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Accurate recognition of salient cues is critical for adaptive responses, but the

underlying sensory and cognitive processes are often poorly understood. For

example, hosts of avian brood parasites have long been assumed to reject

foreign eggs from their nests based on the total degree of dissimilarity in

colour to their own eggs, regardless of the foreign eggs’ colours. We tested

hosts’ responses to gradients of natural (blue-green to brown) and artificial

(green to purple) egg colours, and demonstrate that hosts base rejection

decisions on both the direction and degree of colour dissimilarity along

the natural, but not artificial, gradient of egg colours. Hosts rejected

brown eggs and accepted blue-green eggs along the natural egg colour gra-

dient, irrespective of the total perceived dissimilarity from their own egg’s

colour. By contrast, their responses did not vary along the artificial colour

gradient. Our results demonstrate that egg recognition is specifically tuned

to the natural gradient of avian eggshell colour and suggest a novel decision

rule. These results highlight the importance of considering sensory reception

and decision rules when studying perception, and illustrate that our under-

standing of recognition processes benefits from examining natural variation

in phenotypes.
1. Introduction
The recognition of suitable food, mates, predators, and shelter is central to all

life. An organism’s fitness depends on its ability to recognize phenotypic differ-

ences that can vary from obvious to nearly imperceptible [1,2]. However,

decision-making in a natural context can be challenging because novel stimuli

inevitably differ from previously encountered stimuli. Here, we used avian

brood parasite–host interactions as a tractable system to explore the perceptual

bases of these recognition processes in the wild.

Avian brood parasites lay their eggs into other birds’ nests and impose the

cost of rearing their young upon host parents [3–5]. Hosts evade these costs by

preventing parasitism [6] or rejecting parasitic eggs or young from their nests

[3,4]. As hosts evolve better discrimination abilities, selection favours parasites

with eggs that more accurately mimic host egg appearance [7,8], which can lead

to coevolutionary arms races [9]. Prior experience with brood parasitism affects

an individual’s response [10–12]; experience with their own and foreign eggs

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2016.2592&domain=pdf&date_stamp=2017-02-08
mailto:daniel.hanley@liu.edu
https://dx.doi.org/10.6084/m9.figshare.c.3672193
https://dx.doi.org/10.6084/m9.figshare.c.3672193
http://orcid.org/
http://orcid.org/0000-0003-0523-4335
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rspb.royalsocietypublishing.org/


multiple threshold

1.0

re
je

ct
io

n 
pr

ob
ab

ili
ty

0

0.5

1.0

re
je

ct
io

n 
pr

ob
ab

ili
ty

0

0.5

perceived phenotypic difference perceived phenotypic difference

single threshold

x Æ •

(a) (b)

Figure 1. Decision-making by hosts of avian brood parasites is an ideal system for studying general principles of cognition in nature. These hosts must detect and
appropriately respond to a brood parasite’s trickery while balancing the risk of acceptance or rejection errors (striped and cross-hatched areas, respectively). The
acceptance threshold (dashed vertical lines) lies at the intersection of these risks [14], such that stimuli between both thresholds are accepted and beyond which
stimuli are rejected. These thresholds can shift (infinitely far) depending on perceived risk (bi-directional arrows on acceptance thresholds), making them akin to
decision boundaries in general recognition theory [15] rather than demarcating a host’s perceptual limits (i.e. psychological versus psychophysical). In the top portion
of each schematic (a,b) we illustrate a distribution of host eggshell phenotypes (middle) and distributions for two parasites (left and right). The traditional expec-
tation based on multiple thresholds (a, bottom) is that as the magnitude of perceived difference between host and parasitic eggs increases hosts are more likely to
respond; therefore, blue-green and brown parasitic eggs that are equally different to the host’s eggs should be rejected at equal rates. However, if hosts base
rejection decisions on (b) specific colours, then we expect (b, bottom) that rejections would be biased toward one end of the phenotypic range, despite the absolute
perceived difference; for example, such that either blue-green or brown parasitic eggs are rejected.
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provides hosts with valuable information on a range of egg

phenotypes that will allow for more flexible future decisions

(e.g. [12]). One common host defence is to reject a parasitic

egg that differs from a learned or innate internal template

of the host’s own eggshell appearance [10,13] and eggshell

coloration and maculation (i.e. spotting) are the primary

cues that most hosts use for such egg recognition tasks [4].

Most studies (electronic supplementary material, table S1)

have examined host responses based on the absolute perceived

colour dissimilarity between host and parasitic eggs (here-

after, the multiple threshold decision rule; figure 1a).

However, hosts may be biased toward rejecting eggs with

colours at either end of their phenotypic range (hereafter,

the single threshold decision rule, figure 1b), rather than

having their responses governed only by the magnitude of

the perceived difference (at both tails of a host’s phenotypic

range; figure 1a). Birds’ eggshell colours are ideally suited

for testing if host responses are governed by single or mul-

tiple discrimination thresholds because they vary linearly

from blue-green to brown through the avian colour space

[16]. Some studies that have examined the role of each of

birds’ four individual photoreceptors found that variation

in perceived ultraviolet and blue light predicted host egg

rejection behaviour while absolute perceived colour differ-

ences did not [17]. This suggests that perceived variation in

specific colours may have governed their rejection responses,

which might be adaptive if hosts have either a learned or

innate aversion to parasitic egg colours. Thus, despite vast

research [4], the decision rules underlying colour-based

parasitic egg recognition remain unclear.

To experimentally test whether hosts employ a single

threshold decision rule, we painted foreign eggs to vary
continually along two colour gradients within the avian per-

ceptual colour space representing either natural or artificial

egg colours (figure 2). The first gradient encompassed natural

variation in birds’ eggshell colours, which varies from blue-

green to brown [16]. The second gradient encompassed a

range of artificial colours, orthogonal to the first within the

host’s visual space, varying from green to purple (figure 2).

These foreign eggs were added to the nests of blackbirds

Turdus merula (hereafter, blackbird) and American robins

T. migratorius (hereafter, robin) and we recorded whether

these hosts accepted or rejected the foreign eggs from their

nests. If host rejection decisions are based solely on absolute

perceived colour differences, their responses should be inde-

pendent of the direction of the colour differences (figure 1a)

and similar along both colour gradients. By contrast, if

hosts use a single threshold decision rule (figure 1b), then

we expect predictable responses only along the natural egg

colour gradient because these represent relevant stimuli

[16]. Finally, we more fully explored these hosts’ responses

by quantifying and comparing host discrimination abilities.
2. Material and methods
(a) Study area and experimental procedures
We studied blackbirds in Olomouc, Czech Republic (498360 N,

178150 E) and robins in Ithaca, New York, USA (428260 N,

768300 W) between April and July 2014, and successfully finished

experiments at 82 blackbird and 52 robin nests. Conspecific para-

sitism rates for blackbirds in our population are conservatively

estimated at 3.1% [18] and cuckoos do not parasitize this popu-

lation because cuckoos avoid towns [19]. Our robin population is

http://rspb.royalsocietypublishing.org/
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Figure 2. Foreign eggs were (a) painted across two gradients of variation that
either align (blue-green to brown) or are orthogonal (green to purple) with
natural eggshell colours. These manipulations produced perceivable colour vari-
ation that represents relevant threats and novel stimuli to hosts (see the
electronic supplementary material). These models, presented to (b) blackbirds
and (c) robins, were specifically designed with respect to the avian tetrahedral
colour space (shown from above). Within each tetrahedron we illustrate the pre-
dicted short ‘S’, medium ‘M’, long ‘L’, and ultraviolet ‘U’ wavelength-sensitive
photoreceptor stimulation when these foreign eggs are viewed by the host.
Insets show these models (in actual colour) alongside variation of natural (b)
blackbird and (c) robin eggshell colours (black dots within each inset). For
the purpose of comparison, we show eggshell coloration of the brown-
headed cowbird (red dots in c) that parasitizes the robin (data from [16]).
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sympatric with cowbirds [20,21] and may experience cowbird

parasitism, as indicated by the presence of a cowbird egg in an

abandoned robin nest [22]. We introduced a single foreign egg

model into each nest and recorded whether or not the attending

female was flushed from the nest [23]; these eggs were unspotted

immaculate (i.e. unspotted) and their colours uniquely positioned

along a gradient of blue-green to brown colour variation represen-

tative of natural avian eggshell colours [16] or an alternative

orthogonal gradient varying from green to purple (figure 2; elec-

tronic supplementary material, figure S1). After each egg

introduction, we monitored the nest daily for six consecutive

days [24]. Hosts were considered ‘rejecters’ when the foreign egg

or one of their own eggs disappeared from their nests during

this six-day period. To ensure rejection responses were possible,

these eggs were consistent in size, shape, and material with exper-

imental eggs previously used in these populations (see the

electronic supplementary material), differing only in their colour.

We did not detect conspecific or interspecific parasitism in any

of these nests (for further details, see the electronic supplementary

material).
(b) Colour analysis
We used reflectance spectrometry to objectively measure the

coloration of freshly abandoned eggs from both hosts, and also

foreign egg models. Then, using visual information of the black-

bird [25] and a noise-limited visual model [26], we calculated the

perceived chromatic and achromatic contrast in units of just

noticeable difference (hereafter JND) between the average host
colour and each egg model. Under ideal viewing conditions

a JND , 1 represents an imperceptibly small difference between

the hosts’ eggs and the foreign egg, while a JND of one would be

just noticeable under ideal viewing conditions, and JNDs . 1

become increasingly noticeable as the JNDs increase. We then

summarized perceivable variation in colour using perceptually

uniform chromaticity diagrams [27], which allowed for examin-

ing both the direction and degree of JNDs. For further details,

see the electronic supplementary material.
(c) Statistical analyses
We used binomial generalized linear models (GLM) to predict

each host’s response (accept or reject), using the ‘glm’ function

in the base ‘stats’ package in R v. 3.1.2 [28]. We decided to use

a logit link function to ensure our results are comparable with

previous studies that have widely used this link function to

describe host responses (e.g. [13,23,29]); however, other para-

metric psychometric functions (e.g. Gaussian or Weibull) could

also explain host responses. Therefore, to ensure our results

were robust to the form of psychometric function, we reran the

GLM using the appropriate link function for each psychometric

alternative (the probit link function for Gaussian and the comp-

lementary log–log function for Weibull) [30]. We report the

threshold location as the colour value associated with a rejection

probability of 0.50, based on models refitted with only the pre-

dictor of interest [30,31]. This describes the location of each

host’s decision boundary, along either colour gradient (in JND

units in a particular direction) or across differences in absolute

dissimilarity (in JND units), which we report as the median and

inter-quartile range based on 10 000 bootstrap estimates. We

also present Nagelkerke’s R2 and the small sample size-corrected

Akaike’s Information Criterion AICc [32,33].

First, we examined if both chromatic and achromatic contrast

predicted host response (multiple threshold decision rule). Then,

we predicted host response by the three gradients of manipu-

lated colour variation, controlling for the perceived achromatic

contrast (single threshold decision rule). For these models,

we report the evidence ratio [34], in which unlike AICc weights

do not depend on the alternative models and which quantifies

the empirical support for one hypothesis over an alternative

hypothesis [34,35].

In addition, we used an information-theoretic (I-T) approach

[34] to produce an average model that would incorporate the

uncertainty of many similarly probable alternatives and identify

the models that best described the variation in our data [36].

Specifically, we produced a global GLM predicting host response

by our main variables of interest, which were the three gradients

of colour variation, chromatic and achromatic contrast, as well as

other variables with the potential to impact host response

[18,23,37]: whether they were flushed from their nest (categori-

cal: yes or no), final clutch size (continuous), laying date

(continuous), and nest age (continuous). We then established a

candidate set based on the relative likelihood of potential

models such that models with evidence ratios greater than 1/8

were considered reasonable [34]. We averaged models in this

candidate set using the ‘MuMIn’ package v. 1.13.4 [38]. The rela-

tive importance of each predictor of host response was calculated

as the sum of AICc weights over all the models in the candidate

set where that predictor occurs, setting the effect of a parameter

at zero if it was not included in a particular model within the

candidate set, to avoid biasing our model averaged estimates

away from zero [34].

To examine if blackbirds and robins expressed different dis-

crimination abilities to experimental parasitism, we compared

the slopes of their predicted responses along the natural eggshell

colour gradient (i.e. regression coefficients for responses to vari-

ation along the blue-green to brown gradient). Using a

http://rspb.royalsocietypublishing.org/
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Figure 3. The probability of rejecting a coloured foreign egg is shown for (a,b) blackbirds (n ¼ 82) and (c,d ) robins (n ¼ 52), with respect to the position of each
hosts’ own egg colour (see inset eggs above zero on both x-axes) along the (a,c) blue-green to brown and (b,d) purple to green colour gradients (in JNDs). We show
a significant logistic (solid line, table 1), Gaussian (dashed, electronic supplementary material, table S2), and Weibull (dotted, electronic supplementary material,
table S3) fits. Please note, we plotted all egg rejections, including rejection errors (black dots; n ¼ 2) and foreign eggs falling along both colour dimensions. For
comparison, we plotted (c) the mean location (approx. 4 JND on the x-axis) of eggshell coloration along this axis for the robin’s heterospecific brood parasite, the
brown-headed cowbird (also see figure 2). We illustrate 10 000 resampled slopes from binomial models predicting host behavioural responses (light grey lines); refer
to table 1 for the significance of these parameters.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20162592

4

 on February 15, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
resampling approach [39], we randomly selected 90% of the

blackbird and robin data, respectively, and reran GLMs (see

above) separately for each species using these data, recording

the regression coefficients (i.e. slopes) for blue-green to brown

variation 10 000 times. Normality of the resampled populations

was tested using Kolmogorov–Smirnov tests, using 1 000

Monte Carlo simulations [40], and neither population was nor-

mally distributed (blackbird: Kolmogorov–Smirnov test ¼ 0.61,

bootstrap p , 0.0001, Monte Carlo simulations ¼ 1 000; robin:

Kolmogorov–Smirnov test ¼ 0.97, bootstrap p , 0.0001, Monte

Carlo simulations ¼ 1 000). Therefore, we tested for differences

in slopes using a Wilcoxon rank sum test and report the

rank-biserial correlation [41].

All analyses were conducted in R v. 3.1.2 [28]. For more

complete details on the methods and statistical analyses used,

see the electronic supplementary material.
3. Results
We found that both hosts’ rejection responses varied predic-

tably across the gradient of natural eggshell colours. This

natural eggshell colour gradient had the greatest relative

importance of any potential predictive variable (table 2); no

other parameter could effectively predict either host’s

response. Blackbirds rejected eggs browner than their own

at higher rates (mean+ standard error (s.e.): 86.96+0.61%)

than eggs that were more blue-green than their own
(66.00+3.18%, threshold location: median ¼ 23.84 JND

more blue-green; inter-quartile range ¼ 1.56 JND; figure 3

and table 1). Robins also rejected eggs browner than their

own (78.45+3.26%) at higher rates than eggs more blue-

green than their own (0.40+0.22%; threshold location:

median ¼ 1.16 JND browner, inter-quartile range ¼ 0.33

JND; figure 3 and table 1). By contrast, neither the blackbird’s

(threshold location: median ¼ 2.41 JND greener, inter-

quartile range ¼ 2.60 JND) nor the robin’s responses were

predicted across the gradient of artificial eggshell colours

(threshold location: median ¼ 0.51 JND greener, inter-

quartile range ¼ 0.63 JND; figure 3 and table 1). Moreover,

blackbird rejection responses were negatively (not positively)

related to the absolute perceived degree of dissimilarity, i.e.

chromatic contrast (threshold location: median ¼ 5.49 JND,

inter-quartile range ¼ 1.82 JND; figure 3a and table 1),

while robin responses were unrelated (threshold location:

median ¼ 2.30 JND, inter-quartile range ¼ 0.55 JND;

figure 3b and table 1). Alternative psychometric functions

produced equivalent results (figure 3; also see electronic sup-

plementary material, tables S2 and S3). These findings

provide strong support that these hosts use a single threshold

decision (figure 1b) rather than the traditionally assumed

multiple threshold decision rule (figure 1a, figure 3, and

table 1).

We found that these hosts differed in their discrimination

abilities, such that robins had a significantly stricter decision
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Table 2. Averaged parameter estimates from generalized linear models (see table 1) with their adjusted standard errors (s.e.) [34], 95% lower and upper
confidence intervals (LCL and UCL), measures of standardized effect (z-score), and relative importance. Estimates are presented as changes in log-odds of
rejecting an egg for an increase of one JND. Host response to foreign egg model (either accept or reject) was predicted by the axes of colour variation (blue-
green to brown, green to purple, less UV to more UV), chromatic and achromatic contrast (JND units), whether the female was flushed from her nest during
the experiment (yes or no), the nest age (days) at the time of the experiment, clutch size (eggs), and the laying date for each manipulated nest. Parameter
estimates with confidence intervals that do not overlap zero are italicized.

species parameter estimate s.e.adjusted LCL UCL z importance

Blackbird (intercept) 2.22 1.69 21.15 5.58 1.29 —

blue-green to brown 0.46 0.18 0.11 0.82 2.55 1.00

flushinga 21.14 1.03 23.33 0.30 1.10 0.75

chromatic contrast 0.07 0.20 20.37 0.96 0.33 0.23

less UV to more UV 20.10 0.30 21.46 0.59 0.32 0.22

achromatic contrast ,0.01 0.03 20.09 0.17 0.22 0.18

nest age (days) ,20.01 0.04 20.26 0.23 0.05 0.12

laying date ,20.001 ,0.01 20.05 0.04 0.06 0.12

green to purple ,20.01 0.09 20.54 0.51 0.02 0.12

clutch size (eggs) ,0.0001 0.15 20.85 0.85 ,0.0001 0.12

Robin (intercept) 23.72 6.68 216.99 9.55 0.55 —

blue-green to brown 2.07 0.95 0.17 3.96 2.14 1.00

flushinga 1.48 1.66 20.53 5.44 0.88 0.60

nest age (days) 0.12 0.21 20.16 0.76 0.59 0.41

less UV to more UV 20.93 1.17 23.87 0.66 0.79 0.58

clutch size (eggs) 0.37 0.77 20.85 3.09 0.48 0.33

achromatic contrast 20.11 0.21 20.82 0.22 0.50 0.36

green to purple 0.03 0.21 20.74 1.12 0.16 0.18

laying date ,20.01 0.02 20.13 0.06 0.26 0.20

chromatic contrast ,20.01 0.28 21.57 1.49 0.02 0.13
aA positive effect estimate indicates that flushed females were more likely to reject the foreign egg.
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boundary than blackbirds (blackbird: median¼ 0.44, inter--

quartile range¼ 0.28; robin: median ¼ 2.78, inter-quartile

range¼ 1.56; r ¼ 1.00, slope difference ¼ 1.99, CI0.95¼ 1.98 to

1.99, n ¼ 108, p , 0.0001; figure 3).

4. Discussion
We provide experimental evidence that host response to

parasitic eggshell colour is not solely based on the perceived

colour difference between their own and parasitic eggs as pre-

viously thought. Instead, both host species were biased toward

rejecting brown eggs and accepting blue-green eggs regardless

of the absolute perceived difference in coloration between

those foreign eggs and their own. By contrast, neither species

predictably responded to artificial eggshell colours. These

findings suggest that, from perception to action, host recog-

nition is tuned to and within the confines of natural variation

in avian eggshell colours (table 1). Specifically, hosts preferen-

tially reject brown parasitic eggs. Our findings illustrate that

host responses are predictable by biologically relevant stimuli,

while their responses are not predictable by irrelevant, artifi-

cial, stimuli. Although a multiple threshold decision rule can

explain host responses to foreign eggs displaying a range of

novel eggshell colours (table 1), the single threshold decision

rule we document is a much stronger explanation for hosts’
responses. These findings highlight an unexplored cognitive

mechanism underlying host egg recognition and illustrate

that both sensory reception and cognitive processes are critical

for host perception.

Despite similar responses, we found that these two hosts’

responses differed in strength (figure 3a,c). These differences

may be due to the greater range of natural variation in black-

bird eggshell appearances (see inset black dots in, figure 2b,c),

extrinsic environmental variables, or the blackbird’s shared

evolutionary history with the robin; however, we find the

latter particularly unlikely because both egg appearance

[42,43] and responses to parasitism [44] can change within

decades. Instead, it is very likely that these differences

relate to these hosts’ adaptations to different types of parasit-

ism. Foreign egg discrimination in the blackbird has evolved

in response to either conspecific [18] or cuckoo [19] eggs that

display a similar range of colours (electronic supplementary

material, figure S2). By contrast, robins are parasitized by

brown-headed cowbirds, Molothrus ater (hereafter cowbird)

that lay eggs distinct from the robin’s in size, colour, and pat-

tern [45] (figures 2c and 3c), which may have resulted in the

stricter decision boundary that we detected (figure 3c). Thus

within a set of natural eggshell colours, discriminating a rel-

evant threat is clearer for the robin. By contrast, eggshell

colours that do not occur in nature (e.g. green to purple)

http://rspb.royalsocietypublishing.org/
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are irrelevant and neither host produced predictable

responses along this artificial gradient (table 1).

As with other types of discrimination [46,47], a host’s egg

discrimination ability should depend on various factors

including sensory systems, cognitive abilities, coevolutionary

history, and individual experience [4]. The patterns in the

predictability of host responses to natural and artificial egg

colours that we detected may suggest a role of learning in

colour-based decisions. Studies such as ours, which quantify

responses of wild animals to unconditioned stimuli, inevita-

bly include responses from individuals with varied levels of

experience and ability, and this provides a biologically

meaningful estimate of stimulus response [48]. Although

we found no evidence that within-season experience influ-

enced host response (table 2), we acknowledge the

possibility that prior experience with experimental or real

brood parasitism by individuals in our study population

may have affected an individual’s response [10–12]; how-

ever, in the vast majority of hosts, including blackbirds

from our study population [49], prior experience did not

influence host responses (see references in [50]). Future

research would benefit from examining the role of learning

and prior experience by studying systems where both

males and females reject (e.g. Icterus galbula or Sturnus
vulgaris). In such systems, males and females may have

different prior experience with egg colours, allowing

researchers to differentiate prior experience from cognition.

Single and multiple threshold decision rules are not

mutually exclusive. Rather, both represent cognitive pro-

cesses in a host’s arsenal within coevolutionary arms races.

Thus, these findings do not contradict previous comparative

projects and experiments that have found that the absolute

perceived differences between host and parasitic egg colours

are important predictors of host responses (e.g. [8,13,51,52]),

particularly if they satisfy two conditions: the foreign egg-

shell colour aligns with the natural blue-green to brown

gradient of colours found on birds’ eggshells [16] and is pre-

dominantly located on the rejection side of a host’s decision

boundary. Many studies have used disparately coloured

eggs to explore the limits of host perception [17,22,53,54],

and our study provides a conceptual framework to under-

stand why using artificially coloured foreign eggs can

produce mixed results [53,55] (electronic supplementary

material, figure S3). Future research would benefit from iden-

tifying decision boundaries by thoroughly sampling across a

host’s entire sensory space.

We do not necessarily expect to find such decision rules in

all host species. Some hosts have been found to disruptively

select cuckoo eggshell coloration [56], which suggests that

these hosts do not discriminate between blue-green and

brown eggs in the same way we have documented here,

but instead could use a multiple threshold decision rule

(e.g. reject both bluer and browner eggs). Similarly, if all

hosts preferentially reject brown eggs, the blue-green

cuckoo eggshell morph would most likely be more

common than it actually is in nature [57]. However, similar

decision rules may be a pervasive feature of host egg dis-

crimination, potentially explaining why some studies have

found that ultraviolet and short wavelength-sensitive

quanta catch explain host responses while absolute perceived

differences do not (figure 1 in [17]). Our findings suggest that

brown coloration can serve as a supernormal stimulus for eli-

citing higher egg rejection rates than other colours.
Accordingly, experimental findings from other hosts illus-

trate that these colours are rejected at high rates [17,53]

while non-mimetic blue and green eggs are typically accepted

[17,58], including the main 25 hosts of the common cuckoo

Cuculus canorus [59]. Finally, more frequently parasitized

hosts not only have greater conspecific variation in blue-

green eggshell colour, but also generally have more intense

blue-green eggshell coloration than less frequently parasitized

hosts [60]. This evolutionary pattern would be expected if

single threshold decision rules were more pervasive, but

would be unexpected if hosts base rejection decisions on

multiple thresholds.

Future research should determine the underlying mech-

anism behind this single threshold decision rule. One

possibility is that hosts of avian brood parasites use colour

categorization for egg discrimination. Colour categorization

enables an organism to group stimuli along a discriminable

gradient into distinct categories [61,62] and is characterized

by a heightened discriminability between categories [62,63]

(electronic supplementary material, figure S4). This mechan-

ism can aid the decision-making process for unfamiliar

tasks or when information is uncertain [63–65] and can

increase the speed, accuracy, and certainty of choices, while

reducing the requirements for neural processing [48,65]. Pre-

vious research has suggested that colour categorization could

explain egg recognition by the tawny flanked prinia Prinia
subflava [66], and that to detect colour categorization,

researchers should compare behavioural responses to the pre-

dictions of visual models [67]. We provide that initial test and

found a sharp decision boundary similar to other studies on

categorical perception [48,68], but future studies should

investigate the other criteria for categorical perception

[62,69,70]. The single threshold decision rule is adaptive for

the robin facing a parasite that lays browner eggs; however,

it is unclear if this behaviour is adaptive for the blackbird

that could encounter parasites laying eggs that are either

more blue-green or browner than their own. These findings

could suggest a cognitive constraint or that browner blackbird

eggs are more likely parasitic.

Our findings illustrate that host responses are shaped

by both the natural range of phenotypic variation and the

sensory-cognitive constraints on host defences, and demon-

strate that some hosts have strong rejection biases for

specific colours (figure 3). We encourage further exploration

of host responses across phenotypic spaces, and our exper-

iment provides an approach for examining these relatively

unexplored cognitive mechanisms that will advance our

understanding of the underlying cognitive mechanisms of

egg recognition and brood parasite–host coevolution more

generally. Moreover, our work demonstrates that when

attempting to understand recognition systems, natural vari-

ation in phenotypes should be considered. Finally, and

most importantly, we illustrate the value of asking basic

questions even in long-standing and well-established fields.
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