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Analysis of the interdependencies between interconnected critical infrastructures can help

enhance the robustness of the individual infrastructures as well as the overall inter-

connected infrastructures. One of the most studied interdependent critical infrastructure

network scenarios is a power grid connected to a backbone telecommunications network.

In this interdependent infrastructure scenario, the robustness of the entire system is

usually analyzed in the context of cascading failure models in the power grid. However,

this paper focuses on targeted attacks, where an attack on a telecommunications network

node directly affects a connected power grid node, and vice versa. Cascading failures are

outside the scope of this paper because the objective is to enhance the robustness of the

interconnections between the infrastructures. In order to mitigate the impacts of targeted

attacks on the interdependent infrastructures, three interdependency matrices for con-

necting the infrastructures are specified and analyzed. The analysis identifies the inter-

dependency matrix that best reduces the impacts of targeted attacks and the propagation

of failures between the infrastructures. Additionally, the impacts of interconnecting a

power grid to different telecommunications networks, each with different susceptibilities

to targeted attacks, is evaluated.

& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Large-scale critical infrastructure failures rarely occur, but
when they do, the consequences are catastrophic and expen-
sive. In 2014, a human error in configuring Time–Warner's
Internet routers in the United States resulted in a failure that
prevented 11.4 million clients from accessing broadband
services for three hours [21]. Network robustness, defined as
the ability of a network to continue to operate when
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subjected to failures [2], can be evaluated by measuring the

impacts of large-scale failures. However, most critical infra-

structures, such as water supply systems, transportation

systems, power grids, oil and gas pipelines, and telecommu-

nications systems, need to interact with other networks to

provide goods and services.
Interdependencies between critical infrastructures mean

that the behavior and reliability of one network depend on

the other networks [1]. A fundamental property of
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interdependent networks is that a node failure in one net-
work can spread to nodes in other networks, leading to
cascading failures and dramatic consequences [1]. A good
example of interdependent networks is a power grid and a
telecommunications network, where the power grid relies on
the telecommunications network for control and the tele-
communications network relies on the power grid for elec-
tricity supply [14]. An example of a large-scale failure in
interdependent networks is the Italian blackout of 2003,
where a single failure in the power grid resulted in failures
that propagated over a telecommunications network, ulti-
mately affecting more than 55 million people [1,14]. The
robustness of this interdependent critical infrastructure to
cascading failures has been studied, but the impacts and
mitigation of targeted attacks have yet to be analyzed.

This paper focuses on identifying critical nodes that are
targeted by attacks. Whether or not a failure spreads and
generates a cascading failure is beyond the scope of this
paper. Instead, the focus is on protecting telecommunica-
tions and power grid networks from propagating failures. By
identifying the appropriate models for interconnecting the
two types of networks, it is possible to enhance their
robustness.

In targeted attacks, the most important nodes, usually
determined according to a centrality metric, are first
removed. In such a scenario, it is possible to discern the
nodes that could have serious impacts on the interdependent
networks. Therefore, it is important to study network robust-
ness under targeted attacks when a backbone telecommuni-
cations network and power grid are interconnected. Through
this analysis, the best interdependency matrix for mitigating
the impacts of targeted attacks on the interdependent critical
infrastructures can be identified. The interdependent critical
infrastructures also support analyses of the effects of the
interdependency matrices on the propagation of targeted
attacks between the two networks, which may have different
topological properties.

Drawing on the results of Sydney et al. [20] and Iyer et al.
[7], it is possible to determine which attacks would produce
the greatest damage based on the topology of a single
network. A backbone telecommunications network can be
modeled as an Erdos–Renyi (ER) graph [3] while a power grid
may be modeled as a Watts–Strogatz small-world (SW) graph
[28]. An Erdos–Renyi graph shows vulnerability to targeted
attacks based on node betweenness centrality bc [20]. More-
over, the less robust Erdos–Renyi networks under targeted
attacks have low values of average nodal degree 〈k〉 and high
values of average shortest path length 〈l〉 and diameter D.
Based on [7], it can be concluded that, for disassortative
networks (with disassortative values ro0), simultaneous
targeted attacks based on node degree centrality dc are most
effective at degrading the networks. In contrast, assortative
networks (with assortative values r40) are more vulnerable
to sequential targeted attacks based on node betweenness
centrality [7]. Interested readers are referred to [8] for a
detailed coverage of graph theory and its relevance to this
research.

The primary goal of this paper is to use interdependency
matrices to evaluate and mitigate the impacts of the most
dangerous attacks on a backbone telecommunications
network interconnected with a power grid. Specifically, the
backbone telecommunications network is targeted by
sequential attacks that leverage betweenness centrality while
the power grid is targeted simultaneously by attacks based on
degree centrality; this enables the robustness of the inter-
connected networks to be measured. In order to simplify the
interdependency model, it is assumed that investments have
been made in the power grid to prevent the failure of one
node from inducing cascading failures and to redistribute
excessive loads to other network elements. In other words, a
targeted attack on one node in the telecommunications
network only damages the power grid node to which it is
directly connected and the failure does not spread to other
power grid nodes, and vice versa.
2. Previous work

Previous research has focused on analyzing the robustness of
interdependent networks to cascading failures resulting from
random and targeted initial failures. Buldyrev et al. [1] have
examined the robustness of interdependent networks to
cascading failures using the notion of percolation ρ. They
show the existence of a critical percolation threshold ρc above
which a considerable fraction of the nodes in the two net-
works remain functional at steady state. However, if ρoρc,
then both networks fragment completely and the entire
system collapses.

Parandehgheibi and Modiano [14] have shown that the
robustness of the interdependent Italian telecommunications
and power grid networks can be evaluated using the notion of
minimum total failure removal (MTFR). In this situation, the
larger the minimum total failure removal, the more robust
are the networks. Other researchers have used algebraic
connectivity λ2 to analyze the robustness of interdependent
networks. Martin-Hernandez et al. [10] analyze the critical
number of interlinks beyond which any further inclusion
does not enhance the algebraic connectivity; this phase
transition depends on the topology of the graph model and
they discovered that the transition point also increases with
assortativity. Tauch et al. [22] evaluate algebraic connectivity
as a robustness metric and use it to rewire interlinks. They
also employ the effective graph resistance (EGR) as a robust-
ness metric for interdependent networks by considering the
Laplacian matrix of the entire system [23].

Several researchers have analyzed the robustness of inter-
dependent networks to cascading failures generated by initial
targeted attacks on high-degree nodes in two scale-free (SF)
networks. Huang et al. [6] introduce a general technique that
maps the targeted attack problem in interdependent net-
works to a random attack problem; they discovered that,
when the highly-connected nodes are protected and have
lower probabilities of failure compared with single networks,
then the coupled networks are more vulnerable with ρc values
significantly greater than zero. Zhang et al. [29] extend the
interdependent network model by considering network flows
and study the robustness under different attack strategies; in
their model, nodes fail due to overloading or loss of inter-
dependency. Pinnaka et al. [16] analyze the robustness of the
U.S. critical infrastructure network to cascading failures; they
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select the nodes to be removed based on four centrality

metrics and compare the robustness in these scenarios.
Researchers have also studied the effects of various inter-

dependency matrices on the robustness of interdependent

networks. Wang et al. [26] have shown that link patterns can

dramatically improve the robustness of interdependent net-

works by preventing cascade propagation. Specifically, the

best of the three link patterns for avoiding cascading failure

propagation in an Erdos–Renyi/small-world interdependent

network is when the nodes with the highest nodal degrees

are interconnected. Similarly, Golshan and Zhang [4] have

shown that “high-to-high” degree coupling is better at miti-

gating cascading failures in real and synthetic interdepen-

dent networks. With respect to targeted attacks, the best

interdependency matrix for reducing the impacts of sequen-

tial targeted attacks based on betweenness centrality in two

Erdos–Renyi telecommunications networks is when the high-

est betweenness centrality nodes in one of the networks are

connected to the lowest betweenness centrality nodes in the

other network [18]. The opposite is true for an interdepen-

dency matrix in which the nodes with the highest between-

ness centrality are interconnected [18].
Several approaches have been proposed for modeling and

analyzing interdependent critical infrastructures, including

network-based methods, empirical methods, agent-based

methods, system-dynamics-based methods, economic-

theory-based methods, hierarchical holographic modeling,

high-level-architecture-based methods, Petri nets, dynamic

control system theory and Bayesian networks [13]. These

approaches all have utility in capturing interdependencies

between critical infrastructures. However, this work models

interdependent critical infrastructures using a network-based

approach. Specifically, each infrastructure is modeled as a

network and the interdependencies between the networks

are expressed by interlinks. This representation captures the

topological properties and flow patterns of the interdepen-

dent critical infrastructures [13]. Interested readers are

referred to [13] for detailed descriptions and comparisons of

the various modeling approaches.
In summary, the main objectives of this work are to

evaluate and mitigate the impacts of the most dangerous

targeted attacks on the robustness of interdependent critical

infrastructures comprising a power grid and a backbone

telecommunications network. Three distinct link patterns

for the interdependency matrix are used to analyze the

robustness of the power grid when a targeted attack occurs

on the backbone telecommunications network, and vice

versa. This analysis identifies the best interdependency

matrix that mitigates the impacts of targeted attacks on the

robustness of the interdependent critical infrastructures. The

interdependent critical infrastructures also support the

investigation of the effects of the interdependency matrices

on the propagation of targeted attacks between the two

networks, which have different topological properties. More-

over, the consequences of interconnecting the power grid to

different telecommunications networks, each with different

susceptibilities to targeted attacks, are evaluated.
3. Interdependency matrices and failure
model

In targeted attacks, the most important nodes based on
certain centrality metrics are the first to be removed from a
network. Several metrics have been proposed to identify the
critical nodes in networks and to discern the probability
that a node will be attacked initially and become inactive.
These metrics are based on graph theory (e.g., degree,
betweenness, closeness and eigenvector centrality metrics),
network failure analysis or “real-world” features (e.g., num-
ber of affected users and sociopolitical or socioeconomic
considerations). In order to enhance the robustness of
interdependent critical infrastructures, it is necessary to
determine the appropriate models that should be used to
interconnect networks.

In the network-based approach considered in this
research, the propagation of an attack between a telecom-
munications network and power grid is modeled using the
link patterns of various interdependency matrices. Moreover,
centrality metrics based on graph theory are used to rank the
nodes that are affected by targeted attacks. This section
defines three interdependency matrices based on [4,18] and
describes the failure model involving targeted attacks.

3.1. Interdependency matrices

Definition 1. Consider two undirected networks G1ðS;UÞ and
G2ðT;VÞ, each with sets of nodes (S,T) and links (U,V), respec-
tively. Let jN1j and jN2j be the numbers of nodes in G1 and G2,
respectively, and jL1j and jL2j be the numbers of links in G1

and G2, respectively. When G1 and G2 interact, a set of
bidirectional interlinks L12 joining the two networks is intro-
duced. Consequently, an interdependent network is defined
as GðN; LÞ¼ðS [ T;U [ V [ L12Þ.

Definition 2. Let B be an jNj � jNj interconnection matrix
representing the interlinks Si2Tj between G1 and G2, and vice
versa. In order to interconnect the nodes between these
networks, the nodes in G1 are ordered according to a cen-
trality metric and labeled Si (i¼ 1;2;…;N1), i.e., cS1 ZcS2 Z
…ZcSi� 1 ZcSi ZcSiþ1 Z…ZcSN1 � 1 ZcSN1

, where cSi denotes the
centrality value of node Si. Similarly, the nodes in G2 are
ordered according to a centrality metric and labeled Tj

(j¼ 1;2;…;N2), i.e., cT1 ZcT2 Z…ZcTj� 1 ZcTj
ZcTjþ1 Z…Z cTN2 � 1

ZcTN2
, where cTj

denotes the centrality value of node Tj. In
both cases, if some nodes have the same centrality measure,
then they are labeled randomly. Then, three interdependency
matrices can be generated to interconnect the networks:

� High Centrality Interdependecy Matrix (BHC) denoted as a
dependency by an interlink Si2Ti and which defines a
one-to-one correspondence between nodes in G1 and G2,
i.e., high-centrality (low-centrality) nodes in G1 are con-
nected to high-centrality (low-centrality) nodes in G2.

� Low Centrality Interdependecy Matrix (BLC) denoted as a
dependency by an interlink Si2TN� iþ1 and which defines
a one-to-one correspondence between nodes in G1 and G2,
i.e., high-centrality nodes in G1 are connected to low-
centrality nodes in G2, and vice versa.



Fig. 1 – Targeted attacks on interdependent networks.
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� Random Interdependency Matrix (BRA) denoted as a depen-
dency by an interlink Si2Tj and which defines a random

one-to-one correspondence between nodes in G1 and G2,
i.e., nodes in G1 and G2 are connected randomly without
their centrality measures being considered, thus generat-
ing a random pattern.

The one-to-one nodal interconnections between two net-
works can be conditioned by a coupling weight p40. In this
model, the consequences of a failure in one network on the
other network depend on a diffusion process provided by the
strengths of the interconnections between the nodes. Thus,
depending on the coupling weight p, different diffusion
processes can be expressed in interdependent networks.
When p¼0, there are no interactions between the networks
[10]. However, if pop�, then the two networks are structurally
distinguishable; on the other hand, if p4p�, the two networks
behave as a whole [17]. The p* value represents a structural
transition point. For large p values, a superdiffusion process is
observed, i.e., diffusion in the interconnected networks takes
place faster than in either of the networks separately [5].
Superdiffusion is a synergistic phenomenon in an intercon-
nected network that can occur for values of pop�, where the
network components function distinctly [19].

Although the impact of a telecommunications network
failure on the power grid could be weighted by the coupling
coefficient p, this paper focuses on a scenario where a failure
in one node of a network leads to a failure in the dependent
node in the other network. Thus, the p value does not
condition the failure propagation between the nodes in the
two networks and does not limit the evaluation of the three
interdependency matrices to mitigate the impacts of targeted
attacks. The analysis of the effects of p on failure propagation
is a topic for future research.

3.2. Failure model

In order to maximize the impact of an attack on a network,
the network elements (nodes or links) are removed according
to their importance. In the case of a single network, two
distinct schemes can be used to select the elements to be
removed. In a simultaneous targeted attack on a single
network, the centrality metric is calculated for all the nodes
in the network. Then, a specified fraction of the nodes are
removed in order of their centrality measures (highest to
lowest) [7]. In sequential targeted attacks on a single network,
the node with the highest centrality value is the first to be
removed. Next, the node with the highest centrality value in
the resulting network is removed. This procedure of recalcu-
lating the centrality measures and removing the highest
ranked node is repeated until the desired fraction of nodes
have been removed [7].

Definition 3. When two networks are interconnected by
bidirectional interlinks, each node Si (i¼ 1; 2;…;N1) in G1

depends on one and only one node Tj (j¼ 1;2;…;N2) in G2 to
continue functioning, and vice versa. Thus, when a targeted
attack occurs on a node Si in G1, the dependent node Tj in G2

is removed without allowing the attack to propagate to other
nodes in G2, and vice versa.
Fig. 1 shows targeted attacks on two interdependent net-
works. Each node in G1 depends on one, and only one, node
in G2, and vice versa. Bidirectional interlinks between G1 and
G2 are shown as dashed horizontal lines while U and V

intralinks are shown as non-directed solid arcs. In Fig. 1(a),
one node in G1 is attacked based on its centrality measure. In
Fig. 1(b), only the dependent node in G2 is removed.

A simple functional model is used to express the failure
dependencies between a power grid and backbone telecom-
munications network. The power grid incorporates genera-
tors and substations that are connected to power lines.
Similarly, the backbone telecommunications network incor-
porates routers connected by communications links. Each
router receives power from a substation and every substa-
tion sends data and receives control signals to/from one
router [14]. In this model, a substation continues to operate
if it is connected to a router and a router continues to
operate if it is connected to a substation. Thus, an attack on
a power grid node causes a failure of a dependent node in
the telecommunications network, and vice versa. Addition-
ally, it is assumed that investments are made in the power
grid to expand the capacity of its network elements and,
consequently, when a power grid node fails, the load is
redistributed to other nodes without leading to cascading
failures. Although this model is not completely realistic, it
captures the essential properties of interdependent critical
infrastructures.
4. Network topologies

In the network-based approach, interdependent critical infra-
structures are modeled as graphs that express the main
topological properties of the interconnected networks. The
backbone telecommunications networks and the power grid
model considered in the case study are described in this
section. The random connection property of a backbone
telecommunications network is modeled using an Erdos–
Renyi (ER) random graph with a Poisson nodal degree dis-
tribution. This indicates that most nodes have approximately
the same number of links close to the average nodal degree
[3].

Figs. 2 and 3 show the topologies of the backbone tele-
communications networks ER1 and ER2, respectively. The two
telecommunications networks are Erdos–Renyi random
graphs such that, the larger the nodes, the higher their



Fig. 2 – Backbone telecommunications network ER1.

Fig. 3 – Backbone telecommunications network ER2.

Fig. 4 – IEEE_300 power grid.

Table 1 – Topological properties of the interdependent
networks.

Network N L 〈k〉 kmax 〈l〉 D r

ER1 300 437 2.91 9 5.57 12 0.0134
ER2 300 549 3.66 8 4.57 10 0.0093
IEEE_300 300 411 2.74 12 9.94 24 �0.2137
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betweenness centrality values. Note that ER2 has more nodes
with similar betweenness centrality values than does ER1.
Hence, for targeted attacks based on betweenness centrality,
ER2 is able to maintain network connections for larger
numbers of removed nodes than ER1.

The power grid is modeled as a small-world (SW) graph. A
small-world graph is a regular graph with increased random-
ness; thus, it exhibits the high clustering property of a regular
graph and the short characteristic path length of a random
graph [28]. However, in order to capture the topological
properties of a power grid, the IEEE_300 real network [24]
used by several researchers (see, e.g., [27]) was selected. Fig. 4
shows the topology of the IEEE_300 power grid, where the
larger nodes have higher degree centrality values.

For simplicity, the ER1 and ER2 backbone telecommunica-
tions networks and the IEEE_300 power grid have the same
number of nodes jNij ¼ 300, but different numbers of links,
jL1j ¼ 437, jL2j ¼ 549 and jL3j ¼ 411, respectively. As shown in
Table 1, the ER1 and ER2 networks have assortative values
close to zero, r1¼0.0134 and r2¼0.0093, respectively; and the
IEEE_300 has a disassortative value r¼ �0:2137. The three

networks have low values of average nodal degree 〈k〉 (2.91 for

ER1, 3.66 for ER2 and 2.74 for IEEE_300) and high values of

average shortest path length 〈l〉 (5.57 for ER1, 4.57 for ER2 and

9.94 for IEEE_300) and diameter D (12 for ER1, 10 for ER2 and 24

for IEEE_300).
Because telecommunications networks and power grids

are more vulnerable to different types of attacks, the nodes in

each network should be weighted using different centrality

metrics. Therefore, the high centrality (BHC) and low centrality

(BLC) interdependency matrices interconnect the two types of

networks with a one-to-one correspondence between the

nodes of the networks according to the centrality metric used

to rank the nodes in each targeted attack.
The next section presents a number of application con-

texts for the three interdependency matrices. The BHC matrix

may be used when the most important telecommunications

and power grid nodes serve each other. For example, in a

large city where the nodes in a telecommunications network

and power grid depend on population density. The BLC matrix

may be used when the most vulnerable power nodes serve

the least critical telecommunications nodes, and vice versa.

For example, a telecommunications operator can identify

zones where blackouts occur frequently; thus, any of the

most critical telecommunications nodes can be located at

these points. In contrast, the BRA matrix connects nodes

randomly without considering the centrality values of nodes;

this is the case of telecommunications networks and power

grids in non-urban or rural areas.
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Fig. 5 – Robustness of the backbone telecommunications
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5. Numerical results and discussion

This section analyzes the robustness of the power grid when
an attack targets a backbone telecommunications network
(and vice versa) for the three interdependency matrices, BHC,
BLC and BRA.

Although several metrics have been proposed for asses-
sing network robustness (see, e.g., [25]), this work uses the
average two-terminal reliability (ATTR) [11] as the network
robustness metric. The metric has been used widely in
previous work [9,11,12,15] to measure network robustness
because it provides a good approximation and sensitivity for
quantifying network connectivity under failure scenarios.
Furthermore, ATTR can be used to compare network robust-
ness under various failure scenarios, so it supports analyses
of the effects of the three interdependency matrices with
regard to the propagation of targeted attacks in the inter-
dependent critical infrastructures.

ATTR measures the probability that a randomly-chosen
pair of nodes is connected [11]. The two-terminal reliability
between two nodes is equal to one if a path exists between
them; otherwise, it is equal to zero [12]. Thus, when the
network is fully connected, exactly one component exists and
ATTR¼1. In another case [12], the ATTR metric is calculated
as the sum over the number of node pairs in each connected
component and divided by the total number of node pairs in
the network. However, in this work, the following equation is
used to compute the ATTR metric [11]:

ATTR¼
Pc

i ¼ 1 KiðKi�1Þ
NðN�1Þ ð1Þ

where c is the number of components, Ki is the number of
nodes in component i and N is the number of nodes in the
network. In failure scenarios, the successive removal of
nodes or links brings ATTR closer to zero [11]. If a targeted
attack affects two network topologies with the same percen-
tages of nodes or links, then the network with the highest
ATTR value is considered to be more robust and, therefore, is
more resistant to the attack [11].

In the failure scenarios considered in this paper, the
percentage of nodes removed P ranged from 1% to 70%. Ten
runs were conducted and, based on whether the targeted
attacks were simultaneous or sequential, different subsets of
nodes were selected for removal.

The next section analyzes the robustness of the two
telecommunications networks and the power grid as a single
network scenario. Following this, the three interdependency
matrices are analyzed in terms of their abilities to mitigate
targeted attacks in two interdependent networks, resulting
from the interconnection of the power grid to each of the two
telecommunications networks. Finally, the results are dis-
cussed along with the lessons learned.
5.1. Robustness comparison of single networks

Fig. 5 shows the ATTR measures in a single network scenario
for the ER1 and ER2 telecommunications networks and the
IEEE_300 power grid under targeted attacks.
The graphs show that ER1 is more vulnerable to a targeted
attack than ER2; this is because ER1 has lower 〈k〉 and higher 〈l〉
and D values than ER2. Moreover, both telecommunications
networks are more vulnerable to sequential targeted attacks
based on betweenness centrality (curves ER1_SE and ER2_SE
in Fig. 5) than to simultaneous targeted attacks based on
betweenness centrality (curves ER1_SI and ER2_SI in Fig. 5);
this is because the assortative values are close to zero. The
high vulnerability of Erdos–Renyi random networks to
sequential targeted attacks based on betweenness centrality
is reported in [7,18].

The IEEE_300 power grid is more vulnerable to targeted
attacks than the ER1 and ER2 networks, which is expected
because of the small-world characteristics of the IEEE_300
network. Fig. 5 shows that the IEEE_300 network is more
vulnerable to simultaneous targeted attacks based on degree
centrality (curve IEEE300_SI) than to sequential targeted
attacks based on degree centrality (curve IEEE300_SE).

In analyzing the robustness of the ER1 and ER2 telecom-
munications networks, the two attacks produce similar
damage for specific percentage ranges P of nodes removed.
For ER1, this range is between 1% and 5%, where the network
connections are reduced to 76%; in the case of ER2, the range
is between 1% and 18%, where the network connections are
reduced to 47%. For the remaining P values, the robustness
behaviors of ER1 and ER2 differ for the two attacks. Thus,
under a sequential targeted attack based on betweenness
centrality, the network connections of ER1 (curve ER1_SE in
Fig. 5) and ER2 (curve ER2_SE in Fig. 5) are close to 0% when
the P values are approximately equal to 20% and 25%,
respectively. In contrast, under a simultaneous targeted
attack based on betweenness centrality, the network connec-
tions of ER1 (curve ER1_SI in Fig. 5) and ER2 (curve ER2_SI in
Fig. 5) are close to 0% when the P reaches 30% and 37%,
respectively. Additionally, as seen in Fig. 5, the robustness of
the IEEE_300 power grid is similar for simultaneous and
sequential targeted attacks based on degree centrality (curves
IEEE300_SI and IEEE300_SE). Specifically, for P ranging from
1% to 5%, the network connections in the IEEE_300 network
dramatically decrease to 36% and the network is completely
disconnected when P reaches 10%.

The robustness analysis reveals that the ER1 and ER2

telecommunications networks are more vulnerable to a
sequential targeted attack based on betweenness centrality
while the IEEE_300 power grid is more vulnerable to a
simultaneous targeted attack based on degree centrality. This
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is a significant result because, in the case of the BHC and BLC
matrices, the telecommunications network and power grid
nodes are interconnected according to the centrality metrics
used in the most dangerous targeted attack (i.e., nodes in the
telecommunications networks are ranked by betweenness
centrality while nodes in the power grid are ranked by degree
centrality). However, in the case of the random interdepen-
dency matrix BRA, the nodes in the two networks are inter-
connected randomly without considering any centrality
metric.

5.2. Mitigation of targeted attacks in interdependent
networks

In the interdependent critical infrastructures considered in
this work, dependent nodes in the ER1 and ER2 telecommu-
nications networks are only removed as a result of nodal
failures in the IEEE_300 network, and vice versa. In this
scenario, telecommunications network nodes that are
removed are weighted by their betweenness centrality values
because Erdos–Renyi networks are highly vulnerable to
sequential targeted attacks based on betweenness centrality
[20]. In a real scenario, the betweenness metric could repre-
sent the number of shortest paths passing through a router.

In the case of a power grid, the nodes to be removed are
ranked by their degree centrality values. This is because
power grid functionality depends on nodes with high degree
centrality (i.e., generators and substations). Therefore, a
simultaneous targeted attack on the power grid based on
degree centrality is considered to eliminate the nodes. Addi-
tionally, it is assumed that the electrical properties of real
power grid elements are extended. Therefore, when a node in
the IEEE_300 grid is attacked, the load is distributed to other
nodes without leading to cascading failures. This section
analyzes the robustness of two interdependent networks
(ER1-IEEE_300 and ER2-IEEE_300) under targeted attacks.

5.2.1. ER1 telecommunications network and IEEE_300 power
grid
Fig. 6 shows the robustness of the ER1 backbone telecommu-
nications network when a simultaneous targeted attack
based on degree centrality is launched against the IEEE_300
power grid. When the ER1 and IEEE_300 networks are inter-
connected by a high centrality interdependency matrix BHC, a
simultaneous targeted attack based on degree centrality of
the IEEE_300 network causes exactly the same damage to the
ER1 network as a simultaneous targeted attack based on
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
TT

R

% Percentage of failures (P)

ER1_LC
ER1_RA
ER1_HC
ER1_SE

Fig. 6 – Robustness of the ER1 telecommunications network.
betweenness centrality does to ER1 in the single network
scenario. This is because, in the case of the BHC matrix, nodes
in ER1 with the highest betweenness centrality values are
removed first when an attack is launched against the
IEEE_300 power grid. This interesting result can be seen by
comparing curves ER1_SI in Fig. 5 and ER1_HC in Fig. 6.
Additionally, the greatest impact on ER1 network robustness
occurs when the networks are interconnected by a link model
based on the BHC interdependency matrix (curve ER1_HC in
Fig. 6).

For the low centrality (BLC) and random (BRA) interdepen-
dency matrices, the ER1 network is more robust to a simulta-
neous targeted attack based on degree centrality on the
IEEE_300 power grid. As expected, in the case of the BLC
matrix, nodes in ER1 with the lowest betweenness centrality
values are the first to be removed when the IEEE_300 is
attacked; this generates the least impact on the robustness
of ER1 (curve ER1_LC in Fig. 6). In the case of the BRA matrix, a
simultaneous targeted attack based on degree centrality on
the IEEE_300 power grid produces a random failure in the ER1

network (curve ER1_RA in Fig. 6) and generates an intermedi-
ate impact on its robustness. In the case of the BLC and BRA
matrices, when the percentages of nodes removed P are
between 1% and 10%, network connections are reduced by
20% and 30%, respectively. In the case of the BRA matrix,
network connections in ER1 reach 0% when P is approxi-
mately 57%; whereas for the BLC matrix, P may be greater than
70% to reach 0% network connections.

Fig. 7 shows the robustness of the IEEE_300 power grid
when a sequential targeted attack based on betweenness
centrality is launched against the ER1 backbone telecommu-
nications network. When P is between 1% and 7%, the
robustness in the case of the BHC matrix (curve IEEE300_HC
in Fig. 7) is approximated by the degradation level produced
by a simultaneous targeted attack based on degree centrality
on the IEEE_300 power grid (curve IEEE300_SI in Fig. 5). For
this range of p values, there is a 65% reduction of network
connections in the IEEE_300 power grid. When P is increased,
the BHC matrix (curve IEEE300_HC in Fig. 7) produces the worst
IEEE_300 network robustness compared with the BLC matrix
(curve IEEE300_LC in Fig. 7) and BRA matrix (curve IEEE300_RA
in Fig. 7).

In the case of the BHC matrix, the IEEE_300 network
connections dramatically decrease, until they reach 0% when
P is about 30% (curve IEEE300_HC in Fig. 7). In the case of the
BRA and BLC matrices, the network connections reach 0%
when the P values are about 55% and 65%, respectively
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Fig. 7 – Robustness of the IEEE_300 power grid.



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
TT

R

% Percentage of failures (P)

ER2_LC
ER2_RA
ER2_HC
ER2_SE

Fig. 8 – Robustness of the ER2 telecommunications network.
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Fig. 9 – Robustness of the IEEE_300 power grid.
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(curves IEEE300_RA and IEEE300_RA in Fig. 7, respectively). In
the case of the BRA matrix, a sequential targeted attack based
on betweenness centrality on the ER1 network causes a
random failure in the IEEE_300 power grid and generates an
intermediate impact on its robustness (curve IEEE300_RA in
Fig. 7) compared with the BHC and BLC interdependency
matrices. Consequently, in order to mitigate the impacts of
the targeted attacks considered in this work, it is recom-
mended that an Erdos–Renyi backbone telecommunications
network and a power grid should be connected using an
interdependency matrix based on the BLC link pattern model.

5.2.2. ER2 telecommunications network and IEEE_300 power
grid
Fig. 8 shows the robustness of the ER2 backbone telecommu-
nications network when a simultaneous targeted attack
based on degree centrality is launched against the IEEE_300
power grid. In fact, the results are similar to those obtained
for the ER1 network. The greatest impact on ER2 network
robustness is seen with the BHC interdependency matrix
(curve ER2_HC), intermediate impact is seen with the BRA
interdependency matrix (curve ER2_RA) and the least impact
is seen with the BLC interdependency matrix (curve ER2_LC).

However, in this interdependency scenario and for the
failure model considered in this work, the ER2 network is
more robust than ER1 for increasing values of P. In the range
1% to 7%, the robustness behavior produced by the three
matrices is similar for ER2, with a reduction to 20% network
connections. ER2 network connections reach 0% when P is
40% for BHC and 67% for BRA (curves ER2_HC and ER2_RA in
Fig. 8, respectively), whereas for BLC, P may be greater than
70% (curve ER2_LC in Fig. 8). Again, when the ER2 and
IEEE_300 networks are interconnected by a BHC matrix, a
simultaneous targeted attack based on degree centrality on
the IEEE_300 power grid causes exactly the same damage to
the ER2 network as a simultaneous targeted attack based on
betweenness centrality on ER2 in the single network scenario
(curves ER2_SI in Fig. 5 and ER2_HC in Fig. 8).

Fig. 9 shows the robustness of the IEEE_300 power grid
when a sequential targeted attack based on betweenness
centrality is launched against the ER2 backbone telecommu-
nications network (which is more robust than the ER1 net-
work). Comparison of Figs. 7 and 9 shows a slight
improvement in IEEE_300 network robustness when it is
interconnected with ER2 by the BHC and BLC interdependency
matrices. For example, when P is in the range 1% to 5% for the
IEEE_300 power grid connected to ER2 by the BHC matrix (curve
IEEE300_HC in Fig. 9), the IEEE_300 network connections
decrease to 47%; on the other hand, when the IEEE_300 power
grid is connected to ER1, its network connections dramatically
decrease to 35% (curve IEEE300_HC in Fig. 7). For P equal to
15%, when the IEEE_300 power grid is connected to ER2 by the
BLC matrix, the network connections are 71% (curve
IEEE300_LC in Fig. 7), whereas when it is connected to ER1,
the network connections are 70% (curve IEEE300_LC in Fig. 9).
5.3. Discussion and lessons learned

Table 2 summarizes the effects of the three interdependency
matrices in mitigating targeted attacks on the interdependent
critical infrastructures. The table shows that each matrix
produces a different impact in terms of propagating targeted
attacks in the interconnected networks. This is because the
three interdependency matrices considered in this work
provide different link patterns for interconnecting interde-
pendent critical infrastructures based on the centrality
metrics used to rank nodes in the networks (bc: betweenness
centrality; dc: degree centrality; and random). However, it is
important to remember that different metrics can be used to
rank the most vulnerable nodes in a network.

The numerical results presented in Section 5.2 can be used
to identify the interdependency matrices that best mitigate
targeted attacks on networks with different topological prop-
erties. Specifically, the low centrality interdependency matrix
BLC reduces the impact on the telecommunications network
when a targeted attack is launched against the power grid,
and vice versa. This is because, when a targeted attack occurs
in one network, the nodes that are less important are the first
to be removed in the other network and the lowest impact on
network robustness is achieved.

However, the high centrality interdependency matrix BHC
produces the greatest impact on the robustness of each
network. This is because the most important nodes are the
first to be removed in both networks.

For the random interdependency matrix BRA, a targeted
attack on a network produces a random failure in the other
network with an intermediate impact on network robustness.
Analogous results for the robustness of two interconnected
networks with similar topological properties that are highly
vulnerable to sequential targeted attacks based on between-
ness centrality are presented in [18].



Table 2 – Effects of the BHC, BLC and BRA interdependency matrices.

Type of Type of Attack Interdependency Resulting Attack on Impact on
Interdependent on First Network Matrix Second Network Network
Network (Centrality Metrics) Robustness

Sequential by bc BHC (bc,bc) Approximately to Highest
simultaneous by bc

ER–ER [18] Sequential by bc BLC (bc,bc) – Lowest
Sequential by bc BRA (random) Random failure Intermediate
Sequential by bc BHC (bc,dc) Approximately to Highest

simultaneous by dc

ER-Power Grid Sequential by bc BLC (bc,dc) – Lowest
Sequential by bc BRA (random) Random failure Intermediate
Simultaneous by dc BHC (dc,bc) Exactly equal to Highest

simultaneous by bc

Power Grid-ER Simultaneous by dc BLC (dc,bc) – Lowest
Simultaneous by dc BRA (random) Random failure Intermediate
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With regard to the propagation of targeted attacks
between the two networks, an interesting result is that, in
the case of a link model based on the high centrality
interdependency matrix BHC, a simultaneous targeted attack
based on degree centrality on the power grid causes exactly
the same damage to the Erdos–Renyi telecommunications
networks as a simultaneous targeted attack based on
betweenness centrality in a single network scenario. This is
because, for the BHC matrix, the nodes with the highest
betweenness centrality in an Erdos–Renyi telecommunica-
tions network are the first to be removed when a simulta-
neous attack based on degree centrality occurs on the power
grid. In contrast, in the case study described in [18], when two
networks with similar topological characteristics are con-
nected by a BHC matrix, the impact of a sequential targeted
attack based on betweenness centrality in one of the net-
works generates an impact that approximates that of a
simultaneous targeted attack based on betweenness central-
ity on the other network.

This research also assesses the effects of interconnecting
the power grid with different telecommunications networks,
each with different susceptibilities to targeted attacks. The
numerical results reveal that connecting a power grid via BHC
and BLC interdependency matrices to a telecommunications
network that is less vulnerable to targeted attacks yields a
slight improvement in the robustness of the power grid. This
is because, in the interdependency scenario considered in
this work (one-to-one nodal interconnections), a sequential
targeted attack based on betweenness centrality on any of
the telecommunications networks propagates to the same
nodes in the power grid. Thus, approximately the same
impact on network robustness is observed.
6. Conclusions

This paper has analyzed the efficacy of interdependency
matrices in mitigating the propagation of targeted attacks
in interdependent critical infrastructures; specifically, a
power grid connected to a telecommunications network. In
addition, the consequences of interconnecting the power grid
to different telecommunications networks with different
susceptibilities to targeted attacks have been evaluated.

To achieve the least impact on the power grid when the
most dangerous targeted attack is launched on the telecom-
munications network, and vice versa, it is recommended to
interconnect the two networks using the low centrality
interdependency matrix BLC. In contrast, the high centrality
interdependency matrix BHC has the greatest impact on net-
work robustness whereas the random interdependency
matrix BRA has an intermediate impact on network robust-
ness. These results are due to the fact that the interconnec-
tions embodied by the interdependency matrices take into
account the vulnerabilities of the networks to specific types
of attacks.

The case study of the power grid connected to a backbone
telecommunications network yields interesting insights with
regard to the propagation of targeted attacks in the inter-
dependent critical infrastructures. When the two infrastruc-
tures are interconnected by a link model based on the BHC
matrix, a simultaneous targeted attack based on degree
centrality on the power grid causes exactly the same damage
to the telecommunications network as a simultaneous tar-
geted attack based on betweenness centrality in a single
network scenario. However, when the two infrastructures are
interconnected via the BRA matrix, a targeted attack on one of
the networks propagates randomly in the other network.

The BHC and BLC interdependency matrices slightly
improve the robustness of the power grid when it is inter-
connected to a telecommunications network that is more
robust to a sequential targeted attack based on betweenness
centrality. This is because, in the one-to-one nodal corre-
spondence of the interdependency matrices, a targeted attack
on each of the two telecommunications networks propagates
to the same nodes in the power grid.

Future research will focus on identifying the most impor-
tant nodes in the power grid. The nodes will be ranked based
on their electrical properties that lead to large-scale failures
and network robustness will be evaluated based on this new
metric. Research will also study other strategies for mitigat-
ing the impacts of targeted attacks on the robustness of
interdependent networks. Additionally, future research will
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use the proposed methodology to evaluate the robustness of
other interdependent critical infrastructures under various
attack and failure scenarios.
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