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Introduction

The PreventIT project is an EU Horizon 2020 project (PHC-21-2015)
aimed at preventing early functional decline at younger old age and pro-
mote active and healthy ageing by using mobile health technology to de-
velop and deliver a risk score for functional decline and a personalized in-
tervention with exercise integrated in daily life [1]. The analysis of causal
links between risk factors and functional decline has been made possi-
ble by the cooperation of several research institutes’ studies. However,
since each research institute collects and delivers different kinds of data
in different formats, so far the analysis has been assisted by expert geri-
atricians whose role is to detect the best candidates among the hundreds
of datasets’ fields and offer a semantic interpretation of the values. This
manual data harmonization approach is very common in both scientific
and industrial environments.

In this thesis project an alternative method for parsing heterogeneous
data is proposed. Since all the datasets represent semantically related
data, being all made from longitudinal studies on aging-related metrics,
it is theoretically possible to train an artificial neural network to per-
form an automatic domain adaptation. To achieve this goal, a Stacked
Denoising Autoencoder has been implemented and trained to extract a
domain-invariant [2] representation of the data. Then, from the high-
level representation provided by the Stacked Denoising Autoencoder, a
second neural network classifier (either a Multilevel Perceptron or a Long
Short-Term Memory network) has been trained to validate the model and
ultimately to predict the probability of functional decline of the patient.
This innovative approach to the domain adaptation process can provide
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2 INTRODUCTION

an easy and fast solution to many research fields that now rely on human
interaction to analyze the semantic data model and perform cross-dataset
analysis.

Functional decline classifiers show a great improvement in their per-
formance when trained on the domain-invariant features extracted by the
Stacked Denoising Autoencoder. Furthermore, this project applies multi-
ple neural network classifiers on top of the Stacked Denoising Autoencoder
representation, achieving excellent results for the prediction of functional
decline in a real case study that involves two different datasets.

The first chapter will deliver a brief introduction to artificial neural
networks and a detailed explanation of the mechanisms behind all the
network models used in this project.

The second chapter will discuss the implementation of the the project
and the methods used for the validation of the model.

Finally, the third chapter will show the experimental results achieved
by the trained model.



Chapter 1

Neural Networks

An artificial neural network is a system of hardware and/or software
built after the operations of the biological neural networks that form hu-
man brains. Such systems learn (i.e progressively improve performance)
to perform tasks by analyzing examples, generally without task-specific
programming.

Neural networks are a form of connectionism [3] made up of a number
of simple, highly interconnected processing elements (also called neurons
or nodes), which process information in parallel by changing their state
dynamically in response to external inputs in order to provide new out-
puts. Each connection between neurons, called synapsis in biology, can
transmit a signal in one direction. The receiving (or post-synaptic) neuron
can process the signal and then propagate its results downstream to the
neurons connected to it.

Although computers are currently able to carry out some tasks in a
more efficient way than the human brain, computers are not yet capable
of matching the brain’s cognitive capacity, its flexibility, robustness and
most importantly its energy efficiency [4]. Artificial neural networks (from
now on just Neural Networks, ANN or NN) usually involve a large num-
ber of processors operating in parallel and arranged in tiers or layers. The
first layer receives the raw input information and then the signal travels
towards the last layer that delivers the output back. Different layers may
perform different kinds of transformations on their inputs, collecting infor-
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4 NEURAL NETWORKS

mation through the learning phase and processing it to acquire a specific
knowledge on the problem.

Neural networks have been used on a variety of tasks, including nat-
ural language processing, computer vision, medical diagnosis, sentiment
analysis, playing boardgames and in many other domains.

From the system engineering point of view, a neural network is con-
sidered as a “black-box” as it imitates a behaviour rather than a structure
and can reproduce any function. Studying the inner structure of the neu-
ral network does not typically provide to the user any useful information
about the original system being imitated. The physical organization of
the original simulated system is never taken into consideration, but only
its outcome. An advantage of the neural network is that it behaves as
a non-linear black box, modeling and describing virtually any linear or
non-linear dynamic. However the disadvantage consists in the knowledge
being represented in a sub-symbolic way, thus offering a limited interpre-
tation to the end user. As far as conventional statistics are concerned, the
neural network may be considered as a non-identifiable model [5] in the
sense that various networks with different topologies and parameters may
be defined to produce the same results.

Although ANN being a not so recent field of research, having the ear-
liest papers on the subject published in the late 1940s, many of the topics
and applications of neural networks have only now acquired maturity and
consolidation thanks to the great improvement in computational power of
the last decade. In fact, the spread of multi-core processing units, parallel
programming and virtualization are three of the fundamental technologies
which have led to modern implementations of neural networks.

Differently from conventional computing which is typically sequential,
i.e. having a set of operations that have to be completed in a given or-
der, neural networks are inherently parallels in their behaviour because
a huge amount of neurons are activated at the same time and process
the information independently one from another. They have proven to
be very competitive in the resolution of real-world problems compared to
more traditional data-analysis methods, usually based on explicit statis-
tical modeling [6].
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1.1 Supervised and unsupervised learning

Typically, a neural network is initially trained by feeding large amounts
of data to it. Training consists in providing the inputs and informing
the network with what the expected output should be, so that it can
compare the generated output with the true one and reduce the error
in the process. In machine learning, the aforementioned process is called
supervised training and the provided outputs are usually called labels. For
example, a machine could be provided with a series of human face pictures
and a corresponding series of labels identifying the face as smiling or not
smiling, so that it can be trained to classify the faces with the right class.
Therefore, a classifier can be seen as an implementation of the mapping
function

Y = f(x) (1.1)

where x is the input picture and Y is the output label. The goal of the
supervised training is to approximate the mapping function so well that
when you have new input data, you can predict the output variables for
that data without resorting to additional training.

There may also be some basic rules about objects’ relationships in the
space being modeled. For example, the above facial recognition system
might be instructed and modeled with additional information like “the
eyes are under the eyebrows” or “the nose is in the middle of the face
and above the mouth”. Preloading rules in the network can make training
faster and make the model more powerful sooner. But it also builds in
assumptions about the nature of the problem space, which may prove
to be either irrelevant and unhelpful or incorrect and counterproductive,
making the decision about what rules to build in very important [7].

On the opposite side, unsupervised learning is when you only feed the
input data to the machine and no corresponding output labels. The goal
for unsupervised learning is therefore to model the underlying structure
or distribution in the data in order to learn more about the data. Unlike
the supervised learning above, in this process there is no correct answers
and there is no teacher (hence the name unsupervised learning). Algo-
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rithms are left to their own devises to discover and present the interesting
structure in the data. Unsupervised training algorithms are even more
sensitive than the supervised ones to any a priori knowledge offered to
the system, because it could impair the learning process by inserting an
erroneous and difficult to detect human bias into the system.

1.1.1 Competitive learning and reinforcement learning

Competitive learning (CL) and Reinforcement learning (RL) are two
very popular training techniques that may offer a deeper understanding
on the variety of supervised and unsupervised algorithms used in machine
learning and artificial intelligence. These Techniques are interesting from
an design point of view and therefore they are briefly described here,
however they are not implemented in the final project because of their
inherent limitations.

Competitive learning, a variant of Hebbian learning [8], is a form
of unsupervised learning in which the nodes compete for the right to re-
spond to a subset of the input data. During the training, each node of
the network differentiates from the others by increasing its specialization.
Competitive learning is well suited to find clusters within data and, for
this reason, vector quantization and self-organizing maps (Kohonen maps
[9]) are often based on this algorithms. The principle on which compet-
itive learning is based is that, although lacking redundancy, a network
in which each neuron recognize a different kind of pattern (or feature) is
smaller and more efficient than a network in which an arbitrary number of
neurons are responsible for the same feature. To achieve CL, the learning
algorithm needs a mechanism that lets the neurons compete for the right
to respond to a given subset of inputs, such that only one neuron for each
layer is active at a time. The principle that lets only one neuron win the
competition is called “winner-take-all” [10].

This mechanism is usually implemented by means of a similarity mea-
sure between the neuron and the input to be recognized. In this case,
only the “most similar” neuron to the input gets the right to specialize
for it (e.g. the neuron that has the least Euclidean distance between the
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Figure 1.1: Reinforcement learning feedback loop

input vector x and its weight vector w, see Perceptron on page 8 for the
definition of the node’s weights).

One of the main problems of Competitive learning is obviously the
limited redundancy of the derived system, which in turn can impair the
robustness of the network to new stimuli not previously taken into consid-
eration during training. Although many workarounds have been suggested
in literature, they are outside the scope of this thesis and will not be dis-
cussed here.

Reinforcement learning, a technique inspired by behaviourist psy-
chology, is a form of supervised learning in which the labels are not given
to the system, but are discovered by it during the training process by act-
ing on a certain environment [11]. In the operations research and control
literature, the field where reinforcement learning methods are studied the
most, this is called approximate dynamic programming [12].

Reinforcement learning is based upon the idea of having the system
learn the correct group and order of operations to be executed in a physical
or virtual environment in order to achieve a set goal. For example, a
neural network could be built to play a game of Tetris and trained with
Reinforcement learning in order to try postponing the game over screen
(and as a consequence to play longer games).
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Reinforcement learning differs from standard supervised learning be-
cause the correct input/output pairs are never presented, nor sub-optimal
actions are explicitly corrected. Instead the focus is on on-line perfor-
mance, which involves finding a balance between exploration (of uncharted
territory) and exploitation (of current knowledge) [13].

This form of “learning-by-doing” is more grounded in cognitive psy-
chology than other supervised learning techniques, but requires a great
amount of context to be added to the system in order to evaluate the
actions’ outcome on the environment and to provide the network (also
called agent) with a proportionate reward (see figure 1.1).

1.2 Perceptron

The most basic form of neural network is made of only one neuron
an is called Perceptron. Introduced for the first time in 1958 by Frank
Rosenblatt [14], the Perceptron can hardly be called a neural network
since it lacks any form of connectionism. However, it is an important case
of study because all the other neural networks can just be seen as complex
ensembles of connected Perceptrons. As previously stated, artificial neural
networks are modeled after their biological counterparts, but with some
important differences. Just like a biological neuron has dendrites to receive
signals, a cell body to process them, and an axon to send signals out
to other neurons, the artificial neuron has a number of input channels,
a processing stage, and one output that can fan out to multiple other
artificial neurons, as shown in figure 1.2.

However, the artificial neuron’s output is modulated in amplitude
while the biological one is modulated in frequency. Biological neurons
propagate the information by releasing a certain fixed amount of chemi-
cal messengers called neurotransmitters. The more intense the signal, the
more frequent the release of neurotransmitters is, but not their quantity.
Although there are some neural networks modeled precisely on this kind
of transmission, called Spiking Neural Networks [15], the great part of the
neural networks currently in use have neurons whose output signal is a nu-
meric value that increases or decreases with the intensity of the neuron’s
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Figure 1.2: Artificial and biological neurons comparison

activation.
More specifically, a Perceptron can be seen as a linear classifier defined

by a vector of weights and a bias, that takes an input vector and gives
back a single numeric value as output. As shown in equation 1.2, the
output is just the sum of the bias (b) and the dot product between the
input vector (x) and the weights vector (w).

Y = (
n∑

i=1
wixi) + b (1.2)

Mathematically speaking, the Perceptron represents an hyperplane that
divides the input space into two sections: one where the output is greater
than zero and one where it is lesser than zero. From a spatial point of view,
the weights alter the orientation of the hyperplane while the bias alters the
position (though not the orientation) of that decision boundary, making
the hyperplane independent from the origin point of the domain. During
the training phase, the weights and bias are initialized at first with random
values and then the entire input dataset is passed through the Perceptron
one record at a time, confronting its output with the expected one. At
each step (t), if the label differs from the Perceptron output, its weights
are updated according to the equation 1.3 where ct is the expected label
and yt is the provided one.

wt+1
i = wt

i + xi(ct − yt) (1.3)
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Figure 1.3: Multilayer perceptron

The bias is also updated in a similar manner, taking into consideration
that xb = 1 for each record because the bias is not multiplied by any
element of the input vector. The training usually ends when all the input
items can be successfully classified. Obviously, the Perceptron offers a very
limited form of binary classification and the training process converges
only when the two classes are linearly separable in the input space, because
otherwise the weights will swing back and forth and the Perceptron will
never be able to classify all the items at once.

1.3 Multilayer perceptrons

The next logical step from the simple Perceptron to achieve non-linear
classification is to connect multiple Perceptrons in layers as seen in figure
1.3, this is called a Multilayer Perceptron (MLP).

Even if the stacking of Perceptrons alone is already able to separate
more complex regions of the input space, it’s not enough to approximate
a non-linear function. Linear algebra shows that any number of layers
built this way can be reduced to a two-layer input-output model. For
this reason a non-linear activation function is introduced to compute the
actual output of each node. The final output of a neuron is therefore
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Figure 1.4: Logistic function

described in the equation 1.4 where f is the neuron’s activation function.

Y = f(
n∑

i=1
wixi + b) (1.4)

Each neuron of a given layer takes as input the the post-activation values
of the previous layer, then multiplies that vector for its own weights vector,
adds the bias and finally computes the activation function on the weighted
sum. The resulting output is ultimately forwarded to the next layer until
it reaches the final output layer whose vector of values is used for the
classification, typically by having each output node representing a different
class.

1.3.1 Activation functions

The two most common activation functions are both sigmoids, and are
respectively the hyperbolic tangent (f(x) = tanh(x)), that ranges from
-1 to 1, and the logistic function (f(x) = (1 + e−x)−1) which is similar
in shape but ranges from 0 to 1, as shown in figure 1.4.

Sigmoid functions have several useful properties because they are real-
valued, bounded to a limited range (e.g. [-1,1]), monotonic, and differen-
tiable having at each point a non-negative first derivative, which is bell
shaped. A sigmoid function is also constrained by a pair of horizontal
asymptotes as x → ±∞, being defined for each x ∈ R. Other activation
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functions proposed in literature and relevant to this thesis project are the
ReLU, the Softplus and the Softmax.

ReLU, or rectified linear unit, is an activation function defined as
f(x) = max(0, x). This is also known as a ramp function and is anal-
ogous to half-wave rectification in electrical engineering. This activation
function was first introduced to a dynamical network by Hahnloser et
al. in a 2000 paper in Nature with strong biological motivations and
mathematical justifications [16]. The ReLU function is scale-invariant
(amax(0, x) = max(0, ax)), computationally efficient (only comparison,
addition and multiplication), and offers a sparse activation that helps
avoiding over-sized neural networks (eg. in a randomly initialized net-
work, only about 50% of hidden units are activated, having a non-zero
output) [17].

However, ReLU also has some serious limitations, as it’s not differen-
tiable at zero (it is differentiable anywhere else, including points arbitrarily
close to zero but not equal to it) and suffers from the “Dying ReLU ” prob-
lem: ReLU neurons can sometimes be pushed into states in which they
become inactive for essentially all inputs. In this state, no gradient flows
backward through the neuron (see Backpropagation at page 16), and so
the neuron becomes stuck in a perpetually inactive state and “dies”. In
some cases, large numbers of neurons in a network can become stuck in
dead states, effectively decreasing the model capacity. This issue typically
arises when the learning rate (see equation 1.10) is set too high. The
Dying ReLU problem may be mitigated by using a Leaky ReLUs instead,
defined as f(x) = max(ax, x) with 0 < a < 1.

Softplus is a smoother version of the ReLU defined as f(x) = ln(1 +
ex). The Softplus function maintains all the positive characteristics of
the ReLU and it is also differentiable at zero. However, it is less efficient
to be computed. Its difference in value from the ReLU is more evident
around zero and get thinner as it approaches ±∞, as shown in figure 1.5.
The Softplus derivative is exactly the logistic function previously discussed
(f(x) = (1 + e−x)−1).
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Figure 1.5: ReLU and Softplus comparison

Softmax, on the other end, is substantially different from all the pre-
viously discussed activation functions as it considers every neuron’s output
in a given layer. The post-activation output of each neuron therefore de-
pends on both the value of its weighted sum and the value of every other
neuron in the same layer. The Softmax function, or normalized exponen-
tial function, is a generalization of the logistic function that “squashes”
a K-dimensional vector z of arbitrary real values into a n−dimensional
vector σ(z) of real values in the range [0, 1] that add up to 1, as described
in the equation 1.5.

σ(z)j = ezj∑n
i=1 e

zi
for j = 1, . . . , n (1.5)

Softmax function is exceptionally good when used in the output layer of
a neural network classifier for a multiclass classification problem, i.e. a
problem in which the system must discriminate among several classes, but
the label of each input item is defined as a single class only. The reason
being that the label can be projected as a one-hot vector (i.e. a vector
where only one element is 1 and the rest are zeros) with each position in
the vector representing a different class, while the neural network can be
defined with a number of output nodes equals to the number of classes.
This way, when the Softmax function is applied to the output layer, the
resulting vector is shaped as a probability distribution of the input item
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over every class, having the sum of all the elements equal to 1 (because
it must belong to one of the classes) and each element representing the
probability of the respective class for that item.

1.3.2 Loss functions

Differently from the simple Perceptron, a MLP can have an arbitrary
number of nodes in the output layer. For this reason, a loss function is
needed to compare the expected label with the system output and evaluate
the relative distance. Having a robust loss function is very important for
a neural network, since its weights and biases are updated depending on
the amplitude of the error. The two relevant loss functions for this thesis
project are the RMSE and the Cross-entropy.

RMSE, or root-mean-square error, is a frequently used measure of the
difference between values. The RMSE represents the standard deviation
of the differences between predicted values and observed values. These
individual differences are typically called residuals when the calculations
are performed over the data that was used for the training and are called
prediction errors when computed on the test set. As seen in the equation
1.6, the RMSE aggregates the magnitudes of the prediction errors into a
single measure of predictive performance. The resulting value can be used
as a measure of accuracy to compare prediction errors of different models
on a given dataset, but not between datasets, as it is scale-dependent.

RMSE =

√∑n
i=1(yt − ct)2

n
(1.6)

Although RMSE is one of the most commonly reported measures of dis-
agreement, it should not be misinterpreted as average error, which RMSE
is not. RMSE is the square root of the average of squared errors, thus
RMSE confounds information concerning average error with information
concerning variation in the errors. The effect of each error on RMSE is
proportional to the size of the squared error, therefore larger errors have a
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disproportionately large effect on RMSE. Consequently, RMSE is sensitive
to outliers.

Cross-entropy measures the average number of bits needed to iden-
tify an event drawn from the dataset, if a coding scheme is used which
is optimized for an arbitrary probability distribution q, rather than the
“true” distribution p of the dataset. In information theory, the Kraft
–McMillan theorem [18] establishes that any directly decodable coding
scheme, used on a signal to identify one value xi out of a set of possibil-
ities X, can be seen as representing an implicit probability distribution
q(xi) = 2−li over X, where li is the length of the code for xi in bits. There-
fore, cross entropy can be interpreted as the expected message length per
datum when a wrong distribution q is assumed while the data actually
follows a distribution p.

Given the two probability distributions p and q, the Cross-entropy
between them is defined as:

CE(p, q) = H(p) +DKL(p||q) (1.7)

Where H(p) is the entropy of the true distribution p and DKL(p||q) is the
Kullback–Leibler divergence [19] of q from p, also known as the relative
entropy of p with respect to q. As discussed in the previous chapter, it is
possible to transform both the expected label of a classification problem
and the output of a neural network classifier to represent a discrete prob-
ability distribution over the set of classes. In this case, it is possible to
write the Cross-entropy equation 1.7 in a discrete form:

CE(p, q) = −
C∑

k=1
pk(x) log qk(x) (1.8)

Where C is the number of different classes in the dataset, qk(x) is the
probability of the item x belonging to the class k (i.e. the output of the k-



16 NEURAL NETWORKS

th output neuron), and pk(x) is the true probability of that item belonging
to the class k as stated in the label (either 0 or 1).

Contrary to the RMSE, which is a metric measure and takes into
consideration the difference between all the classes represented by the
label and the output vectors, the Cross-entropy is not metric, because it
does not satisfy the symmetry condition (i.e. CE(a, b) 6= CE(b, a)), and
it is much more focused on the true class (i.e. the only one where pk(x) is
not equal to zero), giving less emphasis to the wrong ones. To show why
this may be important, consider the following working example: a neural
network with three output nodes is trained to discriminate among three
different classes (A, B and C). The item x belongs to class A and therefore
its one-hot label is [1, 0, 0]. Supposing the network’s output after Softmax
is [0.6, 0.2, 0.2], by applying the Cross-entropy and RMSE equations you
get a loss value of ∼0.222 and ∼0.283 respectively. However, if the output
were [0.65, 0.35, 0] instead, the Cross-entropy would be lower as expected
(∼0.187) since the item x is being classified as belonging to class A with a
lower uncertainty, but the RMSE value would be higher than the previous
one (∼0.286) because the elements of the vector corresponding to the
wrong classes are more unbalanced.

1.3.3 Backpropagation and Gradient Descent

Training a multi-layered neural network is much more difficult than
a simple Perceptron. As stated at page 10, during the training the in-
formation flows from the input nodes to the output nodes one layer at a
time. Each neuron of a given layer gets the output of the previous layer’s
nodes as input and gives its computed output to the next layer. The
signal is therefore fed forward to each subsequent layer, hence the name
Feedforward Neural Network (FNN) generically used to refer to all the
neural network’s models where the information travels in one direction
only without cycles or loops from the input to the output.

Once the output is computed for a certain input element, and the
loss function is evaluated as well, the weights of the network’s nodes are
adjusted proportionally to the loss value and their contribution to it. This
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contribution is calculated backwards from the final layer to the first one
and this process takes the name of backpropagation.

Measuring the contribution on the final loss of each weight of a deep
neural network (i.e. a neural network with several layers between the
input and output ones) is not a trivial task. The first algorithm that
had successfully addressed the deep learning problem is called Gradient
Descent.

The Gradient Descent (also called steepest descent [20]) is a first-order
iterative optimization algorithm for finding the minimum of a function
that tries to update the weights in several steps to gradually find the best
ones. In the case of neural networks, the Gradient Descent algorithm
updates at each step the weights proportionally to the negative of the
gradient (or of the approximate gradient) of the loss function at the cur-
rent point. The reason why it is important that the previously discussed
activation functions have to be differentiable is that if a multi-variable
function LF is defined and differentiable in the neighborhood of a certain
point α, with LF being the loss function and its variables being all the
weights of the network, then LF decreases fastest if one goes from α in the
direction of the negative gradient of LF at α (−∇LF (α)). The gradient is
simply the vector of the first-order partial derivatives of LF with respect
to each weight wj ∈ w:

∇LF = [∂LF
∂w0

,
∂LF

∂w1
, . . . ,

∂LF

∂wm
] (1.9)

Therefore, progressing step by step, the loss value decreases if the vector
of weights is updated using the equation:

wt+1 = wt − η∇LF (wt) (1.10)

Where η is an arbitrary small correction parameter called learning rate
that prevents the network from overshooting the function minimum.
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Figure 1.6: Gradient Descent representation: the length and direction of
the arrows in the top plane represent the inverse gradient at the corre-
sponding point of the loss function

If the loss function decreases at each step, the Gradient Descent al-
gorithm is guaranteed to converge to a minimum. However, as shown in
figure 1.6, only if the loss function is convex the found minimum is guar-
anteed to be a global optimum, otherwise it is only a local minimum. It is
also important to note that the rate of convergence slows down reaching
an asymptote as the function approaches the minimum, because the gra-
dient shrinks smaller at each step. This gradual reduction of the learning
rate is often called “annealing”.

Stochastic gradient descent

Normally, the Gradient Descent algorithm is not computed with re-
spect to the loss value of each single item in the dataset, but on the
average of the losses on all the items together. Each time an optimiza-
tion algorithm analyzes all the items inside the dataset, it is called an
epoch. Averaging the loss value grants the algorithm correctness, but the
resulting value is much smaller in magnitude and therefore the rate of
convergence is very slow. Especially when used on a very large dataset,
a learning methods that involves checking every item in it to compute a
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Figure 1.7: Stochastic Gradient Descent loss value

very small optimization step is too slow to be effective.

A useful alternative to the standard Gradient Descent is the Stochas-
tic Gradient Descent (SGD), which trades off universal correctness for
a much higher speed and a better scalability. SGD is a stochastic and
iterative approximation of the Gradient Descent. The statistically-valid
middle ground between computing the true gradient on the whole dataset
and computing it over a single item, which would be too sensitive to the
outliers, is to randomly select few items to form a batch at each step of the
training and compute the gradient only on those items in order to update
the network’s weights. The selection can be either done at each step by
picking a random subset of the items that were not previously considered
during the training, requiring the appropriate data structures, or by just
shuffling the dataset at the start of the epoch and then taking at each step
a sequential batch of items from it.

As shown in figure 1.7, the loss optimization of SGD is not as smooth as
it would be for standard Gradient Descent, having spikes when the selected
batch diverges from the global trend. However, on a larger scale it still
converges to a local minimum. The convergence of Stochastic Gradient
Descent has been analyzed using the theories of convex minimization and
of stochastic approximation. Briefly, when the learning rates η decrease
with an appropriate rate, Stochastic Gradient Descent converges almost
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surely to a global minimum if the objective function is convex or pseudo-
convex and converges almost surely to a local minimum otherwise. This
is in fact a consequence of the Robbins-Siegmund theorem [21].

Adam optimizer

Gradient Descent is not the only optimization algorithm used to train
neural networks. A more complex variation is the Adam optimizer, or
Adaptive Moment Estimation [22]. Differently from Gradient Descent,
which takes in consideration only the first-order partial derivatives, Adam
computes at each step the averages of both the gradients and the second
moments of the gradients. The update equation of the weights (w) at each
step of the Adam algorithm is:

mt+1 = β1m
t + (1− β1)∇LF (wt)

vt+1 = β2v
t + (1− β2)(∇LF (wt))2

wt+1 = wt − η mt+1

1− β1

√ vt+1

1− β2
+ ε

−1 (1.11)

Where ε is a small number used to prevent division by zero, and β1 and
β2 are the forgetting factors for gradients and second moments of gra-
dients, respectively. Adam is particularly appropriate for non-stationary
objectives and problems with very noisy or sparse gradients, since it also
computes the second moments, and empirical results demonstrate that it
is very fast, is not computationally expensive, and compares favorably to
other stochastic optimization methods.

Like Gradient Descent and Adam, there are many more state-of-the-
art optimization algorithms currently in use for deep learning, but they
are not discussed here as they are not relevant to this thesis project.

Exploding and vanishing gradients

The biggest difficulty found in the training of deep artificial neural
networks with gradient-based learning methods and backpropagation is
that the gradient is likely to approach either zero or grows exponentially
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Figure 1.8: Vanishing gradient in composed logistic functions, courtesy of
https://deeplearning4j.org [23]

as it get propagated back to the first layers. This dual problem is known
as vanishing (or exploding) gradients. Traditional activation functions
such as the hyperbolic tangent have outputs in the range [−1, 1], and
backpropagation computes gradients following the derivative chain rule
(f ◦ g)′ = (f ′ ◦ g)g′ (where ◦ is the function composition, i.e. f ◦ g(x) =
f(g(x))). As the activation functions get composed together by the chain
rule, the variation of the resulting output grows smaller with each new
layer, as shown in figure 1.8, and the slope becomes undetectable. For
this reason, the partial derivative of the error with respect to a weight
of the first layer of a deep neural network results in the multiplication
of several small values, thus approaching zero. Since the gradient with
respect to the weights of the first layers decreases exponentially with the
depth of the network, their training becomes slower and slower as the
network is being elongated to understand even more complex patterns in
the input data.

1.4 Autoencoders

Among the many feedforward neural networks topologies, the most
commonly used for unsupervised data analysis is the Autoencoder (AE), or
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Figure 1.9: Basic Autoencoder

Diabolo Network. The aim of an Autoencoder is to learn a representation
(encoding) for a set of data, typically for the purpose of dimensionality
reduction. From a mathematical point of view, the Autoencoder tries
to approximate an encoding function h(x) and the respective decoding
function g(x).

Architecturally, the simplest form of an Autoencoder is very similar to
a Multilayer Perceptron, but having the same number of nodes in both the
input layer and the output layer while the hidden layer is dimensionally
smaller. The hidden layer is called encoding layer and its output is the
reduced representation z = h(x) (also called code or image) of the input
item. The output layer, or decoding layer, reconstruct the original item
from the information stored in its image by applying the decoding function
x′ = g(z) and then gives the result back to the optimization algorithm in
order to measure the error and train the network. Being both functions
represented by neural network layers, their final equation are:

z = f(wx+ b)

x′ = f ′(wT z + b′) = f ′(wT f(wx+ b) + b′)
(1.12)

Where f and f ′ are the activation functions of the two layers, b and b′ are
the two bias vectors, and w and wT are respectively the weights matrix
of the encoding layer and its transpose used by the decoding layer.
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An Autoencoder is ultimately trying to learn an approximation to the
identity function, so as to output a x′ that is as similar as possible to the
original x. The identity function seems a particularly trivial function to
learn, but by placing constraints on the network, such as by limiting the
dimension of the coded image, it is possible to discover interesting struc-
tures about the data. At the end of the training phase, the Autoencoder
is split in two separate networks: the encoding layers works essentially as
a feature extractor that offers a sub-symbolic representation of the input
item, while the decoding layer can be used as a generative network by
feeding it with random noise [24].

1.4.1 Stacked Autoencoders

The deep neural network version of the Autoencoder is called Stacked
Autoencoder (SAE). In a Stacked Autoencoder, both the encoding func-
tion and the decoding function are implemented by a deep feedforward
neural network with several layers. Each decoding layer’s weights matrix
is always the transpose of the weights matrix of the encoding layer located
at the same distance from the image (e.g. when having k encoding layers
and k decoding layers, the weights matrix of the decoding layer at depth
i would be wdec

i = wT
k+1−i).

Stacked Autoencoders are usually trained in a two-step process. Ini-
tially, the network is pre-trained with a greedy layer-wise approach by
training each layer in turn. In this phase, in order to train the (n +
1)−layer, the items (x) of the dataset are encoded through all previous
layers and the resulting images are used, as shown in the following equa-
tion.

y = hn(hn−1(. . . h2(h1(x)) . . .))

y′ = gn+1(hn+1(y))
(1.13)

The reconstructed image (y′) is then confronted with the image computed
by the previous layers (y) to estimate the reconstruction error and update
the weights of the (n + 1)−layer accordingly. The pre-training helps the
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Figure 1.10: Stacked Autoencoder

network to avoid the exploding and vanishing gradients problem (see page
20) as demonstrated by J. Schmidhuber [25].

The second training phase, usually called fine-tuning, treats all layers
of the Stacked Autoencoder as a single deep neural network model and
tries to optimize its global behaviour. In this phase, the original items are
encoded using all the encoding layers, then decoded using all the decoding
layers and finally the reconstructed data is confronted with the original
one. During the fine-tuning, the optimization algorithm updates all the
network’s weights at once, trying to find a minimum of the reconstruction
error which in turn grants a better representation of the data through
their coded image. As per standard Autoencoders, after the training of
a Stacked Autoencoder the network is split in two and only the encoding
layers are used to address dimensionality reduction problems.

1.4.2 Denoising Autoencoders

If the decoding layer of an Autoencoder has the same dimension of the
input, it is theoretically possible to exactly map each value of the input
vector on a different encoding node (i.e. the weights vector for each node is



NEURAL NETWORKS 25

made of all zeros but a 1 corresponding to the mapped input). If the goal
of the Autoencoder is to discover and extract interesting structures in the
data instead of representing it in a lower-dimensional space, it is possible
to use another technique which does not require to reduce the number of
nodes to avoid trivial mapping. If the input is corrupted by a random
noise before entering the encoding layer, the resulting Autoencoder can
be trained to refine the data in order to retrieve the original item and for
this reason is called a Denoising Autoencoders (DAE).

During the training of a Denoising Autoencoder, the loss value is com-
puted with respect to the difference between the original uncorrupted data
and the reconstructed output from the corrupted item, as shown in the
following equation.

x̃ = noise(x)

x̃′ = g(h(x̃))

loss = LF (x, x̃′)

(1.14)

Since the network output is never directly compared to its input, but
only to the original uncorrupted data, the encoding layer can work as a
robust feature extractor for an arbitrary large number of features once the
training has ended. For the extraction of even more complex structures,
it is possible to use a Stacked Denoising Autoencoder (SDAE) by adding
the noise both during the layer-wise greedy pre-traing and later during
the final fine-tuning.

1.5 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are network models where the con-
nections between nodes may form directed cycles. Differently from the
feedforward neural networks discussed so far, the layers of a recurrent
neural network can propagate the information both forward to the next
layer and backward to a previous one. Usually, the recurrent neural net-
works are still modeled in a hierarchical way, but with the output layer



26 NEURAL NETWORKS

Figure 1.11: Recurrent Neural Network unfolding

sending the signal back to the input layer forming a cycle. The feedback
introduced by the cycle allows the network to exhibit dynamic temporal
behavior.

Since they can take time and sequencing into consideration during
the training, the recurrent neural networks are often used to address
time-dependent problems like speech recognition, stock analysis and even
genome sequencing.

The simplest recurrent neural network is made by only one layer that
takes in input the concatenation of the original item and the network’s
own output at the previous step. In practice, for a sequence of n items,
the previous model is equivalent to n single-layer forward neural networks
with the same weights and biases, each one sequentially trained with the
output of the previous network and a new item of the sequence. This
representation of a recurrent neural network as a sequence of feedforward
neural networks, as shown in figure 1.11 is called unfolding. The feedback
signal internally passed from one step to the next one is usually called
cell’s state. Very deep learning sequencing tasks that would require up
to 1000 unfolded layers are nearly impossible for a standard feedforward
neural network, but are solvable with a recurrent neural network [26].

Training a recurrent neural network is similar to train a traditional
neural network. Backpropagation with Gradient Descent algorithm is still
used, but it is adjusted with some slight differences. Since all the parame-
ters (weights and biases) are shared by every time step in the network, the
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Figure 1.12: Long Short-Term Memory cell

gradient at each output depends not only on the calculations of the current
time step, but also on the previous time steps (e.g. in order to calculate
the gradient at n = 5, the algorithm needs to back-propagate four steps
and sum up all the gradients together). This process is called Backprop-
agation Through Time (BPTT). Obviously, Backpropagation Through
Time suffers even more from exploding and vanishing gradients (see page
20) than the standard Backpropagation because the total depth of the
network is equal to the number of its layers multiplied by the length of
the input sequence.

1.5.1 Long short-term memory

In the 1997, a variation of recurrent neural networks called Long Short-
Term Memory (LSTM) was proposed by Sepp Hochreiter and Juergen
Schmidhuber [27] as a solution to the vanishing gradient problem. LSTM
helps to preserve the error that can be then back-propagated through
time and layers. By maintaining a more constant error, it allows recurrent
networks to continue to learn over several time steps, thereby also opening
a channel to link causes and effects very distant in time.

Long Short-Term Memory models contain information outside the nor-
mal flow of the recurrent network in a gated cell. Information can be stored
in, written to, or read from a cell, like data in a computer’s memory. The



28 NEURAL NETWORKS

cell makes decisions about what to store, and when to allow reads, writes
and erasures, via gates that open and close. Unlike the digital storage on
computers, however, these gates have a continuous value in the range [0,
1], because they are implemented as feed-forward neural networks with
one output node activated by an logistic function. This continuous rep-
resentation has the advantage over the digital representation {0, 1} of
being differentiable, and therefore suitable for backpropagation [23].

A Long Short-Term Memory cell, as shown in figure 1.12, is composed
of three main gates: an input gate (IG), an output gate (OG) and a forget
gate (FG). Their equations for the n−th element of the sequence are:

FGn =fLF (wF G xn + uF G Outn−1 + bF G)

IGn =fLF (wIG xn + uIG Outn−1 + bIG)

OGn =fLF (wOG xn + uOG Outn−1 + bOG)

Sn =FGn • Sn−1 + IGn • f(wS x
n + uS Out

n−1 + bS)

Outn =OGn • f(Sn)

(1.15)

Where x is the input item, Out is the output vector of the cell, S is the
cell’s state, the operator • denotes the element-wise Hadamard product,
fLF is the logistic activation function, and the initial values for S0 and
Out0 are both equal to zero. The matrices of weights w, u, and the
bias vectors b are the elements of the cell that will be updated by the
optimizer during the training process. The core mechanism behind the
success of Long Short-Term Memory networks is the plus operator in the
cell’s state update equation. By having an additive and not multiplicative
operation, the error can be propagated back from the output regardless
of the the time component, remaining in the block’s memory without the
risk of fading until the network learns how to cut off its value. Thanks to
this internal memorization, the Long Short-Term Memory networks are
inherently suited for tasks where outcomes are sparse and delayed in time
(e.g. when an event at n = 5 has consequences only after many steps at
n = 100), because it can be trained to understand time lags of arbitrary
size.



Chapter 2

The domain adaptation
project

With the rise of Big Data and the improvement in collective efforts to
share information for research purposes, many new technologies are being
developed to approach these massive amounts of data. This project ad-
dresses three of the most important problems found in Big Data analysis:
Volume, Variety and Velocity.

As previously stated in the introduction (page 1), this project arises
in the broad context of the European Horizon 2020 project PreventIT
[28][29][30] on the analysis and prevention of functional decline in elderly
patients. During the first iterations of the PreventIT project, three main
issues in predicting functional decline have been identified:

1. The definition of functional decline is still a topic of debate in the
geriatricians community. There are several parameters currently
used as metrics for the elderly patient’s frailty and/or his or her loss
of autonomy [31], but no common agreement has been reached on
which is the best one.

2. The nature of functional decline is inherently random when caused
by unpredictable accidents (e.g. the decline in an elderly patient’s
autonomy as consequence of a disease, accidents, or surgery).

3. The data provided by the research institutes are the result of lon-

29
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gitudinal studies made in different countries with different metrics
and for this reason they are difficult to manage because of their size
and heterogeneity.

While the first problem is a semantic one that does not closely involve
health informatics research and the second problem could be feasible to
approach just with statistical techniques, the third one is not easy to au-
tomate because it involves the feedback of an expert geriatrician who can
understand the semantic of the data and detect what kind of transfor-
mations are required in order to map the data of a specific dataset on a
generic structure that can be then provided to a classification tool. This
man-in-the-loop approach is both very slow and likely to ending in human
errors, especially as the datasets’ documentation could be scarce or am-
biguous. The problem of adapting an analysis model across different data
distributions is known as domain adaptation [32].

Following the research on domain adaptation made by Xavier Glorot,
Antoine Bordes, and Yoshua Bengio [33], the problem was approached in
this project by implementing a Stacked Denoising Autoencoder trained to
discover intermediate representations of the original data, that are inde-
pendent from which dataset is being chosen as input. This method is made
possible by the underlying semantic similarity among the attributes of the
different dataset, since they all come from longitudinal studies specifically
aimed at measuring aging-related values. In fact, it is possible to interpret
variations in these values as effects of the true explanatory factors of the
observed data which in turn also determines a variation in the functional
autonomy of the patient. The functional decline is therefore treated as
a consequence of one or more hidden variables. The Stacked Denoising
Autoencoder tries then to extract these hidden variables as if they were
features of the original data.

The evaluation of a deep neural network approach to domain adapta-
tion is scientifically relevant for the functional decline detection problem
because, although not tested yet in this environment, it has already led
very interesting results, beating the previous state-of-the-art techniques
in several cases [33][34][35][36].
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Furthermore, the presence of fields in the datasets from which it is
possible to extract a classification label (i.e. the functional decline) makes
it possible to validate the trained model by applying a classifier on both
ends of the Stacked Denoising Autoencoder and measuring the difference
in classification errors between the pre-SDAE classifier results and the
post-SDAE one. These metrics are essential to quantitatively measure
the amount of knowledge transferred from one dataset to another when
the Stacked Denoising Autoencoder is trained on a first dataset and then
used to encode a second one during the validation phase.

As mentioned above, the deep learning approach to domain adaptation
is also a relevant contribution to the field of Big Data, since it helps solv-
ing some of its most ubiquitous problems. First of all, it directly addresses
the Variety problem by offering a high-level uniformed view of sparse and
heterogeneous data. Second, it is very scalable and does not suffer from
excessive Volumes of data, because the stochastic optimization approxi-
mates the optimal model without having to rely on a complete analysis of
all the datasets at once, and the Stacked Denoising Autoencoder makes it
possible to transfer knowledge without any need to do a thorough training
on the target dataset (see section 2.2 for the in-depth description of the
training process). Finally, it also deals with Velocity since the stochastic
optimization is particularly well-suited for on-line learning where the data
evolve through time (e.g. when a new annual report is being added to an
already previously analyzed dataset), because the new introduced records
can be interpreted just as a new batch to forward the training of the deep
neural network.

2.1 Data extraction and transformation

As a proof of concept, this thesis project focuses on the transfer of
knowledge between two datasets: The English Longitudinal Study of Age-
ing (ELSA) [37] and the The Irish Longitudinal study on Ageing (TILDA)
[38][39]. Both datasets are divided in waves representing the annual re-
port of each patient, but as expected the data is being presented to the
user in an heterogeneous way.
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• The data is very unbalanced, with ELSA having over 100 000 records
of 570 fields spread over 6 waves, while TILDA has only 2 waves for
a total of about 15 000 records each one having 1680 fields (almost
triple the amount of ELSA’s fields).

• While ELSA has both numerical (e.g. the age of the patient) and cat-
egorical (e.g the patient’s blood type) data represented as numeric
values, assigning in the second case to each category its unique natu-
ral number identifier, TILDA has a more chaotic approach with both
numerical and categorical data expressed sometimes with numeric
values, other times with strings describing the patient’s answer and
occasionally as mixtures of both numeric and descriptive values de-
pending on the answer (e.g the measure of the patient’s eye sight
could be represented in the domain {“poor”, 2, 3, 4, “excellent”}).

• Since both the datasets collect data over several years of study, the
amount of information could vary from one year to another. For
example, some patients could leave the study or new ones could
enter after some waves, questions could be added or removed from
the questionnaire, or the same data could be expressed in different
ways depending on the wave (e.g. the unique identifier could vary
or the descriptive string could be written differently).

• Finally, since the datasets deal with important and sensitive data,
like health metrics or the economic and social status of the patients,
the privacy must be guaranteed in the best way possible. This means
that if a certain field’s value is being attributed to only one or too
few patients, the data must be aggregated with other neighbours to
avoid people identification (e.g. if there is only one patient who is
94 years old, two being 91 years old and five being 87 years old, they
should all be grouped together in a cluster of age “greater than 85 ”).
This data anonymization was made by the research institutes and is
not part of the project.

Because of all the aforementioned datasets’ characteristics, a data pre-
processing (see Data representation at page 36) must be performed before
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the neural network starts the training process.

2.1.1 Definition of functional decline

The first problem addressed in the project was to identify a suitable
measure of the patient’s functional decline. Fortunately, the two datasets
share most of the health-related metrics. Although expressed with dif-
ferent formats, there is an almost direct correspondence between the two
studies as far as questions regarding the patients’ health are concerned.
Thanks to the combined efforts of the two research institutes to provide an
international standard representation of health-care data [40], the values
of the fields corresponding to this kind of metrics can be easily mapped
bijectively without requiring a domain adaptation.

Among the health-related answers, twenty-two of these involve Activ-
ities of Daily Living (ADL) and Instrumental Activities of Daily Living
(IADL). These two metrics are the most commonly used when referring
to functional decline [41].

The Activities of Daily Living are basic self-care tasks. When a
patient’s is not able to carry on one or more of these activities, a certain
amount of external assistance is required, thus limiting one’s autonomy
[42]. The ADL generally address the following areas of tasks:

1. Mobility, also referred as ambulation or transferring.

2. Dressing.

3. Personal hygiene and grooming.

4. Toilet hygiene.

5. Bathing and showering.

6. Self-feeding (e.g. being able to eat from a plate).

The Instrumental Activities of Daily Living, instead, are not
necessary for fundamental functioning, but they let a patient live inde-
pendently in his community [43][44]. They are more complex than the
ADL and they generally cover the following areas:
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1. Preparing meals.

2. Shopping for groceries and necessities.

3. Moving within the community.

4. Managing money.

5. Cleaning and maintaining the house.

6. Taking prescribed medications.

7. Using the telephone or other form of communication.

Although the debate is still open on the definition of functional de-
cline and on which metrics are more representative, in this project the
total number of ADL and IADL that the patient is not able to carry on is
used as a proxy to describe his or her functional status. Therefore, a func-
tional decline is defined as the increase of the total number of functional
difficulties over ADL and IADL.

2.1.2 Fields selection

As mentioned before, a small part of the hundreds of fields composing
the two datasets can be automatically mapped together in a coherent
representation. However, this was not possible with all the other fields.
Instead of immediately investing time and efforts in making all the data
fields suited to be parsed by the neural networks, the project started with
only the shared ones and a small number of selected fields from each one
of the two dataset. During the time in which the project was developed,
the number of selected fields grew to encapsulate ever more information.
In the end, about 14% of ELSA’s fields and an equal number of TILDA’s
fields were selected to train the networks.

The chosen algorithm to select the best candidate fields was Minimum
Redundancy Maximum Relevance (mRMR) [45]. The goal of mRMR is
to identify the subset of features which have the strongest correlation
to a certain classification variable while at the same time maintain the
minimum mutual redundancy within the set. To compute the mRMR
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algorithm the functional status was used as the classification variable and
the fields of both datasets were divided between categorical and numerical
ones. Both numerical and categorical fields were then ranked with respect
to the classification variable and ordered from the most relevant to the
least. Each ordered list was then parsed from top to bottom selecting the
subset with the least inner redundancy.

Having the functional status expressed as a number, in the selection
of the numerical fields the correlation was used to both rank them and
measure their redundancy. Therefore, the most relevant numerical field
was the one having the highest correlation coefficient with the functional
status, while the least redundant field was the one having the lowest sum
of correlation coefficients computed over all the already taken fields.

Having two series A and B of d measurements each, the correlation
coefficient is expressed by the equation:

Correlation(A,B) =
∑d

i=1(ai − a)(bi − b)√∑d
i=1(ai − a)2∑d

i=1(bi − b)2
(2.1)

Where ai and bi are the values of the i−th record respectively for the field
A and B, while a and b are the means computed over every value assumed
by A and B.

The same technique was used for the categorical fields, but this time
the mutual information was used instead of the correlation coefficient.
The mutual information is a measure of the mutual dependence between
two variables. More specifically, it quantifies the amount of knowledge
obtained regarding the value of one of the two variables if the value of the
other one is known. The mutual information between two variables A and
B is expressed by the equation:

MI(A,B) =
∑

vA∈A

∑
vB∈B

p(vA, vB) log
(

p(vA, vB)
p(vA) p(vB)

)
(2.2)

Where vA and vB are all the possible values assumed by the fields A and
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B, p(vA) and p(vB) are the respective probabilities that A would take
the value vA and B would take the value vB, and p(vA, vB) is the joint
probability of A taking the value vA and B taking the value vB at the
same time.

2.1.3 Data representation

After the selection of the best fields, the next design choice was to
define a feasible representation of the numerical and categorical data. As
discussed at page 31, there were many problems with the original datasets
including, but not limited to, missing values for a given record, a huge
amount of invalid codes caused by the data being not-applicable for a
given record (e.g. the age of the patient’s oldest child when the subject
has no children), and even whole records missing because the patient ei-
ther skipped a wave, dropped out of the study or was not yet inserted.
These problems led to have very sparse datasets with many values all
representing unavailable data, but each one for a different reason.

Since the neural networks ultimately work on numeric input nodes, in
order to discriminate between a valid and an invalid numerical data, each
numerical field was split in a pair of two nodes: the first one equal to
the normalized value of that field (or zero when invalid) and the second
node being either zero if the field was unavailable or 1 if it was valid.
The categorical data were instead represented by one-hot vectors of nodes
with length equal to the number of valid categories assumed by the field.
Finally, all the nodes extracted by both the datasets were concatenated in
a single input vector. Hence, with the exception of the few shared health-
related fields, for each record of a given dataset all the fields linked to the
other dataset were taken as missing.

With this representation, both categorical and numerical invalid values
are expressed by vectors of zeros, and each node is always in the range [0,
1], leading to an homogeneous representation that is well suited for the
training of neural networks.
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2.1.4 Training, test, and validation sets

A common problem in machine learning is to understand when the
results of a model are actually predictive of the application of that model
to a real scenario. When the evaluation of a model is made using the same
data also used for its training, the results are biased. In fact, in this case
the best model is not the one that learns the best generalization of the
problem, but the model that learns exactly how to map the input data on
the expected output. Applying the model to a real scenario, which was
not expected during the training, leads to poor performances because the
model is not robust nor generalized enough. This problem is commonly
referred as model overfitting.

To avoid overfitting and ensure that the results are predictive of the
real application of the model, the dataset is usually split in two and only
one of the two sets of observations is used during the training of the model,
while the other one is held back and used only later during its evaluation.
Furthermore, since complex models could require the tuning of hyper-
parameters (e.g. the number of hidden nodes of a neural network) that
are external to the training process, the dataset should be split again in
order to have three distinct sets of data placed in a sort of hierarchical
relation:

• Training set: a set of examples used to train the model and find
the best inner parameters (e.g. the weights of the neural network).

• Validation set: a set of examples held back during the training
and used to test the trained model in order to find the best set of
hyper-parameters.

• Test set: a set of examples held back from every decision process
and used only to simulate a real scenario in order to test the results
of the best overall model.

As stated by Jason Brownlee [46] the division of the dataset in these
three components ensures an unbiased evaluation of the final model that
was previously fit on the training dataset.
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The method described so far to split the dataset is called holdout
method and the three subsets are typically created by randomly select-
ing examples from the original dataset and putting them into one of the
subsets. The three subsets are also usually different in size, with the train-
ing set being the biggest one and the test set the smallest one. However,
when working with small original datasets, this method may excessively
reduce the number of examples that are available during the training phase
and/or lead to an evaluation that is not representative of a real case sce-
nario because the examples selected for the test set are too few to address
every kind of data presented in the original dataset in a balanced way. To
avoid this problem and use all the available data from the original dataset
a possible solution is to use a form of cross-validation.

In a typical k-fold cross-validation, the original dataset is randomly
partitioned into k equal sized subsets. Then, one of the subset is held out
and used as a validation set while the other k − 1 sets of examples are
used for the training. This process is repeated k times, each time using a
different subset as the validation set, and finally the overall performance
of the model is measured by the average evaluation of each one of the
k experiments on their respective validation sets. When also taking the
test set into account, the overall process consists in having two nested
k-fold cross-validations with the first one extracting a test set each time
to evaluate the model and the second inner one extracting a validation set
each time to evaluate the hyperparameters.

In scenarios with small dataset sizes, Max Kuhn and Kjell Johnson
recommend using a 10-fold cross-validation in general, because of the de-
sirable low bias and variance properties of the performance estimate [47].

Due to time constraints, in the project it was ultimately used the hold-
out method to separate training, validation and test set, with a respective
size of 70%, 20% and 10% of the time series of the original datasets.

2.2 Experimental environment

As previously discussed in this chapter, the core of this thesis project is
constituted by a Stacked Denoising Autoencoder that performs a domain
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adaptation between ELSA and TILDA datasets.
For what concerns the training of the Stacked Denoising Autoencoder,

the first step was to split both the ELSA and the TILDA dataset in three
subsets, using the holdout method and preserving the integrity of the time
series, in order to have a permanent training set for the optimization of
the weights and biases of the neural network, a validation set to compare
models with different hyperparameters and choose the best ones, and fi-
nally a test set held out from the training process to have an unbiased
result after the model was well defined. As described by Xavier Glorot,
Antoine Bordes, and Yoshua Bengio in their paper [33], one of the best
ways to approach a domain adaptation problem with a Stacked Denois-
ing Autoencoder is to perform an unsupervised layer-wise pre-training on
each layer of the network by feeding it with data taken from every dataset
available in the experiment and after that perform a deep fine-tuning of
the SDAE with data taken from only one of the datasets and use the
resulting network to encode a different dataset in order to measure the
amount of knowledge transfered between the two.

In order to compare Stacked Denoising Autoencoders with different
hyperparameters, however, it was not possible to solely rely on the eval-
uation of the loss function, since even the loss function itself was treated
as one of the measured hyperparameters. For this reason, a classifier was
introduced in the experiment with the purpose of detecting if a functional
decline would occur given a record of the datasets. The classifier was then
used both on the original data and on the data encoded by the Stacked
Denoising Autoencoder. The results were finally confronted using state-of-
the-art metrics (see Validation metrics at page 51) and the hyperparam-
eters which gave the best improvement between pre-SDAE classification
and post-SDAE classification were ultimately chosen.

The whole training and validation process of the Stacked Denoising Au-
toencoder, given two datasets Da and Db and a Classifier, is described
with pseudo-code in the algorithm 1. After the variables’ initialization,
each unique set of hyperparameters (HP ) is tested by having the SDAE
performing a layer-wise pre-training on the data from both the datasets
followed by a deep fine-tuning on the source dataset only. The trained
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begin findSDAEBestHyperparameters
bestIncrement ← -∞;
bestHP ← ∅;
foreach set of hyperparameters HP do

SDAE(HP).pretrain(Da.trainSet + Db.trainSet);
SDAE(HP).finetune(Da.trainSet);
encodedTrain ← SDAE(HP).encode(Db.trainSet);
encodedValidation ← SDAE(HP).encode(Db.validationSet);

Classifier.train(Db.trainSet);
preSDAEMetrics ← Classifier.test(Db.validationSet);
Classifier.train(encodedTrain);
postSDAEMetrics ← Classifier.test(encodedValidation);

increment ← postSDAEMetrics - preSDAEMetrics;
if increment > bestIncrement then

bestIncrement ← increment;
bestHP ← HP;

end
end
return bestHP

end
Algorithm 1: SDAE hyperparameters validation
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SDAE is then used to encode the training and validation sets of the target
dataset and two different Classifiers are trained respectively on the orig-
inal raw training set and the encoded one. Finally, the two Classifiers
are tested on the raw and encoded validation sets and the extracted met-
rics are used to validate the SDAE hyperparameters and find the best
ones.

It is important to note in this context that the deep fine-tuning on
the source dataset is a slower and more computationally complex process
respect to the previous greedy pre-training on the data taken from all the
datasets.

2.2.1 Cost-sensitive learning and oversampling

From a first analysis of the domain it was clear that the two classes
were heavily unbalanced, with about half of the records being invalid, a
third having no functional decline and only a sixth of the total records
reporting a decrease in the functional status. When it comes to dealing
with unbalanced data the main problem is that, since the loss function
is averaged on all the data, the training process of the neural network
could easily tend to a local minimum where the most frequent class is
well represented but the least common ones are totally ignored. This
problem is particularly evident when dealing with unbalanced ordered
classes in Health Informatics, because the least frequent ones are usually
related to more severe health conditions [48]. Thus, a miss-classification
of unusual classes holds a much worse outcome for the patient than a
miss-classification of common ones (e.g. if a patient is diagnosed with
a cancer when he or she is healthy, the process usually leads to further
medical examinations which ultimately attest the first miss-classification
and the real health condition of the patient. However, when a real cancer
is not classified correctly the process normally stops until more evidence
emerges, but at that time it could be too late to properly intervene).

To avoid this form of miss-representation of unbalanced data, the
best solution in machine learning is to use a cost-sensitive learning
[49][50][51]. In cost-sensitive learning, the total error averaged by the loss
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function is not only proportional, for each record, to the distance between
the network output and the expected one (see Loss functions at page 14),
but also to a certain miss-classification cost that depends on which are
the expected class and the predicted one. The simplest implementation
of cost-sensitive learning for multi-class classification is to use a weighted
average of the measured distance as loss function, using a value inversely
proportional to the probability (frequency) of the true class as weight for
each record.

Cost-sensitive learning works well for classifiers, but neural networks
that rely on unsupervised learning like the Stacked Denoising Autoencoder
are unable to use it because they lack the information regarding the class
of the record. For this reason a different approach is required that does not
use the class information during the training but uses it a-priori to alter
the class distribution of the dataset instead. The two main techniques used
for unsupervised learning are called undersampling and oversampling.

When performing undersampling, the records belonging to each class
are randomly selected until the selected subset has the same size of the
least frequent class. Only the selected records are then used in the training
process, while the other ones are discarded and ignored. The resulting
training dataset is therefore balanced because every class is represented
in the same amount, however, using this technique on datasets that are
too small or where the least frequent class has too few records obviously
leads to a further reduction in the size of available training data, with a
consequent decline in the network performance.

When undersampling is not feasible, the opposite oversampling tech-
nique is usually preferred. In this technique the records belonging to each
class are randomly selected with replacement from the original dataset
until the selected subset has the same size of the most frequent class.
The replacement lets the records that belong to an uncommon class to
be selected multiple times in order to achieve a better representation of
the domain. However, even this techniques has its problems because the
items of an uncommon class are too similar to each other (being copies of
the same few records) and the resulting network may not be very robust



THE DOMAIN ADAPTATION PROJECT 43

when addressing new records of the same class.
Luckily, the noise introduced by the Stacked Denoising Autoencoder

perfectly counterbalances the cons of performing an oversampling, as stated
at page 44, and for this reason the oversampling was used in the project
to train the SDAE while the aforementioned simple cost-sensitive learning
was used during the training of the classifier.

2.2.2 Weights and biases initialization

One of the most important factors in the training of a deep neural
network is the initialization of the weigths and the biases, because the
gradient descent techniques are very sensitive to the initial conditions,
as shown in the figure 1.6 section at page 18. A common mistake is to
initialize the weights and biases to zero in order to first analyze the sim-
plest solutions where several nodes are inactive and then add complexity
during the training through backpropagation. The problem with this ap-
proach is that every node of a given layer are equally updated by the
backpropagation algorithm because they all share the same initial output
and contribution to the final loss value. Hence, each layer can be col-
lapsed into a single logic neuron and the expressive power of the network
is heavily impaired.

Generally speaking, if the weights start too small in a deep neural
network, the error signal used by the backpropagation decreases too much
and become unusable to train the first layers of the network. Conversely,
if they start too large, it is important to note that the output of a node
depends on a weighted sum of every node’s output from the previous layer,
hence the feedforward signal may grow too much and saturate the output
of the nodes in the last layers of the network.

Usually, a random initialization from a normal distribution with mean
equal to zero is a good solution that lets the neurons of each layers special-
ize for different inputs while also searching at first the solutions around
the simple zeros that could lead to a reduction in the number of nodes
required to solve the problem. However, more complex initialization algo-
rithms have been proposed in literature to quicken the training and avoid
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saturation and/or vanishing gradients. One of these techniques, developed
by Xavier Glorot and Yoshua Bengio [52], initializes the biases and weights
of each neuron with a random value taken from a uniform distribution in
range:

x ∼ U

[
−
√

6
in+ out

,

√
6

in+ out

]
(2.3)

Where x is the variable to be initialized, in is equal to the number of
weights (or input nodes) of the current neuron and out is equal to the
number of nodes in the current layer. This initialization is especially
good when the neurons are activated by a logistic function, but it brings
detrimental effects on the networks with very large hidden layers because
the resulting weights are too small, thus the resulting training process is
slowed too much.

In the project, the initialization algorithm was treated as an hyper-
parameter, hence both the Gaussian initializer and the Xavier initializer
were used during the validation phase.

2.2.3 Early stopping

One of the main source of overfitting when training a neural network
is to overstate the number of epochs required to learn a good data repre-
sentation. Thanks to the correctness of gradient descent algorithms with
a proper learning rate, even when a stochastic approach is used, the error
on the training set tends to get smaller at each epoch. This means that
the network learns to better recognize the inputs that are available in the
training sets, but it may also cause the network to over-specialize and lose
its robustness as the number of epochs increases. In fact, when comparing
the error on the train set to the one on the validation set, as shown in fig-
ure 2.1, it is evident that from an initial generalization of the model that
brings both errors down, at a certain point in time the network starts to
overfit and the validation error starts to rise again.

A form of regularization that avoids the negative effects of an excessive
number of epochs is to add a noise to the network’s inputs during the
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Figure 2.1: Early stop using training and validation errors

training phase, as performed by the Stacked Denoising Autoencoder. The
random noise alters the inputs preventing the network from training on
multiple repetitions of the same examples. However, even when using
noise a certain rate of overfitting is ultimately expected in the long run
because the noise itself can only corrupt the data up to a certain amount
before destroying any information included in examples themselves.

Since the number of epochs used during the training process could be
seen just as another hyperparameter, it is possible to use the data con-
tained in the validation set in order to define its best value and avoid
overfitting. The form of regularization that takes advantage of the vali-
dation data is called early stop. When performing an early stopping, at
the end of each epoch the learning algorithm is allowed to “peek” into the
validation set in order to compute the validation error. If the validation
error starts to increase, the learning process is interrupted and the last
best model is returned by the training algorithm. This technique quickens
the training phase because it can interrupt it mid-process, however the
results may be sub-optimal if the error on the validation set swings back
and forth too much. Several solutions to the oscillating validation error
have been proposed in literature [53].

In this project, an early stop regularization with a look-ahead param-
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eter was used to avoid ovefitting in the training phase of the neural net-
works. The training process was programmed to check the validation error
at the end of each epoch, but only to stop after a number of epochs from
the last error reduction equal to the given look-ahead parameter. This
way, a single-point oscillation of the validation error would be ignored
by the early stopping, but a constant increase over several epochs would
trigger the end of the training phase instead.

2.2.4 Chosen classifiers

In their work on domain adaptation, Xavier Glorot, Antoine Bordes,
and Yoshua Bengio [33] used a Support Vector Machine to assert the
amount of knowledge transferred by the Stacked Denoising Autoencoder.
To support their hypothesis and expand the analysis on the domain adap-
tation field, in this project the Support Vector Machine was used side by
side with three other classifiers during both the validation of the Stacked
Denoising Autoencoder’s hyperparameters and the final test of the net-
work. The three additional classifiers chosen for the project were: a Multi-
layer Perceptron with a single hidden layer, a deep Multilayer Perceptron
with several hidden layers, and a Long Short-Term Memory network. The
implementation of the classifiers was possible thanks to Daniele Fongo’s
contribution to the project [54].

The application of neural networks to address both the domain adap-
tation and the classification process added a layer of complexity to the
aforementioned validation algorithm (see page 40), because even the neu-
ral network classifiers required a training phase for their weights and biases
followed by a validation phase for their hyperparameters.

In the project it was used a greedy approach for the training of the
neural network classifier. At first, a validation phase was performed on
each classifier to discover the best hyperparameters. The process (given
two datasets Da and Db) is described with pseudo-code in the algorithm
2: after the variables’ initialization, each unique set of hyperparameters
(HP ) for each different classifier (C) is tested by training the respective
network on the data from both the datasets and then extracting the rel-
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begin findClassifiersBestHyperparameters
foreach classifier C do

bestMetrics[C] ← 0;
bestHP[C] ← ∅;
foreach set of hyperparameters HP do

C(HP).train(Da.trainSet + Db.trainSet);
metrics[C] ← Classifier.test(Da.validationSet +
Db.validationSet);

if metrics[C] > bestMetrics[C] then
bestMetrics[C] ← metrics[C];
bestHP[C] ← HP;

end
end

end
return bestHP

end
Algorithm 2: Classifiers hyperparameters validation
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ative metrics, eventually updating the previous best found metrics and
hyperparameters.

It is important to note that while the validation of the classifiers’ hy-
perparameters was made on the joined datasets, either the joined training
sets during the training or the joined validation sets during the extraction
of the metrics, the final classifier used to attest the knowledge transfer of
the Stacked Denoising Autoencoder was trained either on just the TILDA
dataset and then tested on the ELSA or vice versa (see algorithm 1). In
practice, it could be possible that the classifier’s hyperparameters which
were validated on both the datasets together would be suboptimal when
applied to only one of them, however this implementation choice was ulti-
mately made because of time constraints and limitations in the datasets’
sizes.

SVM

The Support Vector Machine is a non-probabilistic binary linear clas-
sifier that tries to find the maximum-margin hyperplane which divides
two different classes. If the points representing the data in the high-
dimensional space of their parameters are linearly separable, it is possible
to define an hyperplane that separates the points of the two classes by
having one group on one side and one on the other. The margins are
therefore defined as the maximum distance between the found hyperplane
and a second hyperplane, parallel to the previous one, that still has all
the points belonging to the respective class only in the region of the space
that does not contain the original hyperplane, as shown in figure 2.2.

In order to extend the Support Vector Machine model to cases with
many outliers, a hinge loss function is introduced. The loss function is
equal to zero for each point that lies in the correct side of the margin’s
hyperplane and is proportional to the distance from it otherwise. The
model is therefore trained to minimize its loss function. Differently from
the Perceptron, the Support Vector Machine does not stop after finding
an hyperplane which discriminate between the two classes, but tries to
find the best and more stable one among the many possible hyperplanes.
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Figure 2.2: Support Vector Machine margins

The limitation of only addressing linearly separable data was overcome
by Vladimir Vapnik et al. [55] by introducing a kernel function that maps
each point of the original space into a new higher-dimensional feature
space where the two classes are linearly separable. The kernel function
allows the Support Vector Machine to approach much more complex clas-
sification problems. However, in order to compute the kernel function, the
machine needs to analyze all the original data space at once. The com-
plexity of finding the right kernel function is more than quadratic with
respect to the number of records, making it unfeasible to compute when
there are too many items in the datasets (i.e. more than 10K records [56]).

For this project, it was implemented a linear SVM classifier trained
with Stochastic Gradient Descent and without any kernel transformation
due to the size of the datasets. Thanks to the straightforward nature
of the Support Vector Machine, its results were used in the project as a
baseline to compare every other classification method both prior to and
after the application of the Stacked Denoising Autoencoder.
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MLP

As stated before, two different Multilayer Perceptrons were imple-
mented in the project. The first one only had a single hidden layer while
the other had multiple hidden layers between the input and the output
layers. The reason behind this choice was to test both a deep neural net-
work, that could possibly solve the functional decline prediction problem
by itself, and the most simple feedforward classifier that could be inter-
preted as a neural network version of the baseline.

Only the deep Multilayer Perceptron had a depth and a shape hyper-
parameter, but otherwise they shared the same validation environment,
with the tested hyperparameters being the number of nodes per layer, the
activation function of the hidden nodes, the initiaizer and optimizer used
during the training, the learning rate and learning rate decay used by the
optimizer, and finally the batch size. Eventually, a parametric noise was
also added to the Multilayer Perceptrons to avoid overfitting during the
training process.

LSTM

The last classifier implemented in the project was a Long Short-Term
Memory network. Since the original dataset consists of several time series,
one for each patient, it was natural to choose a recursive neural networks
as a classifier and the LSTMs held the best general results in literature
among all the RNNs. Since the cause of a functional decline could be
located many years before the actual decline occurrence, it could be im-
possible for a normal feedforward neural network to predict the event
from a single record of the time series. In this case, the Long Short-Term
Memory classifier should bring much more accurate results, therefore by
comparing them with the metrics obtained from the deep feedforward neu-
ral network it should be possible to understand if the functional decline
can be estimated by only checking the last record, or if the whole time
series should be analyzed instead.

Since the time series from the two datasets had different lengths, the
Long Short-Term Memory was implemented with a dynamic unfolding
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by providing the model with both the batched input and the relative
list of lengths. Furthermore, many of the series started or ended with
a succession of invalid records due to the patient leaving the study or
entering after a while. For this reason, all the series were shifted and
trimmed to cut the invalid ends on both sides.

The memory of the Long Short-Term Memory cell is represented by a
state of parametric size, therefore the number of internal nodes was one of
the tested hyperparameters, alongside with the initializer, the optimizer,
the learning rate and learning rate decay, the batch size, and finally the
input noise.

2.3 Validation metrics

All the neural network classifiers described so far were programmed to
output a probability of functional decline. This behaviour was achieved
by having two neurons in the output layer which were activated by a
Softmax function. The two output neurons corresponded respectively to
the probability of having a functional decline and the probability of not
having it. The Softmax ensured that the two outputs were positive in value
and that their sum was equal to one, therefore granting the correctness of
the equality:

p(functional decline) = 1− p(not functional decline) (2.4)

When dealing with probabilistic classifiers (i.e. classifiers that output a
probabilistic distribution over a set of classes) there are two main elements
that can be evaluated: the uncertainty of the classification and the cor-
rectness of the classification. Both the previous characteristics are useful
to attest the quality of the classifier and ultimately to confront different
classification models in order to find the best one during the validation
phase.

To evaluate the correctness of the classification, a useful tool is the
Confusion Matrix. Since every classifier implemented in the project was
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Table 2.1: Binary Confusion Matrix

a binary classifier, it is possible to define the predicted class by imposing
a threshold that discriminates between the two classes. The threshold
can be applied to either one of the two output neurons, as consequence of
the equation 2.4. The typical threshold, also used in this project, is set
to 50% for the binary classifiers, meaning that whichever neuron has the
greatest value is the one used for the prediction. However, it is possible
to adjust the threshold in order to further tune the classification (e.g. to
only classify the record as anticipating a functional decline if the functional
decline neuron has a value equal or greater than 0.7).

Once every record of the set is classified as either preceding a functional
decline or not, it is possible to define a binary Confusion Matrix as shown
in table 2.1, where the records are assigned to one of the matrix cells as
following:

• True Positives (TP): contains the number of records that precede
a functional decline and are correctly classified.

• False Positives (FP): contains the number of records that precede
a functional decline but are incorrectly classified.

• True Negatives (TN): contains the number of records that do not
precede a functional decline and are correctly classified.

• False Negatives (FN): contains the number of records that do not
precede a functional decline but are incorrectly classified.
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The Confusion Matrix is very useful when addressing the correctness of
a classifier, but does not provide any information regarding the uncertainty
of the classification (i.e. there is no difference between a record classified
as preceding a functional decline because the respective output node has
a value of 0.51 and another record where the same output is 0.99). To
have a full picture of the classifiers’ performance, in this project four
different metrics were used during the validation phase, two addressing
the correctness and two addressing the uncertainty.

begin validationProcess
foreach Metric M do

CHP = findClassifiersBestHyperparameters(M);

foreach permutation P of {Da, Db} do
foreach Classifier C do

SDAEHP[P, M, C] =
findSDAEBestHyperparameters(P, M, C, CHP[C]);

end
end

end
return SDAEHP

end
Algorithm 3: Validation process

Having multiple metrics to compare the classifiers, instead of only
one, added yet another layer of complexity to the validation process, as
described with pseudo-code in the algorithm 3. Therefore, in the final val-
idation process, the first step was to find the best set of hyperparameters
for each classifier, given a metric M , by using the procedure described in
the algorithm 2 and providing it with the chosen metric M . The first step
was independent from the direction of the knowledge transfer that had to
be measured, since the classifiers were trained on the joined training sets
and then validated on the joined validation sets. However, in the second
step both the possible directions of the transfer were analyzed by permut-
ing the order of the two datasets Da and Db (corresponding to ELSA and
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TILDA). Then, for each classifier, the best set of SDAE hyperparameters
was found by running the procedure described in the algorithm 1 and
providing it with the direction of the analysis (i.e. the permutation P ),
the chosen metric M , and the chosen classifier C with the respective best
hyperparameters CHP [C] that were computed in the first step.

Therefore, the resulting validation process returns a three-dimensional
matrix that for each direction, each metric, and each classifier, contains
the best set of SDAE hyperparameters among all the combinations of
possible hyperparameters for that specific neural network.

In the following sections, all the metrics implemented in the project
are discussed in more details.

2.3.1 Accuracy

The accuracy is the simplest validation metric used in the project. Its
goal is to establish the proportion between the amount of records which
are correctly classified and the total amount of records used during the
test. The value of the accuracy is computed using the following equation:

Accuracy = TP + TN

TP + FP + TN + FN
(2.5)

Where TP , FP , TN and FN are the four values of the Confusion Matrix
shown in figure 2.1. The accuracy can be interpreted as the probability of
the model correctly classifying any given record.

In addition to not delivering any information regarding the uncertainty
of the classifier, the accuracy also suffers from the accuracy paradox when
dealing with unbalanced datasets. In fact, if most of the records belong
to the same class, the accuracy value may be higher when all the records
are classified as belonging to the most common class. For example, if the
values of TP , FP , TN and FN are respectively equal to [800, 200, 80,
20], the accuracy is (800 + 80)/1100 = 80%, but if they were [1000, 0, 0,
100] instead, the accuracy would be (1000 + 0)/1100 = 91%. In the first
case, the classifier is able to discriminate between the two classes with a
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partial accuracy equal to 80% for either of the two and the total accuracy
reflects this performance. However, in the second case the classifier has
learned nothing about the the input space and always delivers the same
class prediction, while also having a better overall accuracy thanks to the
unbalanced class distribution in the dataset.

Although not being a very reliable metric for the aforementioned rea-
sons, the accuracy is still a useful metric to be analyzed because of its
computational simplicity, its understandability, and because the bias in-
troduced by the class unbalance is equally present for every classifier, since
they are all tested on exactly the same data subsets.

2.3.2 Cohen’s Kappa

The Cohen’s Kappa [57] is the second metric implemented in the
project that addresses the classifiers’ correctness. The Cohen’s Kappa
is more robust than the simple accuracy because it also takes into account
the possibility that the agreement between the predicted class and the real
label is just the result of chance. When dealing with only two classes, the
value of the Kappa can be computed as:

Kappa = Accuracy − pc

1− pc

pc = TP + FP

N

TP + FN

N
+ TN + FN

N

TN + FP

N

(2.6)

Where TP , FP , TN and FN are the four values of the Confusion Matrix
shown in table 2.1 and N is the sum of all the previous cells together. The
value of pc can be interpreted as the classification accuracy achieved by a
probabilistic classifier that randomly assigns the classes with a probability
proportional to the marginal totals of the analyzed Confusion Matrix. In
fact, the four terms of the second equation (pc) correspond to the first row
of the Confusion Matrix, the first column, the second row and the second
column respectively.

The magnitude of the Cohen’s Kappa can be therefore interpreted
as the improvement of the classifier with respect to the aforementioned
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random classifier. The value of the Kappa is represented by a real number
in the interval [-1, 1], with Kappa = 1 (100% improvement) when the
evaluated classifier performs a perfect classification, Kappa = 0 when
the classification is apparently random and only driven by chance, and
Kappa = −1 when the evaluated classifier is in total disagreement with
the real class distribution of the original dataset (i.e. it classifies every
record as belonging to the wrong class).

Although being an improvement over the simple Accuracy because it
also takes into consideration the accidental agreement between the pre-
dicted classes and the labels of the dataset, the Cohen’s Kappa is more
prone to misinterpretation because it confuses the disagreement due to
class allocation with the disagreement caused by their quantity. For ex-
ample, if the values of TP , FP , TN and FN are respectively equal to
[0, 1, 10, 1], the classification is clearly better than if they were [1, 10, 1,
0] instead, however the Kappa in the first case is equal to −0.091 while
in the second case would be equal to 0.016. The second matrix of the
example is equal to the first one with just the two rows rearranged in the
opposite order, but by doing so the number of record correctly classified
dropped from 10 out of 12 to only 2 out of 12. However, it also solves
the classification of 0 records out of 1 that the original matrix has in the
first row, hence boosting the relative classification of the True records and
achieving a higher Kappa score.

2.3.3 Brier score

The Brier score is the first metric implemented in the project which
directly addresses the uncertainty of the classifier. When dealing with a
categorical classifier that outputs a proper probability distribution among
all the possible class categories, like the one granted by the Softmax ac-
tivation function, it is possible to compute the Brier score as the mean
squared difference between the datasets’ labels and the model’s outputs.
For example, if the network’s output for a given record is [0.8, 0.2] and
its real label is [1, 0], the contribution to the Brier score corresponding to
that record would be equal to ((1− 0.8)2 + (0− 0.2)2)/2 = 0.04.
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Because the problem treated in this thesis is formulated around the
functional decline, the Brier score can be used to measure the uncertainty
and the correctness of the classification at the same time. However if the
original functional status extracted from the datasets were used without
converting them to binary categorical variables, the Brier score would be
inappropriate. In fact, the Brier score assumes that all the possible classes
are equivalently distant one from another and is not suited to analyze
probability distributions over ordinal classes.

The Brier score has a value in the range [0, 1] where 0 means that
the classifier is absolutely certain of its predictions and also performs a
perfect classification, while a value equal to 0.25 indicates a classifier that
is very uncertain about its classification (i.e. its outputs are close to [0.5,
0.5], independently from the actual real label), and a score of 1 means
that the classifier is absolutely certain about its predictions, but the final
classification is always the opposite of the expected one.

Differently from the other metrics implemented in the project, the
Brier score is a distance. Therefore, the lower the value is, the better the
performance of the classifier.

2.3.4 AUC-ROC

The Area Under the Receiver Operating Characteristic Curve [58] is
the last metric implemented in this project. As stated at page 51, in a bi-
nary classification problem it is possible to achieve different classification
ratios between the two classes by simply changing the value of the dis-
crimination threshold. By increasing the positive threshold (e.g. setting
the network to only classify a record as positive if the corresponding neu-
ron has a value equal or greater than 0.99) the number of False Positives
should decrease while the number of False Negatives should increase.

As shown in figure 2.3, it is possible to plot the distribution of the
positive and negative records with respect to the classifier’s threshold.
Even if the two distributions are partially overlapping (i.e. there is no
threshold that perfectly discriminates between positives and negatives), it
is still possible to determine the best threshold by sliding it within the [0,
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Figure 2.3: Positives and Negatives distribution

1] interval and measuring the number of True Positives and False Positives.
The ROC curve, as shown in figure 2.4, is therefore created by plotting the
True Positive Rate (TPR) against the False Positive Rate (FPR)
for each threshold value, where the TPR is equal to the number of True
Positives divided by the total number of Positives and the FPR is equal to
the number of False Positives divided by the total number of Negatives.

The dotted line in figure 2.4 represents the values provided by the
random guess. Therefore, if the ROC curve lays under the dotted line (i.e.
in bottom-left region) the classifier is worse than a random classifier, while
if it lays over the dotted line it is considered a good classifier. The perfect
classifier, only achievable if the Positives and Negatives distributions do
not overlap, has a ROC curve that goes straight up to the top-left corner
and then stays flat until it reaches the top-right corner of the figure.

Since the ROC space is bounded by a square of side one, the value
of the area under the ROC curve is represented by a real number within
the interval [0, 1]. The AUC-ROC value describes the probability that
the positive output node of the classifier will rank a randomly chosen
positive record higher than a randomly chosen negative one. The AUC-
ROC can be seen as a measure of the quality of the discriminative power
of the classifier and for this reason is appropriate even when the classifier’s
outcome does not get discretized. By projecting the AUC-ROC score into
the [-1, 1] interval, the result can also be interpreted as a Kappa statistics
which also takes the classifier’s uncertainty into consideration.
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Figure 2.4: Receiver Operating Characteristic curve

2.4 Networks implementation

The project was fully implemented in Python because it offers sev-
eral very useful scientific-oriented libraries. Among these libraries, the
most relevant for the purposes of this thesis are Numpy, Scikit-learn and
TensorFlow.

NumPy [59] is the fundamental package for scientific computing with
Python. It contains among other things:

• A powerful N-dimensional array object

• Sophisticated (broadcasting) functions

• Tools for integrating C/C++ and Fortran code

• Useful linear algebra, Fourier transform, and random number capa-
bilities

Besides its obvious scientific uses, NumPy can also be used as an effi-
cient multi-dimensional container of generic data. This allows NumPy to
seamlessly and speedily integrate with a wide variety of databases.
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NumPy is licensed under the BSD license, enabling reuse with few
restrictions.

The whole testing environment and data management of the project
was programmed on top of the NumPy functionalities. More specifically,
all the data extracted from both ELSA and TILDA datasets were con-
verted to NumPy multidimensional array structures in order to feed them
to the neural networks.

Scikit-learn [60] is a Python module integrating a wide range of state-
of-the-art machine learning algorithms for medium-scale supervised and
unsupervised problems. This package focuses on bringing machine learn-
ing to non-specialists using a general-purpose high-level language. Em-
phasis is put on ease of use, performance, documentation, and API con-
sistency. It has minimal dependencies and is distributed under the sim-
plified BSD license, encouraging its use in both academic and commercial
settings.

The Support Vector Machine used in the project was implemented
on top of the Scikit-learn SGDClassifier class. Furthermore, some of the
metrics (namely the AUC-ROC and Brier scores) were also implemented
using Scikit-learn functionalities to obtain more accurate results.

2.4.1 TensorFlow and TensorBoard

TensorFlow [61] is an open source software library for numerical com-
putation using data flow graphs. Nodes in the graph represent mathe-
matical operations, while the graph edges represent the multidimensional
data arrays (tensors) communicated between them. The flexible architec-
ture allows you to deploy computation to one or more CPUs or GPUs
in a desktop, server, or mobile device with a single API. TensorFlow was
originally developed by researchers and engineers working on the Google
Brain Team within Google’s Machine Intelligence research organization for
the purposes of conducting machine learning and deep neural networks re-
search, but the system is general enough to be applicable in a wide variety
of other domains as well.
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Both the optimizers, the xavier initializer, the LSTM cell, and the
cross-entropy function were implemented on top of the respective Tensor-
Flow functionalities because they are faster and more numerically stable
than the alternative raw formulations [62].

The TensorFlow library also includes a suite of visualization tools
called TensorBoard. TensorBoard can be used to visualize TensorFlow
graphs, to plot quantitative metrics about the execution of the graphs,
and show additional data (e.g. images or signals) that pass through them.

The figures 2.5, 2.6, and 2.7 show respectively the TensorFlow graphs
for the Stacked Denoising Autoencoder, the Multi-Layer Perceptron and
the Long Short-Term Memory network extracted from TensorBoard. Fur-
thermore, the figure 1.7 at page 19 was made with the scalar summary tool
of TensorBoard during the training phase of one of the neural networks
implemented in this project. Each arrow represents a certain number of
tensors, while the rounded rectangles indicate a high-level node of the
computational graph. More specifically input refers to the batched input
vector, seq-length is the batched vector of the time series lengths used
by the LSTM, target is the batched label vector, cost vector represents
the cost mask vector used for the cost-sensitive learning, optimizer is the
homonym operation, loss is the node that computes the error, metric is
the metrics extractor node, and finally SDAE, Feedforward and LSTM are
the three kind of networks implemented in the project.
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Figure 2.5: TensorFlow graph of the Stacked Denoising Autoencoder
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Figure 2.6: TensorFlow graph of the Multi-Layer Peceptron

Figure 2.7: TensorFlow graph of the Long Short-Term Memory network





Chapter 3

Experimental results

In the final extensive test performed within the project, the input
layer consisted of 321 nodes in range [0, 1], of which about 60 were shared
between the ELSA and TILDA datasets while the other belonged to only
one of them and thus had a value equal to zero for the record of the other
dataset.

3.1 Classifiers optimization

The grid search analysis in the validation process of the classifiers
(described in the algorithm 2) was made on the following sets of hyperpa-
rameters:

• LSTM: a state size in {50, 100, 200, 300} (its optimal value was
200 for all the metrics); a Gaussian or Xavier initializer (Xavier
always outperformed the Gaussian); an optimization function using
either Stochastic Gradient Descent or Stochastic Adam (Adam al-
ways gave the best performance); a learning rate in {0.1, 0.01, 0.001}
(0.001 was always optimal); a learning rate decay either fractional
or exponential (exponential led to the best results); a batch size
in {32, 64, 128, 256} records (128 was the most agreed on and the
one that was ultimately chosen, but 32 led to the best performance
w.r.t. the AUC-ROC metric); and finally an optional Gaussian noise
(the tests with inputs corrupted by the noise always improved the

65
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final results).

• Deep MLP: a shape either rectangular (same size across all the
hidden layers) or triangular (size decreasing with the depth), thus a
final sizes of the hidden layers in {[150, 150], [300, 300], [150, 150,
150], [300, 300, 300]} for the rectangular shaped networks and in
{[100, 50], [200, 100], [200, 100, 50], [300, 200, 100]} for the triangu-
lar ones ([300, 300, 300], i.e. a constant size of 300 hidden nodes
with a depth equal to 3, gave the best results across all the metrics);
an activation function for the hidden nodes either implemented as a
Softplus, a logistic function, or an hyperbolic tangent (the hyper-
bolic tangent was always the best); a Gaussian or Xavier initializer
(Xavier always outperformed the Gaussian); an optimization func-
tion using either Stochastic Gradient Descent or Stochastic Adam
(Adam always gave the best performance); a learning rate in {0.1,
0.01, 0.001} (0.001 was always optimal); a learning rate decay ei-
ther fractional or exponential (exponential led to the best results);
a batch size in {32, 64, 128, 256} records (128 was always optimal);
and finally an optional Gaussian noise (the noise always improved
the final results).

• Single layer MLP: a hidden layer size in {100, 200, 300, 400, 500,
600, 700, 800} (400 was always optimal); an activation function
implemented as a Softplus, a logistic function, or an hyperbolic tan-
gent (the hyperbolic tangent was always the best); a Gaussian
or Xavier initializer (Xavier always outperformed the Gaussian);
an optimization function using either Stochastic Gradient Descent
or Stochastic Adam (Adam always gave the best performance); a
learning rate in {0.1, 0.01, 0.001} (0.01 was always optimal); a learn-
ing rate decay either fractional or exponential (exponential led to
the best results); a batch size in {32, 64, 128, 256} records (128 was
always optimal); and finally an optional Gaussian noise (the noise
always improved the final results).

The fractional learning rate decay mentioned before was implemented
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using the following equation:

ηt = η0
1

1 + t
(3.1)

Where η0 is the original learning rate reported by the respective hyper-
paramenter and ηt is the learning rate used during the t−th epoch of the
training in order to ensure the correctness of the stochastic optimization.
The exponential learning rate decay was instead computed as:

ηt = η0 α
t (3.2)

Where the value of α was set to 0.99 by default.
The Gaussian noise used to corrupt the inputs has a mean equal to 0

and a standard deviation of 0.05. This choice was made to avoid destroying
any useful information inside the original data ranged within [0, 1], while
also grating some robustness to the network.

The final results of the classifiers’ hyperparameters highlighted some
interesting characteristics across all the networks and all the metrics. For
example the hyperbolic tangent always outperformed the other activation
functions, while the Xavier initializer and the Adam optimizer were always
better than the respective counterparts. The learning rate equal to 0.001
(except for the single layer MLP) shows that in this experiment a slow
but more precise training of the deep neural networks was preferable to a
hasty but less careful one. The fractional learning rate decay never came
up because its implementation led to a drop in the learning rate that was
probably too sudden and therefore it gave too much importance to the first
few epochs compared to the remaining ones. A batch size of 128 records
was always preferred to smaller o bigger sizes probably due to the internal
variance of the datasets, and finally the noise always helped improving the
performance, probably because it reduced the risk of overfitting during the
training process.
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On the other end, The number of hidden nodes is an interesting case
study because it varies depending on the type of neural network. The
single layer MLP, although being tested with a big amount of possible
sizes, had the best performance with only 400 hidden nodes, which is the
smallest available number over the input size (321 nodes). Among all
the shapes, depths, and sizes, the deep MLP selected a constant width of
300 hidden nodes along 3 hidden layers, which was the biggest network
available during the validation process. The LSTM preferred an inner
state of just 200 nodes instead, that was not the biggest size available
and it was actually smaller than the number of nodes in the input layer.
However, it is important to note that the LSTM cell is made of three
different networks each of which has a hidden layer of the same size, leading
to a total number of hidden nodes equal to 600 (that is still less than the
deep MLP’s 900 nodes anyway).

3.2 SDAE optimization

For what concerns the hyperparameters of the SDAE, the validation
process was more complex, as described by the algorithm 3. The basic
structure of the Stacked Denoising Autoencoder was the same described
by Xavier Glorot, Antoine Bordes, and Yoshua Bengio in their research
on the domain adaptation, with the a parametric masking noise on the
input layer and a gaussian noise on the hidden ones. The masking noise
was tested in 0.3, 0.6, 0.9 while the Gaussian noise was implemented with
the same mean and variance of the one described for the previous neural
networks.

The masking noise perfectly matches the datasets representation pro-
vided to the input layer. In fact, because the missing values of a certain
record (i.e. the ones belonging to the other dataset or the invalid ones)
are set to zero, the model can not discriminate between masked nodes (i.e.
nodes whose value is set to zero by the masking noise) and invalid nodes
without also learning the underlying characteristics of the two datasets.

However, differently from the model reported in the aforementioned
paper, the activation function of the outermost decoding layer was imple-
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mented as a logistic function. Since the output of that layer was confronted
with the uncorrupted input during the training process, the choice of us-
ing a logistic function was made to match the outputs range (i.e. [0, 1])
with the original data.

Except for the noise layout and the activation function of the outer-
most decoding layer, every other hyperparameter was validated through
a grid search analysis. As for the deep MLP, multiple shapes, sizes and
depths were explored for the SDAE. However, due to time constraints,
both the encoding and the decoding networks were only tested with a
depth equal to either 1 or 3, leading to a size of the encoding layers in
{100, 300, 500} for the single layer SDAE, in {[300, 150, 50], [150, 75,
25]} for the triangular deep SDAE, and in {[300, 300, 300], [100, 100,
100]} for the rectangular deep SDAE. The decoding layers were obviously
reversed in size in order to maintain the symmetry. In addition to the
cross-entropy loss function proposed by Xavier Glorot, Antoine Bordes,
and Yoshua Bengio, a RMSE loss function was also tested in the vali-
dation phase. Because the cross-entropy needs a probability distribution
with values within [0, 1] to work properly, it was always tested with de-
coding layers activated by a logistic function. However, since the RMSE
does not have this limitation it was tested with several decoding activa-
tion functions, namely the logistic function, the hyperbolic tangent, the
Softplus function and the ReLU. The encoding activation functions were
also tested using all the previous functions.

The other validated hyperparameters were the Gaussian or Xavier ini-
tializer, the Stochastic Gradient Descent or Stochastic Adam optimizer,
the learning rate in {0.1, 0.01, 0.001}, the fractional or exponential learn-
ing rate decay, and the batch size in 32, 64, 128, 256.

Some of the hyperparameters outperformed every other hyperparam-
eter in the respective category independently from the direction of the
knowledge transfer, the classifier, or the metric used. These hyperpa-
rameters are the hyperbolic tangent activation function for both the
encoding and decoding layers, the exponential learning rate decay, the
Xavier initializer, the Adam optimizer, and the batch size equal to 128
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Loss LR Noise Size

EtoT
Accuracy RMSE 0.01 0.9 300

Kappa CE 0.01 0.3 500

TtoE
Accuracy RMSE 0.001 0.9 300

Kappa RMSE 0.01 0.9 300

Table 3.1: Best SDAE hyperparameters w.r.t. SVM classification

records. It is noteworthy that all the previous hyperparameters were also
shared by all the neural network classifiers.

The rest of the hyperparameters depended on the specific direction,
classifier and metric used in for validation. Therefore, the following sec-
tions will report every combination of the aforementioned variables with
the respective set of hyperparameters that led to the best overall perfor-
mance. To achieve a more straightforward description and avoid confu-
sion, the direction of the knowledge transfer will be always referred as
EtoT or TtoE, meaning that the SDAE is either fine-tuned on the ELSA
dataset and then used to encode the TILDA dataset or fine-tuned on the
TILDA dataset and then used to encode the ELSA dataset respectively.

3.2.1 SVM

For what concerns the Support Vector Machine, the best performance
was achieved when the encoding SDAE had the hyperparameters reported
in table 3.1. Except for the Cohen’s Kappa in direction EtoT which was
optimal when the SDAE was implemented using a cross-entropy loss func-
tion, a 30% masking noise and a single encoding/decoding layer of size 500,
the other results were pretty consistent along all the experiments, with a
high masking noise (90%), a RMSE loss function and a single hidden layer
of 300 nodes. The best learning rate was always equal to 0.01 except when
tested through the SVM accuracy in direction TtoE (0.001).

The depth of the encoding network and the high masking noise match
the experimental results of Xavier Glorot, Antoine Bordes, and Yoshua
Bengio. In their benchmark experiment, they tested the domain adap-
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Loss LR Noise Size

EtoT

Accuracy RMSE 0.01 0.3 300
Kappa RMSE 0.01 0.3 300
Brier RMSE 0.01 0.3 300

AUCROC CE 0.001 0.3 300, 300, 300

TtoE

Accuracy CE 0.001 0.3 300, 300, 300
Kappa CE 0.001 0.3 300, 300, 300
Brier CE 0.001 0.3 300, 300, 300

AUCROC CE 0.001 0.3 300, 300, 300

Table 3.2: Best SDAE hyperparameters w.r.t. single layer MLP classifi-
cation

tation provided by the Stacked Denoising Autoencoder with a Support
Vector Machine and the reported best performance was given by a single
layer SDAE with a 80% masking noise in the input layer.

3.2.2 Single layer MLP

When tested through the single layer MLP classifier, the resulting best
hyperparameters were very polarized, as reported in table 3.2, with the
30% masking noise being the only common hyperparameter across all the
metrics and directions.

The best Stacked Denoising Autoencoder according to all the metrics
in direction TtoE end even the AUC-ROC in direction EtoT was a deep
SDAE with three encoding/decoding layers of constant size equal to 300
nodes, a learning rate equal to 0.001, and a cross-entropy loss function.
On the other side, all the metrics in direction EtoT (except the AUC-
ROC) reported the best improvement when paired with a SDAE that had
a single hidden layer of 300 nodes, a learning rate equal to 0.01, and a
RMSE loss function.
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Loss LR Noise Size

EtoT

Accuracy RMSE 0.01 0.3 300
Kappa RMSE 0.01 0.3 300
Brier RMSE 0.01 0.3 100

AUCROC RMSE 0.01 0.6 300

TtoE

Accuracy RMSE 0.001 0.3 100
Kappa RMSE 0.001 0.3 100
Brier RMSE 0.001 0.6 300, 300, 300

AUCROC CE 0.001 0.3 300, 300, 300

Table 3.3: Best SDAE hyperparameters w.r.t. deep MLP classification

3.2.3 Deep MLP

Compared to the single layer MLP, using the deep MLP to validate the
SDAE hyperparameters led to more heterogeneous results, as reported in
table 3.3. RMSE was reported as the best loss function by all the metrics
in both directions, except for the AUC-ROC in direction TtoE which pre-
ferred a cross-entropy loss function. The best learning rate according to
all the metrics in direction EtoT was equal to 0.01, while for the metrics
in direction TtoE the 0.001 learning rate performed better. A low 30%
masking noise was preferred by all the metrics except the AUC-ROC in
direction EtoT and the Brier score in direction TtoE that preferred a 60%
masking noise. Finally, the shape and size of the encoding and decoding
networks were the hyperparameters with the highest disagreement. The
Accuracy, Cohen’s Kappa and AUC-ROC in direction EtoT were higher
with a single layer SDAE of size 300; the Accuracy and Cohen’s Kappa
in direction TtoE and the Brier score in direction EtoT reported better
results with a single layer SDAE of size 100; and finally the Brier score
and AUC-ROC in direction TtoE preferred a deep Stacked Denoising Au-
toencoder with three layers of 300 nodes each.
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Loss LR Noise Size

EtoT

Accuracy RMSE 0.01 0.3 300
Kappa RMSE 0.01 0.3 300
Brier CE 0.01 0.3 500

AUCROC RMSE 0.01 0.3 500

TtoE

Accuracy CE 0.001 0.6 300, 300, 300
Kappa CE 0.001 0.6 300, 300, 300
Brier CE 0.001 0.6 300, 300, 300

AUCROC CE 0.001 0.6 300, 300, 300

Table 3.4: Best SDAE hyperparameters w.r.t. LSTM classification

3.2.4 LSTM

The best hyperparameters for the SDAE were again somewhat clus-
tered when measured through the classification of the LSTM network on
the encoded data, as reported in table 3.4. All the metrics in direction
TtoE preferred a deep SDAE with three layers of 300 nodes, a 60% mask-
ing noise, a learning rate equal to 0.001, and a cross-entropy loss function.
The metrics in direction EtoT instead preferred a SDAE with a single
encoding/decoding layer of size equal to either 300 nodes (Accuracy and
Cohen’s Kappa) or 500 nodes (Brier score and AUC-ROC), a low 30%
masking noise, a learning rate equal to 0.01, and a RMSE loss function
(except for the Brier score that was lower when the SDAE was trained
with a cross-entropy loss function).

3.3 Classifiers and metrics comparison

After the validation phase, the best candidates were tested on the
ELSA and TILDA test sets. The results are shown in the figures 3.1,
3.2, 3.3, and 3.4. Each chart reports a different metric and displays four
bars for each classifier (dMLP means deep MLP and sMLP stands for
single layer MLP). The pale red and pale blue bars show the value of the
metric when the classifier was tested on the raw test set of the TILDA and



74 EXPERIMENTAL RESULTS

LSTM dMLP sMLP SVM
0.4

0.5

0.6

0.7

0.8

0.9
0.83

0.73

0.85

0.75

0.91 0.90 0.91

0.750.72
0.69

0.45
0.51

0.89
0.85

0.80

0.69

A
cc

ur
ac

y

raw TILDA SDAE to TILDA raw ELSA SDAE to ELSA

Figure 3.1: Accuracy of the four classifiers on ELSA and TILDA test sets,
both before and after SDAE encoding

ELSA dataset respectively. The bright red bar reports the value of the
metric when the classifier was tested on the TILDA test set encoded by a
SDAE which was previously fine-tuned on the ELSA dataset and was built
with the best hyperparameters extracted for that specific metric, classifier,
and direction during the validation phase. Conversely, the bright blue bar
shows the value of the metric when the classifier was tested on the encoded
ELSA test set with the best SDAE fine-tuned on the TILDA dataset.

3.4 Results interpretation

From the analysis of the hyperparameters it is possible to extract some
noteworthy observations. For example, some of the hyperparameters seem
to be linked to the direction of the transfer, with EtoT generally working
better when performed by a single-layer SDAE that has a learning rate
equal to 0.01, while TtoE preferring a deep rectangular SDAE with a
learning rate of 0.001. This trend is probably caused by the underlying
characteristics of the two datasets (e.g. ELSA’s records are quantitatively
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Figure 3.2: Cohen’s Kappa of the four classifiers on ELSA and TILDA
test sets, both before and after SDAE encoding
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Figure 3.3: Brier score of the three probabilistic classifiers on ELSA and
TILDA test sets, both before and after SDAE encoding
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Figure 3.4: AUC-ROC of the three probabilistic classifiers on ELSA and
TILDA test sets, both before and after SDAE encoding

more than TILDA’s and often contain more invalid fields and invalid waves
in the time series). The nature of ELSA’s data could require a deeper
and more accurate analysis from the Stacked Denoising Autoencoder in
order to learn how to extract interesting features from a less complex
environment (i.e. TILDA’s data).

Furthermore, the high masking noise seems to bring better results
only when paired with the Support Vector Machine, while all the neural
network classifiers performed better when the encoding SDAE was trained
with a low corrupting noise.

It is also worth mentioning that the RMSE and cross-entropy loss
functions were almost equally represented in the results and that the best
width for the encoding and decoding layers was almost always about the
size of the input layer, meaning that the Stacked Denoising Autoencoder
was probably able to extract a great amount of features from the original
data (N.B. every record of a given dataset actually fills only about half
of the input nodes with non-zero values, therefore the number of hidden
features extracted by the SDAE exceeds the number of valid inputs).
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The bar charts reported in the current chapter show how effective the
domain adaptation performed by the SDAE is. In fact, all the metrics
improved when the SDAE encoding was applied, independently from the
chosen classifier or the direction of the transfer.

Regarding the classifiers comparison, a possible observation is that the
neural networks always outperformed the linear Support Vector Machine
by a large margin, while within the neural network classifiers the deep ones
were the most consistent across all the experiments and also the classifiers
that generally led to better results. The LSTM performed especially well
compared to every other classifier when applied on the raw data of both
the datasets, probably thanks to the temporal analysis performed by the
network. However, it is important to note that regardless of the initial
performance on the raw data, after the encoding performed by the SDAE
all the neural network classifiers reached similar values for almost all the
metrics, meaning that the domain adaptation process was probably more
relevant to the final classification than the choice of the actual classifier.





Conclusions

In this project a Stacked Denoising Autoencoder was designed and im-
plemented in TensorFlow alongside with four different classifiers, namely a
Support Vector Machine, a Multilayer Perceptron, a Deep Multilayer Per-
ceptron, and a Long Short-Term Memory classifier. Then, several tests
were designed and performed on the aforementioned networks in order to
measure their performance and usefulness in a real case study.

More specifically, this thesis provided experimental evidence to sup-
port the hypothesis of benefiting from the use of a Stacked Denoising
Autoencoder to perform an unsupervised feature extraction for a domain
adaptation problem. The features representation extracted by the Stacked
Denoising Autoencoder greatly improved the performance of all the tested
classifiers.

Furthermore, the project extended a previously documented technique,
which involved a Support Vector Machine to classify the encoded data [33],
with several other classifiers and demonstrated that, in this operational
scenario, the deep neural network classifiers are particularly well-suited
to predict the functional decline of an elderly patient from the features
extracted by a Stacked Denoising Autoencoder. The neural network clas-
sifiers trained through supervised deep learning greatly outperformed the
linear Support Vector Machine classification, achieving an average accu-
racy, Cohen’s Kappa, Brier score, and AUC-ROC equal to 74.31%, 0.393,
0.173, and 0.785 respectively just on the raw data.

When trained and tested on the feature extracted by the Stacked De-
noising Autoencoder all the metrics of the deep classifiers showed an im-
provement, with the average accuracy rising to 88.42% (+0.141), the av-
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erage Kappa reaching 0.717 (+0.321, almost doubled), the average Brier
score dropping to 0.088 (-0.085, almost halved), and the average AUC-
ROC reaching 0.919 (+0.135).

In a future scenario, it is possible to extend this project to every field of
the two original datasets that were used to measure the knowledge transfer
achieved by the Stacked Denoising Autoencoder, and even to extend the
analysis to other similar datasets.

Another possible improvement is to perform a 10-fold cross-validation
instead of the simple holdout that was used in this project, in order to
achieve more accurate results and train the networks with all the infor-
mation contained in the datasets.

Finally, the validation phase of the Stacked Denoising Autoencoder
could be extended to include even more hyper-parameters with the pur-
pose of finding a new model that would perform even better than the one
presented in this project.
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