This is a repository copy of An anomalous event detection and tracking method for a tunnel look-ahead ground prediction system.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128464/

Version: Accepted Version

Article:
Wei, L, Magee, DR and Cohn, AG orcid.org/0000-0002-7652-8907 (2018) An anomalous event detection and tracking method for a tunnel look-ahead ground prediction system. Automation in Construction, 91. pp. 216-225. ISSN 0926-5805

https://doi.org/10.1016/j.autcon.2018.03.002

Copyright (c) 2018 Elsevier B. V. Licensed under the Creative Commons Attribution-Non Commercial No Derivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
An Anomalous Event Detection and Tracking Method For A Tunnel Look-ahead Ground Prediction System

Lijun Wei, Derek R. Magee, Anthony G. Cohn
School of Computing, University of Leeds, United Kingdom

Abstract

The complicated geological conditions and unexpected geological hazards beyond the face of a tunnel are challenging problems for tunnel construction, which can cause great loss of life and property. While the geological surveys conducted before tunnel construction can provide rough information of construction site, they are not sufficiently accurate for predicting the sudden geological condition changes in local areas. Within the EU NETTUN project, an on-board ground prediction system consisting of multiple ground penetrating radars (GPR) and seismic sensors were developed to “see through” the ground and provide the local ground information behind the excavation front surface of a TBM (Tunnel Boring Machine). In order to facilitate the interpretation of the imaging data captured by this system, an automatic event detection and tracking method is presented in this paper. Anomalous 2D features are detected on each radar profile and reconstructed into a 3D accumulator; then, probable 3D events are detected from the accumulator and tracked at subsequent locations based on the information from multiple sets of radar data. The detection results can be used to generate alarms or be sent to human operators for interactive interpretation. The proposed method was evaluated using two sets of GPR data captured in a designed test field. Experimental results show that the buried targets can be correctly detected by the proposed event detection and tracking method. The proposed method is sufficiently flexible to cope with variations on the spatial configuration of on-board sensors.

Keywords: GPR data; Event detection; Tunnel construction; Ground prediction system

1. Introduction

The complicated geological conditions and geological hazards are challenging problems for tunnel construction, which can cause great loss of life and property. For example, large obstacles like boulders, building foundations, archaeological remains and other tunnels can obstruct the digging; geological defective features like cavities, sudden ground changes (e.g. from gravel to fractured rock), groundwater in adverse geological bodies (e.g. faults, karst caves and coal mine collapse columns) can also make the construction dangerous. While geological surveys conducted before the tunnel construction can provide rough information of the construction site, they are not sufficiently accurate for predicting the sudden geological condition changes in local areas. In order to improve the safety and efficiency in tunnelling, geophysical sensors and computer algorithms have been proposed or applied to predict the ground conditions ahead the excavation front surface such that appropriate ground treatment and effective support installation can be conducted. Probabilistic models like neural network [2], Markov random process [3] were proposed to dynamically predict the ground conditions based on the excavated ground data. These methods are useful for determining the short range geology ahead the tunnel face. In addition to these, tunnel look-ahead ground prediction systems (Figure [1]), equipped with different types of on-board ground probing/imaging geophysical techniques, have also been proposed for predicting the ground conditions [4, 5], such as tunnel seismic prediction (TSP) method [6], electrical resistivity method [7], transient electromagnetic method (TEM) [4] and ground penetrating radar (GPR) method [8, 9]. These systems can help assess the local geology conditions a few metres ahead of the excavation front surface. An overview of the existing tunnel look-ahead geological prospecting systems in tunnelling construction was given by Li et al. in [10].

Currently, most existing ground prediction systems require stopping tunnel construction activities for several hours so experts can install sensors on tunnel front surface/side walls or to drill a borehole through the tunnel front to insert measurement devices. These works usually lead to delay of tunnel construction. For tunnels constructed using a TBM (Tunnel Boring Machine), an on-board ground prediction system with the functionality of automated data acquisition/storage, 3D visualisation, human-machine interactive interpretation and a direct communication with the TBM operator can potentially make the drilling operation safer and even increase the excavation speed. A prototype of such a system, named Tunnel Look-ahead Imaging Prediction System (TULIPS) [11, 12] has been developed within the EU NETTUN project.

Preprint submitted to Automation in Construction March 12, 2018

1 http://nettun.org/
The TULIPS system consists of multiple sets of GPR antennae of different frequencies as well as a seismic imaging system. There are three sets of complementary GPR antennae on TULIPS: a low frequency GPR to provide a large inspection operating range and two high frequency GPR sensors to detect small-sized targets like rock fractures which might be a few centimetres in length. The imaging system is placed on three different radii sequentially (along an arm), and on each radius the system is rotated in an anti-clockwise direction with a constant rate to collect data, so each GPR sensor can provide one data set per radius and three sensors can generate nine images in total which can guarantee the best coverage of the space in front of the ground prediction system[11]. Examples of the generated three images by a GPR sensor are shown in Fig. 2 (left). The ground prediction system is designed to be installed in front of a TBM cutter head, so the imaging process is repeated each time a tunnel segment ring is being erected along the tunnel axis. An anomalous target detection method has been proposed for this system by Wang et al. in [12], in which GPR data is preprocessed to remove noise, then back-projected into 3D for analysis. However, in practice, the surrounding ground could be heterogeneous so the received signal strength (GPR image intensity) could vary in different parts of a GPR image. Directly projecting the image pixel intensities into 3D may not help reveal the targets in areas which are relatively challenging for GPR sensors.

Therefore, in this paper, an automatic event detection and tracking method is proposed for detecting and tracking anomalous 3D events from the GPR data acquired by this system. Potential features are first analysed in local image regions by examining the dissimilarity of a pixel to its surroundings. Then the obtained feature maps are back-projected into a 3D accumulator for analysis. As the detections from a single image profile may not guarantee the existence nor indicate the type/size of a target, the data fusion step correlates all information sets from different GPR sensors at different radii and subsequent tunnel locations in 3D. When the sensor platform moves forward, a 3D target tracking scheme is applied for consistently tracking the targets from frame to frame. Then these corresponding 3D...
targets are re-projected to individual GPR images as the final anomalous 2D features. Information of the detected 3D events and the associated 2D image features are stored in a database and can be visualised to TBM-operator to facilitate the interpretation by geo-experts. The processing pipeline of the proposed event detection and tracking method is shown in Figure 3.

Figure 3: Pipeline of the proposed event detection and tracking method.

The remaining sections of this paper are organized as follows: detection of potential features in individual images is introduced in Section 2, then the data fusion and events identification/tracking method is presented in Section 3, followed by experimental results in Section 4 and conclusions in Section 5.

2. Detection of Potential Features in Ground Penetrating Radar data

The objective of this step is to identify potential anomalous features in individual GPR images. Features are local changes in the sensor data which could indicate the presence of an “event” in the physical world, such as geology events (e.g. fault, karst) and anthropic structures (e.g. building foundation, pipes). As areas in GPR images with large intensity (except those from background and foreground (interesting) regions using intensity based thresholding methods) and high frequency GPR) on different radii, and data captured at different locations. The extracted pixels and their associated values are sent forward to the next fusion stage.

As shown in Figure 4, an input GPR image is firstly sub-sampled to resolve different intensity with respect to their local neighbouring areas according to image local statistics. After applying the common preprocessing steps on a raw GPR image (i.e., signal de-wow correction, programmed gain control, horizontal filter, bandpass filter and time/depth correction) using an IDS standard processing software, a 3 x 3 median filter is applied to the GPR image to remove background noise, followed by subtracting the average of each horizontal trace from all traces to remove ground echo. Then, the potential feature map is calculated based on the image Laplacian pyramid by comparing the sub-sampled images in different scales.

As shown in Figure 4, an input GPR image is firstly sub-sampled to s resolutions as \( I_s \), \( s \in [S_1, S_2, S_3, \ldots, S_m] \), such as \([1/2, 1/4, 1/8]\). Each pixel in the higher level of a pyramid contains the local average of its pixel neighbourhood on a lower level image. In order to find regions with different amplitudes to their surroundings, each sub-sampled image is blurred using a set of Gaussian filters with different standard deviations \( \sigma_1, \sigma_2 \). Differences of the Gaussian-blurred images with respect to the original sub-sampled image are summed up and normalized as \( I_s^d \) to represent the dissimilarity of pixels with their surroundings in the current scale. The weighted sum of \( I_s^d \) at different image scales is used as the image intensity feature map. The algorithm is given in Algorithm 1. This step is applied to images from different imaging sensors (low frequency and high frequency GPR) on different radii, and data captured at subsequent locations. The extracted pixels and their associated values are sent forward to the next fusion stage.

3. Integration of the Feature Maps from Multiple Sensors in a 3D Accumulator for Event Identification

By assuming that the tunnel is locally linear, the space ahead of the tunnel construction face is discretized into a 3D voxel grids, which are used as an accumulator to store the “possibility” of each grid being occupied by potential anomalous events. With the locations of on-board GPR sensors known and the feature maps of individual GPR images being calculated as explained in Section 2, in this step, the corresponding feature maps are projected into this 3D volume based on the spatial configuration of different sensors. When the ground prediction as follows:

Algorithm 1 Extraction of potential features in a radar image \( I \)

1: for \( s \in [S_1, S_2, S_3, \ldots, S_m] \) do
2: \( I_s := \) sub-sample image \( I \) with scale \( s \)
3: for \( \sigma = [2, 8] \) do
4: \( I_s^\sigma := \) convolve \( I_s \) with Gaussian filter \( g(\sigma) \)
5: end for
6: \( I_s^d := \) norm\( (\sum I_s^\sigma - I_s^\sigma) \)
7: \( I_s^d := \) resize \( I_s^d \) to the size of input image \( I \)
8: \( p_{min} := \) find the average of local maxima in \( I_s^d \)
9: \( p := \) calculate the weight of \( I_s \) using \( (1 - p_{min})^2 \)
10: end for
11: \( I_{\text{final}} := \sum_s p^* I_s^d \)

Figure 4: Feature extraction method from individual GPR image.
system moves forward, the anomalous feature map of new im-
ages will gradually add evidence into the 3D accumulator. The
accumulator allows efficient accumulation of small amounts of
information from individual sensor data and may provide more
accurate and confident map of the front space. It also allows the
extraction of probable events from the 3D volume based on the
voxel values. This step is composed of four stages as explained
below.

3.1. Discretization of the 3D space

As shown in Figure 5(a), the space ahead of the excavation
surface is discretized into 3D voxel grids and used as a 3D ac-
cumulator $G$. The value of each voxel grid indicates its "pos-
sibility" of being occupied by anomalous events. All the grids
are initialized with value $0$, $G = 0$.

Let $x - y$ be the plane where all the GPR antennae are lo-
cated; let $z$ be the direction perpendicular to the $x - y$ plane
and directing to the front of the excavation surface; let origin
of the accumulator $(0, 0, 0)$ be the centre of the prediction sys-
tem at the first scanning location. The size and resolution of
the accumulator are defined by the characteristics of sensors (e.g.
data resolution, effective penetrating range) and the distance
between two consecutive scanning locations of the prediction
system. The accumulator should cover the scanning area of all
the subsystem sensors. Let the size of the 3D accumulator be
$(W, H, L)$ with resolution $\Delta rs$; there are $(i \times j \times k)$ grids in the accumulator, where

$$ (i, j, k) \in \text{round}([(W, H, L)/\Delta rs]) $$

A resolution of 0.1m is used in the following experiments to
demonstrate the proposed method.

3.2. 3D accumulator updating

As explained previously in Section 1, the ground prediction
system rotates in an anti-clockwise direction with a constant
rate to collect data; and the data collection process repeats when
the system moves forward. Given the radius $R$ of a GPR scan-
ning cross section (Figure 5(a)) and the starting scanning angle
$\theta$, each 2D pixel on the GPR image plane will contribute a set
of weighted "votes" to some 3D spatial locations in the 3D ac-
cumulator. A pixel at location $(x, z)$ on a 2D radar image is
or $(x, D)$ (where $D = z \times \text{velocity}$ is the distance of the pixel to the
scanning surface) can be projected to a location $(X_{3d}, Y_{3d}, Z_{3d})$
in the 3D accumulator based on sensor locations and scanning
directions, where $Z_{3d} = Z_0 + D$, $(x_0, y_0, Z_0)$ is the location of the
centre of the prediction system with respect to the origin in 3D.

When the radar energy travels in the ground, it spreads out in a
conical projection, as shown in Figure 5(b), so a pixel $(x, D)$
on a 2D radar image could be the reflection from all possible spatial
locations on a partial sphere surface with radius $D$ and
centred at $(X_{3d}, Y_{3d}, Z_{3d})$. For this reason, all the related voxel
grids on this partial sphere are updated accordingly in the 3D
accumulator. The size of the cone is dependent on the cen-
tre frequency of the radar energy, the depth of targets to the
ground surface, and the average relative dielectric permittivity
of ground in local area, e.g. higher frequency antennae usually
have narrower propagation cones.

Let $d$ be the distance between a voxel grid on the sphere and
the related central voxel grid at $(X_{3d}, Y_{3d}, Z_{3d})$, where $d \in [0, D \times \sin(\alpha/2)]$, and $\alpha$ is the angle of the propagation cone, the
weights of different voxel grids on the sphere follows a Gaussi-
annian distribution with zero mean and $D \times \sin(\alpha/2)/3$ standard
deviation, noted as:

$$ p_d \sim N(0, (D \times \sin(\alpha/2)/3)^2) $$

All the related voxels on this partial sphere are updated accord-
ingly by summing up the feature scores in $I_{local}$ weighted by $p_d$
in Equation 2. An example of the updated 3D accumulator is
shown in Figure 5(c). The algorithm for 3D accumulator updat-
ing is given in Algorithm 2.

3.3. Events extraction from 3D accumulator

After updating the accumulator with all the sensor data at a
certain location (chainage in the tunnel), the voxel grids with
high votes in the accumulator are extracted and grouped as po-
tential events. Let $\text{isoValue} = \text{mean}(G) + \text{std}(G)$, the voxel

---

Note: the top-left corner is used as the origin or an image.
219

220

221

222

223

224

225

Figure 6: (Left) Simple scenario (no ambiguity): one event is connected with one event from previous frame; (Middle) Split: when multiple events at time \( t+1 \) intersect with the same event at time \( t \), they may relate to the different parts of an existing event and can be assigned the same \( \text{event id} \); (Right) Nearest event (ambiguity): when one event at time \( t+1 \) intersects with multiple events at time \( t \), its nearest object at time \( t \) is chosen as the correspondence.

As shown in Figure 6(a), if the bounding box of a detected event at location \( t+1 \) (noted as \( O'_{t+1} \)) intersects with the bounding box of any previously detected events at \( t \) (noted as \( O'_t \)), the events pair \( [O'_t \rightarrow O'_{t+1}] \) can be considered as corresponding events. Ambiguities may exist as shown in Figure 6(b) and (c). The case in (b) is considered as an object split so the two latest events at \( t+1 \) can both relate to the same event. For the case in (c), the event detected at time \( t+1 \) is associated to its nearest object at time \( t \) based on the Nearest-Neighbour rule. An example side-view image of detected events is shown in Figure 7. After establishing the correspondences of tracked events, the global event id of previously detected events are propagated and assigned to the corresponding events at the subsequent locations. Information of the 3D events extracted at a certain location, including global event id, 3D location (centroid), size (bounding box), is stored in an event database for further analysis and visualisation to the user. Information of the corresponding re-projected 2D image features are also stored in the database.

Figure 7: Example of detected events from multiple sets of GPR data (water inflow scenario as detailed in Section 4.2).

4. Experimental results

Test site set-up. A geophysical survey was conducted with the aforementioned ground prediction radar system in Park Forum, Eindhoven, (Netherlands) in 2015. Several scenarios representing the common hazards in tunnelling construction were simulated by burying objects in the ground. In order to simulate the tunnel forwarding process of a TBM where sensor measurements are concurrent with the ring construction operations, soil was replaced and compacted gradually at 7 levels. Om level is at the top of the buried targets, and the distance between two consecutive levels is 1m. Sensor measurements were collected as the inputs of the tracking method.

Algorithm 2 Updating 3D accumulator given the location of system centre \((X_0, Y_0, Z_0)\) in the accumulator.

1: \( R = [r_1, r_2, r_3] \), \( \theta = [\theta_1, \theta_2, \theta_3] \)
2: for each pixel \((x, D)\) with value \( I_{x,z} \) in \( I_{out} \) do
3: \% find the location of each pixel in the 3D cell:
4: \( X_{3d} = \text{Round}(R \times \sin(\theta) / \Delta r s) + X_0 \)
5: \( Y_{3d} = \text{Round}(R \times \cos(\theta) / \Delta z) + Y_0 \)
6: \( Z_{3d} = \text{Round}(D / \Delta r s) + Z_0 \)
7: \% find corresponding potential locations \( G_0 \) on the sphere
8: \( [G_0 - Z_0] < D + 0.1 \) and \( d \in [0, D \times \sin(\alpha / 2)] \)
9: \% obtain the probability of different locations based on the weight defined by \( p_d \):
10: \( d = [G_0 - (X_{3d}, Y_{3d})], p_d \sim N(0, (D \times \sin(\alpha / 2))^2) \)
11: \% update all related locations in the 3D accumulator
12: for each location \( G_0 \) on the sphere do
13: \( G_0 = G_0 + p_d \times I_{x,z} \)
14: end for
15: end for

Algorithm 3 Events extraction from 3D accumulator \( G \)

1: \% threshold the 3D volume to keep certain voxels
2: \( \text{iso}v_{\text{value}} = \text{mean}(G) + \text{std}(G) \)
3: \( v_0 \in G \) and \( v_0 > \text{iso}v_{\text{value}} \)
4: \% find connected regions in \( v_0 \)
5: \( CC_{26}(v_0) \rightarrow 3D \text{ 26-connected neighbourhood} \)
6: \% remove small isolated regions in \( CC_{26}(v_0) \)
7: \( O_i := \text{regions with areas more than} \ (0.4 / \Delta r s)^3 \)
8: Return \( O_i \)

3.4. Tracking of detected events at subsequent locations

Tracking of detected events means finding the correspondence between previously detected events and the latest detected events at a subsequent location(s). As the ground pre-diction system moves forward in the tunnel, it gets closer to the potential objects ahead and more information could be gathered by the imaging system. Tracking of detected 3D events can help to estimate the global size and nature of the events. Because events are extracted from the 3D accumulator, their absolute location, orientations, including 3D centroids and bounding boxes, are used as the inputs of the tracking method.
on each level and the acquired datasets are used to test the proposed event detection and tracking method. Images of the water inflow scenario and karst scenario are shown in Figure 8(a) and 8(b).

GPR configuration. The GPR system was developed by IDS (Pisa, Italy) and consists of two high frequency antenna and one low frequency long range antenna with a control unit and a data storage system [11]. In order to simulate the circular data capturing process of GPR on a TBM, a mock-up was designed, composed of an axis driven and a data storage system. The GPR configuration was designed, composed of an axis driven into the soil to support an arm with two wheels on one side to turn around the centre. An encoder mounted on the front wheel counts the number of turns of the wheel to encode the position of the GPR along the perimeter. The GPR mock up is operated by two persons, one pulls it with a rope, the other pushes the mock-up towards the ground so that the wheel with the encoder always touches the ground (Figure 8(c)). The imaging system is placed on three different radii (1m, 1m80, 2m60) sequentially (along an arm), and on each radius the system is rotated in an anti-clockwise direction with a constant rate to collect data, so each GPR sensor can provide one data set per radius and 3 sensors can generate 9 images in total [12]. The proposed event detection/tracking method in this paper is flexible to the variations of GPR position set-up, which means the locations, number and frequencies of the GPR sensors could be changed based on users’ demand. For example, in current experiment, GPR data is captured at three different radii: 1m, 1m80, 2m60 with three sets of GPR antennae (a low frequency GPR and two high frequency GPR sensors), but more radii could be added if needed. In the following sections, all the captured GPR images are marked by their: Level (distance from the top of the buried target), get to the surveyed surface: 0m, 1m, · · · , 6m; Radius: R1(1m), R2(1.8m) and R3(2.6m); and sensor: S1 (high-frequency GPR antenna 1), S2 (high-frequency GPR antenna 2) and S3 (low-frequency GPR).

4.1. Experimental results of extracted 2D anomalous areas

Three baseline methods were investigated for 2D anomalous areas detection (Table 1): a) The direct thresholding method (DTM) is based on global statistics of the amplitude in an GPR image. A threshold is automatically calculated for the whole image based on maximum entropy [18] and image pixels with higher values than the threshold are kept. Then, by counting the number of pixels in each connected component, clusters with fewer pixels than the threshold are considered as outliers and removed. However, as the energy levels of the top part and the bottom part of the image may not be equal (even after gain correction), a global threshold may risk missing objects further away from the top. b) The adaptive row-based thresholding method (ARTM) is used to threshold the image based on the image intensity in different time-slice windows. By vertically scanning the radar image, a local threshold is calculated for each local region (every nr rows), the scores of each pixel are accumulated and the pixels with low scores are removed. Based on the average energy in a local area in the radar image, area reflectivity method is a measure of the clutter in the corresponding surveyed area that may relate to the presence of pebbles, fractures, etc. c) The adaptive area reflectivity method (AARM) is used to adaptively find the areas with large average reflectivity in different time-slice windows. It combines the row-based thresholding method and the area-based method by accumulating the areas with large reflectivity in each time-slice window. An average filter with size 10 × 10 pixels is applied on each input image to calculate the average area reflectivity in each time-slice window; then the direct thresholding method in [13] is applied on this image to find interesting pixels (relating to areas in the original image).

Some experimental results are shown in Figure 9 and Figure 10. Compared with the direct thresholding method, the...
4.2. Experimental results of the “Water inflow” scenario

The water inflow scenario, as seen in Figure 8(a), was constructed using 2 plastic tanks filled with water. The final target is 5m long, 0.5m wide and 1.6m deep, the top of the target is at level 0m and seven groups of sensor data were captured using a vertical water tank and the scanning cross section of radius 1m (Figure 8(b)). The top-view configurations of the buried polystyrene blocks is shown in Figure 13(a). Theoretically, they should be detected by the antennae at 0°, 180° and 360°, as shown in Figure 14(a). Examples of GPR images and the detected anomalous areas are shown in Figure 14. It can be seen that the reflections from the buried target were picked up by the presented method as anomalous areas. After integrating the image detections from different sensors, the detected event is shown in Figure 13(right).

Discussion. In the above experiment, specific objects were buried in the ground as targets, which is different from real construction site. In a real tunnel construction site, the ground could be more heterogeneous than the designed test site (N.B. it could also be less heterogeneous as the ground isn’t disturbed in real construction sites). For example, more ground water could appear in the real test site, so the GPR data quality may not be good enough for anomalous feature detection. The remedy for this is to add another type of imaging sensors on TULIPS based on the seismic signals, which has already been addressed by Pawan et al. Another challenge in real construction site might be that different types of targets may intertwine with each other and the sensor data could be very noisy (large and dense scattering), so the proposed method may not be able to distinguish different targets. Although the GPR data used in the above experiment is from a specifically built test site with clayed soil, the proposed method in this paper does not have any presumptions of the type of surrounding soils although the signal should be strong enough for penetrating the ground.
Figure 11: Experimental results of the water inflow scenario: comparison of the anomalous areas detected from different GPR images with the ground truth. (a) Intersection of the water tanks and the scanning cross section. x-axis: 0-360° degree, y-axis: depth (0.5m for each grid). (b-f) Processing results of different sensor data captured at different levels. "Level" stands for the distance between the GPR antenna to the top of the buried target. The water tanks can be well seen by all antennas at level 0m at a radius of 1m and 1.8m from the centre.

Figure 12: Top-view of the water inflow scenario. (Left) Sketch of the buried water tanks and the sensor configuration, (right) top-view of the reconstructed buried targets using GPR data at level 0m.

5. Conclusion

This paper has presented a method for anomalous event detection and tracking in a tunnel look-ahead ground prediction system with multiple ground penetrating radars. Anomalous areas are detected from individual GPR images and the integration of multiple sets of sensor data can help recover the 3D location of the probable events in front of the excavation surface. The proposed methods were evaluated with two sets of data captured at a specifically built test field with buried targets, and the experimental results show that the buried targets can be correctly detected from the sensor data using the pro-
Figure 13: Top-view of the karst scenario. (Left) Sketch of the buried polystyrene blocks and the sensor configuration; (right) top-view of the predicted events from radar images on three radii at level 0m.

Figure 14: Experimental results of the karst scenario: comparison of the anomalous areas detected from different GPR B-scan images with the ground truth.

The detected 3D events and the corresponding 2D image areas (features) are stored in a back-end feature and event database. For future work, after gathering a large collection of real tunnel cases with the ground prediction system, including the sensor prospecting imaging data, the geological sketch, geological hazards, TBM parameters, geological conditions (as-built events) revealed by excavation, and geo-experts’ interpretation, alternative methods could be developed to predict the type of anomalous events and to combine the seismic and GPR data using advanced machine learning methods to fur-
ther improve the reliability of the prediction results.

Acknowledgements

We gratefully acknowledge the financial support of the EU under Grant Agreement 280712. We thank the project partners in GEO2X and IDS for providing the sensor data used in this paper. We also thank the project manager, Thomas Camus, for his tireless efforts in coordinating the project.


