
Personalized Vaccinology: A Review

GA Poland1, IG Ovsyannikova1, and RB Kennedy1

1Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905 USA

Abstract

At the current time, the field of vaccinology remains empirical in many respects. Vaccine 

development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically 

been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public 

health paradigm of “the same dose for everyone for every disease” model has been the normative 

thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until 

recently, no vaccines specifically had been designed to overcome the immunosenescence of aging, 

consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. 

It is now recognized that the current lack of knowledge concerning how immune responses to 

vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly 

and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine 

response biomarkers), and a directed approach to new vaccine development.

The new fields of vaccinomics and adversomics provide models that permit global profiling of the 

innate, humoral, and cellular immune responses integrated at a systems biology level. This has 

advanced the science beyond that of reductionist scientific approaches by revealing novel 

interactions between and within the immune system and other biological systems (beyond 

transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular 

responses to infectious pathogens and vaccines. Others have applied systems level approaches to 

the study of antibody responses (a.k.a. “systems serology”), [1] high dimensional cell subset 

immunophenotyping through CyTOF, [2, 3] and vaccine induced metabolic changes [4]. In turn, 

this knowledge is being utilized to better understand the following: identifying who is at risk for 

which infections; the level of risk that exists regarding poor immunogenicity and/or serious 

adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such 

approaches allow for a personalized approach to the practice of vaccinology, analogous to the 

substantial inroads that individualized medicine is playing in other fields of human health and 
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medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized 

vaccinology.
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Introduction and Background

Vaccines have been one of the most effective public health strategies in preventing infectious 

diseases. A decade ago, we described the idea of vaccinomics and adversomics, based on the 

immune response network theory [5, 6], which utilizes immunogenetics/imunogenomics and 

systems biology approaches to understand the basis for inter-individual variations in 

vaccine-induced immune responses in human, as well as the basis for adverse side effects 

from vaccines [7]. Vaccinomics and adversomics explore the influence of genetic and non-

genetic regulation on the heterogeneity of vaccine-induced immune responses at both the 

personal and population level [5]. In particular, vaccinomics and adversomics utilize high-

throughput, high-dimensional systems biology approaches, which aim to predict variations 

in protective and maladaptive innate and adaptive immune responses to vaccines [6, 8]. In 

this regard, the basis of personalized (and predictive) vaccinology is the assessment of an 

individual’s genetic background, sex, as well as other factors that may impact vaccine 

immunogenicity, efficacy, and safety [8–11]. We and others have widely published on the 

applicability of the tools and concepts of vaccinomics, including immunogenetics and 

immunogenomics, to the knowledge-based directed development of new and improved 

vaccine candidates [12–15]. The application of these concepts is likely to allow for 

explanation, quantification, and prediction of vaccine-induced protective immune responses

—including the development of predictive immune signatures in response to vaccines. 

Indeed, we have previously published what we believe is the first draft of a mathematical 

model and predictive equation describing the non-random events that lead to a pre-
determined immune response [6]:

y= measure of immune response

βo= intercept

βi=coefficient for the ith variable xi and indicates the amount of change in y for a 1 

unit change in xi

E = random deviations from the model

We recognize that such an equation, given the current state of the science, is incomplete and 

cannot yet predict immune responses. But we present it as an early directional attempt to 

quantify such an equation. Such an approach begins to move us into a 21st-century model of 

directed vaccine development and an advanced understanding of how, and by what 
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mechanisms, vaccines and vaccine adjuvants trigger both useful and maladaptive innate and 

adaptive immune responses. We believe that vaccinomics and adversomics represent 

approaches counter to the standard methods of vaccine development until recently. 

Historically, vaccine development has been empirical, despite many emerging and re-

emerging complex, hyper-variable pathogens—many with elaborate immune escape 

mechanisms. In addition, vaccine coverage rates continue to suffer as society is risk-averse 

toward vaccines and demands levels of safety that may not be achievable. Finally, the “one-

size-fits-all” approach to the practice of vaccinology ignores the complexity and diversity of 

the human immune system and host genome. Thus, the promise of vaccinomics and related 

paradigms is to identify specific immune response profiles, immunosignatures, and 

biomarkers that predict vaccine safety and/or efficacy, and which may lead to new vaccine 

candidates.

Rationale and Examples of Vaccinomics and Adversomics

Vaccinomics provides the opportunity to examine not only immune response genes likely to 

be involved in vaccine response, but also the possibility of identifying the influence of new 

(uncharacterized) genes on vaccine-induced immunity. In turn, the identification and 

directed study of such genetic variants allows recognition, often at the molecular level, of the 

effects of differential binding, processing, and expression/presentation of antigenic viral 

peptides used in vaccine development, identification of the differential range of presented 

peptides (genetic restriction), altered secretion patterns (cytokines) in response to vaccines 

or vaccine adjuvants, altered transcription of important genes (signaling molecules) and gene 

products, altered binding of virus/antigens by membrane-based receptors (TLR, other), 

differential receptor function, expression, and affinities, and the impact of epigenetics on 

vaccine-induced immune responses. We have utilized this knowledge in our own laboratory 

to create a research-oriented paradigm of “discover-validate-characterize-apply,” which may 

be used in new candidate vaccine development (Fig. 1) [6]. In this paradigm, we have been 

able to utilize vaccinomics approaches to discover genetic variants that are significantly 

associated with subsequent downstream immune responses, validate that such variants are 

indeed associated, then seek to characterize the mechanism whereby such effects occur and, 

finally, apply this knowledge, often in functional studies, that confirm the effect on 

immunity. Such knowledge can be exploited in developing immune strategies to enhance or 

circumvent genetic restrictions, for example, in triggering vaccine-associated immune 

responses, by “reverse engineering” around a given genetic or other obstacle to generating 

protective immune responses.

There are a growing number of studies reporting unbiased genome-wide assessments of 

genetic variation and its influence on adaptive (humoral and cellular) vaccine-induced 

immune responses across multiple viral and bacterial vaccines. For example, candidate and 

GWAS immunogenetic and phamacogenetic studies have identified polymorphisms in HLA, 

KIR, MICA, and BTN genes associated with immune responses to pathogens causing 

disease in humans, such as hepatitis C [16], Mycobacterium leprae [17, 18], human 

immunodeficiency virus [19], and measles [20–22]. Similar studies have identified novel 

genes impacting immune responses to vaccines, including hepatitis B, rubella, influenza A, 

smallpox, anthrax, and mumps [23–33]. Our gene association studies of measles-mumps-
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rubella (MMR) vaccines have demonstrated that inter-individual variations in measles 

vaccine virus-induced humoral and cellular responses are significantly associated with 

polymorphisms in immune response genes and, together with HLA alleles, explain ~30% of 

the inter-individual variability in humoral response [5, 34–36]. These findings, which 

illustrated the importance of key HLA alleles in the adaptive humoral immune response to 

measles vaccine, led to the identification of naturally processed and presented measles-

derived peptides isolated from specific HLA polymorphisms associated with vaccine non- 

and hyper-response [37, 38]. These peptides containing specific components (adjuvants and 

biodegradable nanoparticles) are now being utilized in a reverse-engineering strategy to 

develop peptide-based candidate measles vaccines. Likewise, Homan et al. have attributed 

diminished protection to differential HLA presentation of T and B cell epitopes between 

vaccine and wild type strains of mumps virus [39]. This diminished efficacy could 

theoretically be overcome by incorporating defined critical immunogenic peptides into an 

improved vaccine.

TLR genes represent an important link between the innate and the adaptive immune system 

[40, 41]. As an example, we have demonstrated that measles vaccine-induced humoral 

responses are significantly associated with coding polymorphisms in the TLR2 (rs3804100) 

and TLR4 (rs5030710) genes [42]. For the rubella vaccine and TLR3 gene, a TLR3 gene 

SNP rs5743305 was associated with rubella-specific GM-CSF production [43]. Our recent 

mumps vaccine study has identified and replicated TLR4 SNPs associated with a ~45% 

decrease in antibody titer, and a TLR5 SNP associated with a 64% increase in T cell 

response (unpublished data). These data strongly suggest that robust TLR activation by 

measles, mumps, and rubella viruses is crucial for optimal vaccine response. Supporting 

these findings is a study demonstrating that an inactivated mumps vaccine containing a 

protollin-based TLR2/4 adjuvant is highly immunogenic in a mouse model; it lead to 

superior total IgG levels, higher neutralizing antibody titers, greater mucosal IgA 

production, and enhanced Th1/Th2 cytokine secretion [44]. One potential application of this 

finding is to identify the specific and critical interactions between TLRs (and other genes) 

and virus, leading to advances in our knowledge of the precise mechanisms driving 

immunity to MMR vaccine.

Sex-Based Differences in Immune Responses to Vaccines

Significant sex differences in humoral and cellular immune responses to vaccines are 

apparent [45, 46]. Additionally, local and systemic adverse rates are generally higher in 

females versus males. Protective antibody responses are significantly higher in females than 

males after vaccination against influenza, yellow fever, measles, mumps, rubella, hepatitis A 

and B, herpes simplex (HSV) 2, rabies, smallpox, and dengue viruses [47–55]. Sex-based 

differences in humoral immune responses are observed through various age groups [47–50, 

52–57], suggesting that sex steroid hormones are not the singular mediators of sex 

differences in humoral immune responses to vaccines [45, 58]. This suggests that genetic, or 

other, factors may be an important driver of sex-related differences in humoral immune 

response [59]. Despite significant evidence of immune response differences between the 

sexes, for the most part, vaccine studies have not examined and analyzed immune response 

outcomes by sex [60, 61]. In fact, little information is known about potential mechanisms for 

Poland et al. Page 4

Vaccine. Author manuscript; available in PMC 2019 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sex-based effects, which should be a priority for vaccine research studies. Discovery of 

specific factors involved in sex-based differences in immune response may allow the 

identification of new correlates of vaccine immunogenicity.

In a cohort of 556 older (ages 50–64) and 558 younger (ages 18–49) previously vaccinated 

individuals, the seasonal trivalent influenza vaccine induced >1.5-fold higher A/H3N2-

specific HAI antibody titers in women than men across both age groups [47]. Similarly, a 

study of standard seasonal influenza vaccine and high-dose influenza vaccine responses in a 

sex-balanced cohort of 414 elderly subjects (ages 65–95) demonstrated significantly higher 

rates of seroconversion in females than in males [48]; however, no significant differences in 

antibody measures were found between males and females after seasonal influenza 

vaccination in another cohort of 158 older adults (ages 50–74) [62]. A study by Furman et 
al. examining gene expression, serum cytokines/chemokines, cell subsets, and 

phosphorylation events found several serum markers (LEPT, IL1RA, CRP, GMCSF, and 

IL5) to be more highly expressed in females than males after influenza vaccine [51]. This 

same report used a systems biology approach to identify a gene cluster involved in lipid 

biosynthesis that is regulated by testosterone and significantly correlated with poor humoral 

responses following influenza vaccination in men [51]. These data suggest that this gene 

cluster (e.g., genes involved in lipid metabolism) could be an important driver of sex-related 

differences in humoral immune response. This collective knowledge could substantially 

assist future personalized vaccine development efforts through the generation of new 

knowledge and the identification of targets and biomarkers that predict vaccine responses in 

specific populations (e.g., females vs. males; young vs. old; obese vs. lean). Further research 

is needed to clarify the effects of sex on immune response. Identification of molecular 

immune signatures of sex differences in innate and adaptive immune responses to vaccines 

may provide evidence necessary for additional efforts in designing personalized vaccination 

and vaccinomics approaches (i.e., in which males and females might be vaccinated 

differently using different doses or different vaccines) in an effort to provide equal 

protection while reducing side effects [46, 63, 64].

Immune Responses to Vaccines in the Elderly

A significant global public health issue is the aging of the population. As individuals age, 

immunosenescence develops, leading to poorer immune responses to vaccines. 

Immunosenescence is an age-related dysregulation of the immune system due to age-

associated changes in innate and adaptive immune system components, which leads to 

impaired immunity and protection following immunization or infection [65–67]. Published 

data reveal that innate and adaptive immunity is decreased with age, but the systems-level 

mechanisms for these findings are unclear [66, 68], particularly in regard to influenza and 

other viral vaccine responses where the morbidity, mortality, and associated healthcare costs 

are greater in older individuals [11]. Major signs of innate immune dysfunction commonly 

observed in the elderly include, but are not limited to, altered cytokine secretion; decreased 

NK cell activity; reduced TLR expression; and a chronic inflammatory state (elevated levels 

of IL-1β, MCP-1, TNF-α, and serum IL-6) known as “inflamm-aging” [8, 69–71]. Age-

related humoral immune dysfunction, for example, might be overcome through optimal 

stimulation of innate and/or Th cell-specific genes, which may be different in males and 
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females. For example, adjuvanted zoster subunit vaccine (Hz/su) reduced the risks of herpes 

zoster, and postherpetic neuralgia in immunocompetent persons 70 years of age and older 

[72]. This Hz/su vaccine contains varicella zoster virus glycoprotein E and a novel AS01B 

adjuvant system aimed to improve and preserve with age zoster-specific CD4+ T cell 

responses [73]. A TLR4 agonist GLA-SE (glucopyranosyl lipid adjuvant formulated in a 

stable emulsion) has been shown to enhance Th1 responses to influenza vaccine in older 

adults [74], suggesting a potential mechanism for targeting innate receptor agonists (e.g., 

TLRs) that enhance innate immune responses against influenza. Given the substantially 

diminished efficacy of influenza and other vaccines with age and the importance of 

developing improved vaccines [75], data from vaccinomics studies could be used to inform 

directed and rational development of next-generation influenza vaccines—potentially 

circumventing immunosenescence-related factors.

Systems biology approach provides a unique opportunity to identify biomarkers likely to be 

involved in immune responses to vaccination [8, 76, 77]. Fourati et al. applied a systems 

vaccinology approach to examine gene signatures and molecular pathways of age-related 

hyporesponse to hepatitis B vaccine (HBV) in naïve older adults [78]. They observed the B 

cell signaling pathway (and higher memory B cell frequencies) and inflammatory pathway 

(and increased frequencies of activated pro-inflammatory innate cells) were strongly 

correlated with higher and low antibody responses to HBV, respectively. This signature, 

including serum cytokine profiling and flow cytometric correlates of response, predicted the 

antibody response to HBV with up to 65% accuracy [78]. This study demonstrates that a 

systems biology approach can be used to predict age-related immune response to 

vaccination.

Obesity and Immune Responses to Vaccines

Obesity is another major public global health concern. In the US, 68% of adults and nearly 

32% of children and adolescents are now overweight or obese [79]. Weight gains across all 

countries have been demonstrated to be associated with increasing socioeconomic status. 

Obesity has been shown to be a predictor of impaired immunogenicity (e.g., decreased 

antibody response) to hepatitis B, tetanus toxoid, rabies, and influenza vaccines [80–83], and 

as such can be considered a marker, or state, of immunosuppression at its extremes. These 

data suggest that obesity is correlated with poorer vaccine-induced immune responses in 

humans, and further research is required to understand the immune mechanisms that are 

altered in obesity.

As individuals age, their circulating leptin levels rise with a concomitant reduction in leptin 

signaling; this results in leptin resistance, which is a finding associated with obesity [84]. 

Leptin resistance has been shown to adversely affect the immune response in obese subjects, 

including responses to influenza virus [85, 86]. For example, obese individuals demonstrate 

decreased activation of influenza-specific CD8+ T cells compared to healthy-weight 

persons, including decreased production of IFN-γ and granzyme B, suggesting that 

influenza vaccination may not be as effective in the obese population as in healthy-weight 

individuals [87]. Given only moderate seroprotection of influenza and other vaccines in 

obese older adults [83], and the importance of developing improved influenza vaccines [75], 
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systems biology studies designed to identify the mechanisms for improved immune response 

are needed. In fact, data from vaccine studies could be used to inform directed and rational 

development of personalized vaccines that optimally stimulate innate and adaptive immune 

responses in males and females and overcome immune deficiencies induced by obesity [88]. 

Careful vaccine studies comparing lean and obese persons could provide foundational data 

used to improve vaccine-induced protection in the obese, a subpopulation with an elevated 

risk for serious vaccine-preventable illnesses and suboptimal vaccine-induced protective 

responses [10].

Adversomics

Adversomics utilizes tools—much like those used in vaccinomics—to identify, characterize, 

and predict adverse, or maladaptive, immune responses to vaccines [6, 89, 90]. The promise 

of adversomics would be to develop or identify either predictors or immune signatures of 

maladaptive immune responses that lead to harm rather than benefit, and to better 

understand the generation and mechanisms of such maladaptive immune responses.

We have asked the question, as have other scientists, “does it make sense in the 21st century 

to give the same vaccine, dose, and at the same frequency to everyone, regardless of age, 

weight, gender, race, genotype, and medical condition?” For example, we give adult males 

and females the same dose, and the same number of doses of vaccines, ignoring the findings 

that females nearly always have superior humoral immune responses to males for all 

vaccines studied, and yet experience significantly more side effects—more adverse events, 

of greater duration, and of higher intensity [47, 55, 60].

While the field is young in implementation, research has already revealed associations 

between specific genes or SNPs and adverse immune outcomes. For example, associations 

between cytokine gene expression and fever after smallpox vaccine have been identified 

[91]. Other studies have demonstrated correlations between smallpox vaccine-induced fevers 

and IL-1A and IL-18 SNPs [92]. Other smallpox vaccine-induced adverse events such as 

fever, rash, and enlarged lymph nodes have been significantly associated with MTHFR, 

IRF1, and IL-4 SNPs haplotypes [93]. While smallpox vaccine is not used in the general 

population, such studies stand as examples of the usefulness of vaccinomic approaches. 

Finally, other recent studies have identified generic fever gene networks (TNF-alpha) after 

vaccine administration [94], and relationships between MMR vaccine administration and 

SNPs in IFI44L, CD46, SCN1A, 2A, and TMEM16 (ANO3) genes [95].

Challenges in Personalized Vaccinology

Despite the tremendous success of vaccines, vaccinologists face several current challenges, 

including difficulty in developing vaccines for hypervariable viruses (HIV, rhinovirus, 

hepatitis C virus, coronavirus) and complex pathogens (malaria, Mycobacterium 

tuberculosis); newly emerging pathogens, such as Zika virus (ZIKV); complications 

imposed by aging and immunosenescent populations; inadequate understanding of the 

neonatal and newborn immune systems; increasingly immune deficient or 

immunocompromised populations due to HIV, cancer, or medications; sex-based differences 
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in vaccine response and adverse-event rates; enhanced scrutiny of vaccine safety; and as 

noted global increases in age and weight. In addition, vocal and active anti-vaccine groups 

whose messages are not easily countered by facts or scientific studies have materially and 

detrimentally affected vaccine coverage rates [96–98]. Vaccinomic approaches can be 

utilized to better understand these issues; this information can then be used to inform new 

approaches, new understandings, and new vaccine candidates.

Just as new technologies have created exciting new opportunities in personalized medicine, 

they have brought with them novel challenges in addition to those mentioned above. In order 

for the full potential of personalized vaccines to be achieved, we must overcome additional 

challenges, such as the need for the following:

• Larger genotype:phenotype datasets (often in the many thousands to ten 

thousands)

• Integrating increasingly diverse high-throughput, high-dimensional data types

• Biomarkers that can reliably distinguish which product to give which people 

based on the likelihood of response or of an adverse side effect

• Vaccines with different mechanisms of action may require a move away from 

humoral correlates of protection for licensure; in this regard, correlates of 

protection based on cellular immune outcomes are likely to play an important 

role in future vaccines

• More sophisticated biostatistical and bioinformatics approaches that can identify 

patterns and causative networks within terabyte levels of extremely high 

dimensional data types

• From the economic side: methods of technology transfer and funding 

mechanisms to move novel vaccines developed through vaccinomic approaches 

into low and middle-income countries who often most need specific vaccines 

(malaria, others)

We have seen the shift from “vaccinology 1.0,” which is the empirical “Isolate-Inactivate-

Inject” paradigm, to “vaccinology 2.0”—the use of recombinant technology and novel 

adjuvants. However, even this paradigm is limited by our incomplete mechanistic 

understanding of adjuvants and innate immunity. As we adopt approaches such as those 

listed above, we envision a movement of the field into an era of “vaccinology 3.0,” during 

which we expect to see the use of vaccinomics and systems-level approaches to develop new 

vaccines; innovative vaccine-antigen packaging methods; and adjuvant development targeted 

at the innate response pathways best suited for a given pathogen.

A common reaction to this paradigm of personalized vaccinology is questioning cost and 

economics. At one level, such considerations are simply “too soon” in the development of 

the science to effectively answer. However, like progress being made in individualized 

medicine, it is likely that being able to provide the right vaccine to the right patient—for the 

right reasons and at the right dose—will lead to improved medical outcomes and reduced 

costs at the population level.
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Vaccine Development

Personalized vaccinology is the goal of applying the concept of personalized medicine to 

vaccines. Rapid strides in omics technologies and foundational work applying systems 

biology, computational immunology and reverse vaccinology have facilitated modern 

approaches to vaccine design and development enabling us to create vaccine formulations 

for new and re-emerging pathogens. Egg-based influenza vaccines take > 6 months to create. 

The recent licensure of cell culture-based influenza vaccines demonstrate that rapid, scalable 

processes can now be implemented in order to create vaccine against emerging influenza 

strains (e.g., H1N1, H5N1, H7N9, H9N2, H7N8) within weeks. [99] that can be safely 

administered to individuals with egg allergies is one example [100]. The Ebola outbreak in 

Liberia, Sierra Leone, and Guinea in 2015 provides another example [101]. DNA vaccines, 

virus-like particle vaccines, and replicating/non-replicating viral vector vaccines have all 

been created and tested. Among the most promising are a replication-competent, 

recombinant vesicular stomatitis virus vector expressing the glycoprotein of Ebola Zaire 

(rVSV-ZEBOV), [102] a variety of adenovirus-vectored vaccines expressing Ebola 

glycoprotein, [103, 104] a modified vaccinia virus Ankara-based vaccine encoding the Ebola 

Zaire glycoprotein (MVA-BN-Filo), [105, 106] and DNA-based vaccines—one expressing 

glycoproteins from both Zaire and Sudan, and the other expressing the Marburg glycoprotein 

[107]. Although the rVSV-based vaccine elicits high titers of neutralizing Ab, it is 

contraindicated in children and those with compromised immune systems. Viral vector 

vaccines present the problem of developing robust immunity to the vector as well as the 

target immunogen, limiting their usefulness to a single vaccination. The availability of 

vaccines in multiple vector backbones opens up the possibilities for prime-boost vaccination 

strategies for Ebola, similar to those that have been applied to HIV, malaria, and tuberculosis 

[108–111]. In this regard, a prime-boost regimen using the MVA-based vaccine as the 

booster vaccination has shown considerable promise [101].

Another example of modern vaccine development being applied to a new pathogen can be 

seen with the response to Zika virus. A purified, formalin-inactivated vaccine (ZIKV PIV) 

has been developed by the Walter Reed Army Institute of Research (WRAIR) [112] and is 

being evaluated in several clinical trials (NCT02963909, NCT02952833, NCT02937233), 

while other inactivated vaccines are in preclinical development [113]. Two variants of a 

plasmid DNA vaccine containing the prM-ENV proteins have been developed by NIAID and 

one of the formulations is currently in a phase I clinical trial (NCT02840487) [114]. Inovio 

Pharmaceuticals developed their own plasmid DNA vaccine (also expressing prM-ENV), 

which is currently in two clinical trials (NCT02809443, NCT02887482). RNA-based 

vaccines [115] and a variety of subunit and viral vector-based vaccines are also in 

development [113, 116, 117]. DNA and RNA-based vaccines can be rapidly made at 

minimal costs compared to other formulations and are fairly stable, without the cold-chain 

requirements of live virus-based vaccines.

Subunit vaccines are typically safer than whole virus-based products, which represents an 

active area of investigation not only for pathogens with no existing vaccines, but also for 

improving on established vaccines. Our group and others have identified pathogen-derived 

epitopes as preliminary steps in the development of safe, stable, and effective peptide- and 
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protein-based vaccines for smallpox, influenza, measles, tuberculosis, staphylococcus, and 

myriad other viral and bacterial pathogens [38, 118–122].

Parallel efforts by different groups to create new vaccines result in a spectrum of potential 

products that can be uniquely tailored to specific population groups. Live viral vaccines 

rapidly inducing robust immunity can be used in healthy individuals where time is of the 

essence (e.g., in outbreak scenarios), while inactivated or subunit vaccines can be used in 

vulnerable populations such as pregnant women or those with immunocompromising 

conditions, or in young children where the presence of maternal Ab interferes with whole 

virus vaccines. Vaccines based on different viral vector backbones can be combined into 

effective prime-boost regimens. Vaccines with specific adjuvants may be most appropriate 

for the elderly in order to overcome immunosenescence, or in the very young in order to 

compensate for immune system immaturity.

Conclusion

We, along with increasing numbers of other scientists, believe that personalized vaccinology 

will revolutionize the practice of vaccinology to the benefit of human health. As part of the 

development of this field of science, vaccinomics and adversomics will allow us to develop 

molecular immune signatures of adaptive and maladaptive immune responses to vaccines, 

develop early biomarkers of vaccine response in vaccine trials, identify who should get what 

vaccine and at what dose, and increase safety and public confidence in vaccines by reducing 

the likelihood of serious adverse events related to vaccines. In many ways, however, 

personalized vaccinology is most challenged by the difficulty in moving the field away from 

the post-WWII population-level paradigm of “one dose of every vaccine for everyone,” 

toward an individualized or personalized approach based on the unique factors relevant to a 

given individual. In his book, The Structure of Scientific Revolutions [123], Thomas Kuhn 

recognized that “we wrongly believe scientific progress is a process of linear accretion of 
knowledge, that science is predicated on the belief that the scientific community understands 

what the world is like, and that we suppress or resist ‘fundamental novelties’ because they 

are seen as subversive to our firmly held beliefs of what the world is like.” Later in his book, 

he suggests that “new advances always have and always will reveal that science and 

medicine includes bodies of belief incompatible with beliefs we hold today, and that 

advancements come when we reject a time-honored scientific theory in favor of another 

incompatible with it.” These cognitive biases have, in our opinion, been manifest in our 

discussions with scientific colleagues as we developed this field of science. Schopenhaur, 

the German philosopher, suggested that new discoveries are at first ridiculed, then opposed, 

and finally accepted as self-evident. Vaccinomics and adversomics appear to be moving 

from the ridiculed and opposed steps, and into the not-yet quite self-evident phase of the 

continuum.

Part of the challenge is that often the concept of personalized vaccinology suggests to the 

reader that a unique vaccine will be developed for each individual. While that is one tactic 

being used in the cancer-vaccine field, it is neither necessary nor practical for the prevention 

of infectious diseases. Rather, the personalized vaccinology approach would suggest the 

development of specific vaccines based on factors that relate to overcoming the potential for 
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poor immunogenicity and the potential for adverse events. An excellent example is influenza 

vaccines. A mere decade or so ago, only a trivalent injectable influenza vaccine was 

available. Quadrivalent vaccines were unavailable. For with one exception, everyone 

received the same vaccine and dose, regardless of age, weight, immunosuppression state, 

etc. At the current time in the US, multiple influenza vaccines are available so that the right 

vaccine, for the right patient, can be given at the right time. For example, LAIV can be used 

in younger subjects, or the needle-phobic. High-dose or MF-59 adjuvanted vaccines can be 

chosen for the elderly. Recombinant vaccines can be chosen for those with egg allergy, and 

so on. This is the approach that should be taken with all vaccines. In some cases it may mean 

merely adjusting the dose based on weight, gender, or age. In other cases it may mean 

utilizing an adjuvanted or non-adjuvanted vaccine based on immune status. Other examples 

include the recently licensed MF59 adjuvanted influenza vaccine (Fluad®), which has 

demonstrably higher immunogenicity and efficacy than its non-adjuvanted counterparts, 

[124–126] or the highly effective AS01-adjuvanted zoster glycoprotein E vaccine, which 

does not contain live virus and may be more broadly suitable for administration to older 

individuals [72, 73].

Thus, the movement toward a new paradigm of vaccine practice, based on a personalized 

approach, is occurring in the 21st century based on new scientific knowledge, market 

demand, safety considerations, immunogenicity concerns, public health trends (age, obesity, 

other), and the simultaneous pull of individualized medicine in other medical arenas. The net 

result is likely to be higher vaccine coverage rates, increased public confidence in vaccines, 

improved immunogenicity and adverse event rates, and a reduction or elimination in the 

morbidity and mortality related to vaccine-preventable diseases. As a result, we anticipate a 

new era of personalized “Predictive Vaccinology,” whereby we abandon a “one size and 

dose fits all vaccine approach” in order to design and develop new vaccines, and acquire the 

ability to make the following predictions for each individual: whether to give a vaccine 

based on likelihood of response (and perhaps need); the likelihood of a significant adverse 

event to a vaccine; and the number of doses likely to be needed to induce a protective 

response to a vaccine [63].
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Figure 1. Personalized Vaccinology Paradigm
Current vaccine development is largely empirical. Vaccines are tested by trial and error, are 

mass produced, and given to the entire population using the same antigen dose, route of 

administration, number of vaccinations, and at the same age.

In contrast, the new vaccine-development paradigm begins with the “Discovery” of new 

knowledge by integrating unbiased, comprehensive analysis of the genome, transcriptome, 

proteome, metabolome, microbiome, and immunome—along with the assessment of 

multiple measures of immune function—in order to understand and evaluate perturbations of 

the immune system. Findings are then “Validated” in replication cohorts or additional model 

systems. The new knowledge is then “Applied” to the creation of new vaccine formulations 

that can undergo additional testing to start a new round of “Discovery,” or can move into 

clinical trials in order to develop vaccine products engineered to elicit (or avoid) specific 

effects on the immune system. Each product is tailored to specific subgroups such that 

robust, protective immunity can be elicited in the old and young, lean and obese, or male and 

female, while avoiding inappropriate immune responses due to genetics, metabolism, race, 

gender, malnutrition, immunosuppression, and other host factors or underlying conditions.
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