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Abstract

Influenza viruses are pathogens of significant public health importance. The influence of 

nutritional status on severity of disease has become increasingly recognized. In particular, high 

dietary salt intake has been linked to cardiovascular disease, but the effects on infectious diseases 

have not been studied. This study investigated the impact on influenza-induced morbidity and 

mortality in mice fed isocaloric diets containing 10-fold increments of sodium by altering the salt 

levels. Following infection, despite higher levels of IFN-gamma cytokine in the lung as well as 

virus-neutralizing antibody in the serum of mice fed the lowest salt level, the amounts of dietary 

salt intake had no substantial impact on the disease severity or the ability to respond 

immunologically to the infection.

Introduction

With an estimated three to five million cases of severe disease worldwide and approximately 

250,000 to 500,000 deaths annually (22), influenza viruses remain a significant public health 

concern. Hospitalizations and deaths attributed to seasonal influenza occur more frequently 

among persons at the extremes of age and/or with underlying medical conditions (10,20). In 

2009, the pandemic H1N1 influenza virus (pH1N1) caused more than 80 million infections 

within a year (6); pregnancy, diabetes, and obesity were identified as risk factors for severe 

disease (18). In light of this, it is important to investigate the risk factors that contribute to 

disease severity, so that health status–specific intervention strategies can be identified for all 

age groups.

Knowledge of the contribution of nutrition to infectious disease remains limited. Recent 

studies demonstrate an important relationship between the host’s nutritional status and 
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influenza virus–induced disease severity (3,19). One such nutrient is sodium, a cation and 

micronutrient important for maintenance of extracellular fluid volume, and is mostly 

obtained by the body from dietary salt. The causal link between sodium intake and high 

blood pressure, a critical health issue, has been well documented (15), although some recent 

studies suggest an inverse relationship between sodium consumption and death from 

cardiovascular disease (8). Considering that both children and adult populations consume 

more salt than the recommended amounts (5,7), as well as the association of hypertension 

with increased risk of 2009 pdm H1N1 infection (2,11,16) and the newly emerged H7N9 

outbreak in China (12), understanding the consequences of high dietary salt intake on 

infectious disease outcomes is warranted. Moreover, although there are no published reports 

on the effects of salt intake on susceptibility to respiratory infections, epidemiological 

studies on markers of hydration and salt intake have demonstrated conflicting results with 

broncho-pulmonary disorders (1,14). In this study, using an approach described by Wu et al. 
(23), adult mice were fed with isocaloric diets containing varying percentages of salt. 

Different levels of salt had no effect on influenza virus–induced disease severity. In addition, 

varying the levels of dietary salt had no negative impact on the primary immune responses to 

the virus.

Materials and Methods

Mice and virus infections

Four-week-old female C57BL/6 mice (Jackson Laboratory) were placed on isocaloric diets 

(Harlan Laboratories; see Supplementary Table S1) containing 8% NaCl (high salt diet; 

HSD), 0.49% NaCl (normal salt diet; NSD, recommended for laboratory mice), or 0.05% 

NaCl (low salt diet; LSD), on ad libitum access, for a period of 4 weeks. Preliminary “pair 

feeding” studies showed comparable levels of feed consumption among all three groups of 

mice. After 4 weeks, mice were anesthetized by injection of 300 μL of avertin 

intraperitoneally, and infected intranasally, as described elsewhere (19), with either a low 

dose (50 mouse infectious doses; 50 MID50) or a high dose (1 lethal dose; 1LD50) of A/

Puerto Rico/8/34 (PR8) in 50 μL of phosphate-buffered saline (PBS). All animal research 

was approved by the CDC-IACUC and was conducted in an AAALAC-accredited facility.

Virus titration and analysis of inflammatory proteins

Mice were sacrificed on days 3, 6, or 9 after 50MID50 infection, and lungs were collected 

and homogenized. Virus titrations were done as described previously (19). Inflammatory 

proteins in the lung tissue supernatants were analyzed by bioplex assay following the 

manufacturer’s kit instructions (Bio-Rad Laboratories). IFN-β was measured using the 

Mouse IFN-β enzyme-linked immunosorbent assay kit (PBL Assay Science).

Hemagglutination inhibition, serum chemistry, and flow cytometry

For hemagglutination inhibition (HI) assay (19), a volume of 50 μL of receptor-destroying 

enzyme-treated serum was added to the 96-well plate and twofold serial dilutions performed 

with PBS. Four hemagglutination units of virus were added and incubated at room 

temperature for 30 min. Following incubation, 50 μL of 0.5% suspension of turkey red blood 

cells was added and incubated at room temperature for 30 min. The dilution of serum 
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showing complete HI was recorded as the HI titer. Serum clinical chemistry was performed 

by Comparative Clinical Pathology Services, LLC. For flow cytometry, single cell 

suspensions were prepared from lungs after collagenase (263 IU/mL) treatment at 37°C for 

30 min. Spleens were processed by gently dissociating tissue over a 70 μm sieve followed by 

staining with anti-GL7, anti-MHCII, anti-CD138, anti-CD38, anti-B220, anti-CD8, anti-

CD44 antibody (Biolegend), and influenza-NP-Pentamer (Proimmune) for CD8 T cell and B 

cell analysis. For intracellular cytokine detection, spleen cells were infected with 1 MOI 

followed by addition of GolgiPlug the next day for 5 h. Cells were washed twice with PBS 

followed by surface staining, with anti-CD4, anti-CD8, and anti-CD44. Cells were 

permeabilized using the fix/perm kit (BD Biosciences) followed by intracellular staining 

with anti-TNF-α, anti-IFN-γ, and anti-IL2 antibody. Samples were acquired on an LSRII 

(BD Biosciences) and data analyzed using the flowJo software (Treestar).

Histopathology

On day 6 post-infection, mice were euthanatized and tissues were collected in 10% neutral-

buffered formalin. After 72 h, the samples were transferred to 70% ethanol, sectioned, and 

stained with hematoxylin and eosin.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5.0 software (GraphPad Software). 

A two-way analysis of variance (ANOVA) was used, in conjunction with the Bonferroni 

post-test, on water consumption, morbidity, virus titer, cytokine levels, serum chemistry, and 

B cell and T cell analyses. The Mann–Whitney test was used to determine significance of 

the HI titer. A one-way ANOVA was used for feed consumption data analysis. The log-rank 

(Mantel–Cox) test was used to compare percent survival among groups of mice. All 

differences were considered significant when the p-value was ≤ 0.05.

Results

Increased salt intake does not impact morbidity or mortality following influenza virus 
infection

To examine the effects of dietary salt on influenza virus infection, 4-week-old mice were put 

on isocaloric diets containing different levels of sodium containing salt (NSD, HSD, and 

LSD; Supplementary Table S1) for a period of 4 weeks. During this period, both feed and 

water intake were measured. While mice on the HSD consumed more water than NSD or 

LSD groups, there was no difference in the amount of feed consumption (Supplementary 

Fig. S1A and B; Supplementary Data are available online at www.liebertpub.com/vim). To 

determine the effects of dietary salt on growth, change in body weight was charted as a 

percentage of the original body weight. Irrespective of diet, mice showed comparable weight 

gain over the period; although the HSD group gained less weight, this was not statistically 

significant (Fig. 1A). In addition, analysis of serum for physiological parameters indicative 

of liver and kidney functions (Supplementary Table T2) and histological analysis of liver and 

kidney (Supplementary Fig. S1C) did not show any significant differences among the three 

groups.
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After 4 weeks on the different diets, mice were infected with two different virus doses (low/

50MID50 and high/1LD50) to determine the effect of increased salt intake on disease 

severity. Irrespective of the virus dose, there were no differences in the morbidity or 

mortality of mice on different salt diets (Fig. 1B). Next, the viral burden in the lungs of these 

mice was determined at three different time points post-infection. Similar levels of virus 

were observed in three groups of mice on days 3 and 6 post-infection. However, on day 9 

post-infection, the HSD group of mice, when compared with NSD or LSD, had four- to 

sixfold higher (p > 0.05) virus titers (Fig. 1C). Furthermore, histological evaluation of lung 

tissue on day 6 post-infection did not show any striking differences in the extent of 

inflammatory cell influx into the bronchial epithelium or interstitial tissue (Fig. 1D).

Increased salt intake does not impact primary immune response to influenza

Next, the effect of dietary salt on immune responses following infection was examined. 

Mice that had been on the HSD, NSD, or LSD for 4 weeks were infected with 50MID50 of 

influenza. On days 3, 6, and 9 post-infection, the levels of chemokines and cytokines in the 

lung tissue were measured using a bioplex assay. There were no significant differences in the 

levels of the various inflammatory mediators measured except for IFN-γ, which, when 

compared with HSD or LSD, was present at significantly higher levels in mice on the LSD, 

although only at day 6 post-infection (Fig. 2A). The levels of serum HI antibodies (Fig. 2B, 

upper panel) were determined, and no significant difference was found among the three 

groups at day 10 post-infection. At day 21 post-infection, geometric mean HI titers were 

comparable between the LSD and NSD groups, but the mean HI titers in the HSD group 

were modestly but significantly lower when compared with titers of the LSD group. 

However, analysis of germinal center B cells in the spleen, on day 21 post-infection, did not 

show any significant differences among the three groups (Fig. 2B, lower panel). Finally, 

assessment of splenic T cells on day 21 post-infection showed no difference in percent 

influenza-NP+CD8+ T cells (Fig. 2C; left panel) and percent T cells producing IFN-γ, TNF-

α, or IL-2 (Fig. 2C; middle and right panels). Although there was a relative increase in the 

frequency of T cells producing IFN-γ in LSD group, the difference when compared with 

other two groups was not statistically significant. Thus, increasing the level of dietary salt 

does not substantially impact influenza-induced primary immune response and disease 

severity in mice.

Discussion

Influenza viruses can cause highly contagious, acute respiratory illness leading to a 

significant global health concern (22). With diet being increasingly recognized as an 

underlying and important risk factor for disease (3, 19), and studies showing reduction in 

salt intake can help with prevention of noncommunicable chronic respiratory diseases (9), 

this study set out to understand the relationship between increased intake of the sodium, a 

key micronutrient, and its effects on influenza-induced disease severity. The study shows 

that increasing the level of salt in the diet of young mice that had been fed the specific salt 

diet for 50% of their young lives (4–8 weeks) does not have a significant impact on the 

susceptibility of young mice to influenza virus infection. Previously, using a similar 
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approach, a significant effect in disease outcome was observed with diets supplementing 

distinct levels of protein energy (19).

Recent studies have examined the role of a HSD in autoimmunity. In models of experimental 

autoimmune encephalitis, autoreactive T cells have been postulated to play a role, with mice 

on a HSD displaying increased disease severity, mediated by a TH17 polarization of the CD4 

+ T response (23). Using a similar approach, and custom diets, described by Wu et al., a 

model was set up where mice were given diets that had either 10-fold less (LSD) or more 

sodium (HSD) compared with the levels normally used in the laboratory mouse diet (NSD) 

(23). Despite varying the levels of salt in the diet, the mice remained healthy, as suggested 

by their normal weight gain and serum clinical chemistry analysis (Fig. 1 and 

Supplementary Table S2). The three salt diets, despite having 10-fold increments of sodium, 

did not lead to any changes in serum sodium levels. An earlier study (21) using similar salt 

diets (0.3% NaCl and 4% NaCl) in mice also found that serum Na+, Cl−, and K+ levels were 

unchanged in the two groups of mice. In the same study, Wang et al. found that serum 

electrolyte balance was maintained by increased urinary sodium excretion. In addition, as 

also demonstrated by Wang et al., in the present studies, mice on the HSD consumed more 

water than mice on the other diets. In assessing the effects of salt on influenza infection, no 

difference was found in the morbidity or mortality of mice, irrespective of the levels of 

dietary salt. Consistent with this finding, no difference was observed in the histopathological 

analysis of the lung tissue among the groups.

The effect of high salt consumption on the innate and adaptive immune responses was also 

determined. As shown previously (13), influenza infection triggered the induction of several 

important antiviral and proinflammatory cytokines. In the HSD group, although the levels of 

some inflammatory mediators at day 9 (MIP-1β, IFN-β, and MCP-1) showed relatively 

higher levels, the differences were not statistically significant. Despite an increase in IFN-γ 
at day 6 post-infection in the LSD group, the virus titer at all three time points was 

comparable among all groups of mice. Moreover, no difference in extent of immune 

infiltrates in the lungs was observed among the three groups by flow cytometry (data not 

shown). With respect to adaptive immune responses, when compared with the NSD group, 

there were no significant differences in percent germinal center B cells, serum HI antibody 

titer, or T cell responses (percent T cells and percent cytokine producing T cells) with the 

HSD group, suggesting that a HSD may not substantially impact the response to influenza 

vaccination. Taken together, these data, although derived from experiments that did not 

involve any assessments of hypertension, demonstrate that increased salt consumption did 

not result in enhanced disease or diminished primary immune responses to infection in 

young, otherwise healthy mice.

Interestingly, two recent studies investigating the association between underlying medical 

conditions and susceptibility to influenza infection in humans found that hypertension was a 

major risk factor for both pdmH1N1 and H7N9 associated mortality (2,12). Therefore, 

studies in mice involving long-term use of custom salt diets and other mouse models of 

hypertension (4,17) may help in further exploring any likely association between salt intake/

hypertension and susceptibility to influenza infection. Although the present data show that 

increasing the level of salt in the diet may not impact influenza disease severity, considering 
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the recommendation for reducing the salt intake in the aged population (5), it remains to be 

seen if a HSD has any effect on the degree of disease severity in aged animals, particularly 

in an experimental setting that mimics hypertension.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Increase in salt intake does not influence influenza A virus–induced disease severity. Groups 

of mice maintained on three different isocaloric diets (high salt diet [HSD], normal salt diet 

[NSD], and low salt diet [LSD]) for a period of 4 weeks were weighed weekly and changes 

in body weights were plotted (A). They were subsequently infected with 50MID50 or 1LD50 

and the morbidity (upper panels) and mortality (lower panels) were assessed (B). Next, they 

were infected with 50MID50 and lung viral titers determined on days 3, 6, or 9 post-

infection (C), or had the lung tissue sections processed for histopathology (D), as described 

in Materials and Methods. Data shown in (A) represent the mean ± standard error of the 

mean (SEM) from two independent experiments with 20 mice per group. Data shown in (B) 
represent mean ± SEM from four independent experiments with at least 23 mice per group 

for the 50MID50 and two independent experiments with at least 16 mice per group for the 

1LD50. Data shown in (C) represent mean ± standard deviation (SD) from at least two 

independent experiments with a minimum five mice per group/experiment, and (D) 
represents images (magnification, 10×) from an experiment consisting of three mice per 

group.
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FIG. 2. 
Increase in salt intake does not impact inflammatory mediators in the lung tissue and 

adaptive immune responses following influenza virus infection. Groups of mice maintained 

on three different isocaloric diets (HSD, NSD, and LSD) for a period of 4 weeks and 

infected with 50MID50 (A) were sacrificed on days listed and lung homogenates were 

analyzed for cytokines and chemokines using a bioplex or ELISA (IFN-β), (B) had serum 

collected on days 10 and 21 post-infection for HI titer (upper panel) and spleen tissue 

assessed for the percent germinal center B cells (lower panel), or (C) had spleens harvested 

on day 21 for analysis of percent NP+CD8+ T cells (left panel), CD8+ cytokine+ T cells 

(middle panel), and CD4+ cytokine+ T cells (right panel). Data shown in (A), (B), and (C) 
represent values (mean ± SD) from two independent experiments with at least five mice per 

group. ***p ≤ 0.001; **p ≤ 0.01.
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