main effect of water stress

(F1,24 ¼ 1.79, p ¼ 0.193), meaning that on average (over all

disease types and crops) there is no evidence of a difference in

the SD index for watered and water stressed trays. However,

analysis of the index SD does demonstrate a significantly

different response to water stress both within different crops

and under different disease infections (full ANOVA table is

given in Table 6), i.e. the response to water stress is not the

same in the different conditions. Analysis of the index SQdiff

revealed significant differences between healthy and diseased

trays (F1,24 ¼ 12.66, p ¼ 0.002) and also significant differences

between fusarium infection and yellow rust infection

(F1,24 ¼ 33.29, p < 0.001). Moreover, different responses in the

different crops was observed (F1,24 ¼ 7.61, p ¼ 0.011) with a

significant interaction between crop type and disease type

indicating the index SQdiff responds differently to disease

type in the different crops (F1,24 ¼ 9.88, p ¼ 0.004). There was

no evidence to suggest a differing response towater treatment

(F1,24 ¼ 0.07, p ¼ 0.799). Although the largest SQdiff in reflec-

tance between 650 and 700 nm is observed for the healthy

canopy (both watered and water-stressed) of wheat, the

smallest SD is observed for yellow rust (Table 5). For the barley

canopy, the largest SD and SQdiff can be observed for fusa-

rium head blight infected canopies, indicating that these

proposed two indices respond differently for different crops

(Table 5).
of transformed spectral indices over the different
and 700 nm (SQdiff) was done on the square root scale (sqrt),
of the range 500e650 nm.

s.s. m.s. v.r. F pr.

7.48442 7.48442 874.11 <0.001
0.015325 0.015325 1.79 0.193

0.809884 0.809884 94.59 <0.001
10.26827 10.26827 1199.23 <0.001
0.273841 0.273841 31.98 <0.001
0.233846 0.233846 27.31 <0.001
0.053444 0.053444 6.24 0.02

0.054515 0.054515 6.37 0.019

0.323653 0.323653 37.8 <0.001
0.001909 0.001909 0.22 0.641

0.051774 0.051774 6.05 0.022

0.205497 0.008562 1.05

0.118056 0.118056 12.66 0.002

0.000618 0.000618 0.07 0.799

0.07096 0.07096 7.61 0.011

0.310476 0.310476 33.29 <0.001
0.000456 0.000456 0.05 0.827

0.013211 0.013211 1.42 0.246

0.001336 0.001336 0.14 0.708

0.015536 0.015536 1.67 0.209

0.092105 0.092105 9.88 0.004

0.012195 0.012195 1.31 0.264

0.012502 0.012502 1.34 0.258

0.22381 0.009325 5.08
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Fig. 6 e Comparison of average barley crop canopy (growth stage 72) spectra between watered (-) and water-stressed

(----) treatments for a) healthy, b) yellow rust infected and c) fusarium infected crop canopy. Panel d compares canopy

spectra under watered conditions of healthy (---), yellow rust (---) and fusarium (-). Watered yellow rust had an average

infection of 36%, water stressed yellow rust 33%, watered fusarium 48%, and water stressed fusarium 52%.
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Consequently, the two indices adopted in the current work

highlight a distinguishable difference between the yellow

rust, fusarium head blight and healthy wheat and barley crop

canopies. It is important to mention that whilst these indices

have worked in establishing a difference between yellow rust,

fusarium and a healthy canopy at growth stage 72 in this

paper, it may be specific to the method and equipment used.
Further work should be undertaken to assess the reliability of

such indices, if captured at different growth stages, under

different circumstances, with alternative equipment. This is

an important point to make as a strong correlation of time to

spectral change was observed through PCA. The first two PCs

(principal components) are shown in Fig. 7 (for wheat) and

Fig. 8 (for barley). The separation of observations in this two-
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Fig. 7 e Principal component analysis (PCA) similarity map

of wheat canopy spectral data determined by principal

components 1 (PC1) and 2 (PC2), showing separation of

different spectra collected at Timing 2 (T2) of anthesis

growth stage 60, T4 of early milk growth stage 72, T6 of

late milk growth stage 77, and T8 of hard dough growth

sage 87.
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dimensional representation is strongly associated with the

time of scanning. Moreover, very little association with dis-

ease coverage could be discerned. This demonstrates that in

the captured data when all timings are considered, the

strongest influence on the canopies reflectance is time. These

results supported the decision to split the scans per time of

capture, for the PLSR of yellow rust and fusarium predictions.

3.2. Model performance for yellow rust detection

The PLSR cross-validation and prediction results for yellow

rust detection are shown in Table 7. Separate PLSR were car-

ried out for each time interval of T1, T3, T5 and T7 for barley

and T2, T4, T6 and T8 for wheat (Table 1). The cross-validation

results indicate good model performance for yellow rust %

coverage in wheat and barley (R2 values for wheat are 0.82,
Fig. 8 e Principal component analysis (PCA) similarity map

of barley canopy spectral data determined by principal

components 1 (PC1) and 2 (PC2), showing separation of

different spectra collected at Timing 1 (T1) of anthesis

growth stage 60, T3 of early milk growth stage 72, T5 of

late milk growth stage 77, and T7 of hard dough growth

sage 87.
0.92, 0.77 and 0.84, for T2, T4, T6 and T8 and barley 0.88, 0.78,

0.76 and 0.83 for T1, T3, T5 and T7, respectively), showing low

root mean square errors of cross-validation (RMSECV) ranging

from 3.3 to 8.8%. In general, the barley cross-validation results

for yellow rust, have a slightly lower R2 values and larger

RMSECV than the corresponding values for wheat (Table 7). As

yellow rust is a foliar disease, this reduction in prediction

performance for barley may be attributed to the crop having a

smaller flag leaf, and due to density of the crop, causing a

smaller foliar area to be captured by the hyperspectral imager.

When the developed PLSR models where used to predict

the yellow rust % coverage of 20% of samples (11 samples) in

the prediction set, the RMSEP values in both wheat and barley

show larger values in the predictions than in the cross-

validations. Although, RMSEP is a valuable index for assess-

ing individual model prediction accuracy, it is not recom-

mended to compare the performance between different

models (e.g., those for wheat and barley and between different

growing stages), due to the different data range. To compare

between the performances of different models, RPD was used

based on the RPD classes proposed in the current work (Table

4). The RPD values for prediction of each timing (growth stage),

shown in Table 7, suggest good prediction capability for 6 out

of 8 growing stages (RPD ranges of 2.16e2.49 in wheat and

2.18e2.43 in barely), a very good prediction for T4 (kernel

development, early milk (GS 72) in wheat (RPD ¼ 2.79) and a

moderate prediction capability for T5 (kernel development;

late milk (GS 77) in Barely (RPD ¼ 1.83).

It is well known in spectral analysis that successful

measurement of a concentration, be it soil properties or

other, depends on presence of variability of that said con-

centration. For example, Kuang and Mouazen (2011) reported

that although larger R2 and RPD can be obtained with larger

variability in soil, larger RMSEP is to be expected. Further-

more, with a small variability, weak or even no correlation

can be established with PLSR, so that no models can be

developed. Having said that, we believe that the scale of

variability in % coverage of yellow rust is rather small (Tables

2 and 3), although a reasonably high infection is recorded at

few points (see the mean and SD values). The small vari-

ability may be due to the experiment being run in trays under

rather controlled conditions, where only water is varied

artificially. These controlled conditions may lead to small

variability in yellow rust (Tables 2 and 3). The percentage of

disease coverage which is a method discussed by Chiarappa,

(1981) and defined as “disease severity”, is the amount of

expressed disease tissue of a plant. This method can be

objective, but is definitely not free of subjectivity. In the

current study all assessments are made by the same indi-

vidual, which decreases the between assessment variability

due to the subjective nature of the measurement. The more

spectral wavelength indices captured and accounted for, the

greater understanding of the object (Gilchrist, 2006). Howev-

er, for noisy spectra there is a need to minimise noise in the

signal, by adopting an optimised measurement configuration

(Whetton et al., 2017) and suitable spectra pre-processing.

Furthermore, stresses in the field are combined and might

include water stress, nitrogen stress, disease stress, and

other stresses that are mainly reflected on crop canopy as a

yellowing of the leaves. In the current work we have

https://doi.org/10.1016/j.biosystemseng.2017.11.008
https://doi.org/10.1016/j.biosystemseng.2017.11.008


Table 7 e Summary of model prediction performance for yellow rust and fusarium head blight % coverage in wheat and
barley in cross-validation and prediction. Results are shown for the determination coefficients (R2), root mean square error
of the prediction (RMSEP) and cross-validation (RMSECV), and the ratio of prediction deviation (RPD), which is the standard
deviation divided by RMSEP.

Cross-validation Prediction PCat

RMSECV (%) R2 RMSEP (%) R2 RPD

Wheat fusarium Timing 2 8.6 0.84 7.9 0.84 2.45 D

Timing 4 27.7 0.89 15.1 0.91 2.97 E

Timing 6 22.0 0.81 16.1 0.91 2.92 E

Timing 8 29.0 0.83 16.0 0.93 2.83 E

yellow rust Timing 2 6.2 0.82 7.7 0.86 2.49 D

Timing 4 5.0 0.92 8.8 0.91 2.79 E

Timing 6 3.3 0.77 8.3 0.91 2.17 D

Timing 8 7.0 0.84 7.2 0.86 2.16 D

Barley Fusarium Timing 1 14.9 0.95 14.4 0.97 2.52 E

Timing 3 14.0 0.83 10.4 0.86 2.69 E

Timing 5 14.0 0.75 15.5 0.93 2.72 E

Timing 7 25.0 0.79 15.1 0.88 2.62 E

yellow rust Timing 1 8.8 0.88 8.1 0.90 2.43 D

Timing 3 4.8 0.78 5.8 0.92 2.41 D

Timing 5 3.9 0.76 7.6 0.71 1.83 C

Timing 7 4.4 0.83 7.2 0.86 2.18 D

PC at timings in prediction category, to those detailed in Table 4.
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combined water stress and yellow rust infection in the tray

experiments, to evaluate the prediction accuracy of the yel-

low rust models.

The results obtained in this study for yellow rust prediction

encourage exploring the ultimate goal of the current study,

which is on-linemeasurement of yellow rust in the field using

the hyperspectral imager (400e750 nm). However, additional

affecting parameters exist in the field on top of the water

stress accounted for in the current study, and these should

also be evaluated. Using wheat trays under glass house

controlled conditions, Moshou, Pantazi, Kateris, and Gravalos

(2014) reported successful discrimination of water-stressed

from healthy plants with 99% accuracy. Their approach was

based on a combination of hyperspectral (460e900 nm) and

fluorescence imagery andmachine learningmodels. The early

success in field studies for hyperspectral imager's detection of

yellow rust disease such as Moshou et al. (2004) and Bravo

et al. (2003) focused on the presence of yellow rust in the

field, not necessarily the intensity. Typically disease recogni-

tion attempts with hyperspectral and multispectral imaging

are targeted to leaves rather than the canopy (Bock, Graham,

Gottwald, Cook, & Parker, 2010). Whilst recent attempts

using lower cost solutions for disease quantification in wheat

based on RGB images (Zhou et al., 2015) provided larger error

margins. Compared to other studies the current work ach-

ieved moderate to very good accuracy based only on a rela-

tively cost-effective hyperspectral camera in the vis range

only. In addition, we have accounted for the effect of water

stress in the experimental trial, hence, this effect was

included in the PLSR prediction models.

3.3. Model performance for fusarium head blight
detection

The cross-validation results for % coverage of fusarium head

blight indicate good model performance in both wheat and
barley (R2 values for wheat are 0.84, 0.89, 0.81 and 0.83, for T2,

T4, T6 and T8 and barley 0.95, 0.83, 0.75 and 0.79 for T1, T3, T5

and T7, respectively), with RMSECV range of 8.6e29% inwheat

and 14e25% in barley (Table 7). However these RMSECV ranges

are higher than those calculated for yellow rust. The lowest R2

for cross-validationwas once again for the latemilk stage. Due

to the method of inoculation explained-above, there was little

variability observed in fusarium head blight disease intensity

per timing (growing stage). Although the relatively low vari-

ability recorded for fusarium, the cross-validation results for

both wheat and barley indicate good model performances

(Table 7).

The prediction results indicate larger RMSEP values for

fusarium head blight (RMSEP ¼ 7.9e16.1% for wheat and

10.4e15.1% for barley) than those for yellow rust

(RMSEP¼ 7.2e8.8% for wheat and 7.2e8.1 for barley). However,

for RPD, the opposite case is true. According to RPD values,

good (for one growing stage) to very good (for three growing

stages) predictions are recorded for fusarium in wheat,

whereas very good predictions are calculated for the four

growing stages in barley (Table 7). Also, higher RPD values are

calculated for the prediction of fusarium head blight in both

crops. The lower RMSEP values calculated for yellow rust than

those for fusarium suggest higher prediction accuracy for

yellow rust (smaller error). This means that yellow rust can be

detected with higher accuracy than fusarium head blight, an

observation to be taken into account for future variable rate

applications of relevant fungicides.

Fusarium head blight symptoms appear on crop heads at a

late stage in the crop growing season (normally only after

anthesis, but potentially at head emergence), allowing for

limited number of scans to be collected. Bauriegel et al. (2011)

claimed that fusarium head blight can be detected by spectral

analysis in the spectral range of 400e1000 nm, with an iden-

tification accuracy of 87%. These authors advised that the

ideal timing for measurement is at the medium milk stage
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(growth stage 75), though the scans were based on the crop

ears against a black background. Delwiche, Kim, and Dong

(2011) successfully differentiated between healthy kernels

from fusarium head blight infected, reporting a 95% classifi-

cation accuracy. The results reported in the current study

support the previous findings, as the highest prediction per-

formance is recorded for the kernel development stages, at

both the early and late milk. Bauriegel et al. (2011) have also

reported the highest measurement accuracy of fusarium in

the milk kernel development stage. However, the relatively

lower RPD scores in the earlier scans (T1 for barley and T2 for

wheat) may be attributed to a smaller standard deviation

variability of the data sets (Tables 2 and 3).

In order to account for the temporal dependence in ob-

servations over the different scanning intervals collected at

the four growing stages in this study (Table 1), it was neces-

sary to run a separate PLSR analysis for each growing stage.

This has resulted in a rather small number of samples for each

PLSR analysis (e.g., 43 and 11 for the calibration and prediction

sets, respectively). Therefore, it is necessary to consider a

larger dataset in the PLSR analysis in a future work, and to

explore new methods of data analysis based on machine

learning and/or image processing, or adopt a modelling

approach that can explicitly account for temporal depen-

dence/repeated measures structure. It is also suggested to

adopt a data fusion approach of both spectra and images,

which is expected to provide more reliable model prediction

performance. The results reported in this work are successful

and encouraging to suggest testing the proposed hyper-

spectral technique in the vis range of 400e750 nm, coupled

with PLSR as a potential tool for on-line measurement of the

named two fungal diseases. However, there are other

affecting parameters in the field than water stress that should

be accounted for, which include within field variability in soil

properties, varying ambient light, sensor-to-crop canopy

height and angle.
4. Conclusions

The study explored the potential of a hyperspectral line

imager (400e750 nm) for the detection of yellow rust and

fusarium head blight in wheat and barley, based on partial

least squares regression (PLSR) analysis. The experiment was

carried out in the laboratory under partially controlled envi-

ronmental conditions where water stress effect was intro-

duced. The results reported allowed the following five main

points to be concluded:

1) The standard deviation of the wavelength range from 500

to 650 nm and the squared difference between 650 nm and

700 nm are of interest in discrimination between healthy,

from yellow rust or fusarium head blight infected wheat

and barley canopy.

2) The principle component analysis run on canopy spectral

data collected on healthy, yellow rust and fusarium infec-

ted crops at multiple growth stages, reveals temporal

pattern and time serial autocorrelations, which suggested

the need for separate PLSR for each growing stage.
3) The best PLSR prediction performance for yellow rust in

wheat was at the early milk of the kernel development

stage, whereas for barley the best performance was at the

anthesis and the early milk stages.

4) The best PLSR prediction performance for fusarium was at

both the early and late milk of the kernel development

stages in both wheat and barley.

5) Although higher ratio of prediction deviations were

calculated for fusarium head blight, the smaller root mean

square error of prediction for yellow rust suggested more

accurate measurement of the latter under laboratory

conditions.

The laboratory trials in this study have been designed to

emulate a field. The data used in the models was all collected

from the wheat and barley trays, designed to simulate a field

canopy, so the variance of reflectance due to canopy is

included in the models. Whilst other properties such as illu-

mination angle, view positions, shadows, plant species,

maturity and phenology can be controlled under laboratory

conditions, these parameters will have considerable in-

fluences under field conditions, which need to be evaluated

with a future work planned in Part 2 of this study.
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