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Abstract

SPARQL is the predominant language for querying RDF data, which is the stan-

dard model for representing web data and more specifically Linked Open Data (a

collection of heterogeneous connected data). Datasets in RDF form can be hard to

query by a user if she does not have a full knowledge of the structure of the dataset.

Moreover, many datasets in Linked Data are often extracted from actual web page

content which might lead to incomplete or inaccurate data.

We extend SPARQL 1.1 with two operators, APPROX and RELAX, previously

introduced in the context of regular path queries. Using these operators we are able

to support flexible querying over the property path queries of SPARQL 1.1. We call

this new language SPARQLAR.

Using SPARQLAR users are able to query RDF data without fully knowing the

structure of a dataset. APPROX and RELAX encapsulate different aspects of query

flexibility: finding different answers and finding more answers, respectively. This

means that users can access complex and heterogeneous datasets without the need

to know precisely how the data is structured.

One of the open problems we address is how to combine the APPROX and

RELAX operators with a pragmatic language such as SPARQL. We also devise an

implementation of a system that evaluates SPARQLAR queries in order to study the

performance of the new language.

We begin by defining the semantics of SPARQLAR and the complexity of query

evaluation. We then present a query processing technique for evaluating SPARQLAR

queries based on a rewriting algorithm and prove its soundness and completeness.

During the evaluation of a SPARQLAR query we generate multiple SPARQL 1.1

queries that are evaluated against the dataset. Each such query will generate answers

with a cost that indicates their distance with respect to the exact form of the original

SPARQLAR query.

Our prototype implementation incorporates three optimisation techniques that

aim to enhance query execution performance: the first optimisation is a pre-computation

technique that caches the answers of parts of the queries generated by the rewriting

algorithm. These answers will then be reused to avoid the re-execution of those
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sub-queries. The second optimisation utilises a summary of the dataset to discard

queries that it is known will not return any answer. The third optimisation tech-

nique uses the query containment concept to discard queries whose answers would

be returned by another query at the same or lower cost.

We conclude by conducting a performance study of the system on three different

RDF datasets: LUBM (Lehigh University Benchmark), YAGO and DBpedia.
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Chapter 1

Introduction

Linked Data1 is a way of publishing and interlinking web data using the Resource

Description Framework RDF2. RDF data is semi-structured and machine readable.

Unlike data stored in traditional databases, semi-structured data does not neces-

sarily need to conform to a schema, but instead contains meta-data tags that allow

elements of the data to be identified and described. The Linked Data initiative aims

to gather web accessible data resources to which semantic meaning can be attached,

as well as to provide an interlinked structure that connects different resources. Ac-

cording to Meusel et al. [60], semantic annotation of web pages using techniques

such as Microdata (which are machine readable HTML tags) and RDFa (which is

RDF data embedded into HTML pages) has increased considerably between 2010

and 20133. This in turn may lead to an increase in the number of datasets being

published as Linked Data in the future.

RDF describes and connects resources by the means of properties. Resources are

represented by Uniform Resource Identifiers (URIs)4; blank nodes can also be used to

represent resources that are known to exist but whose URI is unavailable. Properties

denote relationships between resources and are predefined URIs (published within

1https://www.w3.org/standards/semanticweb/data
2https://www.w3.org/RDF/
3More recent results can be found in http://webdatacommons.org/structureddata/index.

html#results-2016-1
4https://www.w3.org/Addressing/URL/uri-spec.html
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RDF vocabularies). More formally, an RDF dataset is a collection of statements

(also called triples) of the form 〈subject, predicate, object〉, where the subject is a

resource (a URI or blank node), the predicate is a property (a URI) and the object

is either a resource or a literal (e.g. a string, a piece of text, a number, etc...).

An RDF dataset can be viewed as a graph where the subjects and objects of each

statement are nodes connected by an edge representing the predicate. Properties

can themselves be regarded as resources by allowing a property URI to appear as

the subject of a statement.

One of the main strengths of RDF is that it can be used as a meta-modeling

language. The World Wide Web Consortium (W3C)5 has published a vocabulary

known as RDF-Schema, RDFS6, which provides a basic ontology language intended

to attach semantics to RDF datasets. The RDFS vocabulary defines Classes, Sub-

Classes, Properties, SubProperties, Ranges and Domains of properties. It also gives

a standard vocabulary for reification and for defining Data types, Collections (i.e.

lists) and Containers (bags, sequences). There are also two properties widely used

to connect resources to a human-readable description and a name, rdfs:comment

and rdfs:label, respectively.

In order to query Linked Data suitable query languages are needed. Currently,

the most prominent language used to query RDF datasets is SPARQL7. Such a

language combines graph querying with analytic query operations such as AGGRE-

GATE and SORT which are also common in structured query languages such as

SQL. Moreover, SPARQL supports distributed querying over multiple heteroge-

neous RDF datasets [11]. The latest extension of SPARQL (SPARQL 1.18), supports

property path queries (also known as regular path queries [13]) over the RDF graph.

These allow users to find paths between nodes of the RDF graph whose sequence of

edge labels matches a regular expression over the alphabet of edge labels. However,

SPARQL does not support notions of flexible querying, apart from the OPTIONAL

5https://www.w3.org/
6https://www.w3.org/TR/rdf-schema/
7https://www.w3.org/TR/rdf-sparql-query/
8http://www.w3.org/TR/sparql11-property-paths/
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operator which allows answers to be returned even if these do not match every part

of the query.

This thesis investigates an extension of a fragment of SPARQL 1.1 to include flex-

ible querying processing, focusing particularly on its property path queries. The flex-

ible querying techniques we investigate are those of [67] where the authors proposed

two flexible querying operators, APPROX and RELAX, for regular path queries.

The APPROX operator edits a property path in a query by inserting, deleting or

replacing properties, which makes it an ideal candidate for adding to SPARQL 1.1

since the latter supports property path queries. The RELAX operator undertakes

ontology-driven relaxation, such as replacing a property by a super-property, or a

class by a super-class. Many RDF datasets are provided with an ontology or schema,

and hence the RELAX operator is also a natural candidate to add to SPARQL 1.1.

Flexible querying techniques have the potential to enhance users’ access to com-

plex, heterogeneous datasets, by allowing the retrieval of non-exact answers to

queries that are related in some way to the exact answers. In particular, users

querying Linked Data may lack full knowledge of the structure of the data, its irreg-

ularities, and the URIs used within it. Users might not know all the properties that

are needed to express a valid query because of the complexity and heterogeneity of

the data. Also, the meaning of properties can be misinterpreted which may lead to

invalid assumptions when formulating a query. Moreover, the structure of the data,

the URIs used and their classification, may also evolve over time.

The issues described above may make it difficult for users to formulate queries

that precisely express their information seeking requirements. Hence, providing

users with flexible querying capabilities is desirable.

Users who may want to use these flexible capabilities need to be familiar with

SPARQL 1.1 itself and how the two new operators behave, i.e., that APPROX re-

turns answers to queries that are similar to the original query, and that RELAX

returns more general answers that include the answers to the original query. In

practice, we expect that a visual query interface would be available, providing users

with readily understandable options from which to select their query formulation,

approximation and relaxation requirements. Indeed, we have implemented a proto-
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type of such an interface over the SPARQLAR query evaluation system described in

Chapter 6.

We illustrate in the following examples how a user could use the APPROX and

RELAX operators when querying an RDF dataset.

Example 1.1. Suppose a user wishes to find events that took place in London

on 15th September 1940 and poses the following query on the YAGO knowledge

base9, which is derived from multiple sources such as Wikipedia10, WordNet11 and

GeoNames12:

(x, on, “15/09/1940”) AND (x, in, “London”)

In the above query, x is a variable, on and in are properties, and “15/09/1940”

and “London” are literals. (The above is not a complete SPARQL query, but is

sufficient to illustrate the problem we address.) This query returns no results because

there are no property edges named “on” or “in” in YAGO.

Suppose the user is not sure about whether the predicates used in the query are

correct, and therefore decides to apply one step of APPROX to both conjuncts of the

query. The query evaluation system can now replace “on” by “happenedOnDate”

and “in” by “happenedIn” (which do appear in YAGO), giving the following query:

(x, happenedOnDate, “15/09/1940”) AND (x, happenedIn, “London”)

However, this query still returns no answers, since “happenedIn” does not connect

event instances directly to literals such as “London”.

As the query does not return any answers, the user guesses that one of the

constants may not appear in the dataset (“15/09/1940” or “London”) and hence

decides to first apply RELAX to the conjunct (x, happenedIn, “London”) in an

attempt to retrieve additional answers. The system can now relax the conjunct to

(x, type, Event), using knowledge encoded in YAGO that the domain of “happened-

In” is Event. This will return all events that occurred on 15th September 1940,

9http://www.mpi-inf.mpg.de/yago-naga/yago/
10https://wikipedia.org
11https://wordnet.princeton.edu/
12http://www.geonames.org
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including those occurring in London. In this particular instance only one answer is

returned which is the event “Battle of Britain”, but other events could in principle

have been returned. So the query exhibits better recall than the original query, but

possibly low precision.

Alternatively, if the user knows that the constants in the query are contained

in the dataset, instead of relaxing the second triple (x, happenedIn, “London”) as

above, the user may decide to apply a second step of approximation to it. The system

can now insert the property “label” that connects URIs to their labels, yielding the

following query:

(x, happenedOnDate, “15/09/1940”) AND (x, happenedIn/label, “London”)

This query uses the property paths extension of SPARQL 1.1, specifically the con-

catenation (/) operator. This query now returns the only event that occurred on

15th September 1940 in London, that is “Battle of Britain”. It exhibits both better

recall than the original query and also high precision.

From the previous example we can see how our flexible querying processing can

allow the user to incrementally change their query so as to retrieve the required

answers. The next example similarly illustrates how a user query could be incre-

mentally edited (by the APPROX operator alone) to retrieve the required answers.

Example 1.2. Suppose the user wishes to find the geographic coordinates of the

“Battle of Waterloo” event in the YAGO dataset by posing the query

(〈Battle of Waterloo〉, happenedIn/(hasLongitude|hasLatitude), x)

in which angle brackets delimit a URI. This query uses the SPARQL 1.1 property

path disjunction (|) operator. In the query, the property “happenedIn” is concate-

nated with either “hasLongitude” or “hasLatitude”, thereby finding a connection

between the event and its location (in our case Waterloo), and from the location to

both its coordinates.

This query does not return any answers from YAGO since YAGO does not store

the geographic coordinates of Waterloo. The user may therefore choose to apply

one step of APPROX to the query conjunct to generate similar queries that may
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return relevant answers. The system can now apply an edit to insert “isLocatedIn”

after “happenedIn” which connects the URI representing Waterloo with the URI

representing Belgium. The resulting query is

(〈Battle of Waterloo〉, happenedIn/isLocatedIn/

(hasLongitude|hasLatitude), x).

This query returns 16 answers that may be relevant to the user, since YAGO does

store the geographic coordinates of some (unspecified) locations in Belgium, increas-

ing recall but with possibly low precision.

Moreover, YAGO does in fact store directly the coordinates of the “Battle of

Waterloo” event. An alternative edit by the system that deletes the property

“happenedIn”, instead of adding “isLocatedIn”, gives the query

(〈Battle of Waterloo〉, (hasLongitude|hasLatitude), x)

which returns the desired answers, showing both high precision and high recall.

The next example illustrates how use of the RELAX operator can find additional

answers of relevance to the user:

Example 1.3. Suppose the user is interested in finding scientists who died in 1800

during a duel, and poses the following query to the DBpedia13 dataset which is

derived from the Wikipedia resource:

(x, subject,Duelling Fatalities) AND (x, deathDate, “18xx-xx-xx”)

AND (x, rdf : type, Scientist)

The value “18xx-xx-xx” is not in a format that can match the dates in the

RDF dataset (because SPARQL does not support partial matching using place-

holders); hence the query returns no answers. To overcome this problem, the user

may decide to apply RELAX to the second conjunct, allowing the system to replace it

by (x, rdf : type, Person), hence dropping the constant “18xx-xx-xx”. The resulting

query returns the resource “Évariste Galois”14.

13http://wiki.dbpedia.org/.
14We note that the resulting query contains both the conjuncts (x, rdf : type, Person) and

(x, rdf : type, Scientist), and the fact that the second conjunct entails the first conjunct is a

coincidence.
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However, the user is expecting more answers to be returned by the query. Hence

she decides to try to retrieve other types of persons who died during a duel, not

only ones specifically recorded as being scientists. She applies RELAX also to the

third conjunct, allowing the system to replace it by (x, rdf : type, owl : Thing). The

resulting query returns every person who died during a duel, including all the people

recorded as being scientists.

In the next section we discuss the main contributions of the thesis.

1.1 Contributions

In this thesis we address the problem of flexible querying of Semantic Web data.

We devise an extension of a fragment of the SPARQL language (more specifically

SPARQL 1.1) called SPARQLAR by adding to it two operators, APPROX and RE-

LAX, which can be applied to the conjuncts of a SPARQL 1.1 query. In contrast to

the work in [67], we integrate the APPROX and RELAX operators into SPARQL 1.1

which is a pragmatic language for querying RDF datasets, and moreover we define

a formal semantics for SPARQLAR and propose a novel evaluation algorithm based

on query rewriting. We also propose three optimisation techniques for evaluating

SPARQLAR and we undertake an empirical study of query execution performance,

neither of which were undertaken in [67].

The APPROX operator edits a conjunct by replacing, inserting or deleting prop-

erties so that the query can return different answers compared to those returned by

its original form. The RELAX operator edits a query conjunct by reference to an

ontology associated with the dataset being queried, replacing it with a conjunct that

is less specific. The RELAX operator, therefore, generalises the query, i.e. it allows

the query to return additional answers compared to those returned by its original

form.

The answers retrieved by SPARQLAR queries are ordered with respect to their

“distance” to the exact answers. We refer to this distance as the cost of the answer.

To encapsulate the cost of an answer, we extend the standard SPARQL semantics to

include such costs. We also specify formally the semantics of RELAX and APPROX
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which extends the semantics of the standard SPARQL language.

We investigate the complexity of the SPARQLAR language and some of its frag-

ments, comparing our results with the complexity studies in [2,65] for the standard

SPARQL language. We show that by including answer costs in the SPARQLAR

semantics the query complexity class does not change compared with SPARQL 1.1.

Similarly, we show that the RELAX and APPROX operators do not change the

query complexity class of our language compared to the standard SPARQL 1.1 lan-

guage.

To evaluate SPARQLAR queries we present an algorithm based on a rewriting

procedure inspired by the work in [42, 43], however that work considers SPARQL

queries without property paths and considers relaxation only, not approximation.

Our algorithm generates several SPARQL 1.1 queries that are evaluated to return

the answers to a SPARQLAR query up to a specified cost. Generating answers at

higher costs leads to greater numbers of queries being generated by the rewriting

algorithm. Hence we introduce three optimisation techniques. The first optimisation

technique is based on the pre-computation and caching of the answers of sub-queries.

We also investigate a second optimisation technique based on graph summari-

sation: given an RDF dataset G we generate a summary of G that allows us to

detect and discard queries that are unsatisfiable. In contrast to the work in [5],

where the authors define a summarisation technique to make RDF datasets more

comprehensible by reducing their size, here we use the summarisation for enhancing

query execution performance.

Our third optimisation technique is based on query containment. We devise a

sufficient condition that ensures that the answers to a SPARQLAR query are also

returned by another SPARQLAR query. By means of this technique we can discard

those queries that do not return additional answers. Although the approach is

similar to optimisations proposed by Gottlob et al. in [33], further investigation of

query containment in the presence of APPROX and RELAX operator was required

in order to apply a query containment optimisation approach to SPARQLAR.

We investigate empirically how these three optimisation techniques can improve

the execution of SPARQLAR queries. Moreover, we show how all three techniques
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can be combined to further improve query evaluation timings. Finally, we also

discuss the drawbacks of these optimisation techniques when used on their own or

in combination.

1.2 Outline of the Thesis

The thesis is structured as follows: In Chapter 2 we define the syntax and semantics

of the fragment of the SPARQL 1.1 language that we focus on here. In the same

chapter we review the current state of the art in flexible querying techniques for rela-

tional databases, XML and RDF, and other related work on SPARQL optimisation

and complexity.

In Chapter 3 we introduce the syntax and semantics of our SPARQLAR language.

We show how its RELAX and APPROX operators lead to the computation of non-

exact answers. In Chapter 4 we present a complexity study of the SPARQLAR

language. We compare our complexity results with the complexity of the standard

SPARQL 1.1 language.

In Chapter 5 we present the rewriting algorithm that evaluates SPARQLAR

queries, and prove its correctness and termination properties. We examine the

efficiency of the rewriting algorithm in Chapter 6 by evaluating multiple queries

against three datasets: LUBM, DBpedia and YAGO. Moreover, we describe a pre-

liminary optimisation technique based on a caching procedure which can enhance

the evaluation time of SPARQLAR queries.

In Chapter 7 we introduce two further optimisation techniques. We firstly define

the summarisation optimisation and discuss how it can be exploited to improve query

evaluation timings. We next provide a sufficient condition for query containment

for SPARQLAR queries. We test how both optimisations impact on the evaluation

time of SPARQLAR queries. In the third and final part of Chapter 7 we combine

the two optimisation techniques and undertake an experimental evaluation of their

combined effectiveness.

We conclude the thesis with Chapter 8 where we summarise the contributions of

the thesis and discuss future work.
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Chapter 2

Background and Related Work

In this chapter we introduce the syntax and semantics of a fragment of SPARQL 1.1

which forms the basis of our expanded SPARQLAR language. We also review related

work on flexible querying and SPARQL extensions and optimisations.

We begin by introducing the RDF framework and by defining the syntax and

semantics of a fragment of SPARQL 1.1 in Section 2.1. In Section 2.2 we undertake

a review of the literature, focusing on flexible querying techniques for relational

databases, XML, RDF, and on work relating to SPARQL semantics, complexity

and optimisation.

2.1 Background

RDF was first proposed by the W3C to enhance web content from being machine-

readable to being machine-understandable by adding meta-data tagging [53]. The

potential of RDF can be exploited in many ways, such as a protocol language for

APIs (application programming interface) [69], a framework for representing linguis-

tic resources [63] and, of course, the foundation for the Semantic Web [40].

In RDF, URI s (uniform resource identifiers) and literals are the fundamental

data types for constructing an RDF dataset. A URI can be used as a place-holder

of an entity or concept (e.g. person, place, historical event, kind of animal etc.)

which is then connected to other concepts and entities. Such URIs are often web

pages that can be browsed on the internet and they need to be unique within the
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whole set of Linked Data on the web. A literal can be any kind of primitive data

item, such as a string, a number, a date, etc.

The latest W3C specification of RDF can be found in [22] where its full set of

features are defined. In [56] Marin formalises the syntax and semantics of RDF and

also RDFS (see Section 2.1.2). To define the syntax and semantics of SPARQL we

use some definitions from Pérez et al. [65] in which they investigate the semantics and

query complexity of SPARQL, and from Gutierrez et al. [36], in which they undertake

a complexity study of querying RDF/S datasets using the notion of tableau from

the relational database literature [1].

2.1.1 RDF-Graph

An RDF dataset is a multi-graph in which pairs of URIs are connected by edges

that are also labelled by URIs, drawn from a predefined set. These labels are also

known as predicates.

For the purpose of this thesis, we modify the definition of triples from [36,56,65]

by omitting blank nodes, since their use is discouraged for Linked Data because they

represent a resource without specifying its name and are identified by an ID which

may not be unique in the dataset [7]. We also add weights to the edges, which are

needed to formalise our flexible querying semantics. Initially, these weights are all

0:

Definition 2.1 (Sets, triples and variables). Assume there are pairwise disjoint

infinite sets U and L of URIs and literals, respectively. An RDF triple is a tuple

〈s, p, o〉 ∈ U ×U × (U ∪L), where s is the subject, p the predicate and o the object

of the triple. Assume also an infinite set V of variables that is disjoint from U and

L. We abbreviate any union of the sets U , L and V by concatenating their names;

for instance, UL = U ∪ L.

Definition 2.2 (RDF-graph). An RDF-graphG is a directed graph (N,D,E) where:

N is a finite set of nodes such that N ⊂ UL; D is a finite set of predicates such that

D ⊂ U ; E is a finite set of labelled, weighted edges of the form 〈〈s, p, o〉, c〉 such

that the edge source (subject) s ∈ N ∩ U , the edge target (object) o ∈ N , the edge
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label p ∈ D and the edge weight c is a non-negative number.

Example 2.1. Consider the following extract of an RDF-graph G = (N,D,E)

relating to films:

N ={Scoop, Woody Allen, Love and Death, “1975”, Diane Keaton,

Play It Again Sam, James Tolkan, Jessica Harper}

D ={hasDirector, year, actedIn}.

E ={〈〈Scoop, hasDirector, Woody Allen〉, 0〉,

〈〈Love and Death, hasDirector, Woody Allen〉, 0〉,

〈〈Love and Death, year, “1975”〉, 0〉,

〈〈Diane Keaton, actedIn, Love and Death〉, 0〉,

〈〈Diane Keaton, actedIn, Play It Again Sam〉, 0〉,

〈〈James Tolkan, actedIn, Love and Death〉, 0〉,

〈〈Jessica Harper, actedIn, Love and Death〉, 0〉,

〈〈Play It Again Sam, hasDirector, Woody Allen〉, 0〉,

〈〈Woody Allen, actedIn, Love and Death〉, 0〉}

We can see from the example above that the predicate hasDirector connects a

film with a person, the predicate year connects a film with a year value, and the

predicate actedIn connects a person with a film.

2.1.2 RDF-Schema

The RDF-Schema (RDFS) was proposed by the W3C as a semantic extension of

RDF to define the vocabulary used in an RDF-graph, and to describe the relation-

ships between resources, and the relationships between resources and properties [59].

RDFS is the foundation of ontological reasoning in the Semantic Web. Other lan-

guages that extend RDF-Schema have been defined more recently, in particular the

W3C language OWL1. Many implementations of both RDFS and OWL have been

1https://www.w3.org/TR/owl-semantics/
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developed, supporting query evaluation and reasoning over RDF data [17,48,76].

Similarly to an RDF-graph, an RDF-Schema (RDFS) is a multi-graph with a

predefined set of edge labels. With RDFS it is possible to define the classes that

resources can belong to. For example a resource ”cat” can belong to the the class

”animal” or ”feline”. With RDFS is also possible to define the relationships between

classes and predicates of an RDF-graph. We next define the ontology relating to an

RDF dataset, using a fragment of the RDFS vocabulary.

Definition 2.3 (Ontology). An ontology K is a directed graph (NK , EK) where

each node in NK represents either a class or a property, and each edge in EK is

labelled with a symbol from the set {sc, sp, dom, range}. These edge labels encom-

pass a fragment of the RDFS vocabulary, namely rdfs:subClassOf, rdfs:subPropertyOf,

rdfs:domain and rdfs:range, respectively.

In an RDF-graph G = (N,D,E), we assume that each node in N represents

an instance or a class and each edge in E a property (even though, more generally,

RDF does not distinguish between instances, classes and properties; in fact, in

RDF it is possible to use a property as a node of the graph). The predicate type,

representing the RDF vocabulary rdf:type, can be used in E to connect an instance

of a class to a node representing that class. In an ontology K = (NK , EK), each

node in NK represents a class (a “class node”) or a property (a “property node”).

The intersection of N and NK is contained in the set of class nodes of NK . D is

contained in the set of property nodes of NK .

Example 2.2. We now define an ontology K = (NK , EK) relating to the RDF-

graph in Example 2.1.

NK ={Person, Director, Actor, Film, actedIn, hasDirector, year, Integer}

EK ={〈Director, sc, Person〉,

〈Actor, sc, Person〉,

〈actedIn, domain, Actor〉,

〈actedIn, range, Film〉,
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〈hasDirector, domain, Film〉,

〈hasDirector, range, Director〉,

〈year, domain, Film〉,

〈year, range, Integer〉}

We may connect the data with the ontology by adding edges labelled with the

predicate type to the RDF-graph G from Example 2.1, so G = (N ∪ NK , D ∪

{type}, E ∪ E ′), where:

E ′ ={〈〈Woody Allen, type, Director〉, 0〉,

〈〈Woody Allen, type, Actor〉, 0〉,

〈〈Diane Keaton, type, Actor〉, 0〉,

〈〈James Tolkan, type, Actor〉, 0〉,

〈〈Jessica Harper, type, Actor〉, 0〉,

〈〈Scoop, type, Film〉, 0〉,

〈〈Love and Death, type, Film〉, 0〉,

〈〈Play it Again Sam, type, Film〉, 0〉}

We note that the triples in E ′ do not need to appear in G but can be inferred

by means of the ontology K. Moreover, the triples in E ′ are derived by one step of

inference. By applying a second step of inference we generate the following triples:

E ′′ ={〈〈Woody Allen, type, Person〉, 0〉,

〈〈Diane Keaton, type, Person〉, 0〉,

〈〈James Tolkan, type, Person〉, 0〉,

〈〈Jessica Harper, type, Person〉, 0〉}

No new triples are generated by any further inference steps.
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2.1.3 SPARQL Syntax

Before the SPARQL language, many proposals were put forward for querying RDF-

graphs, such as RQL [49], SeRQL [10] and the first W3C proposal RDQL2 [37]. The

SPARQL language was defined by the W3C to query RDF-graphs as well as extract

sub-graphs and construct new graphs from RDF-graphs [65].

Drawing from [65] we start by defining the basic element in the SPARQL lan-

guage: the simple triple pattern. Such elements are constructed from variables and

constants that match the constants in the RDF-graph.

Definition 2.4 (Simple triple pattern). A simple triple pattern is a tuple 〈x, z, y〉 ∈

UV ×UV ×UV L. Given a simple triple pattern 〈x, z, y〉, var(〈x, z, y〉) is the set of

variables occurring in it.

As in [65] we define a regular expression for the purpose of encapsulating the

SPARQL 1.1 language feature called property paths :

Definition 2.5 (Regular expression). A regular expression (regexp) P ∈ RegEx(U)

is defined as follows:

P := ε | | p | (P1|P2) | (P1/P2) | P ∗

where P1, P2 ∈ RegEx(U) are also regexps, ε represents the empty regexp, p ∈ U ,

is a symbol that denotes the disjunction of all URIs in U , | is the disjunction of

two regexps, / is the concatenation of two regexps, and ∗ is the concatenation of a

regexp with itself zero or more times.

We use this definition of the syntax of a regular expression, from [18], because it

conforms to the W3C SPARQL 1.1 syntax, with the exception of and ε which are

not present in that syntax3.

2https://www.w3.org/Submission/RDQL/
3The W3C syntax does support the ‘not’ operator (!) which can be used to replace the symbol

by !p where p is a URI that does not exist in the dataset. The W3C syntax also supports the

concatenation of a regular expression pattern with itself for a fixed number of times; for example

p{5} means that p is concatenated with itself 5 times. This feature can be used to replace ε by

p{0} where p can be any URI.
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Definition 2.6 (Regular triple pattern). A regular triple pattern is a tuple of the

form 〈x, y, z〉 ∈ UV ×RegEx(U)× UV L.

We note that, in contrast to a simple triple pattern, a regular triple pattern does

not allow a variable in the second position. We use the term triple pattern for a

tuple that can be either a simple triple pattern or regular triple pattern. Our query

pattern syntax is also based on that of [18]:

Definition 2.7 (Query Pattern). Our fragment of the SPARQL 1.1 query pattern

syntax Q is defined as follows:

Q := s | t | Q1 AND Q2 | Q1 UNION Q2 | Q FILTER R

where s is a simple triple pattern, t is a regular triple pattern, R is a SPARQL

built-in condition and Q1, Q2 are also query patterns. We denote by var(Q) the set

of all variables occurring in a query pattern Q. In the W3C SPARQL syntax, a dot

(.) is used for conjunction but, for greater clarity, we use AND instead.

Definition 2.8. The overall syntax of a SPARQL 1.1 query is:

SELECT −→w WHERE Q

where −→w is a list of variables and Q is a query pattern.

2.1.4 SPARQL Semantics

The semantics of SPARQL 1.1 are defined by means of mappings which represent

the answers returned by a query [65]. Definitions 2.9 to 2.11 are drawn from [65]:

Definition 2.9 (Mapping). A mapping µ from ULV to UL is a partial function

µ : ULV → UL. It is assumed that µ(x) = x for all x ∈ UL, i.e. µ maps URIs

and literals to themselves. The set var(µ) is the subset of V on which µ is defined.

Given a triple pattern 〈x, z, y〉 and a mapping µ such that var(〈x, z, y〉) ⊆ var(µ),

µ(〈x, z, y〉) is the triple obtained by replacing the variables in 〈x, z, y〉 by their image

according to µ.
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Definition 2.10 (Compatibility and Union of Mappings). Two mappings µ1 and

µ2 are said to be compatible if ∀x ∈ var(µ1) ∩ var(µ2), µ1(x) = µ2(x). The union

of two mappings µ = µ1 ∪ µ2 can be computed only if µ1 and µ2 are compatible.

The resulting µ is a mapping such that var(µ) = var(µ1) ∪ var(µ2) and: for each x

in var(µ1) ∩ var(µ2), we have µ(x) = µ1(x) = µ2(x); for each x in var(µ1) but not

in var(µ2), we have µ(x) = µ1(x); and for each x in var(µ2) but not in var(µ1), we

have µ(x) = µ2(x).

Definition 2.11 (Union and Join of Sets of Mappings). Given sets of mappings M1

and M2, their union and join, ∪ and 1, are defined as follows:

M1 ∪M2 = {µ | µ ∈M1 or µ ∈M2}.

M1 1 M2 = {µ1 ∪ µ2 | µ1 ∈ M1 and µ2 ∈ M2 with µ1 and µ2 compatible

mappings}.

We next define the semantics of the fragment of SPARQL 1.1 that we extended

in our SPARQLAR language, described in Chapter 3. SPARQL 1.1 supports regular

path queries, to which we apply the APPROX and RELAX operators.

The semantics for regular path querying are drawn from the work on the seman-

tics of PSPARQL by Chekol et al. [18] which was an extension of the basic SPARQL

language with property paths before SPARQL 1.1 was released. The semantics of

a triple pattern t, with respect to a graph G = (N,D,E), denoted JtKG, is defined

recursively as follows:

J〈x, ε, y〉KG = {µ | var(µ) = var(〈x, ε, y〉)∧

∃c ∈ N . µ(x) = µ(y) = c}
(2.1.1)

J〈x, z, y〉KG = {µ | var(µ) = var(〈x, z, y〉) ∧ 〈µ(〈x, z, y〉), 0〉 ∈ E} (2.1.2)

J〈x, , y〉KG = {µ | var(µ) = var(〈x, , y〉)∧

∃p ∈ D . 〈µ(〈x, p, y〉), 0〉 ∈ E}
(2.1.3)

J〈x, P1|P2, y〉KG = J〈x, P1, y〉KG ∪ J〈x, P2, y〉KG (2.1.4)

J〈x, P1/P2, y〉KG = J〈x, P1, z〉KG 1 J〈z, P2, y〉KG (2.1.5)
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J〈x, P ∗, y〉KG = J〈x, ε, y〉KG ∪ J〈x, P, y〉KG ∪
⋃
n≥1

{µ | µ ∈ J〈x, P, z1〉KG 1

1 J〈z1, P, z2〉KG 1 · · · 1 J〈zn, P, y〉KG}
(2.1.6)

where P , P1, P2 are regular expressions, x and z are in UV , y is in ULV , and

z, z1, . . . , zn are fresh variables. Equation 2.1.2 defines the semantics of a simple

triple pattern (Definition 2.4). Equations 2.1.1-2.1.6, having z ∈ U in 2.1.2, define

the semantics of regular triple pattern (Definitions 2.5 and 2.6).

In SPARQL 1.1 there is also the FILTER operator (as shown in Definition 2.7)

which reduces the number of answers by constraining the variables of the query by

means of a condition in R. A mapping satisfies a condition R, denoted µ |= R,

according to the following [65]:

R is x = a: µ |= R if x ∈ var(µ), a ∈ LU and µ(x) = a;

R is x = y: µ |= R if x, y ∈ var(µ) and µ(x) = µ(y);

R is isURI(x): µ |= R if x ∈ var(µ) and µ(x) ∈ U ;

R is isLiteral(x): µ |= R if x ∈ var(µ) and µ(x) ∈ L;

R is R1 ∧R2: µ |= R if µ |= R1 and µ |= R2;

R is R1 ∨R2: µ |= R if µ |= R1 or µ |= R2;

R is ¬R1: µ |= R if it is not the case that µ |= R1;

The semantics of the AND, UNION and FILTER operators are as follows [65];

corresponding to the third, fourth and fifth forms of a query pattern in Definition

2.7:

JQ1 AND Q2KG = JQ1KG 1 JQ2KG (2.1.7)

JQ1 UNION Q2KG = JQ1KG ∪ JQ2KG (2.1.8)

JQ FILTER RKG = {µ ∈ JQKG | µ |= R} (2.1.9)

(The first and second forms of a query pattern are simple patterns and regular

patterns, whose semantics were defined above, 2.1.1-2.1.6.) The semantics of an
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overall SPARQL 1.1 query as defined in Definition 2.8 is as follows, where the pro-

jection operator π−→w selects only the subsets of the mappings relating to the variables

in −→w :

JSELECT−→w WHERE QKG = π−→w (JQKG) (2.1.10)

2.2 Related Work

Currently there are two broad branches of research in the area of the Semantic

Web [38]. The first one deals mostly with data management problems related to

the Semantic Web, such as data serialization, query optimization, data integration,

query performance, scalability and ontological reasoning. The second one deals with

semantic interoperability of data on the web, i.e. linking the data and enriching it

with meta-data (possibly in RDFS format), and with data quality.

The work in this thesis contributes to both these branches. We add the RELAX

and APPROX operators to SPARQL 1.1 to help with semantic interoperability

over RDF data that may have arisen from the integration of several heterogeneous

datasets (such as YAGO), and in particular with users’ querying of such data (using

the RELAX operator to aid in the integration of heterogeneous datasets was also

described in [44]). We also present query optimisation techniques that are useful not

only in the context of flexible querying but also for graph querying in general. In

particular, we will see in Chapter 7 that by applying graph summarisation techniques

we are able to identify unsatisfiable queries without executing them over the dataset.

Flexible querying has been considered for many query languages and we review

these works in subsections 2.2.1–2.2.4.

2.2.1 Flexible Relational Querying

An early extension of SQL with flexible query capabilities was investigated by Bosc et

al. in [9]. The language, called SQLf, allows both boolean and fuzzy predicates in the

WHERE clause. A fuzzy predicate can be considered as a function P : X → [0, 1],

where X is the domain of the function, and the range is a value between 0 and 1.
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Another flexible querying technique based on fuzzy sets is described in [8]. The

authors present an extension to SQL (Soft-SQL) which permits so-called soft condi-

tions. Such conditions tolerate degrees of under-satisfaction of a query by exploiting

the flexibility offered by fuzzy set theory.

In [46] Ioannidis et al. propose a formula that measures the amount of error in the

answers returned by an approximate query answering system. They also describe

an approximation technique for SQL querying based on histograms. A histogram is

a table that contains statistics about the attribute values in a relation. To retrieve

approximate answers, a query Q is translated into a query Q′ that queries histograms

to retrieve the approximate answers.

Flexible querying approaches for SQL are also discussed in [71], where the authors

describe a system that enables a user to issue an SQL aggregation query, see results

as they are produced, and adjust the processing as the query runs.

An approximation technique for conjunctive queries on probabilistic databases

is investigated in [27]. The authors associate the answers of a conjunctive query

to a propositional formula in disjunctive normal form that represents the tuples of

the dataset. Approximated answers are then retrieved by editing this formula. The

formula can be edited by removing clauses or adding literals to a clause for a lower

bound, and by adding clauses or removing literals from a clause for an upper bound.

In [32] Gaasterland proposes a query relaxation technique for relational queries

where multiple queries are generated from a given query based on a graph of tax-

onomic relationships between predicates and constants. The user when posing a

query may choose which relaxed form of the query to execute. Gaasterland also al-

lows the user to apply constraints to the answers, i.e. the technique will not generate

relaxed queries that violate the constraints posed by the user.

In [39], Heer et al. also investigate query relaxation for SQL queries. Their ap-

proach is to retrieve additional answers by widening the selection range of the query

e.g., instead of returning tuples for a specified “day” value, the relaxation returns

tuples for a range of days. They apply this approach to hierarchically organised

data, such as geographic regions of neighbourhoods, cities, counties, and states.

Our APPROX and RELAX operators are not based on fuzzy logic as in [8,9,27]
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but return potentially similar answers based on query editing and ontology relax-

ation. In contrast to [46] our flexible querying approach does not use data statistics

to speed up query answering, but instead uses caching, graph summarisation and

query containment.

2.2.2 Flexible XML Querying

A relaxation technique for the XPath query language was proposed in [28], where

queries are relaxed by applying generalisation rules captured by edit operations.

Since XPath queries are tree-like structures, the edit operations refer to the nodes

of a query tree and are the following: labelled edge relaxation (replaces the labelled

edge with one that can match any path), node deletion (a node is deleted and

its children become the children of its parent), node relaxation (which replaces

a node with a wildcard that matches any constant), node promotion (the node

becomes a sibling of the parent node), edge cloning (the sub-tree is replicated and is

connected to the destination node via an edge with the same label). Each of these

edit operations has a cost. The answers are ranked in terms of a global relaxation

cost that depends on the edit operations applied.

In [26] Fazinga et al. discuss an approximation technique for XPath queries which

include the negation operator. In their approach, weights are added to the predicates

of the XPath query which are then used to compute the satisfaction score of the

answers. The evaluation algorithm proposed for executing such queries generates the

answers incrementally by constructing an operator tree based on the XPath query.

Each node in the operator tree represents an approximated query operator. The

operator tree is then evaluated incrementally to return the first top-k answers.

In [55] Mandreoli et al. discuss a query approximation technique for heteroge-

neous XML documents. Given a collection of XML documents, a matching schema

is built through a combination of the following: comparing the structures of the

documents, the semantics of the terms in the document (by using the WordNet

vocabulary4), and adjacency similarity, i.e. the similarity of two elements propa-

4https://wordnet.princeton.edu/
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gates to their respective adjacent nodes. To compute the approximated answers, an

XQuery query is rewritten based on the matching schema.

In [4] a fuzzy approach is proposed to extend the XPath query language in

order to assign priorities to queries and to rank query answers. These techniques

are based on fuzzy extensions of the Boolean operators. A similar approach can

be found in [14], where the authors compare the structure of an XPath query and

the structure of the XML being queried. To achieve this, they edit the tree-like

structure of the query by replacing, inserting, deleting and permuting the nodes of

the tree. Moreover, they compare the semantics of the trees by using the Wordnet

vocabulary. In particular, they calculate the similarity of two nodes of the tree by

using hypernyms in Wordnet.

Our approach differs from [4, 14] as we do not use fuzzy logic to retrieve addi-

tional answers. Although our query evaluation technique for query relaxation and

approximation is based on a rewriting procedure similar to [26,28,55], our approach

differs from these as we perform both query approximation and query relaxation.

Moreover, in contrast to [26,55], we do not need to construct additional data struc-

tures for evaluating SPARQLAR queries.

2.2.3 Flexible SPARQL Querying

There have been several previous proposals for applying flexible querying to the

Semantic Web, mainly employing similarity measures to retrieve additional answers

of possible relevance. For example, in [41] matching functions are used for constants

such as strings and numbers, while in [52] an extension of SPARQL is developed,

called iSPARQL, which uses three different matching functions to compute string

similarity. In [23], the structure of the RDF data is exploited and a similarity

measurement technique is proposed which matches paths in the RDF graph with

respect to the query. Ontology-driven similarity measures are proposed in [42,43,68]

which use the RDFS ontology to retrieve extra answers and assign a score to them.

In [25] methods for relaxing SPARQL-like triple pattern queries are presented.

These query relaxations are produced by means of statistical language models for

structured RDF data and queries. The query processing algorithms merge the results
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of different relaxations into a unified results list.

Our own work builds on that reported in [44, 45, 67]. In [44], Hurtado et al.

introduce the RELAX operator for RDF conjunctive queries. They investigate the

complexity of evaluating such queries and show how relaxed queries can be used as

a tool for data integration. In [67] the authors show how a conjunctive regular path

query language can be effectively extended with approximation and relaxation tech-

niques, using similar notions of approximation and relaxation as we use here. The

work in [67] combines the concept of approximation from [45] as well as relaxation

from [44].

Several prototypes that support flexible querying over RDF data have been devel-

oped [52,66,73]. In [52] flexible querying based on similarity, such as Levenshtein’s

distance [54], has been tested on different scenarios. In [66], approximation and

relaxation techniques for conjunctive regular path queries have been developed in a

prototype system called ApproxRelax for querying heterogeneous data arising from

lifelong learners’ educational and work experiences. In [73], the authors describe an

implementation of a flexible querying evaluator for conjunctive regular path queries,

extending the work in [66].

Instead of applying similarity matching algorithms [41,52] we extend, for the first

time, a fragment of SPARQL 1.1 with APPROX and RELAX operators. In con-

trast to [25,42–45,67,68], our focus is combining flexible query processing with the

SPARQL 1.1 language, supporting both ontology-based relaxation and approxima-

tion. We undertake a complexity study and a detailed analysis of our SPARQLAR

language, also providing a performance study over three datasets: LUBM, DB-

pedia and YAGO. We also propose three optimisation techniques based on pre-

computation, data summarisation and query containment, and test their impact on

the performance timings. In contrast to the work in [73], our evaluation approach

is based on query rewriting using a standard RDF querying system as opposed to

an approach based on translating regular expressions into finite automata. Early

versions of our work are reported in [12,31].
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2.2.4 SPARQL Semantics, Complexity and Optimisation

Much research has have been undertaken regarding the semantics, evaluation and

optimisation of the SPARQL language. In [72] two different semantics have been

considered, namely the set semantics and the bag semantics (in the latter, two

equivalent mappings can appear in the result set more than once). A set of algebraic

equivalences used to optimise and minimise queries has also been defined. In this

thesis, we adopt the semantics of SPARQL with set semantics since the answers

returned by our SPARQLAR query language are required to be unique.

The work in [6] shows formally that the W3C recommendation of SPARQL has

the same expressive power as the relational algebra under bag semantics. This shows

that the Semantic Web and relational databases are closely related.

The work in [65] investigates the semantics and complexity of SPARQL. It shows

that the evaluation of SPARQL queries with graph pattern expressions, constructed

using AND and FILTER operators, can be accomplished in O(|P | · |D|) time, where

|P | is the size of the graph pattern and |D| is the size of the data. Adding the UNION

operator, the complexity becomes NP-complete. We use and extend these results

by investigating the complexity of SPARQL extended with APPROX and RELAX

in Chapter 4. Evaluation of SPARQL queries that involve the AND, FILTER, and

OPTIONAL operators is PSPACE-complete [72]. A central result of [72] is that the

evaluation problem for every SPARQL fragment involving OPTIONAL is PSPACE-

complete.

Before SPARQL 1.1 was proposed, PSPARQL extended SPARQL with regular

path queries [2]. PSPARQL query containment under RDFS is studied by Chekol

et al. [19, 20], who show that it can be accomplished in 2EXPTIME.

Most of the optimisation techniques proposed for SPARQL consider a subset

of the language, such as queries with a single conjunct or queries where only the

AND and FILTER operators can be used. For example, in [74] the authors describe

a semantic query optimisation approach using their own semantic framework to

capture RDFS. For query minimisation, they use the so-called back-chase algorithm

that guarantees to find all minimal equivalent sub-queries. AND-only SPARQL

queries, i.e. queries that allow only the AND operator and can be translated into
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CQ (conjunctive queries), can be optimised by making use of Datalog rules [72].

Through these rules, the CQ is rewritten to obtain a minimal equivalent CQ. Finally,

the minimal CQ is translated back into SPARQL to be executed.

In contrast to the above work, in this thesis we extend with the APPROX and

RELAX operators the fragment of SPARQL 1.1 that includes the AND, FILTER and

UNION operators as well as the property path feature. We study the complexity

of this new language and devise a query evaluation algorithm. We propose an

optimisation technique that pre-computes and caches the answers of sub-queries

which can then be reused for improving query evaluation time. We also propose

a second optimisation technique that enhances query performance by exploiting a

summarisation of the RDF-graph. Our third optimisation technique uses the query

containment property to rewrite queries in a more efficient way. Related work on

graph summarisation and query containment is described in Chapter 7 and our

techniques are compared with it.

2.3 Discussion

In this chapter we introduced the syntax and semantics of a fragment of SPARQL 1.1

which forms the basis of our expanded SPARQLAR language. We provided an

overview of relevant literature, mainly focusing on various forms of flexible querying

and on the semantics, complexity and optimisations of the SPARQL query language.

In the next chapter we present our SPARQLAR language, which extends the

syntax and semantics of the SPARQL 1.1 fragment introduced here to include the

APPROX and RELAX operators. We formally define the semantics of the extended

language and illustrate usage of APPROX and RELAX through several examples.
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Chapter 3

Syntax and Semantics of

SPARQLAR

In this thesis we extend the fragment of the SPARQL 1.1 language defined in Section

2.1 by including two more operators, APPROX and RELAX. In this chapter we

define the syntax and semantics of the resulting language, which we call SPARQLAR.

In Section 3.1 we define the syntax of SPARQLAR. In Section 3.2 we define

the semantics of SPARQLAR by extending the semantics of SPARQL 1.1 defined

in [18, 65]. We add a cost measure to the semantics so that the answers can be

ranked, and adapt the semantics of approximation and relaxation from [67] to fit

the SPARQL 1.1 setting.

3.1 Syntax

The following definition of a query pattern includes also our query approximation

and relaxation operators APPROX and RELAX.

Definition 3.1 (Query Pattern). A SPARQLAR query pattern Q is defined as fol-

lows:

Q := s | t | Q1 AND Q2 | Q1 UNION Q2 | Q FILTER R |

RELAX(UV ×RegEx(U)× UV L) | APPROX(UV ×RegEx(U)× UV L)

where s is a simple triple pattern, t is a regular triple pattern, R is a SPARQL
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built-in condition and Q1, Q2 are also query patterns. We denote by var(Q) the set

of all variables occurring in a query pattern Q.

A SPARQLAR query has the form SELECT−→w WHERE Q, with −→w ⊆ var(Q).

We may omit here the keyword WHERE for simplicity and write SELECT−→w Q.

Given Q′ = SELECT−→w Q, the head of Q′, head(Q′), is −→w if −→w 6= ∅ and is var(Q)

otherwise.

3.2 Semantics

We extend the SPARQL semantics given in Section 2.1.4 in order to handle the

weight/cost of edges in an RDF-Graph and the cost of applying the approximation

and relaxation operators. These costs are used to rank the answers, with exact

answers (of cost 0) being returned first, followed by answers with increasing costs.

We also extend the notion of SPARQL query evaluation from returning a set of

mappings to returning a set of pairs of the form 〈µ, c〉, where µ is a mapping and

c is a non-negative integer that indicates the cost of the answers arising from this

mapping.

We redefine the union and join of two sets of flexible query evaluation results,

M1 and M2, which now include the answer costs (cf: Definition 2.11):

M1∪M2 = {〈µ, c〉 | 〈µ, c1〉 ∈M1 or 〈µ, c2〉 ∈M2 with c = c1 if @c2.〈µ, c2〉 ∈M2,

c = c2 if @c1.〈µ, c1〉 ∈M1, and c = min(c1, c2) otherwise}.

M1 1 M2 = {〈µ1 ∪ µ2, c1 + c2〉 | 〈µ1, c1〉 ∈ M1 and 〈µ2, c2〉 ∈ M2 with µ1 and

µ2 compatible mappings}.

Recall from Definition 2.2 that an RDF-graph G comprises a set of nodes N , and

a set of labelled weighted edges of the form 〈〈s, p, o〉, c〉. We redefine the semantics

of a triple pattern t with respect to a graph G, denoted JtKG, and the four operators

from Section 2.1.4, i.e. AND, UNION, FILTER and SELECT, by adding the answer

costs:

J〈x, ε, y〉KG = {〈µ, 0〉 | var(µ) = var(〈x, ε, y〉)∧
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∃u ∈ N . µ(x) = µ(y) = u}

J〈x, z, y〉KG = {〈µ, c〉 | var(µ) = var(〈x, z, y〉) ∧ 〈µ(〈x, z, y〉), c〉 ∈ E}

J〈x, , y〉KG = {µ | var(µ) = var(〈x, , y〉)∧

∃p ∈ D . 〈µ(〈x, p, y〉), c〉 ∈ E}

J〈x, P1|P2, y〉KG = J〈x, P1, y〉KG ∪ J〈x, P2, y〉KG

J〈x, P1/P2, y〉KG = J〈x, P1, z〉KG 1 J〈z, P2, y〉KG

J〈x, P ∗, y〉KG = J〈x, ε, y〉KG ∪ J〈x, P, y〉KG∪⋃
n≥1

{〈µ, c〉 | 〈µ, c〉 ∈ J〈x, P, z1〉KG 1

1 J〈z1, P, z2〉KG 1 · · · 1 J〈zn, P, y〉KG}

JQ1 AND Q2KG = JQ1KG 1 JQ2KG

JQ1 UNION Q2KG = JQ1KG ∪ JQ2KG

JQ FILTER RKG = {〈µ, c〉 ∈ JQKG | µ |= R}

JSELECT−→w QKG = π−→w (JQKG)

where P , P1, P2 are regular expression patterns, x, y, z are in ULV , and z, z1, . . . , zn

are fresh variables.

We note that the semantics of J〈x, P1/P2, y〉K and J〈x, P1|P2, y〉K as well as the

semantics of the four operators AND, FILTER, UNION and SELECT are left un-

changed with respect to SPARQL 1.1.

3.2.1 Adding Approximation

For the APPROX operator, we apply edit operations which transform a regular

expression pattern P into a new expression pattern P ′. Specifically, we apply the

edit operations deletion, insertion and substitution, defined as follows (other possible

edit operations are transposition and inversion, which we leave as future work):

A/p/B ;(A/ε/B) deletion

A/p/B ;(A/ /B) substitution

A/p/B ;(A/ /p/B) left insertion
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A/p/B ;(A/p/ /B) right insertion

Here, A and B denote any regular expression (including the empty expression) and

the symbol represents every URI from U — so the edit operations allow us to insert

any URI and substitute a URI by any other. The application of an edit operation

op has a non-negative cost cop associated with it.

These rules can be applied to a URI p in order to approximate it to a regular

expression P . We write p ;∗ P if a sequence of edit operations can be applied

to p to derive P . The edit cost of deriving P from p, denoted ecost(p, P ), is the

minimum cost of applying such a sequence of edit operations.

The semantics of the APPROX operator in SPARQLAR is as follows:

JAPPROX(x, p, y)KG = J〈x, p, y〉KG ∪
⋃
{〈µ, c+ ecost(p, P )〉 |

p;∗ P ∧ 〈µ, c〉 ∈ J〈x, P, y〉KG}

JAPPROX(x, P1|P2, y)KG = JAPPROX(x, P1, y)KG ∪ JAPPROX(x, P2, y)KG

JAPPROX(x, P1/P2, y)KG = JAPPROX(x, P1, z)KG 1 JAPPROX(z, P2, y)KG

JAPPROX(x, P ∗, y)KG = J〈x, ε, y〉KG ∪ JAPPROX(x, P, y)KG∪⋃
n≥1

{〈µ, c〉 | 〈µ, c〉 ∈ JAPPROX(x, P, z1)KG 1

1 JAPPROX(z1, P, z2)KG 1 · · · 1

1 JAPPROX(zn, P, y)KG}

where P , P1, P2 are regular expression patterns, x, y are in ULV , p is in U , and z,

z1, . . ., zn are fresh variables.

Example 3.1. Suppose that the user is looking for all discoveries made between

1700 and 1800 AD, and queries the YAGO dataset as follows:

SELECT ?p ?z ?y WHERE{

?p discovered ?x . ?x discoveredOnDate ?y .

APPROX(?x label ?z) .

FILTER(?y >= 1700/1/1 and ?y <= 1800/1/1)}
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The above query is expressed in the concrete SPARQLAR syntax. Terms of the

form ?x are variables, discovered, discoveredOnDate and label are properties, and

“1800/1/1” and “1700/1/1” are literals. Evaluating the exact form of the query

(i.e. without APPROX applied to the third triple pattern) will return only the

names of the discoveries z made by persons p on date y and no other information.

By approximating the third triple pattern, it is possible to substitute the predicate

“label” by “ ”. The query will then return more information concerning each discov-

ery, such as its preferred name (hasPreferredName) and the Wikipedia abstract

(hasWikipediaAbstract).

As another example, consider the following query, which is intended to return

every German politician:

SELECT * WHERE{

APPROX(?x isPoliticianOf ?y) .

?x wasBornIn/isLocatedIn* <Germany>

}

The exact form of this query returns no answers since the predicate “isPoliticianOf”

only connects persons to states of the United States in YAGO. If the first triple pat-

tern is approximated by substituting the predicate “isPoliticianOf” with “ ”, then

the query will return the expected results, matching the correct predicate to retrieve

the desired answers, which is “holdsPoliticalPosition”. It will also retrieve all the

other persons that are born in Germany (thus showing improved recall, but lower

precision).

3.2.2 Adding Relaxation

Our RELAX operator is based on that in [44, 67] and relies on a fragment of the

RDFS entailment rules known as ρDF [61]. An RDFS graph K1 entails an RDFS

graph K2, denoted K1 |=RDFS K2, if K2 can be derived by applying the rules in

Figure 3.1 iteratively to K1. For the fragment of RDFS that we consider, K1 |=RDFS

K2 if and only if K2 ⊆ cl(K1), with cl(K1) being the closure of the RDFS graph K1

under these rules. Notice that if K1 is finite then cl(K1) is also finite. The work
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Subproperty (1)
(a, sp, b)(b, sp, c)

(a, sp, c)
(2)

(a, sp, b)(x, a, y)

(x, b, y)

Subclass (3)
(a, sc, b)(b, sc, c)

(a, sc, c)
(4)

(a, sc, b)(x, type, a)

(x, type, b)

Typing (5)
(a, dom, c)(x, a, y)

(x, type, c)
(6)

(a, range, d)(x, a, y)

(y, type, d)

Figure 3.1: RDFS entailment rules [62]

(e1)
(b, dom, c)(a, sp, b)

(a, dom, c)
(e2)

(b, range, c)(a, sp, b)

(a, range, c)

(e3)
(a, dom, b)(b, sc, c)

(a, dom, c)
(e4)

(a, range, b)(b, sc, c)

(a, range, c)

Figure 3.2: Additional rules for extended reduction of an RDFS ontology [67]

in [44, 67] considers one integrated graph, comprising both the RDF-graph and the

ontology. In this thesis we keep these graphs separate, as defined in Section 2.1.

Applying a rule in Figure 3.1 means adding a triple that is entailed by the rule

to G or K. Specifically, if there are two triples t, t′ that match the antecedent of

a rule, then it is possible to insert the triple implied by the consequent of the rule.

For example, the triple pattern 〈x, startsExistingOnDate, y〉 can be entailed from

〈x,wasBornOnDate, y〉 and 〈wasBornOnDate, sp, startsExistingOnDate〉 by ap-

plying rule 2.

The ontology K needs to be acyclic in order for relaxed queries to have unam-

biguous costs. The extended reduction of an ontology K, denoted by extRed(K), is

given by cl(K) −D, where D is defined as follows: D is the set of triples in cl(K)

that can be derived using rules (1) or (3) in Figure 3.1, or rules (e1), (e2), (e3)

or (e4) in Figure 3.2. We note that, because cl(K) is closed with respect to the

edge labels sp and sc, and also that the subgraphs induced by each of sp and sc are

acyclic, the set D is uniquely defined.

Henceforth, we assume that K = extRed(K), which allows direct relaxations to

be applied to queries (see below), corresponding to the ‘smallest’ relaxation steps.

This is necessary for associating an unambiguous cost to queries, so that query

answers can then be returned to users incrementally in order of increasing cost.

If we did not use the extended reduction of the ontology K, then the relaxation

steps applied would not necessarily be the “smallest” (see [44] for a detailed discus-
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sion). For example, consider the following ontologyK = {(b, dom, c), (a, sp, b), (a, dom, c)},

where K 6= extRed(K). If we relax the triple pattern (x, a, y) with respect to K,

then as a first step we could apply rule 5 to generate (x, type, c). However, the same

triple pattern can be generated with 2 steps of relaxation by applying rule 2 first

and then rule 5 of Figure 3.1.

Following the terminology of [44], a triple pattern 〈x, p, y〉 directly relaxes to

a triple pattern 〈x′, p′, y′〉 with respect to an ontology K = extRed(K), denoted

〈x, p, y〉 ≺i 〈x′, p′, y′〉, if vars(〈x, p, y〉) = vars(〈x′, p′, y′〉) and 〈x′, p′, y′〉 is derived

from 〈x, p, y〉 by applying rule i from Figure 3.1. The cost of applying rule i is an

integer ci > 0.

A triple pattern 〈x, p, y〉 relaxes to a triple pattern 〈x′, p′, y′〉, denoted 〈x, p, y〉 ≤K
〈x′, p′, y′〉, if starting from 〈x, p, y〉 there is a sequence of direct relaxations that

derives 〈x′, p′, y′〉. The relaxation cost of deriving 〈x, p, y〉 from 〈x′, p′, y′〉, denoted

rcost(〈x, p, y〉, 〈x′, p′, y′〉), is the minimum cost of applying such a sequence of direct

relaxations.

The semantics of the RELAX operator in SPARQLAR are as follows:

JRELAX(x, p, y)KG,K = J〈x, p, y〉KG ∪ {〈µ, c+ rcost(〈x, p, y〉, 〈x′, p′, y′〉)〉 |

〈x, p, y〉 ≤K 〈x′, p′, y′〉 ∧ 〈µ, c〉 ∈ J〈x′, p′, y′〉KG}

JRELAX(x, P1|P2, y)KG,K = JRELAX(x, P1, y)KG,K ∪ JRELAX(x, P2, y)KG,K

JRELAX(x, P1/P2, y)KG,K = JRELAX(x, P1, z)KG,K 1 JRELAX(z, P2, y)KG,K

JRELAX(x, P ∗, y)KG,K = J〈x, ε, y〉KG ∪ JRELAX(x, P, y)KG,K∪⋃
n≥1

{〈µ, c〉 | 〈µ, c〉 ∈ JRELAX(x, P, z1)KG,K 1

JRELAX(z1, P, z2)KG,K 1 · · · 1 JRELAX(zn, P, y)KG,K}

where P , P1, P2 are regular expression patterns, x, x′, y, y′ are in ULV , p, p′ are in

U , and z, z1, . . ., zn are fresh variables.

Example 3.2. Consider the following portion K = (NK , EK) of the YAGO ontol-

ogy, where NK is

{hasFamilyName, hasGivenName, label, actedIn,

Actor, English politicians, politician},
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and EK is

{(hasFamilyName, sp, label), (hasGivenName, sp, label),

(actedIn, domain, actor), (English politicians, sc, politician)}

Suppose the user is looking for the family names of all the actors who played in the

film “Tea with Mussolini” and poses this query:

SELECT * WHERE {

?x actedIn <Tea_with_Mussolini> .

RELAX(?x hasFamilyName ?z) }

The exact form of the above query returns 4 answers. However, some actors have

only a single name (for example Cher), or have their full name recorded using the

“label” property directly. By applying relaxation to the second triple pattern using

rule (2), we can replace the predicate “hasFamilyName” by “label”. This causes

the relaxed query to return the given names of actors in the film, recorded using

the property “hasGivenName” since “hasGivenName” is a sub-property of “label”

(hence returning Cher), as well as actors’ full names recorded using the property

“label”: a total of 255 results.

As another example, suppose the user poses the following query:

SELECT * WHERE {

RELAX(?x type <English_politicians>) .

?x wasBornIn/isLocatedIn* <England>}

whose exact form returns every English politician born in England. By applying

relaxation to the first triple pattern using rule (4), it is possible to replace the class

English politicians by politicians. This relaxed query will return every politician

who was born in England, giving possibly additional answers of relevance to the

user.

Observation 3.1. By the semantics of RELAX and APPROX, we observe that

given a triple pattern 〈x, P, y〉, the following hold for every RDF-graph G and on-

tology K:

J〈x, P, y〉KG,K ⊆ JAPPROX(x, P, y)KG
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J〈x, P, y〉KG,K ⊆ JRELAX(x, P, y)KG,K

3.3 Query Answers up to a Maximum Cost

Queries with the APPROX and RELAX operators might return a very large number

of answers. From a user perspective this is not practical. Hence, we use an operator

CostProj(M, c) to select mappings with a cost less than or equal to a given value c

from a set M of mapping/cost pairs 〈µ, cost〉.

Given a SPARQLAR query Q, RDF graph G and ontology K, the semantics of

Q limited to mappings with costs up to c is denoted by JQKG,K,c, defined as follows:

JQKG,K,c = CostProj(JQKG,K , c) = {〈µ, i〉 | 〈µ, i〉 ∈ JQKG,K ∧ i ≤ c}

Using the above definition of CostProj, we define the semantics of query approxi-

mation up to a cost as follows:

JAPPROX(x, p, y)KG,K,c = CostProj(JAPPROX(x, p, y)KG,K , c)

Similarly we define the semantics of query relaxation up to a cost as follows:

JRELAX(x, p, y)KG,K,c = CostProj(JRELAX(x, p, y)KG,K , c)

3.4 Discussion

In this chapter we defined formally the syntax and semantics of our flexible query

language SPARQLAR. We added the concept of answer cost to query evaluation,

which can be exploited to rank the answers of a query. We defined the semantics of

the APPROX and the RELAX operators applied to SPARQL query conjuncts, and

illustrated their usage through several examples.

In contrast to the work in [67], the semantics for approximation and relaxation

given here expands the SPARQL 1.1 semantics given in [18, 65] whereas [67] only

considered CRPQs. The work on relaxation of triple pattern queries in [44] did not

apply to regular path queries and moreover did not associate a distinct cost with
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each relaxation operation. On the other hand, the work in [44] allowed also other

types of relaxation: dropping a triple pattern, replacing constants with variables,

and breaking join dependencies.

The relaxation technique described by Huang et al. in [42, 43] although similar

to ours, does not use the additional rules of Figure 3.2 to generate the smallest

relaxation steps with respect to an ontology. In fact, to order their query answers,

Huang et al. provide a rewriting algorithm that generates multiple queries, each

with a score. The score is computed by using a similarity measure between the

queries generated by the rewriting algorithm and the original query.

In the next chapter we discuss the computational complexity of various fragments

of SPARQLAR and compare these to the corresponding fragments of SPARQL and

SPARQL 1.1.
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Chapter 4

Complexity of Query Evaluation

in SPARQLAR

In this chapter we study the combined, data and query complexity of SPARQLAR,

extending the complexity results from [2,64,65,72] for standard SPARQL 1.1 queries.

In [64,65,72] it is proved that the fragment of SPARQL with only the AND, UNION,

FILTER and SELECT operators (or any subset which includes SELECT) is within

the NP complexity class. Here, we study the complexity of the same fragments of

SPARQL but with the answer cost also included in the evaluation.

We also extend the complexity results from [2] for SPARQL queries with reg-

ular expression patterns to include answer costs and our flexible query operators

(APPROX and RELAX). We study the complexity of several fragments of the

SPARQLAR language and compare our results with those of [2].

In Section 4.1 we introduce the problem of query evaluation in SPARQLAR. In

Section 4.2 we study the complexity of query evaluation for various fragments of

SPARQLAR. In Section 4.3 we compare the complexity of SPARQLAR with that of

SPARQL 1.1.

4.1 Preliminaries

The combined complexity of query evaluation is based on the following decision

problem, which we denote EVALUATION: Given as input a graph G = (N,D,E),
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an ontology K, a query Q and a pair 〈µ, cost〉, is it the case that 〈µ, cost〉 ∈ JQKG,K?

Considering data complexity, the decision problem becomes the following: Given

as input a graph G, ontology K and a pair 〈µ, cost〉, is it the case that 〈µ, cost〉 ∈

JQKG,K , with Q a fixed query?

Finally, the decision problem for query complexity is the following: Given as

input an ontology K, a query Q and a pair 〈µ, cost〉, is it the case that 〈µ, cost〉 ∈

JQKG,K , with G a fixed graph?

4.2 Complexity of SPARQLAR

In this section, we investigate the (combined) complexity of the EVALUATION

problem by incrementally adding more operators to the SPARQLAR language frag-

ment being considered.

4.2.1 AND-only Queries with Filter Conditions

We start our analysis with queries containing only the AND and FILTER operators

and no regular expression patterns nor any APPROX and RELAX operators. Our

proof is based on that in [64] but considers also the answer costs. The size of a query

Q, denoted as |Q|, is equal to the sum of the size of the triple patterns in Q, where

the size of a triple pattern is the number of predicates used in its regular expression

pattern.

Theorem 4.1. EVALUATION can be solved in time O(|E| · |Q|) for queries con-

structed using only the AND and FILTER operators.

Proof. We give an algorithm for the EVALUATION problem that runs in polynomial

time: First, for each i such that the triple pattern 〈x, z, y〉i is in Q, we verify

that 〈µ(〈x, z, y〉i), 0〉 ∈ E. If this is not the case, or if cost 6= 0 we return False.

Otherwise we check if µ satisfies the FILTER conditions and return True or False

accordingly. It is evident that the algorithm runs in polynomial time since verifying

that 〈µ(〈x, z, y〉i), 0〉 ∈ E can be done in time |E| and checking that µ satisfies the

FILTER condition R can be done in |R|.
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We notice that, by comparing with the results in [64, 65, 72], query evaluation

does not increase in complexity when answer costs are added to the semantics. We

may also infer that the query and data complexity of the EVALUATION problem

is O(|Q|) and O(|E|) respectively.

We now consider queries also containing the regular expression patterns sup-

ported in SPARQL 1.1. We show that there is an increase in complexity, from

linear to quadratic in the size of the query, thus extending the earlier results of [2]

to consider also answer costs:

Theorem 4.2. EVALUATION can be solved in time O(|E| · |Q|2) for queries that

may contain regular expression patterns and that are constructed using only the

AND and FILTER operators.

Proof. To show this, we start by building an NFA MP = (S, T ) that recognises

L(P ), the language denoted by the regular expression P appearing in one single

triple pattern in Q, where S is the set of states (including s0 and sf representing

the initial and final states respectively) and T is the set of transitions, each of cost

0. We then construct the weighted product automaton, H, of G and MP as follows:

• The states of H are the Cartesian product of the set of nodes N of G and the

set of states S of MP .

• For each transition 〈〈s, p, s′〉, 0〉 in MP and each edge 〈〈a, p, b〉, cost〉 in E, there

is a transition 〈〈s, a〉, 〈s′, b〉, cost〉 in H.

Then we check if there exists a path from 〈s0, µ(x)〉 to 〈sf , µ(y)〉 in H. In case

there is more than one path, we select one with the minimum cost using Dijkstra’s

algorithm. Knowing that the number of nodes in H is equal to |N | · |S|, the number

of edges is at most |E| · |T |, and that |T | ≤ |S|2, the evaluation can be performed in

time O(|E| · |S|2 + |N | · |S| · log(|N | · |S|)). We repeat this for all the triple patterns

P in Q.

From the previous theorem we can also conclude that the query and data com-

plexity of the EVALUATION problem are O(|Q|2) and O(|E|), respectively.
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We now consider queries containing the AND and SELECT operators, but with-

out regular expression patterns or APPROX/RELAX operators, extending earlier

results from [72] to consider also answer costs:

Theorem 4.3. EVALUATION is in NP-Hard for queries that do not contain regular

expression patterns and that are constructed using only the AND and SELECT

operators.

Proof. We first define the problem of graph 3-colourability, which is known to be

NP-Complete: given a graph Γ = (NΓ, EΓ) and three colours r, g, b, is it possible

to assign a colour to each node in NΓ such that no pair of nodes connected by an

edge in EΓ are of the same colour?

We next define the following RDF-graph G = (N,D,E):

N ={r, g, b, a} D = {a, p}

E ={〈〈r, p, g〉, 0〉,

〈〈r, p, b〉, 0〉, 〈〈g, p, b〉, 0〉, 〈〈g, p, r〉, 0〉,

〈〈b, p, r〉, 0〉, 〈〈b, p, g〉, 0〉, 〈〈a, a, a〉, 0〉}

Now we construct the following query Q such that there is a variable xi correspond-

ing to each node ni of Γ and there is a triple pattern of the form 〈xi, p, xj〉 in Q if

and only if there is an edge (ni, nj) in Γ:

Q = SELECTx WHERE ((xi, p, xj) AND . . . AND

(x′i, p, x
′
j) AND (a, a, x))

It is easy to verify that the graph Γ is colourable if and only if 〈µ, 0〉 ∈ JQKG with

µ = {x→ a}.

We notice that in the proof the graph is of fixed size, hence we can infer that the

result of Theorem 4.3 also holds for query complexity. Similarly to Theorem 4.1,

the complexity of the SPARQL language does not increase when answer costs are

added to the semantics.
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4.2.2 Adding the Flexible Operators

We show below in Theorem 4.4 that adding the APPROX and RELAX operators

does not increase the complexity class of the EVALUATION problem with respect

to the fragment considered in Theorem 4.2. We first prove the following lemma,

using similar techniques to those in [67].

Lemma 4.1. EVALUATION of JAPPROX(x, P, y)KG,K and JRELAX(x, P, y)KG,K

can be accomplished in polynomial time.

Premise. Given a pair 〈µ, cost〉 we have to verify that 〈µ, cost〉 ∈ JAPPROX(x, P, y)KG

or 〈µ, cost〉 ∈ JRELAX(x, P, y)KG. We start by building an NFA MP = (S, T ) as

described earlier.

Approximation. An approximate automaton AP = (S, T ′) is constructed starting

from MP and adding the following additional transitions (similarly to the construc-

tion in [67]):

• For each state s ∈ S there is a transition 〈〈s, , s〉, α〉, where α is the cost of

insertion.

• For each transition 〈〈s, p, s′〉, 0〉 in MP , where p ∈ D, there is a transition

〈〈s, ε, s′〉, β〉, where β is the cost of deletion.

• For each transition 〈〈s, p, s′〉, 0〉 in MP , where p ∈ D, there is a transition

〈〈s, , s′〉, γ〉, where γ is the cost of substitution.

We then form the weighted product automaton, H, of G and AP as follows:

• The states of H will be the Cartesian product of the set of nodes N of G and

the set of states S of AP .

• For each transition 〈〈s, p, s′〉, cost1〉 in AP and each edge 〈〈a, p, b〉, cost2〉 in E,

there is a transition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H.

• For each transition 〈〈s, ε, s′〉, cost〉 in AP and each node a ∈ N , there is a

transition 〈〈s, a〉, 〈s′, a〉, cost〉 in H.
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• For each transition 〈〈s, , s′〉, cost1〉 in AP and each edge 〈〈a, p, b〉, cost2〉 in E,

there is a transition 〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H.

Finally we check if there exists a path from 〈s0, µ(x)〉 to 〈sf , µ(y)〉 in H. Again,

if there exists more than one path we select one with minimum cost using Dijkstra’s

Algorithm. Knowing that the number of nodes in H is |N | · |S| and that the number

of edges in H is at most (|E|+ |N |) · |S|2, the evaluation can therefore be computed

in O((|E|+ |N |) · |S|2 + |N | · |S| · log(|N | · |S|)).

Relaxation. Given an ontology K = extRed(K) we build the relaxed automaton

RP = (S ′, T ′, S0, Sf ) starting from MP (similarly to the construction in [67]). S0

and Sf represent the sets of initial and final states, and S ′ contains every state in S

plus the states in S0 and Sf . Initially S0 and Sf contain s0 and sf respectively. Each

initial and final state in S0 and Sf is labelled with either a constant or the symbol

∗; in particular, s0 is labelled with x if x is a constant or ∗ if it is a variable and

similarly sf is labelled with y if y is a constant or ∗ if it is a variable. An incoming

(outgoing) clone of a state s is a new state s′ such that s′ is an initial or final state if

s is, s′ has the same set of incoming (outgoing) transitions as s, and has no outgoing

(incoming) transitions. Initially T ′ contains all the transitions in T . We recursively

add states to S0 and Sf , and transitions to T ′ as follows until we reach a fixpoint:

• For each transition 〈〈s, p, s′〉, cost〉 ∈ T ′ and 〈p, sp, p′〉 ∈ K add the transition

〈〈s, p′, s′〉, cost+ α〉 to T ′, where α is the cost of applying rule 2.

• For each transition 〈〈s, type, s′〉, cost〉 ∈ T ′, s′ ∈ Sf and 〈c, sc, c′〉 ∈ K such

that s′ is annotated with c add an outgoing clone s′′ of s′ annotated with c′ to

Sf and add the transition 〈〈s, type, s′′〉, cost+ β〉 to T ′, where β is the cost of

applying rule 4.

• For each transition 〈〈s, type−, s′〉, cost〉 ∈ T ′, s ∈ S0 and 〈c, sc, c′〉 ∈ K such

that s is annotated with c add an incoming clone s′′ of s annotated with c′ to

S0 and add the transition 〈〈s′′, type−, s′〉, cost + β〉 to T ′, where β is the cost

of applying rule 4.
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• For each 〈〈s, p, s′〉, cost〉 ∈ T ′, s′ ∈ Sf and 〈p, dom, c〉 such that s′ is annotated

with a constant, add an outgoing clone s′′ of s′ annotated with c to Sf , and

add the transition 〈〈s, type, s′′〉, cost+γ〉 to T ′, where γ is the cost of applying

rule 5.

• For each 〈〈s, p, s′〉, cost〉 ∈ T ′, s ∈ S0 and 〈p, range, c〉 such that s is annotated

with a constant, add an incoming clone s′′ of s annotated with c to S0, and add

the transition 〈〈s′′, type−, s′〉, cost + δ〉 to T ′, where δ is the cost of applying

rule 6.

(We note that because queries and graphs do not contain edges labelled sc or sp,

rules 1 and 3 in Figure 3.1 are inapplicable as far as query relaxation is concerned.)

We then form the weighted product automaton, H, of G and RP as follows:

• For each node a ∈ N of G and each state s ∈ S ′ of RP , then 〈s, a〉 is a state

of H if s is labelled with either ∗ or a, or is unlabelled.

• For each transition 〈〈s, p, s′〉, cost1〉 in RP and each edge 〈〈a, p, b〉, cost2〉 in

E such that 〈s, a〉 and 〈s′, b〉 are states of H, then there is a transition

〈〈s, a〉, 〈s′, b〉, cost1 + cost2〉 in H.

• For each transition 〈〈s, type−, s′〉, cost1〉 inRP and each edge 〈〈a, type, b〉, cost2〉

in E such that 〈s, b〉 and 〈s′, a〉 are states of H, then there is a transition

〈〈s, b〉, 〈s′, a〉, cost1 + cost2〉 in H.

Finally we check if there exists a path from 〈s, µ(x)〉 to 〈s′, µ(y)〉 in H, where

s ∈ S0 and s′ ∈ Sf . Again, if there exists more than one path we select one with

minimum cost using Dijkstra’s Algorithm. Knowing that the number of nodes in H

is at most |N | · |S ′| and the number of edges in H is at most |E| · |S ′|2, the evaluation

can therefore be computed in O(|E| · |S ′|2 + |N | · |S ′| · log(|N | · |S ′|)).

Conclusion. We can conclude that both query approximation and query relaxation

can be evaluated in polynomial time.

From the previous lemma we can also infer that the data and query complexity

of the EVALUATION problem for JAPPROX(x, P, y)KG,K and JRELAX(x, P, y)KG,K

is O(|E|) and polynomial time respectively.
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Theorem 4.4. EVALUATION can be solved in polynomial time for queries that

may contain regular expressions and are constructed using the AND, FILTER, RE-

LAX and APPROX operators.

Proof. We extend the EVALUATION algorithm from the proof of Theorem 4.2

and show that it runs in polynomial time: First, for each i such that the triple

pattern APPROX(x, P, y)i (or RELAX(x, P, y)i) is in Q, we verify that 〈µi, costi〉 ∈

JAPPROX(x, P, y)iKG,K (or JRELAX(x, P, y)iKG,K) for some costi where µi = {x→

µ(x), y → µ(y)}. For each j such that the triple pattern 〈x, z, y〉i is in Q, we verify

that 〈µ(〈x, z, y〉i), 0〉 ∈ E. If one of these fail, or if
∑

i costi 6= cost we return False.

Otherwise we check if µ satisfies the FILTER conditions and return True or False

accordingly. By Theorem 4.2 and Lemma 4.1 we know that verifying J(x, P, y)iKG,K ,

JAPPROX(x, P, y)iKG,K and JRELAX(x, P, y)iKG,K can be done in polynomial time,

hence the evaluation problem can be solved in polynomial time.

The following theorem establishes the data complexity of an extended language

fragment adding also SELECT:

Theorem 4.5. EVALUATION has P-Time data complexity for queries that may

contain regular expression patterns and that are constructed using the AND, FIL-

TER, RELAX, APPROX and SELECT operators.

Proof. In order to prove this, we devise an algorithm that runs in polynomial time

with respect to the size of the graph G. We start by building a new mapping µ′ such

that each variable x ∈ var(µ′) appears in var(Q) but not in var(µ), and to each we

assign a constant from ND. We then verify in polynomial time that 〈µ ∪ µ′, cost〉

is in JQKG. The number of mappings we can generate is O(|ND||var(Q)|). Since the

query is fixed we can therefore say that the evaluation with respect to the data is

in polynomial time.

4.2.3 Adding UNION

We conclude our complexity study by adding the UNION operator to the language

which, in addition to the previous operators, results in the SPARQLAR language:
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Theorem 4.6. EVALUATION is in NP for queries that may contain regular ex-

pression patterns and are constructed using the AND, FILTER, RELAX, APPROX,

SELECT and UNION operators.

Proof. We give an NP algorithm, EvaluationCost shown as Algorithm 1, for the

EVALUATION problem for a generic query Q containing AND, UNION and regular

expression patterns. The EvaluationCost algorithm takes as input a mapping µ, a

graph G and a query Q and returns a cost c. Given an evaluation 〈µ, c′〉, and

a query Q, then the EvaluationCost algorithm returns c if {〈µ, c〉} ∈ JQKG and

NULL otherwise. Finally, we need to check that c is equal to c′.

It is easy to see in the EvaluationCost algorithm that the non-deterministic step

occurs when the condition Q = Q1 AND Q2 is satisfied, in which case we need to

guess a decomposition of the mapping µ into µ1 and µ2. The number of guesses is

bounded by the number of possible decompositions of µ (which is finite).

Algorithm 1: EvaluationCost

input : Query Q, a mapping µ, a graph G
output: A cost value c, or NULL
if Q = t then

if there exists a cost such that {〈µ, cost〉} ∈ JtKG, where t is a simple
triple pattern or an APPROX/RELAX then

return cost;

else
return NULL

else if Q = Q1 AND Q2 then
Guess a decomposition µ = µ1 ∪ µ2;
if EvaluationCost(Q1,µ1,G) 6= NULL and EvaluationCost(Q2,µ2,G)
6= NULL then

return EvaluationCost(Q1,µ1,G) + EvaluationCost(Q2,µ2,G);

else
return NULL

else if Q = Q1 UNION Q2 then
if EvaluationCost(Q1,µ,G) = NULL then

return EvaluationCost(Q2,µ,G);

else if EvaluationCost(Q2,µ,G) = NULL then
return EvaluationCost(Q1,µ,G);

return min(EvaluationCost(Q1,µ,G), EvaluationCost(Q2,µ,G));

We now show that by including the SELECT operator the evaluation problem
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is still in NP. Given a pair 〈µ, cost〉 and a query SELECT−→w WHERE Q, where

Q contains AND, UNION and SELECT, we have to check whether 〈µ, cost〉 is in

JSELECT−→w WHERE QKG. We can guess a new mapping µ′ such that π−→w (〈µ′, cost〉) =

〈µ, cost〉 and consequently check that 〈µ′, cost〉 ∈ JQKG (which can be done in NP

time with the EvaluationCost algorithm). The number of guesses is bounded by the

number of variables in Q and values from G to which they can be mapped.

Theorem 4.7. EVALUATION is NP-Complete for queries that may contain reg-

ular expression patterns and are constructed using the AND, FILTER, RELAX,

APPROX, SELECT and UNION operators.

Proof. By combining Theorems 4.6 and 4.3, we know that the evaluation problem is

both in NP and NP-Hard. Therefore, the evaluation problem is NP-Complete.

The above theorem is true also for query complexity as Theorems 4.6 and 4.3

consider graphs of a fixed size. The following theorem considers the data complexity

of EVALUATION for the same language:

Theorem 4.8. EVALUATION is P-Time in data complexity for queries that may

contain and regular expression patterns, and that are constructed using the AND,

FILTER, RELAX, APPROX, SELECT and UNION operators.

Proof. In Theorem 4.6, the non-deterministic steps (i.e. the decomposition of the

mapping µ into µ1 and µ2 to verify that 〈µ, c〉 ∈ JQ1 AND Q2KG), depend on the

query Q which we assume is fixed. To verify that an evaluation 〈µ, 0〉 is in JtKG, with

t a triple pattern of query Q, can be done in |E| steps. Therefore, the evaluation

can be computed in O(|E| ∗ |µ||Q|) steps.

When we include the SELECT operator we need to add a further non-deterministic

step, that is, generating a new mapping µ′ from µ such that π−→w (〈µ′, c〉) = 〈µ, c〉.

From the proof of Theorem 4.5 we can see that this can be done in O(|ND||var(Q)|).

Since the query is fixed, we conclude that the data complexity is polynomial time.
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Table 4.1: Complexity of various SPARQLAR fragments previously known but with

answer costs included.

Operators
Data

Complexity

Query

Complexity

Combined

Complexity

Results

From

AND, FILTER O(|E|) O(|Q|) O(|E| · |Q|)
Theorem

4.1

AND, FILTER,

RegEx
O(|E|) O(|Q|2) O(|E| · |Q|2)

Theorem

4.2

AND, SELECT P-Time
NP-

Complete

NP-

Complete

Theorems

4.3, 4.5 and

4.6

RELAX, APPROX O(|E|) P-Time P-Time Lemma 4.1

Table 4.2: New complexity results for three SPARQLAR fragments.

Operators
Data

Complexity

Query

Complexity

Combined

Complexity

Results

From

AND, FILTER,

RELAX, APPROX,

RegEx

O(|E|) P-Time P-Time
Theorem

4.4

AND, FILTER,

RELAX, APPROX,

RegEx, SELECT

P-Time
NP-

Complete

NP-

Complete

Theorems

4.3, 4.4, 4.5

and 4.6

AND, FILTER,

RELAX, APPROX,

RegEx, SELECT,

UNION

P-Time
NP-

Complete

NP-

Complete

Theorems

4.6, 4.7 and

4.8

4.3 Result Summary

In Table 4.1 we show the complexity of some fragments of SPARQLAR that are

extensions of the work from [2,64,65,67, 72]. In particular the proofs for Theorems

4.1, 4.2, 4.3 were modified from [64,65,72] so that answer costs and regular expression
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patterns were taken into account. The query and combined complexity of the third

row is inferred by combining Theorems 4.3 and 4.6 (as the latter holds also for the

specified fragment); data complexity, on the other hand, is inferred by considering

Theorem 4.5 for the specified fragment.

In Table 4.2 we list the complexity of three fragments of the SPARQLAR language

that have not been previously investigated. The data and query complexity of the

first row can be inferred by combining the data and query complexity deduced from

Theorem 4.2 with Lemma 4.1. The combined and query complexity for the fragment

specified in the second row of the table is deduced by combining Theorems 4.3, 4.4

and 4.6.

The complexity of the full SPARQLAR language (Theorem 4.7) is equivalent

to the complexity of queries containing only the AND and SELECT. Hence, the

addition of the flexible operators does not increase the worst-case complexity of

query evaluation. Moreover, we notice that adding answer costs to the semantics

does not increase the complexity either.

If we consider the whole of SPARQL 1.1 the reader may notice that we have

excluded the OPTIONAL operator in our analysis. It is possible to add the OP-

TIONAL operator to SPARQLAR, allowing APPROX and RELAX to be applied to

triple patterns occurring within an OPTIONAL clause, with the same semantics as

specified in Chapter 3. However, the complexity of SPARQL with the OPTIONAL

clause is PSPACE-complete [64]. Therefore, by the results in this chapter, the com-

plexity of SPARQLAR would also increase similarly.

4.4 Discussion

In this chapter we have discussed the computational complexity of SPARQLAR and

some of its fragments. We have proved that the complexity class of our language

is the same as that for the fragment of SPARQL 1.1 that we extend. Hence, the

APPROX and RELAX operators do not worsen the overall complexity of the lan-

guage. Our complexity results extend those in [2] and [72] by including answer costs

within the semantics, and the APPROX and RELAX operators. We have shown
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that SPARQL queries that contain the AND and SELECT operators have the same

complexity class as SPARQLAR. In contrast to [67] our study also included the

FILTER and UNION operators.

In the next chapter we present an evaluation algorithm for SPARQLAR queries

which is based on query rewriting. The algorithm generates multiple SPARQL 1.1

queries that can be evaluated using any SPARQL querying system that supports

property paths. We prove that our algorithm is sound and complete, and that it

terminates after a finite number of steps.
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Chapter 5

Query Evaluation in SPARQLAR

In this chapter we discuss the algorithms we have designed for evaluating SPARQLAR

queries. We evaluate SPARQLAR queries by making use of a query rewriting algo-

rithm. A similar approach was also adopted by Huang et al. [42, 43] where they

generate a tree of queries in which each parent query is a relaxed form of its child.

Our work extends this previous work by considering queries with regular expression

patterns and also by including the concept of query approximation.

A different query evaluation approach for APPROX and RELAX has been pro-

posed in [73] where Selmer et al. describe a system that retrieves the answers of

a flexible query by incrementally constructing and navigating a non-deterministic

finite state automaton (NFA) that is the product of the query NFA and the data

graph. Our approach leverages an existing SPARQL API (Jena) and hence could

be readily modified to use other SPARQL query evaluation APIs.

We present our query rewriting algorithm in Section 5.1 and prove its soundness

and completeness in Section 5.2. We conclude by proving the termination property

of the algorithm in Section 5.3.

5.1 Rewriting Algorithm

Our query rewriting algorithm (see Algorithm 3 below) starts by considering the

query Q0, which returns the exact answers to the user’s query Q, i.e. ignoring any

occurrences of the APPROX and RELAX operators in Q. To keep track of which
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triple patterns need to be relaxed or approximated, we label such triple patterns

with A for approximation and R for relaxation.

In Algorithm 3, the function toCQS (“to conjunctive query set”) takes as input

a query QAR, and returns a set of pairs 〈Qi, 0〉 such that
⋃
iJQiKG = JQARKG and

no Qi contains the UNION operator. The function toCQS exploits the following

equalities:

J(Q1 UNION Q2) AND Q3KG =

(JQ1KG ∪ JQ2KG) 1 JQ3KG =

(JQ1KG 1 JQ3KG) ∪ (JQ2KG 1 JQ3KG) =

(JQ1 AND Q3KG) ∪ (JQ2 AND Q3KG)

We assign to the variable oldGeneration the set of queries returned by toCQS(Q0).

For each query Q in the set oldGeneration, each triple pattern 〈x, P, y〉 in Q labelled

with A (R), and each URI p that appears in P , we apply one step of approximation

(relaxation) to p, and we assign the cost of applying that approximation (relax-

ation) to the resulting query. The applyApprox and applyRelax functions invoked

by Algorithm 3 are shown as Algorithms 4 and 6, respectively. From each query

constructed in this way, we next generate a new set of queries by applying a second

step of approximation or relaxation. We continue to generate queries iteratively in

this way. The cost of each query generated is the summed cost of the sequence of

approximations or relaxations that have generated it. If the same query is generated

more than once, only the one with the lowest cost is retained. Moreover, the set of

queries generated is kept sorted by increasing cost. For practical reasons, we limit

the number of queries generated by bounding the cost of queries up to a maximum

value c.

In Algorithm 3, the addTo function takes two arguments: the first is a collection

C of query/cost pairs, while the second is a single query/cost pair 〈Q, c〉. The

operator adds 〈Q, c〉 to C. If C already contains a pair 〈Q, c′〉 such that c′ ≥ c, then

〈Q, c′〉 is replaced by 〈Q, c〉 in C.

To compute the query answers (see Algorithm 2) we apply an evaluation function,

eval, to each query generated by the rewriting algorithm (in order of increasing cost
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of the queries) and to each mapping returned by eval we assign the cost of the query.

If we generate a particular mapping more than once, only the one with the lowest

cost is retained. In Algorithm 2, rewrite denotes the query rewriting algorithm (i.e.

Algorithm 3) and the set of mappings M is maintained in order of increasing cost.

Algorithm 2: Flexible Query Evaluation

input : Query Q; approx/relax max cost c; Graph G; Ontology K.
output: List M of mapping/cost pairs, sorted by cost.
M := ∅;
foreach 〈Q′, cost〉 ∈ rewrite(Q,c,K) do

foreach 〈µ, 0〉 ∈ eval(Q′,G) do
M := M ∪ {〈µ, cost〉}

return M;

.

Algorithm 3: Rewriting algorithm

input : Query QAR; approx/relax max cost c; Ontology K.
output: List of query/cost pairs, sorted by cost.
Q0 := remove the APPROX and RELAX operators, and the label triple
patterns of QAR;
queries := toCQS(Q0);
oldGeneration := toCQS(Q0);
while oldGeneration 6= ∅ do

newGeneration := ∅;
foreach 〈Q, cost〉 ∈ oldGeneration do

foreach labelled triple pattern 〈x, P, y〉 in Q do
rew := ∅;
if 〈x, P, y〉 is labelled with A then

rew := applyApprox(Q,〈x, P, y〉);
else if 〈x, P, y〉 is labelled with R then

rew := applyRelax(Q,〈x, P, y〉,K);

foreach 〈Q′, cost′〉 ∈ rew do
if cost+ cost′ ≤ c then

addTo(newGeneration, 〈Q′, cost+ cost′〉);
addTo(queries, 〈Q′, cost+ cost′〉) ; /* The elements of

newGeneration and queries are also kept sorted by

increasing cost. */

oldGeneration := newGeneration;

return queries;
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Algorithm 4: applyApprox

input : Query Q; triple pattern 〈x, P, y〉A.
output: Set S of query/cost pairs.
S := ∅;
foreach 〈P ′, cost〉 ∈ approxRegex(P ) do

Q′ := replace 〈x, P, y〉A by 〈x, P ′, y〉A in Q;
S := S ∪ {〈Q′, cost〉};

return S;

. . .

Algorithm 5: approxRegex

input : Regular Expression P .
output: Set T of RegEx/cost pairs.
T := ∅;
if P = or P = ε then

return T ;

else if P = p where p is a URI then
T := T ∪ {〈ε, costd〉};
T := T ∪ {〈 , costs〉};
T := T ∪ {〈 /p, costi〉};
T := T ∪ {〈p/ , costi〉};

else if P = P1/P2 then
foreach 〈P ′, cost〉 ∈ approxRegex(P1) do

T := T ∪ {〈P ′/P2, cost〉};
foreach 〈P ′, cost〉 ∈ approxRegex(P2) do

T := T ∪ {〈P1/P
′, cost〉};

else if P = P1|P2 then
foreach 〈P ′, cost〉 ∈ approxRegex(P1) do

T := T ∪ {〈P ′, cost〉};
foreach 〈P ′, cost〉 ∈ approxRegex(P2) do

T := T ∪ {〈P ′, cost〉};

else if P = P ∗1 then
foreach 〈P ′, cost〉 ∈ approxRegex(P1) do

T := T ∪ {〈(P ∗1 )/P ′/(P ∗1 ), cost〉};

return T;

The applyApprox (Algorithm 4) and applyRelax (Algorithm 6) functions invoke

the functions approxRegex (Algorithm 5) and replaceTriplePattern (Algorithm 7),
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Algorithm 6: applyRelax

input : Query Q; triple pattern 〈x, P, y〉R of Q; Ontology K.
output: Set S of query/cost pairs.
S := ∅;
foreach 〈〈x′, P ′, y′〉R, cost〉 ∈ relaxTriplePattern(〈x, P, y〉, K) do

Q′ := replace 〈x, P, y〉R by 〈x′, P ′, y′〉R in Q;
S := S ∪ {〈Q′, cost〉};

return S;

respectively. In Algorithm 7, z, z1 and z2 are fresh new variables. The relax-

TriplePattern function might generate regular expressions containing a URI type−,

which are matched to edges in E by reversing the subject and the object and using

the property label type. The predicate type− is generated when we apply rule 6 of

Figure 3.1 to a triple pattern. Given a triple pattern 〈x, a, y〉 where x is a constant

and is y a variable, and an ontology statement 〈a, range, d〉, we can deduce the triple

pattern 〈y, type, d〉. If instead the predicate a appears in a triple pattern containing a

regular expression such as 〈x, a/b, z〉 (which is equivalent to 〈x, a, y〉 AND 〈y, b, z〉),

then we cannot simply replace it with 〈y, type, d〉 as the regular expression would

be broken apart and two triple patterns would result. By using 〈d, type−, y〉, we

correctly construct the triple pattern 〈d, type−/b, z〉.

In the following example, we illustrate how the rewriting algorithm works by

showing the queries it generates, starting from a SPARQLAR query.

Example 5.1. Consider the following ontology K (satisfying K = extRed(K)),

which is a fragment of the YAGO knowledge base:

K =({happenedIn, placedIn,Event},

{〈happenedIn, sp, placedIn〉,

〈happenedIn, dom,Event〉})

Suppose a user wishes to find every event which took place in London on 15th

September 1940 and poses the following query Q:

APPROX(x, happenedOnDate, “15/09/1940”)

AND RELAX(x, happenedIn, “London”).
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Algorithm 7: relaxTriplePattern

input : Triple pattern 〈x, P, y〉; Ontology K.
output: Set T of triple pattern/cost pairs.
T := ∅;
if P = p where p is a URI then

foreach p′ such that ∃(p, sp, p′) ∈ EK do
T := T ∪ {〈〈x, p′, y〉, cost2〉};

foreach b such that ∃(a, sc, b) ∈ EK and p = type and y = a do
T := T ∪ {〈〈x, type, b〉, cost4〉};

foreach b such that ∃(a, sc, b) ∈ EK and p = type− and x = a do
T := T ∪ {〈〈b, type−, y〉, cost4〉};

foreach a such that ∃(p, dom, a) ∈ EK and y is a URI or a Literal do
T := T ∪ {〈〈x, type, a〉, cost5〉};

foreach a such that ∃(p, range, a) ∈ EK and x is a URI do
T := T ∪ {〈〈a, type−, y〉, cost6〉};

else if P = P1/P2 then
foreach 〈〈x′, P ′, z〉, cost〉 ∈ relaxTriplePattern(〈x, P1, z〉) do

T := T ∪ {〈〈x′, P ′/P2, y〉, cost〉};
foreach 〈〈z, P ′, y′〉, cost〉 ∈ relaxTriplePattern(〈z, P2, y〉) do

T := T ∪ {〈〈x, P1/P
′, y′〉, cost〉};

else if P = P1|P2 then
foreach 〈〈x′, P ′, y′〉, cost〉 ∈ relaxTriplePattern(〈x, P1, y〉) do

T := T ∪ {〈〈x′, P ′, y′〉, cost〉};
foreach 〈〈x′, P ′, y′〉, cost〉 ∈ relaxTriplePattern(〈x, P2, y〉) do

T := T ∪ {〈〈x′, P ′, y′〉, cost〉};

else if P = P ∗1 then
foreach 〈〈z1, P

′, z2〉, cost〉 ∈ relaxTriplePattern((〈z1, P1, z2〉) do
T := T ∪ {〈〈x, P ∗1 /P ′/P ∗1 , y〉, cost〉};

foreach 〈〈x′, P ′, z〉, cost〉 ∈ relaxTriplePattern((〈x, P1, z〉) do
T := T ∪ {〈〈x′, P ′/P ∗1 , y〉, cost〉};

foreach 〈〈z, P ′, y′〉, cost〉 ∈ relaxTriplePattern((〈z, P1, y〉) do
T := T ∪ {〈〈x, P ∗1 /P ′, y′〉, cost〉};

return T;

Without applying APPROX or RELAX this query does not return any answers

when evaluated on the YAGO endpoint (because “happenedIn” connects to URIs

representing places and “London” is a literal, not a URI). After the first step of

approximation and relaxation, the following queries are generated:
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Q1 = (x, ε, “15/09/1940”)A AND (x, happenedIn, “London”)R

Q2 = (x, happenedOnDate/ , “15/09/1940”)A AND (x, happenedIn, “London”)R

Q3 = (x, /happenedOnDate, “15/09/1940”)A AND (x, happenedIn, “London”)R

Q4 = (x, , “12/12/12”)A AND (x, happenedIn, “London”)R

Q5 = (x, happenedOnDate, “15/09/1940”)A AND (x, placedIn, “London”)R

Q6 = (x, happenedOnDate, “15/09/1940”)A AND (x, type, Event)R

All of these also return empty results, with the exception of query Q6 which returns

every event occurring on 15/09/1940 (YAGO contains only one such event, namely

“Battle of Britain”).

5.2 Soundness and Completenesss

We now discuss the soundness, completeness and termination of our rewriting algo-

rithm. As we stated earlier, the algorithm takes as one of its inputs a cost that limits

the number of queries generated. Therefore the classic definitions of soundness and

completeness need to be modified. Given an initial query Q we denote by rew(Q)c

the set of queries generated by the rewriting algorithm whose answers have cost less

than or equal to c.

Definition 5.1 (Soundness). The rewriting of Q, rew(Q)c, is sound if the following

holds:
⋃
Q′∈rew(Q)c

JQ′KG,K ⊆ JQKG,K,c for every graph G and ontology K.

Definition 5.2 (Completeness). The rewriting of Q, rew(Q)c, is complete if the

following holds: JQKG,K,c ⊆
⋃
Q′∈rew(Q)c

JQ′KG,K for every graph G and ontology K.

To show the soundness and completeness of the query rewriting algorithm (in

Theorem 5.1), we first require two lemmas and a corollary:

Lemma 5.1. Given four sets of evaluation results M1, M2, M ′
1 and M ′

2 such that

M1 ⊆M ′
1 and M2 ⊆M ′

2, it holds that:

M1 ∪M2 ⊆M ′
1 ∪M ′

2 (5.2.1)

M1 1M2 ⊆M ′
1 1M ′

2 (5.2.2)
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Proof. 5.2.1: From the definition of union, it follows that M ′
1 ∪M ′

2 contains every

mapping from M1 and M2, and therefore the statement holds.

5.2.2: From the definition of join, M1 1M2 contains a mapping µ1∪µ2 for every

pair of compatible mappings 〈µ1, cost1〉 ∈ M1 and 〈µ2, cost2〉 ∈ M2. Since M ′
1 and

M ′
2 also contain µ1 and µ2, respectively, then M ′

1 1M ′
2 will contain µ1 ∪ µ2.

The following result follows from Lemma 5.1:

Corollary 5.1. Given four sets of evaluation results M1, M2, M ′
1 and M ′

2 such that

M1 = M ′
1 and M2 = M ′

2, it holds that:

M1 ∪M2 = M ′
1 ∪M ′

2 (5.2.3)

M1 1M2 = M ′
1 1M ′

2 (5.2.4)

Lemma 5.2. Given SPARQLAR queries Q1 and Q2, graph G, ontology K and cost

c, the following equations hold:

CostProj((JQ1KG,K 1 JQ2KG,K), c) = CostProj((JQ1KG,K,c 1 JQ2KG,K,c), c)

CostProj((JQ1KG,K ∪ JQ2KG,K), c) = JQ1KG,K,c ∪ JQ2KG,K,c

Proof. Considering the right hand side (RHS) of the first equation, we know that

each pair 〈µ, cost〉 in the RHS has cost ≤ c and is equal to 〈µ1, cost1〉 1 〈µ2, cost2〉,

where cost1 ≤ c, cost2 ≤ c, 〈µ1, cost1〉 ∈ JQ1KG,K and 〈µ2, cost2〉 ∈ JQ2KG,K . There-

fore, the pair 〈µ, cost〉 must also be contained in the left hand side (LHS) of the

equation. Conversely, for each pair 〈µ, cost〉 in the LHS, we know that cost ≤ c and

that there must exist a pair 〈µ1, cost1〉 ∈ JQ1KG,K and a pair 〈µ2, cost2〉 ∈ JQ2KG,K

such that 〈µ1, cost1〉 1 〈µ2, cost2〉 = 〈µ, cost〉. Moreover, since cost = cost1 + cost2

we know that cost1 ≤ c and cost2 ≤ c. Therefore, we can conclude that 〈µ, cost〉

must also be contained in the RHS of the equation.

For the second equation it is easy to verify that every evaluation pair 〈µ, cost〉

is in CostProj(JQ1KG,K ∪ JQ2KG,K , c) if and only if it is contained either in JQ1KG,K,c

or in JQ2KG,K,c, or in both.
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We also define the following operator addCost which increments the cost of a set

of mappings by i:

addCost(JQKG,K , i) = {〈µ, c+ i〉 | 〈µ, c〉 ∈ JQKG,K}

Theorem 5.1. The Rewriting Algorithm is sound and complete.

Proof. For ease of reading, in this proof we will replace the operators APPROX and

RELAX with A and R respectively and will denote with A/R(t) that we are applying

either APPROX or RELAX to a triple pattern t. We divide the proof into three

parts: (1) The first part shows that for c ≥ 0 and relaxed or approximated triple

patterns of the form 〈x, p, y〉, the algorithm is sound and complete. (2) The second

part of the proof shows that the algorithm is sound and complete for approximated

and relaxed triple patterns containing any regular expression. (3) Finally, we show

that the algorithm is sound and complete for general queries Q, i.e. we show that

the following holds for any query Q, graph G and ontology K:

JQKG,K,c ⊆
⋃
Q′∈rew(Q)c

JQ′KG,K ⊆ JQKG,K,c

(1) In this first part we show that for any triple pattern 〈x, p, y〉 and cost c ≥ 0

the following holds:

JA/R(x, p, y)KG,K,c =
⋃
t′∈rew(A/R(x,p,y))c

Jt′KG,K

We show this by induction on the cost c. For the base case of c = 0 we need to show

that:

JA/R(x, p, y)KG,K,0 =
⋃

t′∈rew(A/R(x,p,y))0

Jt′KG,K (5.2.5)

On the LHS, since the costs of applying APPROX and RELAX have cost greater

than zero, the CostProj operator in the definition of JA/R(x, p, y)KG,K,0 (see Section

3.3) will only return the exact answers of the query, in other words it will exclude

the answers generated by the APPROX and RELAX operators. On the RHS, the

rewriting algorithm will not return queries with associated cost greater than 0 and

therefore will just return the original query unchanged. This, when evaluated, will

therefore also return the exact answers of the query. So 5.2.5 holds.
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When c is greater than 0 we consider the two different cases, one for APPROX

and the other for RELAX:

(a) Approximation. For approximation, we show the following by induction on

the cost c:

JA(x, p, y)KG,K,c =
⋃

t′∈rew(A(x,p,y))c

Jt′KG,K (5.2.6)

The induction hypothesis is that 5.2.6 holds for c = iα+jβ+kγ for all i, j, k ≥ 0,

where α, β, γ are the cost of the insertion, deletion and substitution edit operations,

respectively. We have already shown the base case of i = j = k = 0. We now show

that 5.2.6 is true when one of, i, j or k is incremented by 1.

Considering the RHS of Equation 5.2.6, when we apply one step of approximation

to a triple pattern the algorithm generates a set of triple patterns, that will be

recursively rewritten by the algorithm. Therefore, by applying every possible edit

operation to the original triple pattern (x, p, y), we have that1:

⋃
t′∈rew(A(x,p,y))c

Jt′KG,K = J〈x, p, y〉KG,K∪

addCost(
⋃

t′∈rew(A(x, /p,y))c−α

Jt′KG,K , α)∪

addCost(
⋃

t′∈rew(A(x,p/ ,y))c−α

Jt′KG,K , α)∪

addCost(
⋃

t′∈rew(A(x,ε,y))c−β

Jt′KG,K , β)∪

addCost(
⋃

t′∈rew(A(x, ,y))c−γ

Jt′KG,K , γ)

Considering the LHS of Equation 5.2.6, by the semantics of approximation (see

Section 3.2.1), we have that:

1On the RHS, addCost is incrementing the cost of the evaluation by the cost of the edit operation

being applied.
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JA(x, p, y)KG,K,c = J〈x, p, y〉KG,K∪

addCost(JA(x, /p, y)KG,K,c−α, α)∪

addCost(JA(x, p/ , y)KG,K,c−α, α)∪

addCost(JA(x, ε, y)KG,K,c−β, β)∪

addCost(JA(x, , y)KG,K,c−γ, γ))

Combining the last two into a single equation, we therefore need to show that:

J〈x, p, y〉KG,K∪

addCost(
⋃
t′∈rew(A(x, /p,y))c−α

Jt′KG,K , α)∪

addCost(
⋃
t′∈rew(A(x,p/ ,y))c−α

Jt′KG,K , α)∪

addCost(
⋃
t′∈rew(A(x,ε,y))c−β

Jt′KG,K , β)∪

addCost(
⋃
t′∈rew(A(x, ,y))c−γ

Jt′KG,K , γ)

=

J〈x, p, y〉KG,K∪

addCost(JA(x, /p, y)KG,K,c−α, α)∪

addCost(JA(x, p/ , y)KG,K,c−α, α)∪

addCost(JA(x, ε, y)KG,K,c−β, β)∪

addCost(JA(x, , y)KG,K,c−γ, γ))

Given Corollary 5.1 and dropping the addCost functions, it is sufficient to show

that all the following equations hold individually:

J〈x, p, y〉KG,K = J〈x, p, y〉KG,K (5.2.7)⋃
t′∈rew(A(x, /p,y))c−α

Jt′KG,K = JA(x, /p, y)KG,K,c−α (5.2.8)

⋃
t′∈rew(A(x,p/ ,y))c−α

Jt′KG,K = JA(x, p/ , y)KG,K,c−α (5.2.9)

⋃
t′∈rew(A(x,ε,y))c−β

Jt′KG,K = JA(x, ε, y)KG,K,c−β (5.2.10)
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⋃
t′∈rew(A(x, ,y))c−γ

Jt′KG,K = JA(x, , y)KG,K,c−γ (5.2.11)

Equation 5.2.7 is trivially true. Equations 5.2.10 and 5.2.11 hold since on the

LHS, rew(A(x, ε, y))c−β and rew(A(x, , y))c−γ contain only (x, ε, y) and (x, , y) re-

spectively, for any c−β, c−γ ≥ 0, and on the RHS, by the semantics of approxima-

tion, we know that JA(x, ε, y)KG,K = Jx, ε, yKG,K and JA(x, , y)KG,K = Jx, , yKG,K .

For Equation 5.2.8, considering the semantics of approximation with concatena-

tion of paths, the LHS of the equation can be rewritten in the following way since

we know that we will not apply any step of approximation to A(x, , z):

(J〈x, , z〉KG,K) 1 (
⋃
t′∈rew(A(z,p,y))c−α

Jt′KG,K)

Applying Lemma 5.2 we can rewrite the RHS of 5.2.8 to:

CostProj((JA(x, , z)KG,K,c−α 1 JA(z, p, y)KG,K,c−α), c− α)

It is possible to drop the outer CostProj since the query JA(x, , z)KG,K,c−α returns

only mappings with associated cost 0, obtaining:

JA(x, , z)KG,K,c−α 1 JA(z, p, y)KG,K,c−α

Therefore we need to show that the following holds:

(J〈x, , z〉KG,K) 1 (
⋃
t′∈rew(A(z,p,y))c−α

Jt′KG,K) = JA(x, , z)KG,K,c−α 1

JA(z, p, y)KG,K,c−α

Given Corollary 5.1 it is sufficient to show that:

J〈x, , z〉KG,K = JA(x, , z)KG,K,c−α (5.2.12)⋃
t′∈rew(A(z,p,y))c−α

Jt′KG,K = JA(z, p, y)KG,K,c−α (5.2.13)

Equation 5.2.12 holds by similar reasoning to Equation 5.2.11. Equation 5.2.13 holds

by the induction hypothesis.

Equation 5.2.9 can be shown to hold by similar reasoning to Equation 5.2.8. We

conclude that Equation 5.2.6 holds for every c ≥ 0.
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(b) Relaxation. For relaxation, we show the following by induction on the cost

c:

JR(x, p, y)KG,K,c =
⋃

t′∈rew(R(x,p,y))c

Jt′KG,K (5.2.14)

The induction hypothesis is that 5.2.14 holds for c = iα + jβ + kγ + lδ for all

i, j, k, l ≥ 0, where α, β, γ, δ are the costs of the four relaxation operations arising

from rules 2, 4, 5 and 6, respectively, of Figure 3.1. We have already shown the base

case of i = j = k = l = 0. We now show that 5.2.14 holds when one of, i, j, k or

l is incremented by 1. Similarly to the reasoning for approximation in part (a), we

need to show the following, where isp(p) is a function that returns all the immediate

super properties of p, and isc(c) is a function that returns all the immediate super

classes of c2:

J〈x, p, y〉KG,K∪⋃
p′∈isp(p)JR(x, p′, y)KG,K,c−α∪⋃
a∈isc(y)JR(x, type, a)KG,K,c−β∪⋃
a∈isc(x)JR(a, type−, y)KG,K,c−β∪

JR(x, type, a)KG,K,c−γ∪

JR(a, type−, y)KG,K,c−δ

=

J〈x, p, y〉KG,K∪⋃
p′∈isp(p)(

⋃
t′∈rew(R(x,p′,y))c−α

Jt′KG,K)∪⋃
a∈isc(y)(

⋃
t′∈rew(R(x,type,a))c−β

Jt′KG,K)∪⋃
a∈isc(x)(

⋃
t′∈rew(R(a,type−,y))c−β

Jt′KG,K)∪⋃
t′∈rew(R(x,type,a))c−γ

Jt′KG,K∪⋃
t′∈rew(R(a,type−,y))c−δ

Jt′KG,K

Given Corollary 5.1 it is sufficient to show that the following equations hold indi-

vidually:

2Here we apply rule 4 only if p is type and x is a constant, or p is type− y is a constant. Also

we apply rule 5 only if y is a constant, and we apply rule 6 only if x is a constant.
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J〈x, p, y〉KG,K = J〈x, p, y〉KG,K (5.2.15)⋃
p′∈isp(p)

JR(x, p′, y)KG,K,c−α =
⋃

p′∈isp(p)

(
⋃

t′∈rew(R(x,p′,y))c−α

Jt′KG,K) (5.2.16)

⋃
a∈isc(y)

JR(x, type, a)KG,K,c−β =
⋃

a∈isc(y)

(
⋃

t′∈rew(R(x,type,a))c−β

Jt′KG,K) (5.2.17)

⋃
a∈isc(x)

JR(a, type−, y)KG,K,c−β
⋃

a∈isc(x)

(
⋃

t′∈rew(R(a,type−,y))c−β

Jt′KG,K) (5.2.18)

JR(x, type, a)KG,K,c−γ =
⋃

t′∈rew(R(x,type,a))c−γ

Jt′KG,K (5.2.19)

JR(a, type−, y)KG,K,c−δ =
⋃

t′∈rew(R(a,type−,y))c−δ

Jt′KG,K (5.2.20)

Equation 5.2.15 is trivially true. Equations (5.2.16-5.2.20) can be rewritten as

the general case of the induction hypothesis for some c ≥ 0. Therefore equations

(5.2.16-5.2.20) hold by the induction hypothesis. We conclude that Equation 5.2.14

holds for every c ≥ 0.

(2) Now we need to show that approxRegex and relaxTriplePattern are sound and

complete for triple patterns containing any regular expression. In part (1) we have

demonstrated soundness and completeness for triple patterns containing a single

predicate, p:

JA/R(x, p, y)KG,K,c =
⋃
t′∈rew(A/R(x,p,y))c

Jt′KG,K

This is our base case. We now show soundness and completeness by structural

induction, considering the three different operators used to construct a regular ex-

pression: concatenation, disjunction and Kleene-Closure.

(a) Concatenation. The induction hypothesis is that the following equations

hold for any regular expressions P1 and P2:

JA/R(x, P1, y)KG,K,c =
⋃

t′∈rew(A/R(x,P1,y))c

Jt′KG,K (5.2.21)

JA/R(x, P2, y)KG,K,c =
⋃

t′∈rew(A/R(x,P2,y))c

Jt′KG,K (5.2.22)
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We now show that the following holds:

JA/R(x, P1/P2, y)KG,K,c =
⋃

t′∈rew(A/R(x,P1/P2,y))c

Jt′KG,K (5.2.23)

When the approxRegex and relaxTriplePattern functions are passed as input

a triple pattern of the form A/R(x, P1/P2, y), this is split into two triple patterns:

A/R(x, P1, z) and A/R(z, P2, y). Both of these triple patterns are passed recursively

to the approxRegex and relaxTriplePattern functions which return two sets of triple

patterns that will be joined with the AND operator. Therefore the RHS of Equation

5.2.23 can be written in the following way:

CostProj(
⋃
t′∈rew(A/R(x,P1,z))c

Jt′KG,K 1
⋃
t′∈rew(A/R(z,P2,y))c

Jt′KG,K , c)

Given the semantics of approximation and relaxation with concatenation of

paths, the LHS of Equation 5.2.23 can be written as follows:

CostProj(JA/R(x, P1, z)KG,K 1 JA/R(z, P2, y)KG,K), c)

which by Lemma 5.2 is equal to:

CostProj(JA/R(x, P1, z)KG,K,c 1 JA/R(z, P2, y)KG,K,c, c)

We therefore need to show that:

CostProj(JA/R(x, P1, z)KG,K,c 1 JA/R(z, P2, y)KG,K,c, c) =

CostProj(
⋃
t′∈rew(A/R(x,P1,z))c

Jt′KG,K 1
⋃
t′∈rew(A/R(z,P2,y))c

Jt′KG,K , c)

Dropping the outer CostProj operators on both sides of the above equation and

applying Corollary 5.1, it is sufficient to show that the following equations hold

individually:

JA/R(x, P1, z)KG,K,c =
⋃
t′∈rew(A/R(x,P1,z))c

Jt′KG,K

JA/R(z, P2, y)KG,K,c =
⋃
t′∈rew(A/R(z,P2,y))c

Jt′KG,K

These equations hold by the induction hypothesis. Therefore Equation 5.2.23

holds.
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(b) Disjunction. Similarly to concatenation, our induction hypothesis is that

Equations 5.2.21 and 5.2.22 hold for any regular expressions P1 and P2. We now

show that the following equation holds:

JA/R(x, P1|P2, y)KG,K,c =
⋃

t′∈rew(A/R(x,P1|P2,y))c

Jt′KG,K (5.2.24)

When the approxRegex and relaxTriplePattern functions are passed as input

a triple pattern of the form A/R(x, P1|P2, y), this is split into two triple patterns:

A/R(x, P1, y) and A/R(x, P2, y). Both of these triple patterns are passed recursively

to the approxRegex and relaxTriplePattern functions which will return two sets of

triple patterns that will be combined with the UNION operator. Therefore the RHS

of Equation 5.2.24 can be written as follows:⋃
t′∈rew(A/R(x,P1,y))c

Jt′KG,K ∪
⋃
t′∈rew(A/R(x,P2,y))c

Jt′KG,K

Given the semantics of approximation and relaxation with disjunction of paths,

we can write the LHS of Equation 5.2.24 as follows:

CostProj(JA/R(x, P1, y)KG,K ∪ JA/R(x, P2, y)KG,K , c)

which by Lemma 5.2 is equal to:

JA/R(x, P1, y)KG,K,c ∪ JA/R(x, P2, y)KG,K,c

We therefore need to show that:

JA/R(x, P1, y)KG,K,c ∪ JA/R(x, P2, y)KG,K,c =⋃
t′∈rew(A/R(x,P1,y))c

Jt′KG,K ∪
⋃
t′∈rew(A/R(x,P2,y))c

Jt′KG,K

By Corollary 5.1 it is sufficient to show that:

JA/R(x, P1, y)KG,K,c =
⋃
t′∈rew(A/R(x,P1,y))c

Jt′KG,K

JA/R(x, P2, y)KG,K,c =
⋃
t′∈rew(A/R(x,P2,y))c

Jt′KG,K

These equations hold by the induction hypothesis. Therefore Equation 5.2.24 holds.
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(c) Kleene-Closure. Our induction hypothesis in this case is that

JA/R(x, P n, y)KG,K,c =
⋃
t′∈rew(A/R(x,Pn,y))c

Jt′KG,K

for any regular expression P and any n ≥ 0, where P n denotes the regular expression

P/P/ . . . /P in which P appears n times. For the base case of n = 0, where P n = ε,

the equation is trivially true since rew(A(x, ε, y))c contains only the query (x, ε, y).

We now show that the following holds:

JA/R(x, P n+1, y)KG,K,c =
⋃

t′∈rew(A/R(x,Pn+1,y))c

Jt′KG,K (5.2.25)

The approxRegex function rewrites an approximated triple pattern containing the

property path P n+1 in the following way: A(x, P i/P/P j, y) for arbitrarily chosen

i, j satisfying i + j = n. It then splits this into three triple patterns, A(x, P i, z1),

A(z1, P, z2) and A(z2, P
j, y). Therefore, for approximation, the RHS of 5.2.25 be-

comes:

CostProj(
⋃

t′∈rew(A(x,P i,z1))c

Jt′KG,K 1

⋃
t′∈rew(A(z1,P,z2))c

Jt′KG,K 1

⋃
t′∈rew(A(z2,P j ,y))c

Jt′KG,K , c)

(5.2.26)

The CostProj operator here captures the behaviour of the rewriting algorithm

that excludes queries with associated cost greater than c.

Knowing that L(P i/P/P j) = L(P n+1) and by the semantics of approximation

with concatenation of paths, we can write the LHS of 5.2.25 as:

CostProj(JA(x, P i, z1)KG,K 1 JA(z1, P, z2)KG,K 1 JA(z2, P
j, y)KG,K , c)

Applying Lemma 5.2, this can be further rewritten as:

CostProj(JA(x, P i, z1)KG,K,c 1

JA(z1, P, z2)KG,K,c 1

JA(z2, P
j, y)KG,K,c, c)

(5.2.27)
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Combining 5.2.27 and 5.2.26 and removing the outer CostProj operator on both

hand sides we therefore need to show that:

JA(x, P i, z1)KG,K,c 1 JA(z1, P, z2)KG,K,c 1 JA(z2, P
j, y)KG,K,c =⋃

t′∈rew(A(x,P i,z1))c
Jt′KG,K 1

⋃
t′∈rew(A(z1,P,z2))c

Jt′KG,K 1
⋃
t′∈rew(A(z2,P j ,y))c

Jt′KG,K

By Corollary 5.1 it is sufficient to show that the following equations hold indi-

vidually:

JA(x, P i, z1)KG,K,c =
⋃

t′∈rew(A(x,P i,z1))c

Jt′KG,K (5.2.28)

JA(z1, P, z2)KG,K,c =
⋃

t′∈rew(A(z1,P,z2))c

Jt′KG,K (5.2.29)

JA(z2, P
j, y)KG,K,c =

⋃
t′∈rew(A(z2,P j ,y))c

Jt′KG,K (5.2.30)

Equations (5.2.28,5.2.29,5.2.30) hold by the induction hypothesis since i and j are

both less than or equal to n; therefore Equation 5.2.25 holds.

The same reasoning applies for the relaxTriplePattern function applied to a re-

laxed triple pattern containing the property path P n+1 on the RHS of 5.2.25, with

the difference that it rewrites the triple pattern in 3 different ways: R(x, P i/P/P j, y)

(for arbitrarily chosen i, j satisfying i+ j = n, i > 0 and j > 0), R(x, P/P n, y) and

R(x, P n/P, y). It is possible to apply the same steps of the proof as for approxRegex,

noticing that L(P i/P/P j) = L(P/P n) = L(P n/P ).

(3) General queries. We now show that the algorithm is sound and complete

for any query that may contain approximation and relaxation. As the base case we

have the case of a query comprising a single triple pattern, which has been shown

in part (2) of the proof:

JA/R(x, P, y)KG,K,c =
⋃
t′∈rew(A/R(x,P,y))c

Jt′KG,K

Consider now a query Q = t AND Q′ with t being an arbitrary triple pattern of the

query Q. The induction hypothesis is that:

JQ′KG,K,c =
⋃

Q′′∈rew(Q′)c

JQ′′KG,K (5.2.31)
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We now show that the following holds.

JQKG,K,c =
⋃

Q′′∈rew(Q)c

JQ′′KG,K (5.2.32)

The LHS of Equation 5.2.32 is equivalent to the following by the semantics of the

AND operator:

CostProj(JtKG,K 1 JQ′KG,K , c)

Applying Lemma 5.2 we can rewrite this as follows:

CostProj(JtKG,K,c 1 JQ′KG,K,c, c) (5.2.33)

For the RHS of Equation 5.2.32 we have to consider two different cases: (a) t is

a simple triple pattern, or (b) t contains the RELAX or APPROX operators.

(a) We can rewrite the RHS of Equation 5.2.32 to:

JtKG,K 1
⋃

Q′′∈rew(Q′)c

JQ′′KG,K (5.2.34)

Combining 5.2.33 and 5.2.34 we need to show that:

CostProj(JtKG,K,c 1 JQ′KG,K,c, c) = JtKG,K 1
⋃
Q′′∈rew(Q′)c

JQ′′KG,K

On the LHS, we are able to drop the outer CostProj operator and also the

CostProj applied to the triple pattern t since JtKG,K only returns mappings with

cost 0. The resulting equation is as follows:

JtKG,K 1 JQ′KG,K,c = JtKG,K 1
⋃
Q′′∈rew(Q′)c

JQ′′KG,K

Applying Corollary 5.1 it is sufficient to show that the following equations hold

individually:

JtKG,K = JtKG,K (5.2.35)

JQ′KG,K,c =
⋃

Q′′∈rew(Q′)c

JQ′′KG,K (5.2.36)

Equation 5.2.35 is trivially true and Equation 5.2.36 holds by the induction hypoth-

esis. Therefore Equation 5.2.32 holds in the case of t being a simple triple pattern.
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(b) If t contains the APPROX or RELAX operators then the RHS of 5.2.32 is

equal to:

CostProj(
⋃
t′∈rew(t)c

Jt′KG,K 1
⋃
Q′′∈rew(Q′)c

JQ′′KG,K , c)

(We have added the CostProj operator on the equation in order to capture

the behaviour of the rewriting algorithm that excludes queries with associated cost

greater than c). Therefore, combining this with 5.2.33, we need to show that:

CostProj(JtKG,K,c 1 JQ′KG,K,c, c) =

CostProj((
⋃
t′∈rew(t)c

Jt′KG,K) 1 (
⋃
Q′′∈rew(Q′)c

JQ′′KG,K), c)

Removing the CostProj from both hand sides of the equation and applying Corol-

lary 5.1, it is sufficient to show that the following equations hold individually:

JtKG,K,c =
⋃

t′∈rew(t)c

Jt′KG,K (5.2.37)

JQ′KG,K,c =
⋃

Q′′∈rew(Q′)c

JQ′′KG,K (5.2.38)

Equation 5.2.37 holds since approxRegex and relaxTriplePattern are sound and

complete as shown in step (2) of the proof. Equation 5.2.38 holds by the induction

hypothesis. Therefore Equation 5.2.32 holds in the case of t containing the APPROX

and RELAX operators.

5.3 Termination

We now show that the rewriting algorithm terminates after a finite number of steps.

Moreover, by supplying a maximum cost parameter to the rewriting algorithm, we

can predict the number of iterations needed to generate all the queries up to that

cost:

Theorem 5.2. Given a query Q, ontology K and maximum query cost c, the

rewriting algorithm terminates after at most dc/c′e iterations, where c′ is the lowest

cost of an edit or relaxation operation, assuming that c′ > 0.
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Proof. The rewriting algorithm terminates when the set oldGeneration is empty.

At the end of each cycle, oldGeneration is assigned the value of newGeneration.

During each cycle, elements are added to newGeneration only when new queries

are generated and have cost less than c, or already generated queries are generated

again at a lesser cost than before (also less than c).

On each cycle of the algorithm, each query generated by applyApprox or ap-

plyRelax has cost at least c′ plus the cost of the query from which it is generated.

Since we start from query Q0 which has cost 0, every query generated during the

nth cycle will have cost greater than or equal to n · c′. When n · c′ > c the algorithm

will not add any queries to newGeneration. Therefore, the algorithm will stop after

at most dc/c′e iterations.

5.4 Discussion

We have presented an algorithm based on query rewriting that evaluates SPARQLAR

queries. We have proved that our query rewriting algorithm is correct and complete

with respect to the semantics of SPARQLAR queries up to a certain cost, and that

it terminates after a finite number of steps.

Our approach differs from those in [42, 43] as we have devised a query evalua-

tion algorithm that supports both approximation and relaxation, and our queries

are ranked with respect to the costs associated with each APPROX and RELAX

operation applied. In contrast, [42, 43] consider only query relaxation, and their

query answers are ranked based on a score which is calculated by comparing the

similarity between the generated query and the original query. In contrast to [73],

our approach makes use of the Jena API to evaluate the SPARQL queries generated

by the rewriting algorithm. Our query evaluation can therefore be modified to use

other, possibly more efficient, SPARQL APIs due to its use of this API. In contrast,

Selmer et al. developed their query evaluation implementation so that it directly

manipulates the data graph, which is stored in the Sparksee3 graph database.

In the next chapter we explore the performance of query evaluation in SPARQLAR

3http://www.sparsity-technologies.com/
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by executing three sets of queries over three datasets. We describe our implemen-

tation of SPARQLAR, present an optimisation based on a caching technique, and

show how this impacts on query evaluation performance.
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Chapter 6

Performance Study

To test the efficiency of our rewriting algorithm we have developed a prototype

that is able to execute SPARQLAR queries. This chapter begins by describing the

implementation and query processing performance of this prototype in Section 6.1.

In Section 6.2 we describe an optimisation technique based on the pre-computation

of parts of queries. In Section 6.3 we compare the query processing performance of

the SPARQLAR evaluator with and without the pre-computation optimisation by

executing a number of queries over three different datasets of varying sizes.

A different flexible query evaluation implementation can be found in [73] where

Selmer et al. describe a system to evaluate flexible queries by directly manipulating

the data graph. They present a performance study over two datasets: L4All, a

synthetic dataset that contains chronological records of learning and work episodes

of users, and the YAGO dataset which will be described later in this chapter. They

describe two optimisation techniques: a distance-aware query evaluation mode that

causes their evaluation algorithm to avoid navigating parts of the graph that might

return answers at a cost higher than the cost required; and a second optimisation

that generates multiple NFAs from queries containing the alternation operator ‖

instead of a single NFA.

Similarly to our prototype, the flexible query implementation in [42] uses the

Jena API. Their performance study uses the LUBM benchmark and they show that

they are able to return the top 150 answers efficiently. In contrast, we do not limit

the number of answers, and in our performance study we return all answers with
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associated cost up to 3. Also, for our study we use three datasets: LUBM, YAGO

and DBpedia.

6.1 Implementation

A prototype that implements the SPARQLAR query evaluation algorithms described

in the previous chapters has been implemented in Java. As shown in Figure 6.1, the

system architecture consists of three layers: the GUI layer, the System layer, and

the Data layer. The GUI layer supports user interaction with the system, allowing

queries to be submitted, costs of the edit and relaxation operators to be set, data

sets and ontologies to be selected, and query answers to be incrementally displayed

to the user. The System layer comprises three components: the Utilities, containing

classes providing the core logic of the system; the Domain Classes, providing classes

relating to the construction of SPARQLAR queries; and the Query Evaluator in

which query rewriting, optimisation and evaluation are undertaken. The Data layer

connects the system to the selected RDF dataset and ontology using the Jena API1;

Jena library methods are used to execute SPARQL queries over the RDF dataset

and to load the ontology into memory. RDF datasets are stored as a TDB database2

and RDF-Schemas can be stored in multiple RDF formats (e.g. Turtle, N-Triple,

RDF/XML).

User queries are submitted to the GUI, which invokes a method of the SPARQLAR

Parser that parses the query string and constructs an object of the class SPARQLAR

Query. The parser was built using the Java Compiler-Compiler3 tool, that generates

Java parsers from a generative grammar.

The GUI invokes the Data/Ontology Loader, which creates an object of the class

Data/Ontology Wrapper, and the Approx/Relax Constructor which creates objects

of the classes Approx and Relax. Once these objects have been initialised, they are

passed to the Query Evaluator by invoking the Rewriting Algorithm. This generates

1https://jena.apache.org
2https://jena.apache.org/documentation/tdb/.
3https://javacc.java.net/
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the set of SPARQL queries to be executed over the RDF dataset. The set of queries

is passed to the Evaluator, which interacts with the Optimiser and the Cache to

improve query performance — we discuss the Optimiser and the Cache in the next

section. The Evaluator uses the Jena Wrapper to invoke Jena library methods for

executing SPARQL queries over the RDF dataset. The Jena Wrapper also gathers

the query answers and passes them to the Answer Wrapper. Finally, the answers

are displayed by the Answers Window, in ranked order.

GUI System 

Main Window 

User queries 

Cost Setter 

Data/Ontology 

Selector 

Domain Classes 

Jena Wrapper 

SPARQLAR Parser 

Answer 

Wrapper 
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Query Evaluator 
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SPARQL 
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Jena API 

RDF Schema TDB Database 

Data 

Figure 6.1: SPARQLAR system architecture

6.2 Pre-Computation Optimisation

The rewriting algorithm defined in Section 5.1 generates in general an exponential

number of queries with respect to the size of the initial query. We propose an

optimisation technique that pre-computes parts of these queries to avoid the re-

evaluation of some sub-queries.
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Algorithm 8: MaxSet Function

input : a query Q.
output: Set of subqueries of Q, QS.
QS := ∅;
Exact := subset of triple patterns of Q that are not labelled with APPROX
or RELAX;
foreach q such that Exact ⊆ q ⊂ Q and q is connected do

QS := QS ∪ q;
return QS;

In contrast to our first version of this optimisation (see [31]) we do not explicitly

separate the query into two parts, the exact and the approx/relax part, since this

might lead to the calculation of the Cartesian product of sets of pre-computed

answers. Instead, for each queryQ generated by the rewriting algorithm, we generate

a set of queries QS.

To compute this set QS we use the MaxSet function listed in Algorithm 8. Each

query q generated by the MaxSet function contains all the triple patterns in the

original query Q that are not approximated or relaxed. It also contains triples that

are approximated or relaxed such that the following property holds: every q′ ⊆ q

contains at least one triple pattern that shares a variable with a triple from q − q′.

If a query q has this property then we say that it is connected. Therefore, when

evaluating the query q, it is never the case that given q′, q′′ ⊆ q and q′ ∪ q′′ = q, we

have that eval(q′, G) 1 eval(q′′, G) = eval(q′, G) × eval(q′′, G). In other words, we

never have to calculate the Cartesian product of two sets of query answers.

Example 6.1. Given query Q = (x1, p1, x2) AND (x1, p2, x3)A AND (x4, p3, x2)R

AND (x4, p4, x5)R, MaxSet returns the following set of subsets of triple patterns:

{{(x1, p1, x2)}, (6.2.1)

{(x1, p1, x2), (x1, p2, x3)A}, (6.2.2)

{(x1, p1, x2), (x4, p3, x2)R}, (6.2.3)

{(x1, p1, x2), (x1, p2, x3)A, (x4, p3, x2)R}, (6.2.4)

{(x1, p1, x2), (x4, p3, x2)R, (x4, p4, x5)R}} (6.2.5)

Each of these subsets contains the triple patterns that are not approximated or
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relaxed (i.e. (x1, p1, x2)). We also notice that triple pattern (x4, p4, x5)R appears

only together with (x4, p3, x2)R as these share the variable x4 and the variable x2 is

needed to connect to the exact triple pattern (x1, p1, x2).

Algorithm 9 illustrates the optimised evaluation for SPARQLAR queries using

the MaxSet function. Each query generated by the rewriting algorithm is split into

sub-queries QS by the MaxSet function. Each sub-query in QS is evaluated and

stored in a cache. We notice that if parts of a query q ∈ QS have already been

computed then we reuse these answers to compute q. To avoid memory overflow,

we place an upper limit on the size of the cache.

We compute the answers of a full query Q′ arising from the rewriting algorithm

using the newEval function which exploits the answers already computed and stored

in the cache. If parts of the query have been already computed, newEval retrieves

such answers and combines them to compute the final answers. We note that new-

Eval might need to execute parts of Q′ that are not available in the cache in order

to compute the answer. We also note that, since Algorithm 8 loops over queries

Q′ ⊂ Q, the returned set does not include Q itself.

This technique will avoid the re-computation of sub-queries, thus speeding up the

overall evaluation. In the next section we compare the performance of the rewriting

algorithm with and without the pre-computation optimisation.

Algorithm 9: Flexible Query Evaluation – Optimised

input : Query Q; approx/relax max cost c; Graph G; Ontology K.
output: List M of mapping/cost pairs, sorted by cost.
π−→w := head of Q;
cache := ∅ ; /* set of pairs of query/evaluation results */

M := ∅;
foreach 〈Q′, cost〉 ∈ rewrite(Q,c,K) do

if cache is not full then
foreach Q′′ ∈MaxSet(Q′) do

if Q′′ is not in cache then
cache := cache ∪ 〈Q′′, newEval(Q′′, cache,G)〉 ;

foreach 〈µ, 0〉 ∈ newEval(Q′, cache,G) do
M := M ∪ {〈µ, cost〉};

return π−→w (M);
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6.3 Query Performance Study

For our query performance study we use three datasets: LUBM4 (Lehigh University

Benchmark), YAGO 3.05 and DBpedia6. The LUBM benchmark constructs datasets

that describe universities, departments, professors, publications and students. By

specifying the number of universities, the benchmark scales the size of the dataset.

We consider three RDF datasets containing approximately 670,000, 1,300,000 and

6,700,000 triples respectively.

The YAGO dataset integrates data from Wikipedia, Geonames and Wordnet; it

contains approximately 120 million triples, corresponding to a size of 10 GB in TDB

format. The YAGO dataset is generated by ‘scraping’ the Wikipedia pages, hence

the information stored might lack accuracy. In fact, the YAGO dataset also stores

the accuracy of each fact (we removed these accuracy measures from the dataset

for our performance study). In contrast to DBpedia, the YAGO database is not

updated often and some of the Wikipedia facts (which are stored in DBpedia) are

not available in YAGO.

Finally, we use the DBpedia dataset which stores only the Wikipedia facts. It

is updated regularly and contains approximately 4,230,000 URLs and 62 million

triples.

We defined 7 SPARQLAR queries for LUBM, 5 for DBpedia and 3 for YAGO.

Each query contains between 1 and 5 triple patterns, some of which are approximated

or relaxed in order to retrieve the answers that the user is looking for or that might

be useful to the user.

The cost of each edit and relaxation operation is set to 1. We incrementally set

the maximum cost of the query answers from 1 to 3. We stop the execution of a

query if the system is not able to finish the evaluation within 8 hours.

4http://swat.cse.lehigh.edu/projects/lubm/
5https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/
6http://wiki.dbpedia.org/
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LUBM Evaluation

For the LUBM dataset we ran the following queries (the full description of the

meaning of each query and the reason why a user might apply APPROX or RELAX

are given in Appendix A.1):

Q1 :

SELECT ?x ?t WHERE{

?x publicationAuthor/teacherOf ?c .

?x publicationAuthor/teachingAssistantOf ?c .

RELAX(?x rdf:type Article) . APPROX(?x title ?t)

}

Q2 :

SELECT ?c WHERE{

RELAX(GraduateStudent1 mastersDegreeFrom/hasAlumnus Student25) .

GraduateStudent1 takesCourse ?c .

Student25 takesCourse ?c

}

Q3 :

SELECT ?x ?z WHERE{

RELAX(?x doctoralDegreeFrom University1) .

RELAX(?x worksFor University1) .

?x teacherOf ?c . APPROX(?z teachingAssistantOf ?c)

}

Q4 :

SELECT * WHERE{

?z publicationAuthor AssociateProfessor3.

APPROX(?z publicationAuthor/advisor AssociateProfessor3)

}

Q5 :
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SELECT ?s ?c WHERE{

?x rdf:type AssistantProfessor . ?x teacherOf ?c .

?s takesCourse ?c . RELAX(?s rdf:type UndergraduateStudent) .

APPROX(?s address

"UndergraduateStudent5@Department1.University0.edu")

}

Q6 :

SELECT * WHERE{

Student1 advisor/teacherOf ?c . Student1 takesCourse ?c .

RELAX(?c rdf:type UndergraduateCourse)

}

Q7 :

SELECT ?p WHERE{

RELAX(ResearchGroup3 subOrganizationOf* ?x) .

RELAX(?p rdf:type AssistantProfessor) . ?p worksFor ?x .

Publication0 publicationAuthor ?p

}

We start our analysis by showing the number of queries generated by the rewrit-

ing algorithm for each query, given maximum costs 1, 2 and 3 (Table 6.1). The

number of queries generated depends on the number of triple patterns that have

been relaxed and approximated, as well as on the length of the property path in

each triple pattern, and may increase exponentially with respect to the maximum

cost. In Table 6.1, we see that query Q4 generates the most queries for cost 3 even

though it has only one approximated triple pattern. This is because its property

path has a concatenation of two URIs, thus the APPROX operator leads to a larger

number of queries being generated by the rewriting algorithm. For query Q3 the

large number of rewritten queries is due to the higher number of triple patterns

with an APPROX or RELAX operator (three) compared to the other queries (one

or two). Overall we notice that the APPROX operator generates a higher number
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of queries compared to RELAX, since the latter is applicable only if the ontology

contains specific rules related to the query triple pattern.

Max

Cost
Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 6 4 8 9 6 2 3

2 17 8 29 37 17 2 5

3 37 11 71 112 37 2 7

Table 6.1: LUBM. Number of queries generated by the rewriting algorithm, given

maximum costs of 1, 2 and 3.

Table 6.2 shows the number of answers returned by each query executed over

the three versions of the LUBM database, given maximum costs 0, 1, 2 and 3. The

second column of the table indicates the three datasets constructed with the LUBM

benchmark where D1, D2 and D3 contain 5, 10 and 50 universities respectively. In

the rows relating to cost 0, the answers returned by the exact form of the query are

displayed. We notice that all the queries in their exact form, except for Q4, do not

return any answer with respect to any of the datasets (the explanation for this is

given in Appendix A.1).

All queries, except for Q1 and Q3 (and Q2 when evaluated against D1), return

more answers after one step of approximation and relaxation. For query Q1 the

evaluator returns more answers after two steps of approximation. We also notice

that after the first two steps (i.e. max cost 2) we do not retrieve more answers for

any query. This is mainly due to the highly structured nature of the LUBM dataset

which does not contain dense connections between the URIs. Hence, the number of

answers is constrained by the constants appearing in the queries.

In Figures 6.2 to 6.4 we show the execution times of the queries against the 3

LUBM datasets, with and without the pre-computation optimisation (the precise

timings are listed in Table B.1 and B.2 in Appendix B). We note that the times are

shown on a logarithmic scale and that the bars with the diagonal stripes show the

timings of the evaluation with the pre-computation optimisation.

If we consider dataset D1 we notice that the maximum cost impacts on the
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Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 D1 0 0 0 0 0 0 0

1 D1 0 0 0 18 1 1 1

2 D1 186 0 0 18 1 1 1

3 D1 186 0 0 18 1 1 1

0 D2 0 0 0 1 0 0 0

1 D2 0 1 0 13 1 1 1

2 D2 373 1 0 13 1 1 1

3 D2 373 1 0 13 1 1 1

0 D3 0 0 0 7 0 0 0

1 D3 0 3 0 13 1 1 1

2 D3 2036 3 0 13 1 1 1

3 D3 2036 3 0 13 1 1 1

Table 6.2: LUBM. Number of answers returned by each query, for every maximum

cost, and every dataset.

execution time due to the increasing number of queries generated by the rewriting

algorithm, especially for queries Q1, Q3, Q4 and Q5. This is mainly due to the

presence of the APPROX operator that generates a greater number of queries as

the maximum cost increases.

We can see that for dataset D1 there is a small improvement in the performance

when using the pre-computation optimisation. This is mainly due to the fact that

for small datasets Jena is able to execute SPARQL queries efficiently. If we consider

the execution of queries Q3 and Q5 with maximum cost set to 2 and 3, we can

see that there is a reduction in time of several seconds. In general, timings for

queries that can be executed in less than a second do not improve using the pre-

computation optimisation. Instead, the execution time increases due to the fact that

the pre-computation needs to execute and store the answers of multiple sub-queries.

For dataset D2, the execution of queries Q3, Q4 and Q5 cannot be completed
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Figure 6.2: LUBM. Timings for dataset D1, with and without pre-computation

optimisation.

within 8 hours without the pre-computation optimisation when maximum cost is

set to 2 or 3. This is mainly due to the high number of queries that need to

run and to the APPROX operator that generates queries containing that take a

long time to evaluate. In fact after two steps of approximation, the approximated

triple patterns of Q3, Q5 become respectively: (?z / ?c), (?z / ”Undergradu-

ateStudent5@Department1.University0.edu”). Evaluating such queries means that

the query evaluator (Jena) has to find all possible paths of size two in the dataset,

which can take a very long time due to the increased size of dataset D2. Query

Q4 has a longer property path and can generate even more complicated paths,

such as (?z publicationAuthor/advisor/ / AssociateProfessor3), (?z publicationAu-

thor/ /advisor/ AssociateProfessor3), etc. Notice that query Q1 also contains the
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APPROX operator, although the exact part of that query limits the values the vari-

able ?x can be assigned to. (In query Q1 the variable ?x appears in every triple. In

contrast, in query Q3 the variable ?z appears only in the approximated triple pat-

tern. In query Q5 all the constants are classes hence variable ?s can be instantiated

to many constants.)

With dataset D3, the pre-computation optimisation is still not able to execute

queries Q3, Q4 and Q5 for maximum cost 1, 2 and 3. Similarly to dataset D2 the issue

is due to the presence of the APPROX operator. In the next chapter we will present

two additional optimisations that will enable the execution of the aforementioned

queries within the 8 hour threshold.
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Figure 6.3: LUBM. Timings for dataset D2, with and without pre-computation

optimisation.
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Figure 6.4: LUBM. Timings for dataset D3, with and without pre-computation

optimisation.

DBpedia Evaluation

For the DBpedia dataset we ran the following queries (the full description of the

meaning of each query and the reason why a user might apply APPROX or RELAX

are given in Appendix A.2):

Q1 :

SELECT ?y WHERE{

APPROX(<The_Hobbit> subsequentWork* ?y). ?y rdf:type Book

}

Q2 :

SELECT ?x ?y WHERE{
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APPROX(?x albumBy <The_Rolling_Stones>) . ?x rdf:type Album .

?y album ?x . RELAX(?x recordLabel <London_Records>)

} group by ?x

Q3 :

SELECT ?k ?d ?kd WHERE{

APPROX(?k diedIn <Battle_of_Poitiers>) .

<Battle_of_Poitiers> date ?d . ?k deathDate ?kd

}

Q4 :

SELECT ?x ?kd WHERE{

?x subject Duelling_Fatalities . RELAX(?x deathDate "18xx-xx-xx") .

RELAX(?x rdf:type Scientist)

}

Q5 :

SELECT ?x ?f WHERE{

APPROX(12_Angry_Men_(1957_film) actor ?a) . ?x parent ?a .

APPROX(?f actor ?x).

RELAX(?x birthPlace New_York)

}

Table 6.3 shows the number of queries generated by the rewriting algorithm for

these DBpedia queries. We notice that the query with the least number of rewritings

is Q4 since the APPROX operator does not appear in that query. Query Q5 has the

highest number of rewritings since it has two approximated triple patterns. Again,

we notice how the APPROX operator leads to a high number of queries generated by

the rewriting algorithm. Queries Q2 and Q3 generate the same number of rewritings

since they each have only one approximated triple pattern that contains only one

predicate.

Table 6.4 shows the number of answers returned by the queries given maximum

costs 1, 2 and 3. The number of answers are limited for queries Q1, Q2 and Q4 due
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Max

Cost
Q1 Q2 Q3 Q4 Q5

1 3 5 5 3 10

2 11 12 12 6 48

3 51 25 25 10 168

Table 6.3: DBpedia. Number of queries generated by the rewriting algorithm given

maximum costs of 1, 2 and 3.

to the use of the rdf:type predicate that constrains the number of answers. For query

Q3 the constant URL <Battle of Poitiers> limits the number of answers since it has

few connections with persons with a death date. Query Q5 returns more answers

than the other queries since it has no rdf:type predicate and moreover the RELAX

operator replaces the constant <New York> with a more generic class name.

Max

Cost
Q1 Q2 Q3 Q4 Q5

0 1 0 0 0 0

1 4 60 1 1 0

2 5 60 4 69 54

3 5 66 8 69 369

Table 6.4: DBpedia. Number of answers returned by each query, for every maximum

cost.

We show in Figure 6.5 how the maximum cost affects the execution time of the

queries. The system was not able to execute query Q5 for cost 2 and 3 within 8 hours.

This is mainly due to the high number of queries that needed to be executed. The

pre-computation optimisation did have an impact on the evaluation time of several

seconds for queries Q1 with maximum cost 1 and 2, query Q3 with maximum cost 1,

2 and 3, and query Q5 with maximum cost 1. Since the pre-computation algorithm

needs to run additional queries, the time decreases by approximately 10-20% only

(see Figures B.10 and B.11 in Appendix B.2). Moreover, as the cache is limited

in size this fills fast and the hit ratio decreases as the number of queries that need
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to be executed increases. Further improvement in execution time could have been

achieved by increasing the size of the cache so that more partial answers would have

been stored and reused.

Similarly to the LUBM dataset, the pre-computation optimisation technique

worsens the execution time for queries that can be executed in less than one second.

It reduces the execution time slightly for queries that take more than five seconds.
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Figure 6.5: DBpedia. Timings, with and without pre-computation optimisation.

YAGO Evaluation

For the YAGO dataset we ran the following queries (the full description of the

meaning of each query and the reason why a user might apply APPROX or RELAX

are given in Appendix A.3):

Q1 :
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SELECT * WHERE{

APPROX(<Battle_of_Waterloo>

happenedIn/(hasLongitude|hasLatitude) ?x)

}

Q2 :

SELECT * WHERE{

?x actedIn <Tea_with_Mussolini> . RELAX(?x hasFamilyName ?z)

}

Q3 :

SELECT * WHERE{

?x rdf:type Event . ?x happenedOnDate ‘‘1643-##-##’’ .

APPROX(?x happenedIn ‘‘Berkshire’’)

}

Table 6.5 shows the number of queries generated by the rewriting algorithm for

the YAGO queries. Query Q1 generates the greatest number of queries even though

it has only one triple pattern which is approximated, because its single triple pattern

contains a complex property path, that is the concatenation of a predicate with a

disjunction of two predicates. Query Q2 generates only 2 queries for costs 1, 2 and

3, since we can only apply the RELAX operator once to the triple pattern.

Max

Cost
Q1 Q2 Q3

1 12 2 5

2 60 2 12

3 199 2 25

Table 6.5: YAGO. Number of queries generated by the rewriting algorithm, given

maximum costs of 1, 2 and 3.

As shown in Table 6.6 the number of answers returned by query Q1 increases

exponentially with respect to the maximum cost. This is due to the fact that the AP-

PROX operator will find many more nodes reachable from node 〈Battle of Waterloo〉
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when increasing the maximum cost. In contrast, for query Q2 the number of an-

swers does not increase as the maximum cost increases since the number of queries

generated does not increase with respect to the maximum cost. Finally, for query

Q3 the number of answers is bounded by the presence of the rdf : type predicate

which constrains the variable ?x to be of type Event.

Max

Cost
Q1 Q2 Q3

0 0 4 0

1 1381 263 1

2 18584 263 1

3 116082 263 1

Table 6.6: YAGO. Number of answers returned by each query, for every maximum

cost.

Figure 6.6 shows the execution times of the three YAGO queries. We see that Q2

and Q3 can be executed within a reasonable amount of time due to the small number

of queries generated by the rewriting algorithm. On the other hand, query Q1 with

a maximum cost of 3 does not complete within the 8 hour threshold, because of the

large number of queries generated by the rewriting algorithm.

The pre-computation optimisation does decrease the computation time of queries

that take more than 5 seconds (Q1 at maximum cost 2), but is still not able to

execute query Q1 with maximum cost 3. This is because Q1 consists of a single

triple pattern, hence there can be no caching of partial query results. Timings for

queries Q2 and Q3 increase when applying the pre-computation optimisation because

of the overhead of executing the sub-queries in order to cache their results.

6.4 Discussion

In this chapter we have presented the implementation of our SPARQLAR prototype

and have undertaken a performance analysis. We have discussed the execution

times of three sets of queries against three datasets. We have seen that the number

104



Q1 Q2 Q3

10−3

10−2

10−1

100

101

102
se

co
n
d
s

Cost 1 Cost 2 Cost 3

Figure 6.6: YAGO. Timings, with and without pre-computation optimisation.

of rewritten queries depends mainly on the presence of the APPROX operator and

on the complexity of the property path in the approximated triple pattern.

In contrast to [73], we have described a pre-computation optimisation technique

which is able to reduce the time for evaluating queries that have a large number of

rewritings by caching partial answers. However, the pre-computation optimisation

does not help with queries that have a lower number of rewritings, but instead

increases the execution time somewhat. This is due to the additional time that the

pre-computation algorithm takes to compute partial queries and store their answers

in memory.

In the performance study of [42] the answers of the queries are limited to the top

150 making the query execution fast. Instead, in our performance study we tested

the queries by setting the maximum cost to 3, hence the queries might return a
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much higher number of answers. (In practice, our current prototype is able to limit

the number of answers to be retrieved through the user interface; moreover, if the

user is not satisfied by the results returned so far, she can resume the evaluation to

retrieve the next set of answers.)

During our performance study we noticed that most of the queries generated by

the rewriting algorithm were not returning any answers or were returning answers

that had already been computed by previous queries. In the following chapter, we

will discuss two more optimisations that aim to further improve the performance of

the query evaluation: (1) removing queries that do not return any answers, and (2)

not executing queries that return answers that have already been computed.

106



Chapter 7

Optimisations

In this chapter we investigate two optimisation techniques intended to improve the

SPARQLAR evaluation process: a summarisation optimisation and a query con-

tainment optimisation. By means of the summarisation optimisation technique we

intend to achieve two goals: replace the symbol with a disjunction of URIs, and

avoid the execution of queries that do not return any answers.

With the query containment optimisation technique we intend to reduce the

number of queries that need to be executed by discarding those queries whose answer

set is contained in the answer set of another query.

In Section 7.1 we discuss earlier work on RDF graph summarisation, we present

our summarisation optimisation and show its impact on query evaluation timings.

In Section 7.2 we discuss the query containment property for SPARQLAR queries

and test the effectiveness of using this for query optimisation. In Section 7.3 we

combine both optimisations and evaluate their combined effect on query evaluation

times.

7.1 Summarisation Optimisation

In Section 7.1.1 we first discuss related work on graph RDF summarisation. In

Section 7.1.2 we present our RDF-graph summarisation approach and compare it

with the work in [5] which uses a similar approach to generate RDF summaries. We

show how our summaries can be exploited to improve the SPARQLAR evaluation, in
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particular the evaluation of queries containing the APPROX operator. In Section

7.1.3, we undertake a performance evaluation of our optimisation technique based

on RDF-graph summarisation over the three datasets from Chapter 6.

7.1.1 Related Work

The problem of RDF summarisation is: given an input RDF-graph G, compute

an RDF-graph SG which summarises G, while being possibly orders of magnitude

smaller than the original graph. The first work on RDF summarisation is by Cebirić

et al. in [75]. Their summary helps in formulating and optimising queries, and it

is able to predict if a query returns answers against the RDF-graph by querying

the summary first. Starting from an RDF-graph G, the summarisation procedure

collapses nodes that have at least one outgoing or ingoing edge with the same label

into a single node. A disadvantage of this procedure is that it often collapses nodes

which are not related at all. For example, if we consider that many nodes in a

graph G have the outgoing edge rdfs:label, then all these nodes will collapse into

one. In [75] the authors overcome this issue by partitioning the nodes of SG by

exploiting the rdfs:label predicate. However, they do not give more details on how

the partitioning algorithm works.

In [16] a graph summary is constructed from multiple heterogeneous RDF data

sources. The summary is computed by creating a graph where each node is a col-

lection of nodes that share the same characteristics. They define two types of char-

acteristic: entity-based and class-based. The entity-based characteristic aggregates

nodes that share the same outgoing edges. The class-based characteristic instead

aggregates nodes that are of the same class type. The method uses the summary to

aid the user in posing queries to an RDF dataset by suggesting possible predicates

and query structures.

Another type of summarisation is based on the property of bi-simulation1. In [35]

1A graph G is a bi-simulation of a graph G′ if for each node a in G there is also a node a′ in G

such that a is bi-similar to a′. Nodes a and a′ are bi-similar if for each outgoing edge from a to

some node b, there exists an edge from a′ to some node b′ with the same label, such that b and b′

are bi-similar.
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the authors describe a system called TriAD that constructs a summary of the RDF-

graph. The summarisation contains super-nodes which abstract a collection of nodes

from the original graph, and super-edges that connect pairs of supernodes. A super-

edge connects two super-nodes A and B if some node in A is connected to some node

in B in the graph. We notice that the summarisation constructed is a bi-simulation

of the original graph. The super-nodes are constructed by partitioning the graph

using the METIS tool [50]. The nodes in this partition will be the super-nodes of

the summarisation. Through the summarisation, TriAD does not need to explore

the whole graph when querying. Instead, it traverses the summarisation to bind the

query variables to the super-nodes. In this way it prunes nodes from the graph that

will not be retrieved by the query.

The work in [21] describes a summarisation designed to index graphs. Their

approach is similar to the A(K)–index [51], which indexes nodes that are bi-similar

up to a path of length k in the graph2, termed local similarity. The authors expand

this concept by not fixing the value k. They increase the value of k incrementally

and calculate the local similarity for each node.

In [15] the authors compare multiple summarisation techniques; in particular,

they evaluate the trade-off between efficiency and precision, and the trade-off be-

tween precision and the ratio between the size of the original graph and the summary.

The summarisations they analyse are based on node collapsing techniques, similar

to the work in [75], and the bisimulation property which is also exploited in the

work of [21, 35]. They define the following node collapsing techniques: two nodes

collapse if they have the same set of attributes (∼a); or if they are of the same class

type (∼t); or if they share at least one class type (∼st); or if they share the same set

of incoming and outgoing attributes (∼ioa); or every possible combination of these.

They show that the ∼t technique produces the best size ratio but the worst

precision. On the other hand, the ∼ioat technique, which combines ∼ioa and ∼t, is

slightly worse size-wise but is much more precise. In terms of efficiency and precision,

2Nodes a and a′ are bi-similar up to k if for each outgoing edge from a to some node b, there

exists an edge from a′ to some node b′ with the same label, such that b and b′ are bi-similar up to

k − 1.
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∼t is the best candidate.

Finally, in [5] the authors reduce the size of an RDF-graph by agglomerating

nodes into clusters using a combination of the bi-simulation property and a structure

similarity property. They define nodes a and a′ as being strongly bi-similar if for

each outgoing edge from a to some node b, there exists an edge from a′ to some node

b′ with the same label, such that b and b′ are strongly bi-similar, and conversely for

each outgoing edge from a′ to b′, there exists an edge from a to b with the same label

such that b and b′ are strongly bi-similar. They also define bi-similarity up to a value

k: nodes a and a′ are strongly bi-similar up to k if, for each outgoing edge from a

to b, there exists an edge from a′ to b′ with the same label such that b and b′ are

strongly bi-similar up to k − 1, and conversely for each outgoing edge from a′ to b′,

there exists an edge from a to b with the same label such that b and b′ are strongly

bi-similar up to k − 1. They analyse the quality and number of clusters generated

using bi-simulation for 4 datasets. Their results show that for highly structured

graphs strong bi-similarity can be achieved with k = 3.

In contrast to this previous work, our summarisation takes into account only the

paths from the original RDF-graph G and we generate a deterministic automaton

with only one initial state. Moreover, our summarisation is not used for indexing the

nodes of G, but instead to simplify the evaluation of SPARQL queries. We construct

a summarisation that may be an order of magnitude smaller than the RDF-graph

G and that prevents the evaluation of queries that are known to return no answer,

as well allowing us to replace the symbol by a disjunction of specific edge labels.

7.1.2 Our RDF-Graph Summary

We construct a summary of an RDF-graph, G, that is defined by an automaton,

R. The summarisation satisfies L(G) ⊆ L(R) where L(G) is the set of sequences of

edge labels generated by G when G is viewed as an automaton in which each node

is both a final and an initial state.

The summary automaton R that we define is able to recognise strings that rep-

resent paths in G up to a certain length n ≥ 2. The states in R keep track of the

last k transitions that have been traversed, for all k < n. So the automaton will
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keep track only of the last n − 1 states even if we have traversed more than n − 1

states. The automaton R that recognises paths of G up to length n is constructed

as follows:

1. Initially the automaton R contains only one state, S, which is both initial and

final.

2. For each p1p2 . . . pk ∈ L(G) with k < n, we add the new final states Sp1 ,

. . . , Sp1...pk to R, and also the new transitions: (S, p1, Sp1), (Sp1 , p2, Sp1p2), . . . ,

(Sp1...pk−1
, pk, Sp1...pk).

3. For each p1p2 . . . pn ∈ L(G) we add the transition (Sp1...pn−1 , pn, Sp2...pn).

Step 3 of the construction keeps track of the possible loops in the graph G.

This is due to the fact that step 3 creates transitions between states that have been

already generated by step 2. The implementation of the summarisation procedure

is actually done via an automatically generated query that retrieves all the paths

needed up to length n. The paths are then encoded in RDF format where the nodes

are labelled as per procedure.

To illustrate, consider the following graph:

a

bc

p

q

r

If we construct a summarisation R for n = 2 by using only steps 1 and 2 we would

have the following transitions in R: (S, p, Sp), (S, q, Sq) and (S, r, Sr). Hence, the

summarisation does not keep track of the loop p/q/r in G. If we apply the third

step of the procedure, R will now include also the following transitions: (Sr, p, Sp),

(Sp, q, Sq) and (Sq, r, Sr). The final summarisation R keeps track of the loop p/q/r

in G.

We note that the theoretical size of the summarisation that we construct is

O(Dn) where D is the number distinct property labels of the graph. However, in

general, RDF-graphs are sparse which results in a much smaller summarisation.
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Example 7.1. To illustrate the construction of our summary, we consider the fol-

lowing graph G which describes a portion of a Film database:

Love and Death

Woody Allen
1975

Jessica Harper

James Tolkan

Diane Keaton
Play It Again Sam

Scoop

ha
sD

ir
ec

to
r

hasDirector
year

actedIn

actedIn

actedIn

ac
te

dI
n

h
asD

irector

actedIn

The summarisation for n = 2 is constructed by retrieving the following distinct

paths of up to length 2 from G:

actedIn, year, hasDirector, actedIn/hasDirector,

hasDirector/actedIn, actedIn/year

The resulting automaton R will be as follows (we use letters y, d and a to indicate

the properties year, hasDirector and actedIn respectively):

S

Xa

XyXd

acted
In

yearhasDirector

hasD
irector

actedIn ye
ar

year

It is possible to verify that the above automaton recognises every string in L(G);

moreover, in this particular case, L(R) = L(G).

If we now consider n = 3, then we have the following paths of up to length 3:

actedIn,year, hasDirector, actedIn/hasDirector,

hasDirector/actedIn, actedIn/year,
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actedIn/hasDirector/actedIn, hasDirector/actedIn/hasDirector,

hasDirector/actedIn/year, actedIn/hasDirector/year

and the resulting automaton R′ will be as follows:

S

Xa

XyXd

XadXda

Xdy

Xay

hasDirector

acted
In

yearhasDirector

yearac
te

d
In

ye
ar

year

hasDirector

actedIn

year

We note that this automaton, although it is equivalent to the automaton of G

(i.e L(R′) = L(G)), is larger than the automaton R generated for n = 2.

Example 7.2. Consider the following RDF-graph G taken from an example in [5]:

1

2 3 4

5 6 7

8 9 10

a a a

b b b

c c c

c

a

c

For n = 3, the following summarisation of G is generated:

S

Xa Xb Xc

Xab Xbc Xca

Xaa

a b c

a
b c a

c a

b

a

b
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It is possible to show that the state S can simulate every node in G but not vice-

versa; for example, state 10 in G cannot simulate S. By contrast, the summarisation

constructed in [5] for n = 3 is the following:

1

2,3 4

5,6,9 7

8 10

a a

b b

c c

c

a

In this summarisation the nodes that bi-simulate each other in G are collapsed.

By adding the edges (4, b, 13), (13, c, 14), (10, a, 11) and (11, b, 12) to G, we can see

that our summarisation is still valid since we are not adding any new paths of length

3 to the graph. On the other hand, the summarisation from [5] will contain the new

transitions as shown below, since the nodes 11, 12, 13 and 14 do not bi-simulate any

other node from G:

1

2,3 4

5,6,9 7

8 10 11 12

13 14

a a

b b

c c

c b c

a b

a

Hence, we can conclude that although our approach is similar to that of [5], the

approach in [5] generates nodes that correspond to redundant states in an automa-

ton.

Proposition 7.1. Given a summarisation R constructed from an RDF-graph G up

to path length n, where n ≥ 2, L(G) ⊆ L(R).

Proof. We show that the proposition is true by induction. Our base case is that for

each string s ∈ L(G) of length less than or equal to n, we have that s ∈ L(R). It
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is easy to show that every string s ∈ L(G) of length up to n is also in L(R) given

steps 2 and 3 of the construction. Therefore we need to show that for every string

s′ ∈ L(G) of length greater than n, s′ ∈ L(R). Since every node in G is both a final

and initial state then for every sub-string s′′, of length less than n, of s′ we have

that s′′ ∈ L(G) and s′′ ∈ L(R).

Our induction hypothesis is as follows: every string T in L(G) of length n + k,

for some k ≥ 0, is contained in L(R). Our induction step is to show that every

string of length n+ k + 1 in L(G), is also contained in L(R).

Consider the following string UaTb of length n + k + 1 in L(G) where U is a

string of length k+1, T is a string of length n−2, and a and b are strings of length 1.

Since aTb is of length n then it is contained in L(G). Therefore, from step 3 of the

construction, we also know that R contains the following transition: (SaT , b, STb).

By the induction hypothesis, we know that UaT is contained in L(R), therefore R

contains a sequence of transitions that connect the state S (the initial state) to the

state SaT to produce UaT . Therefore, there is a sequence of transitions in R that

produces the string UaTb

We have shown that L(R) contains every sequence of strings contained in L(G).

Therefore we can deduce that L(G) ⊆ L(R).

Lemma 7.1. Let R be a summarisation constructed from an RDF-graph G up to

paths of length n, and Q be a SPARQLAR query without the APPROX, RELAX

and UNION operators. If there exists a triple pattern (x, P, y) ∈ Q such that

L(P ) ∩ L(R) = ∅, then JQKG = ∅.

Proof. From Proposition 7.1 we can rewrite equation L(P ) ∩ L(R) = ∅ as follows:

L(P )∩L(G) = ∅. Hence, J〈x, P, y〉KG = ∅. We notice that for any evaluation result

M we have that M 1 ∅ = ∅, and therefore JQKG = ∅.

The previous lemma allows us to avoid the execution of queries that do not

return any answer by first testing queries against the summarisation.

We can also exploit our summarisation to replace the symbol with a disjunction

of edge labels. Queries with the symbol are expensive to evaluate, since matches

every edge label of a graph G. For example, consider the following SPARQLAR
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query Q = APPROX(x, p2/p3, y) over an RDF-graph G. The rewriting algorithm

will generate the following queries up to cost 1:

1. (x, p2/p3, y)

2. (x, /p2/p3, y)

3. (x, p2/ /p3, y)

4. (x, p2/p3/ , y)

5. (x, /p3, y)

6. (x, p2/ , y)

7. (x, ε/p3, y)

8. (x, p2/ε, y)

Suppose that L(G) ⊇ {p1, p2, p3, p1p3, p2p2, p2p3, p2p2p2, p2p2p3} and these are all

the path labels of length up to 3. Then the summary automaton R with n = 3

extracted from G consists of the following transitions:

(S, p1, S1), (S, p2, S2), (S, p3, S3), (S1, p3, S1,3),

(S2, p2, S2,2), (S2, p3, S2,3), (S2,2, p2, S2,2), (S2,2, p3, S2,3)

where every state is a final state. So we can replace the symbol as follows within

the queries (1) to (8) :

1. in (2) and (3) by p2 to give (p2/p2/p3) in both cases, since p2p2p3 is the only

path of length 3 ending in p3;

2. in (5) by (p1|p2) since p1p3 and p2p3 are the only paths of length 2 ending in

p3;

3. in (6) by (p2|p3) since p2p2 and p2p3 are the only paths of length 2 starting

with p2;
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4. in (4) we can detect that (x, p2/p3/ , y) returns no answers since there does

not exist a property path that contains p3 followed by another URI;

5. triple patterns (1), (7) and (8) are left unchanged since these do not contain

the symbol .

We use Algorithm 10 to rewrite queries so that queries for which no answers

will be returned are discarded. The remaining queries will then be executed by the

Query Evaluation Algorithm (Algorithm 2).

Algorithm 10 rewrites each query Q, generated by the rewriting algorithm, by

replacing each property path P appearing in a triple pattern in Q with the corre-

sponding property path of the automaton computed by intersecting R with AP , the

automaton that recognises L(P ). If at least one of the intersections is empty, then

query Q does not need to be executed as it will not return any answer.

To combine the pre-computation optimisation of Chapter 6 with the summari-

sation optimisation, we replace the rewrite function in Algorithm 9, calling Algo-

rithm 10 instead of Algorithm 3.

7.1.3 Performance Study

LUBM Evaluation

We first discuss the summarisations generated from the three LUBM datasets for

the cases of n = 2 and n = 3. We generate these two summarisations from each

LUBM dataset using the procedure described in Section 7.1.2. The sizes of the sum-

marisations for the three LUBM datasets are the same, since the LUBM benchmark

replicates the seed dataset multiple times and so does not create new paths as the

size of the RDF-graph increases. The summarisation generated with n = 2 has

68 transitions (5 kilobytes). The summarisation with n = 3 has 122 transitions (9

kilobytes). For ease of reading, we will call the summarisation generated with n = 2

the summarisation of size 2 and similarly for n = 3.

We first compare the number of queries generated by the rewriting algorithm with

and without the summarisation optimisation. By comparing Table 6.1 (see Section

6.3) with Table 7.1 we notice that on average, fewer queries are generated using this
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Algorithm 10: Rewriting of queries using the summarisation optimisation

input : Query Q; approx/relax max cost c; Graph G; Ontology K; number

of paths in summary n.

output: List of pairs query/cost Qs sorted by cost.

R:=summarisation automaton of G for paths up to n;

Qs := ∅;

foreach 〈Q′, cost〉 ∈ rew(Q,c,K) do

toExecute:=true;

foreach triple pattern (x, P, y) ∈ Q′ do

AP := the automaton that recognises L(P );

P ′:=AP ∩R;

if L(P ′) = ∅ then
toExecute:=false

Q′:= replace (x, P, y) with (x, P ′, y) in Q′ ;

if (toExecute) then

Qs := Qs ∪ {〈Q′, cost〉}

return Qs;

optimisation technique, with the most substantial reduction being 53% for query Q4.

The only exception is Q7 since it does not contain the APPROX operator. With a

summarisation of size 3, the only further improvement is for queries Q1 and Q5 for

maximum cost 3 where the summary results in one fewer query being generated in

each case. We can conclude that using our summarisation technique we are able to

reduce the number of queries: however by increasing the summarisation size from 2

to 3 there is not much improvement for the LUBM dataset.

We now show query evaluation timings using the summarisation optimisation

technique with sizes 2 and 3, and also combining the pre-computation technique with

the summarisation of size 3. In Figures 7.1, 7.2 and 7.3 the execution timings of the

queries against datasets D1, D2 and D3 are shown. The bars with no diagonal lines

represent the timings with summarisation of size 2; the bars with diagonal lines from

north-west to south-east represent the timings with the summarisation of size 3; and
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Max

Cost
Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 3 1 7 5 3 1 3

2 10 4 21 19 10 1 5

3 20 7 40 53 20 1 7

Table 7.1: LUBM. Number of queries generated by the rewriting algorithm with

summarisation of size 2.

the bars with lines from north-east to south-west represent the timings with both the

summarisation of size 3 and the pre-computation optimisation. We can see that the

execution time of most queries is reduced by some orders of magnitude with respect

to the simple evaluation combined with the pre-computation optimisation (Figures

6.2, 6.3 and 6.4). For example, queries Q3, Q4 and Q5 are executed in less than 100

seconds for dataset D2 and maximum cost 2 and 3, using the summarisation of size

2 and 3. In contrast, the simple evaluation with and without the pre-computation

optimisation either was not able to run within the 8 hours threshold or runs for more

than 200 seconds. In particular, query Q3 with maximum cost 3 is executed in 25

seconds using the summarisation of size 3 and 75 seconds using the summarisation

of size 2, reducing the execution time by 99 % if we consider the evaluation with

the pre-computation optimisation. For Figures 7.2 and 7.3, we also notice that we

are now able to run all the queries over datasets D2 and D3 within the 8 hours

threshold.

If we consider Figure 7.1, we notice that queries that originally executed in less

than 10−1 seconds now need more than 1 second, especially when we combine the

summarisation optimisation with the pre-computation optimisation. This is due to

the time needed by the summarisation optimisation to rewrite each query generated

by the rewriting algorithm, and the time spent executing the additional queries when

using the pre-computation optimisation.

Similarly to the analysis in Chapter 6.3, we argue that the execution time of

queries that take less than 5 seconds to execute does not improve when the pre-

computation optimisation is used. We notice an improvement in execution time
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Figure 7.1: LUBM. Timings for database D1. Plain coloured bars are the sum-

marisation of size 2. Bars with diagonal lines from north-west to south-east are the

summarisation of size 3. Bars with diagonal lines from south-west to north-east are

the summarisation of size 3 together with pre-computation optimisation.

when we compare the summarisation of size 2 with the summarisation of size 3. This

is due to the fact that we are able to replace the symbol with a smaller number

of edge labels when using the summarisation of size 3 since it gives a more accurate

representation of the RDF dataset. Hence, we can conclude that, even though the

number of queries is not reduced considerably when using the summarisation of size

3 compared to the summarisation of size 2, the execution time does improve.

We refer to the time that the evaluation algorithm spends on the optimisations

described in this chapter as the compilation time. In general, we found that the time

it takes to rewrite a query using the summarisation is between 0.001 and 2 seconds,
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Figure 7.2: LUBM. Timings for database D2. Plain coloured bars are the sum-

marisation of size 2. Bars with diagonal lines from north-west to south-east are the

summarisation of size 3. Bars with diagonal lines from south-west to north-east are

the summarisation of size 3 together with pre-computation optimisation.

depending on the number queries the rewriting algorithm generates and how often

the symbol appears. For example, for query Q3 over the LUBM dataset with the

summarisation of size 2, the compilation time is 0.8, 1.21 and 1.67 seconds for cost

1, 2 and 3 respectively.

DBpedia Evaluation

We now discuss the evaluation of the DBpedia queries using the summarisation

optimisation technique. In contrast to the analysis with LUBM, we are not able to

show execution times with a summarisation of size 3. This was due to the large size of
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Figure 7.3: LUBM. Timings for database D3. Plain coloured bars are the sum-

marisation of size 2. Bars with diagonal lines from north-west to south-east are the

summarisation of size 3. Bars with diagonal lines from south-west to north-east are

the summarisation of size 3 together with pre-computation optimisation.

the summarisation: the DBpedia summarisation of size 2 contains 71,514 transitions

(4.3 megabytes), and summarisation of size 3 contains 1,109,836 transitions (67.3

megabytes).

The queries generated after rewriting with the summarisation of size 3 cause the

Java Virtual Machine to crash due to the size of the queries. Therefore, we will

only compare the summarisation of size 2 with and without the pre-computation

optimisation.

By comparing Table 7.2 with Table 6.3 (Section 6.3) we can see that the number

of queries to execute is reduced considerably for most queries. In particular, for
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query Q5 the number of queries to execute is reduced from 168 to 18 when the

maximum cost is 3. Due to the size of the summarisation of size 2, we are unable to

compute the number of queries generated with the summarisaion optimisation for

queries Q1 and Q4 with cost greater than 1, since the algorithm produced queries

too large to be handled by the system.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 3 2 2 1 0

2 N/A 5 5 N/A 3

3 N/A 10 10 N/A 18

Table 7.2: DBpedia. Number of queries generated by the rewriting algorithm with

summarisation of size 2.

Figure 7.4 shows the execution time of the queries using the summarisation of

size 2 with the pre-computation optimisation (bars with no lines) and without the

pre-computation optimisation (bars with diagonal lines). We notice that (except for

the queries that we were unable to execute) there is a considerable improvement in

the timings when using only the summarisation optimisation. For example, we are

able to execute queries Q2, Q3 and Q5 in less than 3 seconds. In contrast, using

the simple evaluation algorithm, the execution time of such queries is 7 seconds for

Q2, approximately 10,000 seconds for Q5 and more than 8 hours for Q5. When

we combine it with the pre-computation optimisation, we notice that for query

Q5 and maximum cost 3 more time is required with respect to the summarisation

optimisation only.

We found the compilation times to be similar to those for the queries on LUBM.

For example, the compilation time for query Q5 is 0.01, 0.8 and 2.1 seconds for cost

1, 2 and 3 respectively. The high time spent on compilation for cost 3 might be due

to the fact that the number of queries the rewriting algorithm generates is rather

large: 168 which is reduced to 18 with the application of the optimisation.

From our analysis we conclude that, for the DBpedia dataset, we were unable

to evaluate some queries. This is mainly due to the large number of predicates and
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connections that the DBpedia dataset has, which in turn leads to a large summary

even for summarisation of size 2. We are still able to show that for the queries that

did run, the summarisation optimisation improved the execution time of each of

them.

Q1 Q2 Q3 Q4 Q5

10−3

10−2

10−1

100

101

se
co

n
d
s

Cost 1 Cost 2 Cost 3

Figure 7.4: DBpedia. Timings, with summarisation of size 2, with and without the

pre-computation optimisation.

YAGO Evaluation

Compared to DBpedia, the summarisations for the YAGO datasets are considerably

smaller. In fact, for size 2 the summarisation generated has only 1,320 transitions

(88.2 kilobytes) and for size 3 the summarisation generated has 10,528 transition

(708 kilobytes).

124



Table 7.3 shows the number of queries generated when using the summarisation

of size 2 and of size 3 (no new queries are discarded when increasing the size of the

summary). Comparing Table 6.5 with Table 7.3 we see that there is no improvement

for query Q2 (since it contains only the RELAX operator) and Q3 (since it contains

only one APPROX operator with only the property “happenedIn” which can appear

in long path sequences in the YAGO dataset). Similarly to two of the queries of

DBpedia, we were not able to execute query Q1 for cost 3. This was due to the size

of the queries that were generated during the summarisation optimisation.

Max

Cost
Q1 Q2 Q3

1 10 2 5

2 46 2 12

3 N/A 2 25

Table 7.3: YAGO. Number of queries generated by the rewriting algorithm given

maximum costs of 1, 2 and 3 with summarisation of size 2 and of size 3.

In Figure 7.5 the bars with no diagonal lines represent the query evaluation tim-

ings with summarisation of size 2; the bars with diagonal lines from north-west to

south-east represent the timings with the summarisation of size 3; and the bars with

lines from north-east to south-west represent the timings with the both the sum-

marisation of size 3 and the pre-computation optimisation. By comparing Figures

6.6 (Chapter 6) and 7.5 we notice that the performance improved. In particular,

query Q1 runs in less than 230 seconds instead of more than 400 seconds using the

simple evaluation. All the other queries now take less than two seconds to evaluate.

We notice that in most instances (except for query Q1 with maximum cost 2)

the summarisation optimisation worsens the evaluation time when increasing the

summarisation from size 2 to size 3. By increasing the size of the summarisation, the

optimisation algorithm takes more time to rewrite the queries since it has to compute

the intersection between the summarisation and the property paths of the query. In

fact compilation time is between 0.01 and 0.7 seconds for the summarisation of size

2 and 0.01 and 1.5 seconds for the summarisation of size 3. For example, query Q3
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has compilation time for the summarisation of size 2 of 0.03, 0.58 and 0.64 seconds

for cost 1, 2 and 3 respectively; for the summarisation of size 3 it is 0.07, 0.62 and

1.1 seconds for cost 1, 2 and 3 respectively.

Q1 Q2 Q3
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100

101
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Figure 7.5: YAGO timings. Plain coloured bars are the summarisation of size 2.

Bars with diagonal lines from north-west to south-east are the summarisation of size

3. Bars with diagonal lines from south-west to north-east are the summarisation of

size 3 together with pre-computation optimisation.

We conclude that the summarisation optimisation technique is well suited to

large sparse datasets that contain a limited number of property labels (such as

YAGO or the LUBM dataset D3), and it improves the performance for queries with

the APPROX operator. However, is not suitable for dense datasets that contain a

large number of property labels such as DBpedia, since the summarisation generated

is too large and cannot be used in practice for optimising the queries.
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7.2 Query Containment

The number of queries that the rewriting algorithm generates depends on the size

of the original query; therefore decreasing the size of the original query may reduce

the number of generated queries, hence improving query execution times. We start

by giving an example to show the intuition behind this approach. From now until

the end of the chapter we assume a fixed ontology K.

Example 7.3. Consider the following query (we omit the SELECT for simplicity):

Q = APPROX(x, p, y) AND APPROX(x, r, y)

Suppose the system applies the substitution edit operation to the second triple

pattern and generates the following query:

Q = (x, p, y) AND (x, , y)

We notice that the first triple pattern returns only pairs of nodes that are con-

nected by predicate p. On the other hand the second triple pattern returns every

pair of nodes that are connected by the means of any predicate. Hence we are able to

write the following equation J〈x, p, y〉KG = J〈x, p, y〉KG 1 J〈x, , y〉KG and the answers

returned by query Q are equivalent to the answers returned by Q′ = (x, p, y)

A similar approach can also be adopted for relaxation based on logical inference

from the ontology. In general, given a query pattern Q1 AND Q2, we say that the

query pattern Q1 covers Q2 with respect to an ontology K if the evaluation of Q1

is a subset of the evaluation of Q2 for a given ontology K, for all graphs G. If Q1

covers Q2 then Q1 is equivalent to Q1 AND Q2. It is possible to apply this technique

even if var(Q1) 6= var(Q2): if each variable in var(Q2) that is not in var(Q1) does

not appear anywhere else in the query then Q1 covers Q2 if JSELECT−→wQ1KG ⊆

JSELECT−→wQ2KG with −→w = var(Q1) ∩ var(Q2) for all graphs G.

7.2.1 Related Work

We now discuss previous works on query containment, regular path query contain-

ment and, since in our work we focus on regular expressions and languages, also on

containment between automata.
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Throughout the section we use the following notation: a set of symbols Σ; a

set of variables V ; a weighted graph G = (N,E) where N ⊆ Σ is a finite set of

nodes and E is a finite set of labelled weighted edges of the form 〈〈s, p, o〉, cost〉 with

s, o ∈ N , p ∈ Σ and cost the weight of the edge. A regular expression R ∈ RegEx

is of the form

R : ε | | l | (R1.R2) | (R1|R2) | R∗

where R,R1, R2 ∈ RegEx, l is any symbol from Σ, ε is the empty string and is the

disjunction of all the symbols in Σ.

A conjunctive regular path query (CRPQ) Q is of the form

q(X):-y1R1z1, . . . , ynRnzn,

where each yiRizi, is a conjunct of the query and together these form the body of

the query; each yi, zi ∈ Σ ∪ V ; each Ri is a regular expression; q(X) is the head of

the query, with X ⊆ V a set of variables appearing in the body of the query.

In [3] the authors investigate the complexity of weighted finite automata (WFA)

in different scenarios. Abusing notation, we can consider a weighted graph G as

previously defined as a WFA. Given WFA A the authors in [3] define the set of all

words accepted by the automaton by L(A). Given a word w ∈ L(A), the minimum

cost of generating such a word is denoted by LA(w). They define containment

as follows: given two WFA A1 and A2, A1 is contained in A2 if for each word

w ∈ L(A1) then also w ∈ L(A2) and LA1(w) ≥ LA2(w). They show that containment

of automata with weights restricted to N and Z is undecidable, and therefore is also

undecidable with respect to Q. Moreover, containment is still undecidable even

restricting the weights to the set {−1, 0, 1} or {0, 1, 2}.

In [57, 58] the authors discuss the complexity of containment for simple regular

expressions. Their simple regular expression syntax is defined as follows, where R

is a simple regular expression:

W : l | (l.W )

D : W | (W | D)

Dl : l | (l | Dl)

R : l | l? | l∗ | l+ | Dl | Dl? | D∗l | D+
l | D | D? | D∗ | D+ | W | W? | W ∗ | W+
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They make also use of following operators: l? which is equivalent to (ε | l), and (l+),

which is equivalent to (l.l∗). We notice that they do not allow indefinite nesting.

They show the complexity with respect to inclusion and equivalence for the following

regular expression fragments:

• l, l+ — Inclusion: PTIME. Equivalence: PTIME.

• l, l∗ — Inclusion: CONP-complete. Equivalence: PTIME.

• l, l? — Inclusion: CONP-complete. Equivalence: PTIME.

• l, D+
l — Inclusion: CONP-complete. Equivalence: CONP.

• l+, Dl — Inclusion: CONP-complete. Equivalence: CONP.

• l, W+ — Inclusion: CONP-complete. Equivalence: CONP.

• S − {D∗l , D∗} — Inclusion: CONP-complete. Equivalence: CONP.

• S − {D∗, D∗l , D+, D+
l } — Inclusion: CONP-complete. Equivalence: CONP.

• l, D∗l — Inclusion: PSPACE-complete. Equivalence: PSPACE.

• l, D+
l — Inclusion: PSPACE-complete. Equivalence: PSPACE.

• S − {D∗} — Inclusion: PSPACE-complete. Equivalence: PSPACE.

• S − {D∗, D+} — Inclusion: PSPACE-complete. Equivalence: PSPACE.

• l, D+ — Inclusion: PSPACE-complete. Equivalence: PSPACE.

• l, D∗ — Inclusion: PSPACE-complete. Equivalence: PSPACE.

• S — Inclusion: PSPACE-complete:. Equivalence: PSPACE.

Bounding the number of occurrences of a symbol in the regular expression makes

containment tractable. In fact, given a constant k ≥ 3 which corresponds to the

maximum number of occurrences of a symbol in a regular expression, the problem

of containment is O(nk), with n the size of the regular expression, and therefore in
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PTIME. Finally, if the regular expression is deterministic (i.e. the corresponding

automaton of the regular expression is deterministic) then complexity is in PTIME.

From now on we omit the cost of the edges of a graph for simplicity. We now

discuss the complexity results achieved in [30] when considering containment of

conjunctive queries with regular expressions. The authors focus on CRPQ queries for

semi-structured data (specifically the language StruQL). Given two CRQP queries

Q1 and Q2, they consider that Q1 is contained in Q2 if for every database G the

answers of Q1 over G, Q1(G), are contained in the answers of Q2 over G, Q2(G).

They show that a query Q1 is contained in Q2 if there is a mapping f from Q2 to Q1,

with f(Q2) = Q1, and f a function that maps the variables of Q2 to the variables

of Q1. For their complexity investigation they focus on a sub-language of CRPQ,

called StruQL0. A StruQL0 query is a CRPQ query in which all regular expressions

are simple. In their formalisation, a simple regular expression is a regular expression

of the form r1.r.2 . . . rn where each ri is either ∗ or a constant from Σ. They show

that the complexity of containment of simple regular expressions is in PTIME, and

the complexity of containment of StruQL0 queries is NP-complete.

Similarly to the previous work, in [13] the authors discuss the complexity of

query containment with CRPQ queries but in their case they include the inverse

operator (CRPQI). To do this they include in their vocabulary the inverse of every

edge label, that is Σ = D ∪ {p− | p ∈ D}. They show that query containment of

two CRPQI queries can be solved in EXPSPACE (upper bound) and that query

containment for two CRPQ queries is EXPSPACE-hard (lower bound).

We now discuss the work in [34] where the authors describe a particular kind of

query approximation based on regular path queries (i.e. CRPQs with a single con-

junct). In order to compute the approximated answers they make use of a weighted

transducer which transforms regular path expressions with a transformation cost.

Given an RPQ query Q, a graph database G and a transducer T the approximate

answers ansT (Q,G) at cost k is a set of triples (a, b, k) where a and b are nodes in

G such that (a, b) ∈ Q′(G) and the query Q′ is generated by the transducer T given

input Q .

They define three different containment semantics:
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• Q1 is approximately contained in Q2, Q1 ⊆T Q2, if for any database G, for

each (a, b, n) ∈ ansT (Q1, G) there exists (a, b,m) ∈ ansT (Q2, G) with m ≤ n.

The complexity is equivalent to the complexity of RPQ evaluation.

• Q1 is k-contained in Q2, Q1 ⊆T ,k Q2, if it is approximately contained and we

also have that n−m ≤ k. The complexity is in PSPACE with respect to the

combined size of Q1 and Q2, and moreover is sub-exponential with respect to

k.

• Q1 is reliably contained in Q2, Q1 ⊆T ,ω Q2, if there exists a k such that

Q1 ⊆T ,k Q2. The complexity is PSPACE-hard.

Figure 7.6 from Sagiv et al. [24] and Deutsh et al. [70] summarises several complexity

results for query containment with regular expressions.

The work presented here follows a similar approach to that in [33] where Gottlob

et al. evaluate conjunctive queries under Datalog rules by the means of a rewriting

algorithm. They minimise the number of queries generated by a rewriting algorithm

by applying the query containment technique. In contrast to [33], our optimisation

considers query containment for SPARQL with flexible operators, and does not use

Datalog rules.

7.2.2 Preliminary Definitions

In this section we study query containment for SPARQLAR first considering approx-

imation then relaxation and finally both. We first define the concept of a renaming

function:

Definition 7.1 (Renaming function). A renaming function h from UV L to UV L is

a partial function h : UV L→ UV L. We assume that h(x) = x whenever x is either

a literal in L or a URI in U . It is possible that a variable is mapped to a URI or

a Literal. The variables of h, var(h), is the subset of V where h is defined. Given

a query Q such that var(Q) ⊆ var(h), h(Q) is the query obtained by replacing the

variables in var(Q) according to h.
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Figure 7.6: Containment results
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To gain a finer understanding of how query costs influence query containment in

SPARQLAR, we give a new definition that takes into account an operator op that

compares the costs of mappings.

Definition 7.2. Given G, Q, Q′ and op, JQKG is subset of JQ′KG with respect to op,

JQKG ⊆op JQ′KG, if for each pair 〈µ, k〉 ∈ JQKG there exists a pair 〈µ, k′〉 ∈ JQ′KG,

such that (k op k′), where op is either ≥ or =.

From now until the end of this section we refer to the containment of two

SPARQLAR queries Q and Q′ by Q ⊆op Q′, which is defined as follows:

Definition 7.3 (Query containment). Given Q, Q′ and op, Q is contained in Q′ with

respect to op, Q ⊆op Q′, if there exists a renaming function h such that head(Q) =

h(head(Q′)), and JQKG ⊆op Jh(Q′)KG for every graph G.

In this query containment definition we use the renaming function to compare the

mappings from the evaluation of the two queries in case the variables are represented

by different symbols.

We make the following observation:

Observation 7.1. Given a triple pattern 〈x, P, y〉, for every graph G the following

holds: J〈x, P, y〉KG ⊆ JAPPROX/RELAX(x, P, y)KG.

Before studying query containment further we introduce some necessary defini-

tions. Given a NFA MP , we refer to L(MP ) as the language recognized by MP . This

is equivalent to the language denoted by P ∈ RegEx(U) in Section 2.1.3, i.e L(P ).

AP denotes the NFA constructed by approximating MP and RP denotes the NFA

constructed by relaxing MP (see proof of Lemma 4.1).

Given P, P ′ ∈ RegEx(U), we say that P ′ is more expressive than P if L(P ) is a

subset of L(P ′), i.e. L(P ) ⊆ L(P ′). More formally:

Definition 7.4. Given P, P ′ ∈ RegEx(U), L(P ) is a subset of L(P ′), L(P ) ⊆ L(P ′),

if each string that conforms to the regular expression P also conforms to P ′.

Example 7.4. Given a regular expression P1 = p1/p2/(p1|p2), there are two strings

that conform to it: p1p2p1 and p1p2p2. Considering a second regular expression
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P2 = (p1|p2)∗ it is possible to write an infinite set of strings which conform to it,

including p1p2p1 and p1p2p2. Therefore L(P1) ⊆ L(P2).

Proposition 7.2. Given two triple patterns (x, P, y) and (x′, P ′, y′) and a renaming

function h = {x′ → x, y′ → y} and an op ∈ {=,≥}, (x, P, y) ⊆op h((x′, P ′, y′)) if

and only if L(P ) ⊆ L(P ′).

Proof. If is true that (x, P, y) ⊆op h((x′, P ′, y′)) then it holds that Jx, P, yKG ⊆op
Jh(x′, P ′, y′)KG, for every G, i.e. Jx, P, yKG ⊆op Jx, P ′, yKG. The latter holds only if

L(G) ∩ L(P ) ⊆ L(G) ∩ L(P ′) for every G, and therefore only if L(P ) ⊆ L(P ′).

If L(P ) ⊆ L(P ′) holds then for every string s ∈ L(P ) then also s ∈ L(P ′). If

we represent s as a concatenation of URIs, Ps = p1/p2/ . . . /pn then every answer

returned by Jx, Ps, yKG for every s ∈ L(P ) will also be returned by Jx, P ′, yKG for

every G.

The proof holds for every op since we assume that graphs have cost 0 for all

edges.

7.2.3 Containment of Single-Conjunct Queries

Approximation

We begin by considering queries with only one conjunct to which APPROX may

be applied. The following Lemma gives a major property of the approximation

operator:

Lemma 7.2. Given any graph G and any regular expression P ∈ RegEx(U)

JAPPROX(x, P, y)KG will return every mapping µ = {x → c, y → c′} such that

there is a path from c to c′ in G.

Proof. This can be easily verified since for every P ′ ∈ RegEx(U), L(P ′) ⊆ L(AP ).

We consider three different cases for single-conjunct SPARQLAR query contain-

ment given a renaming function h = {x′ → x, y′ → y}:

(x, P, y) ⊆op APPROX(x′, P ′, y′) (7.2.1)
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APPROX(x, P, y) ⊆op (x′, P ′, y′) (7.2.2)

APPROX(x, P, y) ⊆op APPROX(x′, P ′, y′) (7.2.3)

7.2.1 op is =: is true if and only if L(P ) ⊆ L(P ′) (by Observation 7.1).

7.2.1 op is ≥: is true if and only if L(P ) ⊆ L(P ′) (by Observation 7.1).

7.2.2 op is =: is true if and only if L(AP ) = L(P ) ⊆ L(P ′). If L(AP ) = L(P ) ⊆

L(P ′) is true then applying any step of approximation to P the language L(P )

will not change, therefore every evaluation in JAPPROX(x, P, y)KG is of the form

〈µ, 0〉. Since, L(P ) ⊆ L(P ′) we can conclude that every evaluation of the form

〈µ, 0〉 ∈ JAPPROX(x, P, y)KG is also contained in Jh(〈x′, P ′, y′〉)KG.

If every pair 〈µ, k〉 ∈ JAPPROX(x, P, y)KG, 〈µ, k〉 is contained in Jh(〈x′, P ′, y′〉)KG
then k has to be equal to 0 for everyG. Therefore applying any step of approximation

to the regular expression P the following holds: L(AP ) = L(P ); and therefore

L(P ) ⊆ L(P ′).

7.2.2 op is ≥: is true if and only if L(AP ) ⊆ L(P ′).

7.2.3 op is =: is true if and only if L(P ) = L(P ′). The APPROX operator returns

every pair of connected nodes in G, therefore two approximated triple patterns

will return the same sets of mappings, with possibly different costs associated. We

know by the definition of containment, with op being =, that for each 〈µ, k〉 ∈

JAPPROX(x, P, y)KG there exists a pair 〈µ, k〉 ∈ Jh(APPROX(x′, P ′, y′)KG, for every

G. Moreover, given Lemma 7.2, for each 〈µ′, k′〉 ∈ Jh(APPROX(x′, P ′, y′))KG there

exists a pair 〈µ′, k′′〉 ∈ JAPPROX(x, P, y)KG, for every G. For the containment

to hold it has to be the case that k′ = k′′ and therefore JAPPROX(x, P, y)KG ==

Jh(APPROX(x′, P ′, y′))KG for every G.

We can see that JAPPROX(x, P, y)KG == JAPPROX(x′, P ′, y′)KG holds if and

only if J(x, P, y)KG == J(x′, P ′, y′)KG holds, and therefore also L(P ) = L(P ′) holds.

7.2.3 op is ≥: is true if and only if L(P ) ⊆ L(P ′). By the definition of contain-

ment, with op being ≥, and Observation 7.1, for each 〈µ, 0〉 ∈ J〈x, P, y〉)KG ⊆
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JAPPROX(x, P, y)KG there exists a pair 〈µ, k〉 ∈ Jh(APPROX(x′, P ′, y′))KG, for ev-

eryG. For the containment to hold, 0 ≥ k = 0 and therefore 〈µ, 0〉 ∈ Jh(〈x′, P ′, y′〉)KG.

We can conclude that (x, P, y) ⊆ (x′, P ′, y′) and therefore L(P ) ⊆ L(P ′).

If L(P ) ⊆ L(P ′) then it is possible to approximate P ′ and P in order to reach a

common approximated regular expression A such that L(A) ⊆ L(AP ) = L(A′P ). To

construct A from P ′ we apply fewer steps of approximation than constructing A from

P since L(P ) ⊆ L(P ′). Therefore, for each 〈µ, k〉 ∈ JAPPROX(x, P, y)KG there ex-

ists 〈µ, k′〉 ∈ JAPPROX(x′, P ′, y′)KG with k ≥ k′ up to approximating A for every G,

but since it is always true that JAPPROX(x,A, y)KG ⊆≥ Jh(APPROX(x′, A, y′))KG,

we can conclude that APPROX(x, P, y) ⊆≥ APPROX(x′, P ′, y′).

Relaxation

We again consider queries with only one conjunct. Similarly to approximation we

consider three different cases for single-conjunct SPARQLAR query containment

given a renaming function h = {x′ → x, y′ → y} and an ontology K:

(x, P, y) ⊆op RELAX(x′, P ′, y′) (7.2.4)

RELAX(x, P, y) ⊆op (x′, P ′, y′) (7.2.5)

RELAX(x, P, y) ⊆op RELAX(x′, P ′, y′) (7.2.6)

7.2.4 op is =: is true if and only if L(P ) ⊆ L(P ′) (by Observation 7.1).

7.2.4 op is ≥: is true if and only if L(P ) ⊆ L(P ′) (by Observation 7.1).

7.2.5 op is =: is true if and only if L(RP ) = L(P ) ⊆ L(P ′), similarly to case (2)

with op being =.

7.2.5 op is ≥: is true if and only if L(RP ) ⊆ L(P ′).

7.2.6 op is =: is true only if L(P ) ⊆ L(P ′). By the definition of containment, with

op being =, and Observation 7.1, for each 〈µ, 0〉 ∈ J〈x, P, y〉)KG ⊆ JRELAX(x, P, y)KG

there exists a pair 〈µ, 0〉 ∈ Jh(RELAX(x′, P ′, y′))KG, for every G. Since, it has to be

the case that 〈µ, 0〉 ∈ Jh(〈x′, P ′, y′〉)KG, we can conclude that 〈x, P, y〉 ⊆ 〈x′, P ′, y′〉

and therefore L(P ) ⊆ L(P ′).
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7.2.6 op is ≥: is true only if L(P ) ⊆ L(P ′). By the definition of containment, with

op being≥, and Observation 7.1, for each 〈µ, 0〉 ∈ J〈x, P, y〉)KG ⊆ JRELAX(x, P, y)KG

there exists a pair 〈µ, k〉 ∈ Jh(RELAX(x′, P ′, y′))KG, for every G. Since for the con-

tainment to hold 0 ≥ k = 0 and therefore 〈µ, 0〉 ∈ Jh(〈x′, P ′, y′〉)KG, we can conclude

that (x, P, y) ⊆ (x′, P ′, y′) and therefore L(P ) ⊆ L(P ′).

Approximation and Relaxation

We now consider queries with only one conjunct to which either RELAX or AP-

PROX can be applied. We consider two cases for single-conjunct SPARQLAR query

containment given a renaming function h = {x′ → x, y′ → y} and an ontology K:

APPROX(x, P, y) ⊆op RELAX(x′, P ′, y′) (7.2.7)

RELAX(x, P, y) ⊆op APPROX(x′, P ′, y′) (7.2.8)

7.2.7 op is =: is true only if L(AP ) ⊆ L(RP ′) and L(P ) ⊆ L(P ′).

7.2.7 op is ≥: is true only if L(AP ) ⊆ L(RP ′) and L(P ) ⊆ L(P ′).

7.2.8 op is =: is true only if L(RP ) ⊆ L(AP ′) and L(P ) ⊆ L(P ′).

7.2.8 op is ≥: is true only if L(RP ) ⊆ L(AP ′) and L(P ) ⊆ L(P ′). By the def-

inition of containment, with op being ≥, and Observation 7.1, for each 〈µ, 0〉 ∈

J〈x, P, y〉)KG ⊆ JRELAX(x, P, y)KG there exists a pair 〈µ, k〉 such that 〈µ, k〉 ∈

Jh(APPROX(x′, P ′, y′))KG, for every G. Since for the containment to hold 0 ≥ k

then k = 0 and therefore 〈µ, 0〉 ∈ Jh(〈x′, P ′, y′〉)KG. We conclude that 〈x, P, y〉 ⊆

〈x′, P ′, y′〉 and therefore L(P ) ⊆ L(P ′).

Table 7.4 summarises the query containment conditions discussed in this Section,

where t denotes a single triple pattern that is not approximated nor relaxed, A

denotes an approximated triple pattern and R denotes a relaxed triple pattern.

Our implementation of the query containment optimisations implements the tests

in Table 7.4 relating to op being ≥ apart from those in the last three lines.

137



op is = op is ≥

t ⊆ t iff L(P ) ⊆ L(P ′)

t ⊆ A iff L(P ) ⊆ L(P ′)

A ⊆ t iff L(AP ) = L(P ) ⊆ L(P ′) iff L(AP ) ⊆ L(P ′)

A ⊆ A iff L(P ) = L(P ′) iff L(P ) ⊆ L(P ′)

t ⊆ R iff L(P ) ⊆ L(P ′)

R ⊆ t iff L(RP ) = L(P ) ⊆ L(P ′) iff L(RP ) ⊆ L(P ′)

R ⊆ R Only if L(P ) ⊆ L(P ′)

A ⊆ R Only if L(P ) ⊆ L(P ′) and L(AP ) ⊆ L(RP ′)

R ⊆ A Only if L(P ) ⊆ L(P ′) and L(RP ) ⊆ L(AP ′)

Table 7.4: Containment conditions

7.2.4 Query containment based optimisation

We now discuss how we exploit the containment property for query optimisation.

Since the rewriting algorithm generates queries that are similar to each other and

potentially return the same answers multiple times, we can check if some queries

are contained in others. Algorithm 11 iterates over every query Q′ generated by the

rewriting algorithm and checks if there exists any other generated query Q′′ that

contains it. If that is the case then Q′ will not be included in the set of queries to

be evaluated.

Similarly to Algorithm 10, Algorithm 11 returns a set of queries that will be

evaluated, hence we are able to combine the pre-computation optimisation with the

query containment optimisation by simply replacing the call of the rewrite function

in Algorithm 9 to call Algorithm 11 instead.

7.2.5 Performance Study

We now discuss the performance of SPARQLAR evaluation with the query contain-

ment optimisation considering the LUBM, DBpedia and YAGO datasets.
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Algorithm 11: Flexible Query Evaluation

input : Query Q; approx/relax max cost c; Graph G; Ontology K.

output: List Qs of query/cost pairs sorted by cost.

Qs := ∅;

Q := minimise(Q);

foreach 〈Q′, cost′〉 ∈ rew(Q,c,K) do

if we cannot find any 〈Q′′cost′′〉 ∈ rew(Q,c,K) such that Q′ ⊆ Q′′ and

cost′ ≥ cost′′ then

Q′ := minimise(Q′);

Qs := Qs ∪ 〈Q′, cost′〉;

return Qs;

Algorithm 12: Query Minimisation

input : Query Q.

output: minimised Q.

foreach triple pattern t ∈ Q do

if there exists t′ ∈ Q such that t′ ⊆≥ t then

remove t from Q;

return Q;

LUBM Evaluation

In Table 7.5 the left-hand number in each cell is the number of queries generated

by the rewriting algorithm with the query containment optimisation, and the right-

hand number is the number of queries generated by the rewriting algorithm alone.

In Table 7.5 we see that the number of queries that are returned by Algorithm 11 is

lower in some cases than those returned by the rewriting algorithm (see Table 6.1).

These queries are those that contain the APPROX operator (Q1, Q3, Q4 and Q5),

since it is with such queries that the rewriting algorithm can generate multiple

queries that may contain each other.

For example considering query Q4:

SELECT * WHERE{
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Max

Cost
Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 6/6 4/4 8/8 8/9 6/6 2/2 3/3

2 16/17 8/8 28/29 28/37 16/17 2/2 5/5

3 30/37 11/11 62/71 64/112 30/37 2/2 7/7

Table 7.5: LUBM. Number of queries generated by the rewriting algorithm with

query containment optimisation, given maximum costs of 1, 2 and 3.

?z publicationAuthor AssociateProfessor3.

APPROX(?z publicationAuthor/advisor AssociateProfessor3)

}

The rewriting algorithm deletes the property advisor from the second triple pattern

resulting in the following:

SELECT * WHERE{

?z publicationAuthor AssociateProfessor3.

?z publicationAuthor AssociateProfessor3

}

The rewriting algorithm also replaces the property advisor with the symbol ( ) which

results in the following:

SELECT * WHERE{

?z publicationAuthor AssociateProfessor3.

?z publicationAuthor/_ AssociateProfessor3

}

We notice that the answers returned by the second query are also returned by the

first query. Moreover, both queries are generated at the same cost, hence we do not

need to execute the second query.

By comparing Figures 7.7, 7.8, 7.9 with Figures 6.2, 6.3, 6.4 we notice that, for

those queries that run in less than a fraction of a second using the simple evaluation,
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the timing actually worsens when using the query containment optimisation. This

is the case, for example, for queries Q1, Q2, Q4, Q6 and Q7 for costs 1, 2 and 3,

and dataset D1. This is due to the time it takes for Algorithm 11 to find which

queries to discard when performing the query containment checks and to minimise

the remaining queries. For queries that take more than one second with the simple

evaluation we can see that the query containment optimisation does improve the

evaluation time.

We found that the compilation time for query containment is between 0.03 sec-

onds and 20 seconds, depending on the number and size of the queries the rewriting

algorithm generates. For example, for query Q3 the compilation time is 0.71, 4.5

and 7.8 seconds for cost 1, 2 and 3 respectively.

When the query containment optimisation is combined with the pre-computation

optimisation, the execution time increases for queries that take less than 5 seconds

(queries Q1, Q2, Q4, Q6 and Q7 for all costs). However, for queries that take many

seconds to execute there is an improvement of several seconds (see Q3 for all costs).

We also notice from Figure 7.9 that, in contrast to the summarisation optimisation,

we are not able to execute queries Q3, Q4 and Q5. This is due to the presence of

the symbol which is expensive to execute.

DBpedia Evaluation

Applying the query containment optimisation to the DBpedia queries, we can see

from Table 7.6 that there has been a reduction of the number of queries with respect

to the simple rewriting algorithm (see Table 6.3), with the exception of query Q4

which contains only the RELAX operator.

We also notice that for query Q5, even though it contains two approximated

triples, the number of queries that are discarded is considerably lower than the

number discarded for query Q4 from LUBM which contains only one approximated

triple pattern. This is due to the fact that the approximated triple patterns in

Q5 contain constants or variables appearing in the head of the query hence the

containment check fails to find a mapping between queries.

By comparing Figure 7.10 with Figure 6.5, we can see an overall improvement in

141



Q1 Q2 Q3 Q4 Q5 Q6 Q7

10−2

10−1

100

101

102

se
co

n
d
s

Cost 1 Cost 2 Cost 3

Figure 7.7: LUBM. Timings for database D1, with query containment optimisation,

with and without pre-computation optimisation.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 3/3 5/5 5/5 3/3 10/10

2 7/11 11/12 11/12 6/6 46/48

3 15/51 19/25 19/25 10/10 146/168

Table 7.6: DBpedia. Number of queries generated by the rewriting algorithm given

maximum costs of 1, 2 and 3.

execution time for most queries. In particular we are able to execute query Q5 with

maximum cost 2 and 3 within the 8 hour threshold since we reduced the number

of queries to be executed from 48 to 46 for cost 2 and from 168 to 146 for cost 3.
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Figure 7.8: LUBM. Timings for database D2, with query containment optimisation,

with and without pre-computation optimisation.

Regarding query Q4, even though the number of queries has not changed it took

more time to execute due to the overhead of computing query containments.

Similarly to LUBM the compilation time for the DBpedia queries is between 0.04

and 25 seconds. For example, the compilation time for query Q5 is 0.3, 1.2 and 4.5

seconds for cost 1, 2 and 3 respectively.

YAGO Evaluation

Similarly to the analysis for DBpedia and LUBM, we can see from Table 7.7 that the

number of queries to be evaluated is lower than with the simple rewriting algorithm.

The only exception is query Q2 which contains only one relaxed triple pattern.

By comparing Figure 7.11 with Figure 6.6 again we notice an improvement in
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Figure 7.9: LUBM. Timings for database D3, with query containment optimisation,

with and without pre-computation optimisation.

Max

Cost
Q1 Q2 Q3

1 12/12 2/2 5/5

2 57/60 2/2 11/12

3 166/199 2/2 19/25

Table 7.7: YAGO. Number of queries generated by the rewriting algorithm given

maximum costs of 1, 2 and 3.

the execution time for Q1 and Q3. For example, query Q1 for maximum cost 2 now

takes only 434 seconds instead of 503. Unfortunately, we are still not able to execute

query Q1 with maximum cost 3 within the 8 hour threshold.
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Figure 7.10: DBpedia. Timings, with query containment optimisation, with and

without pre-computation optimisation.

The compilation time for the YAGO queries is approximately between 0.04 and

20 seconds. For example, for query Q3 the compilation time is 0.1, 0.2, 0.5 seconds

for cost 1, 2 and 3 respectively. These relatively low figures are mainly due to the

fact that the rewriting algorithm generates a small number of queries from Q3.

7.3 Combined Optimisations

We also tested the queries from the three datasets by combining all three optimisa-

tions: the pre-computation optimisation, the summarisation optimisation and the

query containment optimisation. We are able to combine the summarisation opti-

misation with the query containment optimisation by replacing the rewrite function
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Figure 7.11: YAGO. Timings with query containment optimisation, with and with-

out pre-computation optimisation.

in Algorithm 10 with Algorithm 11. The pre-computation optimisation is included

by Algorithm 9 calling Algorithm 10 which finally calls Algorithm 11.

7.3.1 Performance Study

LUBM Evaluation

When combining the summarisation optimisation technique with query containment,

we can see in Table 7.8 a further reduction in the number of queries generated with

respect to the summarisation optimisation alone (see Figure 7.1). For example we

reduced the number of queries generated by the rewriting algorithm for query Q4

from 112 to 37. This leads to a further improvement in the query evaluation timings
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for queries containing the APPROX operator. The summarisation optimisation

technique is more effective for this kind of query since it optimises the query by

editing the regular expression patterns of the query.

Max

Cost
Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 2 1 7 5 2 1 2

2 7 2 20 17 7 1 3

3 14 2 36 37 14 1 4

Table 7.8: LUBM. Number of queries generated by the rewriting algorithm with

summarisation of size 3 and query containment.

In Figures 7.12, 7.13, 7.14 we can see that, for most queries, the pre-computation

optimisation increases the execution time. This is due to the time needed to compute

the sub-queries and cache their results.

Overall, by combining all three optimisation, we reduced the timings of the

LUBM queries. All the queries run in less than 20 seconds for database D1, less

than 60 seconds for database D2, and less than 400 seconds for database D3.

DBpedia Evaluation

For the DBpedia dataset the number of queries generated by combining the two

optimisations does not change. Hence, we do not expect to see an improvement in

the query execution times. One of the issues in combining the two optimisations is

that we are still not able to generate certain queries using the optimisation techniques

(Q1 and Q4 with maximum costs 2 and 3).

By comparing Figure 7.15 with Figure 7.4 showing the execution times with

the summarisation optimisation we notice that the times to execute the queries do

increase when we do not use the pre-computation optimisation in both instances.

This is mainly due to the time taken to compute the query containments.

When we evaluate the queries using the pre-computation optimisation the time

does improve for queries Q1, Q2 and Q3 when we combine the summarisation opti-

147



Q1 Q2 Q3 Q4 Q5 Q6 Q7

100

101
se

co
n
d
s

Cost 1 Cost 2 Cost 3

Figure 7.12: LUBM. Timings for database D1, with query containment optimisation,

summarisation of size 3, with and without pre-computation optimisation.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 3 2 2 1 0

2 N/A 5 5 N/A 3

3 N/A 10 10 N/A 18

Table 7.9: LUBM. Number of queries generated by the rewriting algorithm with

summarisation of size 2 and query containment.

misation and the query containment optimisation compared to the summarisation

optimisation alone.
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Figure 7.13: LUBM. Timings for database D2, with query containment optimisation,

summarisation of size 3, with and without pre-computation optimisation.

YAGO Evaluation

In the case of the YAGO dataset we can see a slight improvement in the number

of queries generated by the combined optimisations. In particular, by comparing

query Q3 from Table 7.10 with Table 7.3 we can see that there is a reduction in

the number of queries. Particularly, we reduced the number of queries generated for

query Q3 from 25 to 19.

Finally, by comparing the execution times of Figure 7.16 with Figure 7.5 we

notice that there is no improvement for queries Q2 and Q3 due to the overhead of

the query containment optimisation. Regarding query Q1 we do notice an improve-

ment in the execution time for maximum cost 2 from 214 seconds, by using the
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Figure 7.14: LUBM. Timings for database D3, with query containment optimisation,

summarisation of size 3, with and without pre-computation optimisation.

Max

Cost
Q1 Q2 Q3

1 10 2 5

2 45 2 11

3 N/A 2 19

Table 7.10: YAGO. Number of queries generated by the rewriting algorithm with

summarisation size 3 and query containment.

summarisation of size 3, to 173 seconds, by using both the query containment and

the summarisation of size 3; and from 201, by using the summarisation of size 3 and

the pre-computation optimisation, to 152, by using all three optimisations.
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Figure 7.15: DBpedia. Timings, with query containment optimisation, summarisa-

tion of size 2, with and without pre-computation optimisation.

7.4 Discussion

We have presented in this chapter two optimisation techniques that have improved

in most cases the query execution timings. By means of the summarisation optimi-

sation we removed unsatisfiable queries and rewrote queries containing the symbol

in such a way that they are less expensive to execute. We also removed queries that

were not adding any additional answers and minimised queries by the means of the

query containment technique.

In contrast to the work in [16], our summarisation technique is not used to

help the user to formulate queries; moreover, their node collapsing technique may

generate non-deterministic graph summaries. The summarisation in [35] tries to
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Figure 7.16: YAGO. Timings, with query containment optimisation, summarisation

of size 3, with and without pre-computation optimisation.

improve query performance by pruning parts of the RDF graph. They show that

their technique does improve the performance for most query instances, with the

exception of single-conjunct queries, whereas in our investigation the performance

does not improve when the APPROX operator is not contained in the query. In

contrast to [5, 15], our work does not focus on summarisation precision and size,

although this can be explored in future work.

We evaluated all the queries from Chapter 6 using both the new query opti-

misation techniques presented, alone and combined. Moreover, we used the pre-

computation technique to further improve the execution time of queries by combin-

ing it with the other two optimisation techniques.

We conclude that overall the summarisation optimisation technique does improve
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the execution time for non-dense datasets and for queries that contain the APPROX

operator. The query containment optimisation reduced the number of queries to be

executed in many cases. Similar results can be found in [33] where the authors show

the benefit of applying query elimination by using query containment techniques,

although the number of queries they generate via their rewriting algorithm can grow

up to 100,000.

By combining the two approaches we reduced the time to execute the worst

performing queries considerably. One of the drawbacks of our combined approach

is that the overhead to compute query containment and to rewrite queries into a

less costly form is rather high. Hence, some queries that ran in less than one second

using the simple evaluation algorithm run in more than one second when combining

the optimisations. In particular, this overhead is more noticeable when including

also the pre-computation technique.

Further work might include design of a query optimiser that chooses to apply

one or more optimisations depending on the query structure and size. For example,

single-conjunct queries do not need the pre-computation optimisation as they cannot

be split into sub-queries. Similarly, the execution time of queries that contain only

one triple pattern may not improve when using the query containment optimisation.

The evaluation times of queries with complex query patterns or with the APPROX

operator are likely to be improved by the means of the summarisation optimisation.

On the other hand, this technique may not be useful when querying a dataset that

has large summarisations such as DBpedia.
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Chapter 8

Conclusions

We have discussed the motivation of our work by showing, with several examples,

how flexible querying techniques have the potential to enhance users’ access to com-

plex, heterogeneous datasets, by allowing the retrieval of non-exact answers. We

have presented our new flexible querying language for RDF called SPARQLAR that

extends a fragment of the standard SPARQL 1.1 query language. This new lan-

guage extends the work in [67] by integrating APPROX and RELAX operators into

SPARQL 1.1 which is a pragmatic language for querying RDF. We have defined the

syntax and semantics of SPARQLAR focusing particularly on its APPROX opera-

tor, that edits the property paths of the query by inserting, deleting and replacing

properties, and its RELAX operator that allows ontology-driven relaxation.

We have extended the complexity results in [2,65] for SPARQL by investigating

the complexity of several fragments of SPARQLAR and have shown that including

the APPROX and RELAX operators does not increase the complexity of query

evaluation compared with the standard SPARQL language.

We have implemented a query evaluation algorithm for SPARQLAR based on a

query rewriting technique. The algorithm was inspired by the work in [42,43] which

considers only relaxation, whereas our algorithm is able to evaluate queries contain-

ing both relaxation and approximation operators. We have shown the correctness

and termination of our query rewiring algorithm and have evaluated its empirical

efficiency. We have also described an optimisation technique where we pre-compute

partial queries and store their answers in a cache for subsequent reuse.
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We presented a performance study of our query evaluation algorithm and the

pre-computation optimisation over three datasets, LUBM, DBpedia and YAGO.

We noticed that the pre-computation technique does help to improve the query

answering times for queries that generally take a long time to compute. But, because

of the overhead needed to run the pre-computation, for the faster queries the running

time actually increased.

We presented two further optimisation techniques with the aim of improving the

query execution timings further. For the first of these, we presented a procedure

that generates a summary of the original RDF dataset. We use a similar summari-

sation to that defined in [5] where the authors try to reduce the size of an RDF

graph so that is more comprehensible; in contrast, our summarisation is used to

enhance query evaluation performance. We showed that we are able to exploit such

a summary in order to reduce the number of queries that need to be executed to

evaluate a SPARQLAR query. Moreover, we were able to optimise the queries that

need to be executed by replacing the symbol , which is expensive to execute since it

represents the disjunction of all the predicates in the dataset, with a selected num-

ber of predicates. We discussed how this optimisation technique enhances query

execution performance considerably, in particular when the query contains the AP-

PROX operator. A major drawback of this technique is that when the dataset

contains many different property labels it leads to larger summarisations, which in

turn causes rewritten queries to be syntactically larger. For the DBpedia dataset

in particular we were unable to test the summarisation optimisation technique with

summarisations of size 3, since it caused the query to be re-written into a form that

was too large to be executed by the Jena framework.

Our third optimisation technique is based on query containment, by means of

which we are able to discard multiple queries that do not increase the number

of answers. This optimisation technique, although based on the work in [33], was

further extended by considering query containment in the presence of APPROX and

RELAX operators. We have presented sufficient conditions that ensure containment

of single triple patterns for SPARQLAR queries. We have shown how the query

containment optimisation reduces the number of queries that need to be executed,
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hence reducing the overall computation time of queries. This technique reduced the

execution time of, in particular, queries containing the APPROX operator. However,

we were still unable to run some queries because of the presence of the symbol.

Hence, we concluded our performance study by combining both the summarisation

and the query containment optimisations and we showed improvement in the query

execution time of several seconds for all three datasets.

8.1 Future Work

In Chapter 7 we suggested the need for an optimiser that chooses which optimisa-

tion technique to use based on the query structure and size. The optimiser may

choose to use the summarisation optimisation technique for queries with complex

regular expression patterns, or choose to use the pre-computation optimisation for

queries with many triple patterns. Further optimisation of our SPARQLAR proto-

type implementation and its interaction with the Jena API might also improve the

execution time of queries.

As future work we intend to evaluate the quality of the answers returned by

SPARQLAR, by undertaking a user evaluation study. Our aim is to identify how

many answers are considered useful by users in given information seeking scenarios

after posing an initial exact query followed by a sequence of relaxation or approxi-

mation steps.

We also plan to extend our language in two ways. The first is by combining the

APPROX and RELAX operators into a single operator we call FLEX that applies

both the edit operations of APPROX and the RDFS entailment rules of RELAX to

a single query conjunct. We intend to investigate its semantics and complexity, and

how it can be used to enhance the benefits of flexible querying for users by allowing

further flexibility when formulating queries.

We will also investigate another new operator that, we believe, will further help

the user to query a dataset. To retrieve information from any RDF dataset, the user

may start from the label property to find matching resources. An example query is

the following:
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SELECT * WHERE ?x rdfs:label ”SPARQL”

This style of querying may lead to empty results due to use of erroneous capitali-

sation, spelling errors, redundant spaces, use of synonym words and generally lack

of precision by the user within the string literal. Therefore, we aim to devise a

similarity measure with respect to strings and text that enables such queries to be

approximated, making use of the predicates that connect resources to literals such

as rdfs:label and rdfs:comment. We intend to exploit text-similarity techniques that

are used in natural language processing such as corpus-based word similarity [47].

Our similarity querying will allow both text similarity and semantic similarity.

For the latter we intend to exploit an ontology reasoner. By using the ontology

axioms we can infer new information that vocabularies and thesauri may not provide.

These ontology axioms will be related to the domain of interest. For instance, from

the resource description “Dutch Painting with sunflowers” we can infer that it is a

painting painted by Van Gogh.

Another direction of research is the extension of our approximation and relax-

ation operators, query evaluation and query optimisation techniques to flexible fed-

erated query processing for SPARQL 1.1. Querying multiple data sources is po-

tentially harder for the user, hence the APPROX and RELAX operators might aid

the user to query such potentially heterogeneous RDF datasets. For example, the

APPROX operator might replace the predicates of a query with predicates selected

from the namespace of other RDF datasets. Similarly the RELAX operator might

replace a predicate of the query with a super-predicate that generalises predicates

from multiple datasets.

We intend to further extend our query containment study by investigating condi-

tions that ensure query containment for multi-conjunct SPARQLAR queries. More-

over, we will investigate in more detail the complexity of query containment for

fragments of SPARQLAR.

Finally, another direction of research might be to investigate the use of path

indexing for RDF-graphs [29]. Use of path indexes may further improve our query

evaluation timings, particularly for queries containing complex regular expression

patterns. Our SPARQLAR language may benefit from such indexes since the AP-
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PROX operator in particular generates regular expression patterns with long con-

catenations of URIs.
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Containment under SHI Axioms. Rapport de recherche, Apr. 2012.

[21] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An adaptive structural summary

for graph-structured data. In Proceedings of the 2003 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’03, pages 134–144, New

York, NY, USA, 2003. ACM.

[22] W. W. W. Consortium et al. Rdf 1.1 concepts and abstract syntax. 2014.

[23] R. De Virgilio, A. Maccioni, and R. Torlone. A similarity measure for approxi-

mate querying over RDF data. In Proceedings of the Joint EDBT/ICDT 2013

Workshops, EDBT ’13, pages 205–213, New York, NY, USA, 2013. ACM.

[24] A. Deutsch and V. Tannen. Optimization properties for classes of conjunctive

regular path queries. In Revised Papers from the 8th International Workshop

on Database Programming Languages, DBPL ’01, pages 21–39, London, UK,

UK, 2002. Springer-Verlag.

161



[25] S. Elbassuoni, M. Ramanath, and G. Weikum. Query relaxation for entity-

relationship search. In Proceedings of the 8th Extended Semantic Web Con-

ference on The Semanic Web: Research and Applications - Volume Part II,

ESWC’11, pages 62–76, Berlin, Heidelberg, 2011. Springer-Verlag.

[26] B. Fazzinga, S. Flesca, and A. Pugliese. Top-k approximate answers to xpath

queries with negation. IEEE Transactions on Knowledge and Data Engineering,

26(10):2561–2573, 2014.

[27] R. Fink and D. Olteanu. On the optimal approximation of queries using

tractable propositional languages. In Proceedings of the 14th International Con-

ference on Database Theory, ICDT ’11, pages 174–185, New York, NY, USA,

2011. ACM.

[28] S. Flesca, F. Furfaro, et al. Xpath query relaxation through rewriting rules.

IEEE transactions on knowledge and data engineering, 23(10):1583–1600, 2011.

[29] G. H. L. Fletcher, J. Peters, and A. Poulovassilis. Efficient regular path query

evaluation using path indexes. In Proceedings of the 19th International Confer-

ence on Extending Database Technology, EDBT 2016, Bordeaux, France, March

15-16, 2016, Bordeaux, France, March 15-16, 2016., pages 636–639, 2016.

[30] D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive queries

with regular expressions. In Proceedings of the Seventeenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’98,

pages 139–148, New York, NY, USA, 1998. ACM.

[31] R. Frosini, A. Cal̀ı, A. Poulovassilis, and P. T. Wood. Flexible query processing

for SPARQL. Semantic Web, 8(4):533–563, 2017.

[32] T. Gaasterland. Cooperative answering through controlled query relaxation.

IEEE Expert: Intelligent Systems and Their Applications, 12(5):48–59, Sept.

1997.

[33] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and opti-

mization (extended version). CoRR, abs/1112.0343, 2011.

162



[34] G. Grahne and A. Thomo. Query answering and containment for regular path

queries under distortions. In D. Seipel and J. Turull-Torres, editors, Founda-

tions of Information and Knowledge Systems, volume 2942 of Lecture Notes in

Computer Science, pages 98–115. Springer Berlin Heidelberg, 2004.

[35] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Using graph summa-

rization for join-ahead pruning in a distributed RDF engine. In Proceedings of

Semantic Web Information Management on Semantic Web Information Man-

agement, SWIM’14, pages 41:1–41:4, New York, NY, USA, 2014. ACM.

[36] C. Gutierrez, C. A. Hurtado, and A. O. Mendelzon. Foundations of Semantic

Web databases. In Proceedings of the Twenty-third Symposium on Principles

of Database Systems (PODS), June 14-16, 2004, Paris, France, pages 95–106,

2004.

[37] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query

languages. In International Semantic Web Conference, pages 502–517. Springer,

2004.

[38] O. Hassanzadeh, A. Kementsietsidis, and Y. Velegrakis. Data management

issues on the Semantic Web. In Proceedings of the 28th IEEE International

Conference on Data Engineering, ICDE ’12, pages 1204–1206, Washington,

DC, USA, 2012. IEEE Computer Society.

[39] J. Heer, M. Agrawala, and W. Willett. Generalized selection via interactive

query relaxation. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’08, pages 959–968, New York, NY, USA, 2008.

ACM.

[40] J. Hjelm. Creating the Semantic Web with RDF: Professional Developer’s

Guide. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[41] A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards fuzzy query-

relaxation for RDF. In E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and

V. Presutti, editors, The Semantic Web: Research and Applications, volume

163



7295 of Lecture Notes in Computer Science, pages 687–702. Springer Berlin

Heidelberg, 2012.

[42] H. Huang and C. Liu. Query relaxation for star queries on RDF. In Proceedings

of the 11th International Conference on Web Information Systems Engineering,

WISE’10, pages 376–389, Berlin, Heidelberg, 2010. Springer-Verlag.

[43] H. Huang, C. Liu, and X. Zhou. Computing relaxed answers on RDF databases.

In Proceedings of the 9th International Conference on Web Information Sys-

tems Engineering, WISE ’08, pages 163–175, Berlin, Heidelberg, 2008. Springer-

Verlag.

[44] C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Query relaxation in RDF.

Journal on Data Semantics, X:31–61, 2008.

[45] C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking approximate answers

to semantic web queries. In Proceedings of the 6th European Semantic Web

Conference on The Semantic Web: Research and Applications, ESWC 2009

Heraklion, pages 263–277, Berlin, Heidelberg, 2009. Springer-Verlag.

[46] Y. E. Ioannidis and V. Poosala. Histogram-based approximation of set-valued

query-answers. In Proceedings of the 25th International Conference on Very

Large Data Bases, VLDB ’99, pages 174–185, San Francisco, CA, USA, 1999.

Morgan Kaufmann Publishers Inc.

[47] A. Islam and D. Inkpen. Semantic text similarity using corpus-based word

similarity and string similarity. ACM Trans. Knowl. Discov. Data, 2(2):10:1–

10:25, July 2008.

[48] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS reasoning and query an-

swering on top of DHTs. In International Semantic Web Conference, pages

499–516. Springer, 2008.

[49] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.

RQL: A declarative query language for RDF. In Proceedings of the 11th In-

164



ternational Conference on World Wide Web, WWW ’02, pages 592–603, New

York, NY, USA, 2002. ACM.

[50] G. Karypis and V. Kumar. METIS – unstructured graph partitioning and

sparse matrix ordering system, Version 2.0. Technical report, -, 1995.

[51] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity

for indexing paths in graph-structured data. In International Conference on

Data Engineering, pages 129–140, 2002.

[52] C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: a

virtual triple approach for similarity-based semantic web tasks. In Proceedings

of the 6th International Semantic Web Conference and 2nd Asian Semantic

Web Conference, ISWC’07/ASWC’07, pages 295–309, Berlin, Heidelberg, 2007.

Springer-Verlag.

[53] O. Lassila, R. R. Swick, and World Wide Web Consortium. Resource description

framework (RDF) model and syntax specification, 1998.

[54] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and

Reversals. Soviet Physics Doklady, 10:707, 1966.

[55] F. Mandreoli, R. Martoglia, and P. Tiberio. Approximate query answering

for a heterogeneous xml document base. In International Conference on Web

Information Systems Engineering, pages 337–351. Springer, 2004.

[56] D. Marin. RDF formalization. Technical report, Santiago de Chile, Technical

Report Universidad de Chile, 2004. TR/DCC-2006-8.

[57] W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for

simple regular expressions. In Proceedings of the 29th International Symposium

on Mathematical Foundations of Computer Science (MFCS 2004, pages 889–

900. Springer, 2004.

[58] W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems

for XML schemas and chain regular expressions. SIAM J. Comp, 2009.

165



[59] B. McBride. The resource description framework (RDF) and its vocabulary

description language RDFS. In S. Staab and R. Studer, editors, Handbook

on Ontologies, International Handbooks on Information Systems, pages 51–66.

Springer, 2004.

[60] R. Meusel, P. Petrovski, and C. Bizer. The WebDataCommons Microdata,

RDFa and Microformat Dataset Series. In Proceedings of the 13th International

Semantic Web Conference - Part I, ISWC ’14, pages 277–292, New York, NY,

USA, 2014. Springer-Verlag New York, Inc.
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[65] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.

ACM Trans. Database Syst., 34(3):16:1–16:45, Sept. 2009.

[66] A. Poulovassilis, P. Selmer, and P. T. Wood. Flexible querying of Lifelong

Learner Metadata. IEEE Transactions on Learning Technologies, 5(2):117–129,

2012.

[67] A. Poulovassilis and P. T. Wood. Combining approximation and relaxation in

semantic web path queries. In Proceedings of the 9th International Semantic

Web Conference, ISWC’10, pages 631–646, Berlin, Heidelberg, 2010. Springer-

Verlag.

166



[68] B. R. K. Reddy and P. S. Kumar. Efficient approximate SPARQL querying of

web of linked data. In Uncertainty Reasoning for the Semantic Web, volume

654 of CEUR Workshop Proceedings, pages 37–48. CEUR-WS.org, 2010.

[69] F. Reynolds. An RDF framework for resource discovery. In Proceedings of the

Second International Conference on Semantic Web - Volume 40, SemWeb’01,

pages 37–43, Aachen, Germany, 2001. CEUR-WS.org.

[70] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with

the union and difference operators. J. ACM, 27(4):633–655, Oct. 1980.

[71] M. Sassi, O. Tlili, and H. Ounelli. Approximate query processing for database

flexible querying with aggregates. In A. Hameurlain, J. Küng, and R. Wagner,
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Appendix A

Queries for Performance Study in

Chapters 6 and 7

A.1 LUBM Queries

Q1 :

SELECT ?x ?t WHERE{

?x publicationAuthor/teacherOf ?c .

?x publicationAuthor/teachingAssistantOf ?c .

?x rdf:type Article . ?x title ?t

}

Suppose a user is looking for publications written by a teacher and a teaching as-

sistant that teach the same course. By posing the above query, the user will not

retrieve any answer. This is due to the fact that predicate title refers to the class

Person and not to the class Article. Therefore, the user approximates the last triple

pattern. The rewriting algorithm will replace, amongst other edit operations, the

predicate title with the symbol ( ). The resulting query will return multiple prop-

erties of the article (such as the publishing date, authors and publisher) including

its title.

If the user is looking for other types of publication the authors wrote, she could

relax the (?x rdf:type Article) triple. This will result in a step of relaxation that
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replaces Article with a super-class Publication which includes also UnofficialPubli-

cation, Specification, Book, Manual and Software.

————————————————————————

Q2 :

SELECT ?c WHERE{

GraduateStudent1 mastersDegreeFrom/hasAlumnus Student25 .

GraduateStudent1 takesCourse ?c . Student25 takesCourse ?c

}

The user is looking for every course that was taken by both GraduateStudent1 (who

has a Masters degree) and Student25 who is an alumnus of the university in which

GraduateStudent1 has graduated. Due to the fact that GraduateStudent1 did not

get a Masters degree from the university in which Student25 is an alumnus the

query returns no answers. The user may choose to relax the first triple pattern.

Therefore, the predicate mastersDegreeFrom will be replaced by degreeFrom which

is a super-predicate of undergraduateDegreeFrom, mastersDegreeFrom and doctor-

alDegreeFrom. The new query will return many answers including those the user

was looking for.

————————————————————————

Q3 :

SELECT ?x ?z WHERE{

?x doctoralDegreeFrom University1 . ?x worksFor University1 .

?x teacherOf ?c . ?z teachingAssistantOf ?c

}

The previous query returns every teacher who has a doctoral degree from University1

in which he works, along with his teaching assistant(s). Suppose the teacher the user

is looking for is not returned by the previous query due to the fact that the teacher

did not get a doctoral degree from University1. The user tries relaxing the first

triple pattern to the following: (?x, degreeFrom,University1). The new query will
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return also teachers who received any kind of degree from the university in which

they work for.

The original query might not return any answer also because teacher ?x is cur-

rently not working for University1. By relaxing also the second triple pattern, (?x

worksFor University1) will be replaced by (?x rdf:type Person). This new query

will return every person who has a doctoral degree from Universty1 along with the

teaching assistants of his courses.

A third reason for which the query might not return any answer is that the

teacher does not have a teaching assistant. Relaxing the first triple pattern yields

no further answers. If however the user applies APPROX to the last triple pattern

then the rewriting algorithm can replace the predicate teachingAssistantOf with the

ε resulting in the triple pattern: (?z, ε, ?c). The resulting query will return, instead

of pairs of teacher/student, pairs of teacher/course. In this particular instance it is

interesting to note that the approximation operator behaves like the OPTIONAL

operator.

————————————————————————

Q4 :

SELECT * WHERE{

?z publicationAuthor AssociateProfessor3.

?z publicationAuthor/advisor AssociateProfessor3

}

Suppose a user is looking for all the publications co-authored by AssociateProfes-

sor3 and a student that she advises. The query might not return any answers due to

the fact that AssociateProfessor3 may not have published any article with one of her

advisees. Applying RELAX to the second triple pattern yields no further answers.

Applying instead APPROX to the second triple pattern the rewriting algorithm can

remove the predicate advisor. The new query will return every publication written

by AssociateProfessor3.

If the user wants to decrease the number of answers by finding every publication

written by AssociateProfessor3 and a student then, instead of approximating, the
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user might relax the second triple pattern which may then be rewritten as follows: ?z

publicationAuthor/rdf:type Student. The rewriting algorithm applied RDFS entail-

ment using the statement (advisor rdfs:domain Student) from the LUBM ontology.

————————————————————————

Q5 :

SELECT ?s ?c WHERE{

?x rdf:type AssistantProfessor . ?x teacherOf ?c .

?s takesCourse ?c . ?s rdf:type UndergraduateStudent .

?s address "UndergraduateStudent5@Department1.University0.edu"

}

This query returns every undergraduate student and course, such that the stu-

dent has email ”UndergraduateStudent5@Department1.University0.edu” and takes

a course taught by an AssistantProfessor. However, the predicate address is not

present in LUBM, therefore the query will not return any answer. By applying the

APPROX operator to the fifth triple pattern, address will be replaced by emailAd-

dress. Still the query does not return any answer since the student is a Graduate

student and not an undergraduate student. By relaxing the fourth triple pattern,

the user will retrieve also masters students or doctoral students with that email.

Finally, the user will be able to retrieve the URI of the specified student with their

courses.

————————————————————————

Q6 :

SELECT * WHERE{

Student1 advisor/teacherOf ?c . Student1 takesCourse ?c .

?c rdf:type UndergraduateCourse

}

Suppose the user is looking for every course that Student1 attends that is taught

by the advisor of Student1. This query does not return any answer since LUBM does
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not contain the class UndegraduateCourse. By relaxing the last triple pattern ?c

rdf:type UndergraduateCourse, the triple pattern becomes ?c rdf:type rdfs:Resource.

Since every URI is a Resource, the query will return every course attended by

Student1 which is taught by her advisor.

————————————————————————

Q7 :

SELECT ?p WHERE{

ResearchGroup3 subOrganizationOf* ?x .

?p rdf:type AssistantProfessor . ?p worksFor ?x .

Publication0 publicationAuthor ?p

}

The user is looking for every AssistantProfessor ?p who works for an organization

that has ResearchGroup3 as a sub-organization such that ?p wrote the publication

’Publication0’. Consider the following two scenarios:

If the user specified the wrong research group then by relaxing the first triple

pattern the triple can be replaced with Organization rdfs:type−/subOrganizationOf*

?x using the statement subOrganizationOf, rdfs:range, Organization. The resulting

query returns every author of the publication ’Publication0’ that is also an assistant

professor.

If the author the user is looking for is not an assistant professor then, by relaxing

the second triple pattern, this will be rewritten to ?p rdf:type Professor. The new

query returns every author of the publication that is also a professor (this includes

FullProfessor, AssistantProfessor and VisitingProfessor). A second step of relaxation

will further rewrite the triple pattern to ?p rdf:type Person.

A.2 DBpedia Queries

Q1

SELECT ?y WHERE{
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<The_Hobbit> subsequentWork* ?y . ?y rdf:type Book

}

The user is looking for every book from the Lord of the Rings, which follows the

book “The Hobbit”. In fact the query returns only the URI

<The_Lord_of_the_Rings>

The answer returned is correct although the user knows that “The Lord of the

Rings” comprises of more books.

If the user applies RELAX to the first triple pattern then many uninteresting

answers are returned. If instead the user applies APPROX to the first triple pattern,

the rewriting algorithm will generate the following query:

SELECT ?x ?y WHERE{

<The_Hobbit> subsequentWork*/_ ?y . ?y rdf:type Book

}

The new query returns every book connected to the URI of the “The Lord of the

Rings” resource, including:

dbr:The_Return_of_the_King

dbr:The_Two_Towers

dbr:The_Fellowship_of_the_Ring

which are the answers the user is looking for.

————————————————————————

Q2

SELECT ?x ?y WHERE{

?x albumBy <The_Rolling_Stones> . ?x rdf:type Album .

?y album ?x .?x recordLabel <London_Records>

}
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The user is looking for all the albums published by the Rolling Stones with the

London Records record label along with the songs in the album. The previous

query does not return any answer since the predicate albumBy does not exist in

DBpedia.

By approximating the first triple pattern the rewriting algorithm will replace the

albumBy predicate with the symbol ( ) which includes the predicate artist. The new

query will return some of the albums from the London Records record label published

by the Rolling Stones. However, some of the answers the user was expecting are not

retrieved due to the fact that for some albums the recordLabel predicate is missing.

By relaxing the last triple pattern this will be rewritten as:

?x rdf:type <Resource>

since DBpedia has the statement recordLabel rdfs:domain Resource. The new query

will return every album written by the Rollings Stones, together with their songs,

including the answers that were not present in the previous query.

————————————————————————

Q3

SELECT ?k ?d ?kd WHERE{

?k diedIn <Battle_of_Poitiers> .

<Battle_of_Poitiers> date ?d . ?k deathDate ?kd

}

Suppose a user is looking for anyone who died during the “Battle of Poitiers”

and the dates of both the battle and the person’s death. The predicate diedIn

is not present in DBpedia therefore the user will not retrieve any answers. By

approximating the first triple pattern the predicate diedIn will be replaced by the

symbol ( ). The new query will return every person connected to the “Battle of

Poitiers” (this occurs since the domain of deathDate has to be a person ). The

symbol ( ) includes the predicate deathPlace which connects the resource “Battle of

Poiters” to “Peter I, Duke of Bourbon” which was the answer the user was looking

for.
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————————————————————————

Q4

SELECT ?x ?kd WHERE{

?x subject Duelling_Fatalities . ?x deathDate "18xx-xx-xx" .

?x rdf:type Scientist

}

A user is looking for every Scientist who died in the 1800 during a duel. The

above query does not return any answer since the year “18xx-xx-xx” is not formatted

correctly. The user therefore relaxes the second triple pattern which will be replaced

with ?x rdf:type Person. The query will then return the resource “Évariste Galois”

amongst other answers.

However, the user was expecting additional answers. The user decides to retrieve

other types of persons who died during a duel. Therefore, she relaxes also the last

triple pattern which will be rewritten as ?x rdf:type owl:Thing. This query will return

every person who died during a duel including the scientist “Martin Lichtenstein”.

————————————————————————

Q5

SELECT ?x ?f WHERE{

12_Angry_Men_(1957_film) actor ?a . ?x parent ?a . ?f actor ?x.

?x birthPlace New_York

}

Suppose a user is looking for every child born in New York to actors who played

in the film “12 Angry Men”. Moreover, the user is interested in the films in which

these actors have played. The predicate actor is not present in the DBpedia dataset,

so the above query returns no answers. The user, therefore, applies the APPROX

operator to the first and third triple pattern.

The rewriting algorithm will replace the predicate actor with the predicate star-

ring. The resource “New York” refers to the state, not the city, and for this reason
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the query will return fewer answers than expected, since not every person in DB-

pedia is connected to their state with birthPlace. By relaxing also the last triple

pattern, this will be rewritten as (?f, rdf:type, Person). The resulting query will

return every person who had a parent that played in “12 Angry Men”.

A.3 YAGO Queries

Q1

SELECT * WHERE{

<Battle_of_Waterloo> happenedIn/(hasLongitude|hasLatitude) ?x

}

Suppose the user wants to find the geographic coordinates of the “Battle of Water-

loo” event by posing the above query. This query returns no answer since YAGO

does not store the geographic coordinates of Waterloo.

If we insert the predicate “isLocatedIn” after “happenedIn” then the query would

have returned 16 answers including the geographic coordinates of some regions in

Belgium. If instead the user approximates the triple pattern of the query then the

rewriting algorithm will apply the edit operation delete to happenedIn from the

property path. The resulting query will return the coordinates of the “Battle of

Waterloo” event.

————————————————————————

Q2

SELECT * WHERE{

?x actedIn <Tea_with_Mussolini> . ?x hasFamilyName ?z

}

Suppose the user is looking for the family names of actors who played in the film

“Tea with Mussolini” by posing the above query. The query returns only a partial

set of answers due to the fact that in the YAGO dataset some actors have only a

first name (e.g. Cher), and others have their full name recorded using the predicate
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rdfs:label. The user may relax the second triple pattern in order to retrieve more

answers. This causes the relaxed query to return the given names of actors in the

film, recorded using the property “hasGivenName” since “hasGivenName” is a sub-

property of “label” (hence returning Cher), as well as actors’ full names recorded

using the property “label”: a total of 255 results.

————————————————————————

Q3

SELECT * WHERE{

?x rdf:type Event . ?x happenedOnDate ‘‘1643-##-##’’ .

?x happenedIn ‘‘Berkshire’’

}

Suppose the user wishes to find events taking place in Berkshire in 1643 and

poses on the YAGO dataset the above query. The user will retrieve no answer

since the predicate happenedIn does not connect directly to the literal “Berkshire”.

Therefore, the user may relax the third triple pattern. The query will be rewritten

as follows:

SELECT * WHERE{

?x rdf:type Event . ?x happenedOnDate "1643-##-##" .

?x rdf:type Event

}

This query will return every event that occurred in the year 1643 including those in

Berkshire.

The user instead of applying the RELAX operator may use the APPROX oper-

ator. Among other queries, the rewriting algorithm will generate the following:

SELECT * WHERE{

?x rdf:type Event . ?x happenedOnDate "1643-##-##" .

?x happenedIn/_ ‘‘Berkshire’’

}
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which will return all the events that occurred in 1643 in Berkshire.
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Appendix B

Tables of Results for Performance

Study in Chapters 6 and 7

B.1 LUBM Results

Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 D1 0.001 0.001 0.003 0.001 0.001 0.002 0.001

1 D1 0.002 0.002 0.202 0.02 2.2 0.001 0.002

2 D1 0.929 0.002 102.3 0.123 13.3 0.001 0.002

3 D1 2.568 0.003 300.46 0.323 32.3 0.001 0.07

0 D2 0.001 0.719 0.004 0.6 0.03 0.05 0.2

1 D2 0.002 0.983 0.87 1.023 23.2 0.05 0.003

2 D2 3.41 1.01 N/A N/A N/A 0.05 0.003

3 D2 9.98 1.02 N/A N/A N/A 0.05 0.29

0 D3 0.015 0.9 0.6 1.4 1.6 1.3 0.4

1 D3 0.23 1.3 N/A N/A N/A 0.08 0.03

2 D3 12.15 1.4 N/A N/A N/A 0.08 0.03

3 D3 33.132 1.8 N/A N/A N/A 0.08 2.53

Table B.1: Execution time in seconds of each query, for each maximum cost and

each dataset.
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Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 1.279 0.883 0.402 1.52 3.2 0.57 1.52

2 D1 1.463 3.01 87.3 2.3 11.3 0.57 2.8

3 D1 4.56 4.823 230.53 1.653 25.8 0.57 3.83

1 D2 1.43 1.42 1.72 2.023 13.5 0.75 1.56

2 D2 3.356 4.38 1241.94 735.1 230.24 0.75 2.953

3 D2 6.91 5.023 3457.33 1974.32 896.26 0.75 3.98

1 D3 1.62 1.53 N/A N/A N/A 1.46 1.63

2 D3 8.49 4.58 N/A N/A N/A 1.46 3.53

3 D3 23.98 5.36 N/A N/A N/A 1.46 4.11

Table B.2: Execution time of each query, for each maximum cost and each dataset,

with the pre-computation optimisation

Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 0.002 0.61 1.09 1.02 1.7 0.89 1.303

2 D1 0.691 1.09 20.3 1.19 2.1 0.89 1.43

3 D1 1.439 1.3 24.6 1.26 2.7 0.89 1.6

1 D2 0.002 0.983 1.932 1.3 7.4 1.05 1.61

2 D2 1.23 1.21 43.4 1.32 36.92 1.05 1.7

3 D2 3.03 1.52 75.3 1.34 75.38 1.05 3.7

1 D3 0.002 1.07 22.4 3.51 42.35 2.67 2.13

2 D3 7.392 1.23 450.34 3.76 193.53 2.67 2.3

3 D3 18.41 2.3 590.87 3.94 347.013 2.67 5.09

Table B.3: Execution time of each query, for each maximum cost and each dataset,

using the summarisation of size 2.
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Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 0.002 1.23 1.28 1.32 1.1 1.4 1.24

2 D1 0.519 1.45 18.3 1.34 1.75 1.4 1.9

3 D1 1.271 2.32 22.3 1.43 2.4 1.4 2.6

1 D2 0.002 1.36 1.3 1.42 2.23 2.31 1.82

2 D2 1.15 2.35 20.3 1.6 29.85 2.31 2.45

3 D2 2.86 2.4 25.5 1.5 63.45 2.31 4.19

1 D3 0.002 1.48 2.6 2.28 38.0 2.5 2.34

2 D3 6.539 3.19 300.2 2.34 164.23 2.5 3.32

3 D3 16.73 3.3 386.54 2.58 298.87 2.5 4.2

Table B.4: Execution time of each query, for each maximum cost and each dataset,

using the summarisation of size 3.

Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 1.12 1.03 1.35 1.01 1.23 1.42 1.34

2 D1 1.742 1.49 19.8 1.4 1.29 1.42 2.29

3 D1 1.812 1.92 24.94 1.83 2.38 1.42 2.96

1 D2 1.14 1.13 2.23 1.49 2.11 1.95 1.45

2 D2 1.814 2.01 22.5 1.62 29.35 1.95 2.65

3 D2 2.925 2.85 39.7 1.98 57.25 1.95 4.29

1 D3 1.33 1.4 2.95 3.42 39.54 2.15 1.54

2 D3 5.29 2.75 312.42 3.44 123.87 2.15 2.85

3 D3 10.42 2.91 387.94 3.97 262.18 2.15 4.3

Table B.5: Execution time of each query, for each maximum cost and each dataset,

using the summarisation of size 3 and the pre-computation optimisation.
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Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 0.05 0.024 0.98 0.23 1.3 0.023 0.046

2 D1 1.02 0.06 82.3 0.43 1.9 0.023 0.057

3 D1 2.194 0.067 270.67 0.678 30.2 0.023 0.096

1 D2 0.06 1.03 1.24 1.95 20.1 0.064 0.065

2 D2 2.28 1.31 N/A N/A N/A 0.064 0.068

3 D2 8.34 1.46 N/A N/A N/A 0.064 0.64

1 D3 0.09 1.4 N/A N/A N/A 0.136 0.071

2 D3 8.86 1.76 N/A N/A N/A 0.136 0.074

3 D3 27.13 1.92 N/A N/A N/A 0.136 2.68

Table B.6: Execution time of each query, for each maximum cost and each dataset,

with query containment optimisation.

Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 1.51 0.991 0.427 1.533 3.26 0.75 0.233

2 D1 1.72 1.7 73.1 1.89 9.82 0.75 2.353

3 D1 2.654 2.6 209.82 2.87 22.4 0.75 2.94

1 D2 1.66 1.55 1.69 2.258 12.8 1.48 1.46

2 D2 2.46 3.5 1020.84 625.1 190.47 1.48 3.23

3 D2 7.49 4.823 3042 1421 832.98 1.48 4.12

1 D3 1.89 1.62 N/A N/A N/A 1.68 1.93

2 D3 6.49 4.18 N/A N/A N/A 1.68 3.93

3 D3 25.95 6.123 N/A N/A N/A 1.68 4.3

Table B.7: Execution time of each query, for each maximum cost and each dataset,

with query containment and pre-computation optimisation.
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Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 0.45 1.41 1.23 1.33 1.4 1.78 2.24

2 D1 1.03 2.3 15.4 1.62 2.24 1.78 2.4

3 D1 1.86 2.81 18.2 1.83 2.7 1.78 2.97

1 D2 0.67 1.6 1.98 1.97 2.43 1.98 2.28

2 D2 1.39 2.47 18.3 1.82 24.26 1.98 2.83

3 D2 2.09 2.85 24.1 2.1 52.45 1.98 4.47

1 D3 0.78 1.67 2.78 2.48 37.3 2.58 1.36

2 D3 5.14 2.95 289.5 2.76 136.32 2.58 3.24

3 D3 12.92 3.37 336.42 2.94 158.38 2.58 4.98

Table B.8: Execution time of each query, for each maximum cost and each dataset,

using the summarisation of size 3 and query containment.

Max

Cost
Dataset Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 D1 1.23 1.48 1.26 1.75 2.27 1.28 2.18

2 D1 1.83 2.07 14.9 2.19 2.59 1.28 2.98

3 D1 1.98 2.91 17.8 2.28 2.98 1.28 3.3

1 D2 1.26 1.92 1.58 1.89 2.96 2.47 2.79

2 D2 1.86 2.17 17.9 2.36 22.94 2.47 3.34

3 D2 2.13 2.97 21.34 2.37 46.45 2.47 3.51

1 D3 1.59 1.97 3.78 1.96 32.72 2.912 3.59

2 D3 4.32 2.32 265.2 2.56 131.27 2.912 3.64

3 D3 8.36 3.22 319.12 2.82 152.84 2.912 3.82

Table B.9: Execution time of each query, for each maximum cost and each dataset,

using the pre-computation optimisation, the summarisation of size 3 and query

containment.
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B.2 DBpedia Results

Max

Cost
Q1 Q2 Q3 Q4 Q5

0 0.002 0.004 0.002 0.003 0.005

1 0.003 0.072 864 0.02 645

2 212 0.433 1739 0.06 N/A

3 6395 7.44 10090 0.07 N/A

Table B.10: Execution time in seconds of each query, for each maximum cost.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 0.013 0.052 552 0.23 539

2 192 0.427 1437 0.31 N/A

3 4357 6.39 9128 0.78 N/A

Table B.11: Execution time of each query, for each maximum cost with, the pre-

computation optimisation.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 0.02 0.03 0.06 0.07 0.01

2 N/A 0.433 1.42 N/A 1.6

3 N/A 0.49 2.93 N/A 12.5

Table B.12: Execution time of each query, for each maximum cost, using the sum-

marisation of size 2.
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Max

Cost
Q1 Q2 Q3 Q4 Q5

1 4.32 2.43 1.69 0.07 0.6

2 N/A 3.98 4.25 N/A 3.22

3 N/A 10.62 21.34 N/A 7.2

Table B.13: Execution time of each query, for each maximum cost, using the sum-

marisation of size 2 and pre-computing optimisation.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 0.564 0.93 427 1.8 439

2 135 1.398 1318 2.6 1453

3 4256 3.27 5261 2.77 10461

Table B.14: Execution time of each query, for each maximum cost, with query

containment.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 1.78 2.33 214 2.88 439

2 94.5 3.56 523 2.97 1263

3 2391 3.82 562 3.24 8547

Table B.15: Execution time of each query, for each maximum cost, with query

containment and pre-computation optimisation.
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Max

Cost
Q1 Q2 Q3 Q4 Q5

1 0.245 0.34 0.33 0.45 1.43

2 N/A 1.45 2.56 N/A 3.43

3 N/A 2.32 5.63 N/A 26.22

Table B.16: Execution time of each query, for each maximum cost, with query

containment and summarisation size 2.

Max

Cost
Q1 Q2 Q3 Q4 Q5

1 2.412 2.56 2.43 1.15 2.14

2 N/A 2.88 3.14 N/A 2.35

3 N/A 3.37 5.73 N/A 22.03

Table B.17: Execution time of each query, for each maximum cost, with query

containment and summarisation size 2 and pre-computation optimisation.

B.3 YAGO Results

Max

Cost
Q1 Q2 Q3

0 0.005 0.002 0.001

1 0.037 0.007 0.23

2 504 0.007 2.1

3 N/A 0.007 4.7

Table B.18: Execution time in seconds of each query, for each maximum cost.
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Max

Cost
Q1 Q2 Q3

1 0.059 0.06 0.56

2 482.6 0.06 2.51

3 N/A 0.06 4.93

Table B.19: Execution time of each query, for each maximum cost, with pre-

computation optimisation.

Max

Cost
Q1 Q2 Q3

1 0.012 0.015 0.09

2 224 0.015 1.89

3 N/A 0.015 1.92

Table B.20: Execution time of each query, for each maximum cost, with summari-

sation of size 2.

Max

Cost
Q1 Q2 Q3

1 0.013 0.017 0.13

2 214 0.017 1.93

3 N/A 0.017 2.4

Table B.21: Execution time of each query, for each maximum cost, with summari-

sation of size 3.
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Max

Cost
Q1 Q2 Q3

1 0.023 0.031 0.27

2 201 0.031 2.18

3 N/A 0.031 2.72

Table B.22: Execution time of each query, for each maximum cost, with summari-

sation of size 3 and pre-computation optimisation.

Max

Cost
Q1 Q2 Q3

1 0.17 0.11 0.31

2 434 0.11 2.31

3 N/A 0.11 3.18

Table B.23: Execution time of each query, for each maximum cost, with query

containment.

Max

Cost
Q1 Q2 Q3

1 0.61 0.15 0.59

2 402.1 0.15 2.34

3 N/A 0.15 4.31

Table B.24: Execution time of each query, for each maximum cost, with pre-

computation optimisation and query containment.
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Max

Cost
Q1 Q2 Q3

1 0.63 0.43 0.57

2 173 0.43 2.28

3 N/A 0.43 2.72

Table B.25: Execution time of each query, for each maximum cost, with summari-

sation of size 3 and query containment.

Max

Cost
Q1 Q2 Q3

1 0.54 0.65 0.74

2 152 0.65 2.12

3 N/A 0.65 2.39

Table B.26: Execution time of each query, for each maximum cost, with pre-

computation optimisation, summarisation of size 3 and query containment.
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