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Abstract

The Professorship of Digital Signal Processing and Circuit Technology of Chemnitz Univer-
sity of Technology conducts research in the field of three-dimensional space measurement
with optical sensors. In recent years this field has made major progress.

For example innovative, active techniques such as the “structured light“-principle are
able to measure even homogeneous surfaces and have found their way into the consumer
electronic market in terms of Microsofts Kinect® at the present time. Furthermore,
high-resolution optical sensors establish powerful, passive stereo vision systems in the
field of indoor surveillance. Thereby they induce new application domains such as security
and assistance systems for domestic environments.

However, the constraint field of view can still be considered as an essential characteristic
of all these technologies. For instance, in order to measure a volume in size of a living
space, two to three deployed 3D sensors have to be applied nowadays. This is due to the
fact that the commonly utilized perspective projection principle constrains the visible
area to a field of view of approximately 120o. On the other hand, novel fish-eye lenses
allow the realization of omnidirectional projection models. Therewith, the visible field
of view can be enlarged up to more than 180o. In combination with a 3D measurement
approach, thus, the number of required sensors for entire room coverage can be reduced
considerably.

Motivated by the requirements of the field of indoor surveillance, the present work
focuses on the combination of the established stereo vision principle and omnidirectional
projection methods. The entire 3D measurement of a living space by means of one single
sensor can be considered as major objective.

As a starting point for this thesis, Chapter 1 discusses the underlying requirement,
referring to various relevant fields of application. Based on this, the distinct purpose for
the present work is stated.

The necessary mathematical foundations of computer vision are reflected in Chapter
2 subsequently. Based on the geometry of the optical imaging process, the projection
characteristics of relevant principles are discussed and a generic method for modelling
fish-eye cameras is selected.



Chapter 3 deals with the extraction of depth information using classical (perceptively
imaging) binocular stereo vision configurations. In addition to a complete recap of the
processing chain, especially occurring measurement uncertainties are investigated.

In the following, Chapter 4 addresses special methods to convert different projection
models. The example of mapping an omnidirectional to a perspective projection is
employed in order to develop a method for accelerating this process and, hereby, for
reducing the computational load associated therewith. Any errors that occur, as well as
the necessary adjustment of image resolution, are an integral part of the investigation. As
a practical example, an application for person tracking is utilized in order to demonstrate
to which extent the usage of “virtual views“ can increase the recognition rate for people
detectors in the context of omnidirectional monitoring.

Subsequently, an extensive search with respect to omnidirectional imaging stereo vision
techniques is conducted in Chapter 5. It turns out that the complete 3D capture
of a room is achievable by the generation of a hemispherical depth map. Therefore,
three cameras have to be combined in order to form a trinocular stereo vision system.
As a basis for further research, a known trinocular stereo vision method is selected.
Furthermore, it is hypothesized that, by applying a modified geometric constellation of
cameras, more precisely in the form of an equilateral triangle, and using an alternative
method to determine the depth map, the performance can be increased considerably. A
novel method is presented which shall require fewer operations to calculate the distance
information and which is to avoid a computational costly step for depth map fusion as
necessary in the comparative method.

In order to evaluate the presented approach as well as the hypotheses, a hemispherical
depth map is generated in Chapter 6 by means of the new method. Simulation results,
based on artificially generated 3D space information and realistic system parameters, are
presented and subjected to a subsequent error estimate.

A demonstrator for generating real measurement information is introduced in Chapter
7. In addition, the methods that are applied for calibrating the system intrinsically as
well as extrinsically are explained. It turns out that the calibration procedure utilized
cannot estimate the extrinsic parameters sufficiently. Initial measurements present a
hemispherical depth map and thus confirm the operativeness of the concept, but also
identify the drawbacks of the calibration used. The current implementation of the
algorithm shows almost real-time behaviour.

Finally, Chapter 8 summarizes the results obtained along the studies and discusses them
in the context of comparable binocular and trinocular stereo vision approaches. For
example the results of the simulations carried out produced a saving of up to 30% in terms
of stereo correspondence operations in comparison with a referred trinocular method.
Furthermore, the concept introduced allows the avoidance of a weighted averaging step
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for depth map fusion based on precision values that have to be calculated in a costly
manner. The achievable accuracy is still comparable for both trinocular approaches.

In summary, it can be stated that, in the context of the present thesis, a measurement
system has been developed which has great potential for future application fields in
industry, security in public spaces as well as home environments.
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Zusammenfassung

Die Professur Digital- und Schaltungstechnik der Technischen Universität Chemnitz
forscht auf dem Gebiet der dreidimensionalen Raumvermessung mittels optischer Sen-
sorik. In den letzten Jahren konnte dieses Forschungsgebiet wesentliche Fortschritte
verzeichnen.

Beispielsweise erlauben innovative, aktive Verfahren wie das „Structured Light“-Prinzip
die präzise Erfassung auch homogener Oberflächen und halten gegenwärtig in Form der
Microsoft Kinect® Einzug in die Konsumerelektronik. Des Weiteren ermöglichen hochauf-
lösende optische Sensoren die Etablierung leistungsfähiger, passiver Stereo-Vision Systeme
im Bereich der Raumüberwachung und schaffen damit neuartige Anwendungsfelder wie
etwa Sicherheits- und Assistenzsysteme für das häusliche Umfeld.

Eine wesentliche Einschränkung dieser Technologien bildet der nach wie vor stark limi-
tierte Sichtbereich der Sensorik. So sind zum Beispiel zur optischen, dreidimensionalen
Erfassung eines Volumens der Größe eines Wohnraumes aktuell etwa zwei bis drei verteilte
Sensoren erforderlich. Als Ursache ist hauptsächlich das zugrunde liegende perspektivische
Abbildungsprinzip der 3D-Messverfahren zu nennen, welches den sichtbaren Bereich auf
einen Öffnungswinkel von etwa 120° beschränkt. Neuartige Fischaugenobjektive hinge-
gen ermöglichen die Umsetzung omnidirektionaler Projektionsmodelle und damit die
Erweiterung des Erfassungsbereichs auf 180° des Sichtfeldes. In Kombination mit einem
3D-Messverfahren kann damit die Anzahl der benötigten Sensoren für eine vollständige
Raumvermessung wesentlich reduziert werden.

Motiviert, insbesondere durch die anwendungsbezogenen Anforderungen der Raumüber-
wachung, befasst sich die vorliegende Arbeit mit der Kombination des etablierten Stereo-
Vision Prinzips mit omnidirektionalen Projektionsverfahren. Das Ziel ist die vollständige,
dreidimensionale Erfassung eines Raumes mit nur einem optischen 3D-Sensor.

Als Ausgangspunkt der Arbeit wird in Kapitel 1 die zugrundeliegende Problemstellung
in Bezug auf verschiedene, relevante Anwendungsfelder dargelegt. Davon ausgehend wird
das wesentliche Ziel der Untersuchungen formuliert.



Die notwendigen mathematischen Grundlagen des maschinellen Sehens werden anschlie-
ßend in Kapitel 2 reflektiert. Ausgehend von der Geometrie des optischen Abbildungs-
prozesses werden die Eigenschaften relevanter Projektionsprinzipien erörtert und ein
generisches Verfahren zur Modellierung von Fischaugenkameras ausgewählt.

In Kapitel 3 wird die Gewinnung von Tiefeninformationen unter Verwendung klassischer,
perspektivisch abbildender binokularer Stereo-Vision Konfigurationen behandelt. Neben
einer Aufarbeitung der kompletten Verarbeitungskette werden insbesondere auftretende
Messungenauigkeiten untersucht.

Im Folgenden werden in Kapitel 4 spezielle Verfahren zur Konvertierung verschiedener
Projektionsmodelle diskutiert. Am Beispiel der Transformation einer omnidirektionalen
in eine perspektivische Abbildung wird eine Methode entwickelt, welche die damit
verbundene Rechenlast reduziert und das Verfahren wesentlich beschleunigt. Auftretende
Fehler sowie die notwendige Anpassung der Bildauflösung sind integraler Bestandteil der
Untersuchungen. Am Beispiel einer Anwendung zur Personenlokalisierung kann gezeigt
werden, dass sich die Erkennungsrate durch den Einsatz „virtueller Abbildungen“ in der
omnidirektionalen Überwachung signifikant steigern lässt.

Aufbauend auf den gelegten Grundlagen wird im sich anschließenden Kapitel 5 eine
ausführliche Recherche zu omnidirektional abbildenden Stereo-Vision-Verfahren darge-
stellt. Es zeigt sich, dass die vollständige 3D-Erfassung eines Raumes mit Hilfe einer
hemisphärischen Tiefenkarte möglich ist und dazu prinzipiell drei Kameras zu einem
trinokularen Messsystem kombiniert werden müssen. Als Grundlage für die weiteren
Untersuchungen wird ein bekanntes trinokulares Stereo-Vision Verfahren ausgewählt.
Davon ausgehend wird die Hypothese aufgestellt, dass bei Änderung der geometrischen
Konstellation der Kameras zu einem gleichschenkligen Dreieck sowie Anwendung einer
alternativen Methode zur Bestimmung der Tiefenkarte die Performance vergleichsweise
signifikant gesteigert werden kann. Es wird ein neues Verfahren vorgestellt, welches
im Vergleich weniger Operationen zur Berechnung der Entfernungsinformationen benö-
tigt und einen rechenaufwändigen Schritt zur Fusionierung von Tiefenkarten, wie im
Vergleichsverfahren notwendig, unterbinden soll.

Zur Überprüfung des dargelegten Konzeptes und der getroffenen Hypothesen wird in
Kapitel 6 eine hemisphärische Tiefenkarte auf Grundlage des neuen Verfahrens generiert.
Simulationsergebnisse auf Basis künstlich generierter 3D-Rauminformationen und realis-
tischer Systemparameter werden präsentiert und einer anschließenden Fehlerabschätzung
unterzogen.

Ein Demonstrator zur Erzeugung realer Messinformationen wird in Kapitel 7 vorgestellt.
Die verwendeten Methoden zur intrinsischen sowie extrinsischen Kalibrierung des Sys-
tems werden dargelegt. Es stellt sich heraus, dass das verwendete Kalibrierverfahren die
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extrinsischen Parameter nicht genau genug schätzen kann. Erste vorgestellte Messergeb-
nisse in Form einer hemisphärischen Tiefenkarte bestätigen die Funktionsfähigkeit des
Konzeptes, zeigen aber auch die Nachteile der verwendeten Kalibrierung. Die aktuelle
Implementierung des Verfahrens zeigt nahezu Echtzeitverhalten.

Abschließend werden in Kapitel 8 die erreichten Ergebnisse der getätigten Untersuchungen
zusammengefasst und im Kontext vergleichbarer binokularer und trinokularer Stereo-
Vision Ansätze diskutiert. Beispielsweise zeigen die durchgeführten Simulationen eine
Einsparung der Rechenoperationen bei der Bestimmung der Tiefenkarte um bis zu 30%
im Vergleich zum Referenzverfahren. Weiterführend kann im vorgestellten Konzept bei
der Fusionierung von Entfernungsinformationen auf eine gewichtete Mittelwertbildung
unter Verwendung aufwendig zu berechnender Genauigkeitswerte verzichtet werden. Die
erreichbare Präzision ist dennoch für beide trinokulare Verfahren vergleichbar.

Zusammenfassend kann gesagt werden, dass im Rahmen der vorliegenden Arbeit ein
Messsystem entstanden ist, welches großes Potenzial für zukünftige Aufgabenfelder in
Industrie, der Sicherheit im öffentlichen Raum sowie im häuslichen Bereich aufweist.
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Chapter 1

Introduction

The research and development activities of the Professorship of Digital Signal Processing
and Circuit Technology (Chemnitz University of Technology) focus on human behaviour
analysis by means of optical sensors. The underlying motivation originates from the
recent progress that has been achieved in the field of visual surveillance and, associated
therewith, the emerge of new promising applications and markets as will be briefly
presented in Section 1.1.

However, a rising spread of this technology amongst new (consumer) application fields
gives rise to a multitude of associated requirements and hence generates new challenges
for this field of research. Section 1.2 sketches important needs for development based on
state-of-the-art indoor surveillance systems and thereby specifies the distinct topic of the
thesis.

Finally Section 1.3 outlines the structure of the present document and hence reveals the
proceeding for achieving the objective constituted in Section 1.2.

1.1 Visual Surveillance

The technology of Closed Circuit Television (CCTV) has been of common usage since
the last century above all for applications like security and surveillance. Networks
of cameras record non-stop video data, file it or directly communicate it to a control
room where dedicated personnel assesses the material. By now modern machine vision
based algorithms carry out this process by analysing an observed scene automatically.
Furthermore, advances in optical sensor technologies allow a 3D measurement of a certain
scene in the meantime rather than only perceiving 2D information. Augmenting image
data by depth information principally generates the possibility to develop more powerful
computer vision algorithms. For example the detection of a person becomes more stable
because it can be reliably separated from the images background. In addition, by utilizing
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3D information the localization of humans becomes a measurement rather than an
estimation. Figure 1.1 provides a brief schematic of the variety of state-of-the-art 3D
measurement techniques. However, for surveillance tasks the passive stereo vision method
has turned out to be the most commonly used method. This is due to the fact that it can

optical 3D measurement

active passive

projection

deflectometry 

reflection moiré

points

lines

pattern

shadow 
moiré

projection 
moiré

stereo
photogrammetry

monokular

binocular

n-ocular

 light-field 
camera

Figure 1.1: Optical 3D measurement techniques

be used freely without restriction, it is cost-efficient and suitable for monitoring people
since it belongs to the passive approaches. It does not impact its vicinity.

The combination of 3D measurement capability and powerful miniaturized processing
platforms with intelligent image processing algorithms makes sensors nowadays somehow
smart: They detect and track people independently and communicate events like "2 people
at position x y" rather than the raw video material. This saves technical bandwidth,
personnel costs and is more sensitive to privacy concerns than ordinary cameras could
ever be. Figure 1.2 exemplarily outlines such an optical smart sensor that is used for
surveillance purposes.

Figure 1.2: Optical smart sensor based on passive stereo vision (source: Intenta GmbH, 2014)

In order to cover a complex environment like a public place or a whole apartment those
sensors are combined to so-called smart sensor networks each analysing a part of the
scene for itself and messaging any occasion to a human operator or computer. Figure 1.3
demonstrates the deployment of such a system in an artificial living environment.
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Figure 1.3: Apartment equipped with a smart sensor network

For example the new upcoming Ambient Assisted Living (AAL) market claims safety
and assistance functionality for elderly people that live at home alone. A smart sensor
based system can provide functionalities like fall detection, emergency alerting and home
automation services while paying attention to the inhabitants privacy concerns. Figure 1.4
shows a scenario where an elderly person that has fallen on the floor is guarded by an
optical sensor system.

Figure 1.4: Emergency detection in a domestic environment (source: Vitracom AG, 2015)

A few more examples for relevant markets shall be stated in Table 1.1.
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Table 1.1: Markets and application fields

Market Explanation Exemplary Applications

AAL Age-based homes equipped with
smart sensors take care of the el-
derly inhabitants and assist with
their everyday live.

Fall detection, emergency alerting,
home automation services, assis-
tance for carrying out ADLs, care
optimization by evaluation of sta-
tistical data of the inhabitants be-
haviour and health status

Security Private homes as well as public
buildings are equipped with intel-
ligent sensors that message suspi-
cious or violent behaviour.

Intrusion detection, access control,
crowd density monitoring aban-
doned object detection, theft de-
tection

Building
Automation

Smart sensors detect and count peo-
ple to make buildings somehow in-
telligent by automatically perform-
ing certain services.

Air conditioning control, access
control, energy management, HMI
for established building automation
systems e.g. of Honeywell Interna-
tional Inc.

Retail Smart sensor systems for retail busi-
ness intelligence collect data about
the number of customers and their
purchasing behaviour.

Managing queues of customers at
cash boxes, analysing the shop per-
formance

Industry Perspectively, manual manufactur-
ing processes will be guided by au-
tomatic systems that take care of
production policies, safety and lo-
gistical concerns.

Safety in production by intrusion
or tiredness detection, process mon-
itoring

1.2 Challenges in Visual Surveillance

Reviewing state-of-the art visual surveillance technology and its markets, the system
costs turn out to be an everlasting crucial issue. One of the key cost drivers is the number
of applied sensors for observing a certain scene. Hence, it is obvious that a reduction of
necessary sensors (and the attached infrastructure) can have an essential impact on the
systems price.

Complex scenes as for example a living environment usually require 2 to 3 ordinary
perspective sensors per room for almost full coverage. Due to their nature of perspective
projection they are restricted to a Field of View (FOV) of much less than 180o. Special
devices called omnidirectional sensors work either with catadioptric mirror configurations
or are equipped with fish-eye lenses in order to generate a FOV of more than 180o.
Figure 1.5 shows an exemplary living environment observed by a perspective, and for
comparison, an omnidirectional imaging device. The latter generates a much larger
visible area and is hence appropriate to replace multiple perspective sensors.
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Perspective Cameras Omnidirectional CamerasConventional Wide-angled

0° 80° 120° >180°

Figure 1.5: Standard perspective camera versus omnidirectional camera in a home environment

While in earlier times image processing algorithms almost exclusively utilized color
information, nowadays a growing number of algorithms claim 3D data. As an example
the robust Z-Map tracking algorithm published by Richter et al [99] shall be mentioned,
which utilizes 3D point clouds generated by standard stereo vision devices.

The combination of omnidirectional sight with stereo vision based depth measurement
hence could merge the advantages of a large FOV together with 3D information. Since
accuracy of the most depth sensing principles depends on the distance from sensor to
target object, the propagated idea has another advantage: An omnidirectional Red Green
Blue-Depth (RGB-D) sensor mounted in the central of a rooms ceiling would provide
on average a lower distance to the scene points under observation in comparison to a
common configuration that applies a network of perspective stereo sensors. This issue
is sketched in Figure 1.6 where the floor plan of an exemplary living environment is
sketched with a standard sensor configuration on the left and an omnidirectional sensor
on the right. The sensors are indicated by their individual frame. The shortest distance
of each scene point to the adjacent sensor that observes it is highlighted color-coded.
White areas are covered by neither camera.

It can be seen that the (artificial) omnidirectional depth measuring device can replace
three standard perspective sensors approximately, while optimizing the sensor to target
distance in addition.

Motivated by this consideration, the objective for this thesis will be the investigation
of a stereo vision based omnidirectional measurement device that is able to cover one
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1 Introduction

Figure 1.6: Floor plan of a single apartment equipped with optical stereo vision sensors (indicated by
their camera frames)

complete room from floor to ceiling with almost homogeneous measurement accuracy
and preferably low computational effort.

Figure 1.7: Exemplary application fields (upper left: home automation, upper right: industry, lower
left: security in public transportation, lower right: security in public buildings)

Figure 1.7 projects this demand onto different target application fields.
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1.3 Outline of the Thesis

1.3 Outline of the Thesis

The present script is organized as follows:

Chapter 2 - Fundamentals of Computer Vision Geometry

As a starting point relevant basics of computer vision are structured and elaborated for
certain aspects that are important for this work. This is done in Chapter 2.

Chapter 3 - Fundamentals of Stereo Vision

Stereo vision fundamentals for standard perspective camera geometry are presented
successively in Chapter 3. This technology plays a key role in this work and will be
transferred to other camera models subsequently.

Chapter 4 - Virtual Perspective Cameras

For the simultaneous usage of different camera models and their conversion, it is important
to understand the concept of virtual cameras. In Chapter 4 several conversion strategies
from omnidirectional to perspective vision are investigated exemplarily.

Chapter 5 - Spherical Stereo Vision

The research field of stereo vision with respect to multiple omnidirectional geometries is
revised in Chapter 5. Different approaches are compared and assessed with respect to
the application of visual surveillance.

Chapter 6 - A Novel Spherical Stereo Vision Algorithm

Based on the knowledge presented in Chapter 2, Chapter 3, Chapter 4 and Chapter 5 a new
method for omnidirectional stereo processing is presented and simulated in Chapter 6.

Chapter 7 - Spherical Stereo Vision Demonstrator

A real demonstrator compiled of standard industry cameras is presented in Chapter 7.

Chapter 8 - Discussion and Outlook

Finally, in Chapter 8 the so far achieved results of this thesis are discussed and open points
collected. In addition, possible improvements for the presented concept are suggested.
A sample application that employs omnidirectional RGB-D data concludes this thesis
practically.
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Chapter 2

Fundamentals of Computer Vision
Geometry

This chapter discusses fundamental topics related to computer vision geometry. As start-
ing point vital basics for homogeneous and inhomogeneous coordinate representations are
briefly reviewed in Section 2.1. After this the principles of transferring a 3D point located
in an observed scene to a 2D image point is treated in Section 2.2 while distinguishing
different camera models. Subsequently a brief overview of current state-of-the-art meth-
ods for estimating the parameters of different camera models for the usage in real camera
devices is presented in Section 2.3. Finally an insight into the fundamental mechanics of
epipolar geometry is given in Section 2.4. The constraints that two adjacent cameras
introduce on the relationships between their images are explained.

2.1 Projective Geometry

In the following sections the most important geometrical point representations for two- and
three-dimensional space are explained - more precisely homogeneous and inhomogeneous
representations.

2.1.1 Euclidean Space

The most common form of representing a point is the expression of cartesian coordinates.
Let X2D and X3D be points in 2D and 3D space, than one can represent them as shown
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2 Fundamentals of Computer Vision Geometry

in Equation 2.1

X2D =

⎛⎝x

y

⎞⎠ , X3D =

⎛⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎠ (2.1)

where x, y and z are the vector components in the direction of the x-, y- and z-axis,
respectively. This model is commonly used in the euclidean space. Different scalar values
of the components represent different points.

2.1.2 Projective Space

In the projective space the distinct values of the vectors components are not significant
for determining a unique point, but so are the ratios between the values. For example in
this space a point X1 = (1,2,3)T is equivalent to a point X2 = (2,4,6)T , since both head
for the same direction. Although a point X3 = (∞,∞,∞)T resides at infinity it can be
equivalent to X1 and X2 as well if their direction is identical.

In order to represent finite and infinite points homogeneously, the homogeneous repre-
sentation was introduced, by adding an additional scale factor w. This new parameter
encodes the scale of the vector while the others represent its direction. Consequently
X2D and X3D are now given as 3- and 4-dimensional vectors in 2- and 3-dimensional
space and are called the homogeneous representation:

X2D =

⎛⎜⎜⎜⎝
x

y

w

⎞⎟⎟⎟⎠ , X3D =

⎛⎜⎜⎜⎜⎜⎜⎝
x

y

z

w

⎞⎟⎟⎟⎟⎟⎟⎠ (2.2)

The inhomogeneous representation (without w) is marked in the following with a tilde as
X̃2D and X̃3D:

X̃2D =

⎛⎝x/w

y/w

⎞⎠ , X̃3D =

⎛⎜⎜⎜⎝
x/w

y/w

z/w

⎞⎟⎟⎟⎠ (2.3)

The afore-mentioned example points have the following homogeneous and inhomogeneous
representations:

X1 = (1,2,3,1)T → X̃1 = (1,2,3)T

X2 = (1,2,3,0.5)T → X̃2 = (2,4,6)T

X3 = (1,2,3,0)T → X̃3 = (∞,∞,∞)T

(2.4)
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2.2 Camera Geometry

From now on the distinction between both models is made.

2.2 Camera Geometry

A camera usually maps an observed 3D scene to a 2D image. The geometrical relationship
between these 3D scene points X̃3D and the resulting 2D image points X̃2D is often
quite complex due to the physical construction of the imaging device.

This complex issue can be approximated by an appropriate mathematical model which is
commonly known as camera model or projection model. By employing a finite amount of
numerical parameters, the actual process of projection can be replaced by an appropriate
mathematical relationship of bearable computational cost.

Since the original scene points refer to a certain 3D world coordinate system, they are
from now on called Xwrld. Since the target 2D points refer to an image coordinate
system, they are from now on called X img:

Xwrld =

⎛⎜⎜⎜⎜⎜⎜⎝
xwrld

ywrld

zwrld

wwrld

⎞⎟⎟⎟⎟⎟⎟⎠ , X img =

⎛⎜⎜⎜⎝
ximg

yimg

wimg

⎞⎟⎟⎟⎠ (2.5)

2.2.1 Geometrical Imaging Process

The overall imaging process that transfers a scene point Xwrld to an image point X img

successively utilizes an extrinsic and an intrinsic model as can be seen in Figure 2.1:

• The former describes the geometrical relationship of a global reference, the World
Coordinate System (WCS), with respect to the camera itself, the camera coordinate
system. It considers Xwrld with respect to a world reference as a world point and
transfers it to a camera point Xcam. See Section 2.2.1.2.

• The latter describes the projection process from camera points Xcam to image
points X img in the image coordinate system. See Section 2.2.1.1.
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2 Fundamentals of Computer Vision Geometry

Figure 2.1: Coordinate transformations in the geometrical imaging process

2.2.1.1 Projection Models

The projection model describes the mapping from incoming light rays, denoted by Xcam,
to normalized sensor coordinates, denoted by Xnorm, whereby

Xcam =

⎛⎜⎜⎜⎜⎜⎜⎝
xcam

ycam

zcam

wcam

⎞⎟⎟⎟⎟⎟⎟⎠ and Xnorm =

⎛⎜⎜⎜⎝
xnorm

ynorm

1

⎞⎟⎟⎟⎠ (2.6)

are the corresponding homogeneous Cartesian representations in camera and normalized
sensor coordinate system respectively.

A special group of projection principles are so called radially symmetric models. Therefore
it may be suitable to note the spherical and the polar representation respectively:

Xcam =̂

⎛⎜⎜⎜⎝
θ

ϕ

wcam

⎞⎟⎟⎟⎠ and Xnorm =̂

⎛⎜⎜⎜⎝
ρ

ϕ

1

⎞⎟⎟⎟⎠ (2.7)

The following conventions apply for these mathematical expressions:

• The variable θ is the angle between the incoming light ray and the optical axis.

• The variable ϕ forms the azimuth angle of the incoming light ray.

• The variable ρ forms the radius of the projected normalized sensor point with
respect to the centre of the image.
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2.2 Camera Geometry

In Figure 2.2 the relationship of the coordinates of Xcam before and of Xnorm after the
projection by a radially symmetric model can be seen.

Figure 2.2: Projection process

According to [56] the radial projection of an incoming light ray Φ = (θ,ϕ)T onto a virtual
image plane with a distance of f = 1 to the projection center can be modelled with the
radial projection function

X̃norm = F (Φ) = ρ(θ)ur(ϕ) with ur(ϕ) =

⎛⎝cosϕ

sinϕ

⎞⎠ (2.8)

where ρ(θ) is the projection radius as a function of θ and ur is the unit vector in radial
direction.

In Table 2.1 a variety of the most important radially symmetric projection models are
summarized as presented in [56]. Asymmetric effects of projection are not covered by
those models.

In Figure 2.3 the projection principles of Table 2.1 are visualized.

For projection principles called non-radially symmetric models it is more appropriate to
model the projection by employing Cartesian coordinates:

X̃norm = F
(
X̃cam

)
(2.14)

2.2.1.2 Intrinsic Model

Modern cameras employ a discrete number of sensor or picture elements on the light
sensitive chip. Image information is thereby described by image or pixel coordinates
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2 Fundamentals of Computer Vision Geometry

X img resulting from an affine transformation K on the normalized sensor coordinates:

X img = K ·Xnorm (2.15)

where K, called camera calibration matrix, is given by

K =

⎡⎢⎢⎢⎣
αx s cx

αy cy

1

⎤⎥⎥⎥⎦ with αx = f ·mx, αy = f ·my (2.16)

containing the five intrinsic parameters of a CCD camera. These parameters are briefly
explained further down as a list.

Table 2.1: Radially symmetric projection models

Projection Type Function Properties and Application

Perspective
projection

ρ = f tanθ (2.9)

Applied in conventional cameras that follow
the pinhole principle with θ < pi/2 [rad]. See
Section 2.2.2.

Stereographic
projection

ρ = 2f tan
θ

2
(2.10)

Commonly used for the generation of stellar
maps and photography. Angles are preserved
(equal angles) and circles are imaged without
distortions (equal circles).

Equidistance
projection

ρ = fθ (2.11)

It is the most popular model for describing
fisheye projection lenses. Incidence angles of
rays are imaged linearly. See Section 2.2.3.

Equisolid angle
projection

ρ = 2f sin
θ

2
(2.12)

Each pixel corresponds to one distinct solid
angle which makes the image look like the
reflection by a specular ball.

Orthogonal
projection

ρ = f sinθ (2.13)

This camera principle models the projection
onto a sphere. The projection radius ρ is
increasing with increasing incidence angle θ
until θ reaches pi/2. Than it is declining
again - cf. Figure 2.3.
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2.2 Camera Geometry

Figure 2.3: Radially symmetric projections

• αx is the focal length f normalized to the physical horizontal pixel length px.
[αx] = px

mm . The inverse of px is called horizontal pixel density mx. [mx] = 1
mm

• αy is the focal length f normalized to the physical vertical pixel length py. [αy] = px
mm .

The inverse of py is called vertical pixel density my. [my] = 1
mm

• cx is the horizontal offset value of the principle point from the pixel frame. [cx] = px.

• cy is the vertical offset value of the principle point from the pixel frame. [cy] = px.

• s is the affine distortion of the image in horizontal direction, called skewness factor.
[s] = mm·rad.

For an ideal camera the offset values cx and cy can be directly exploited to calculate the
image size {height,width}. The relationship is outlined in Equation 2.17.

{cx, cy} = {width +1
2

,
height+1

2
} (2.17)
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2 Fundamentals of Computer Vision Geometry

2.2.1.3 Extrinsic Model

Generally the scene point is expressed in a world coordinate system Xwrld which is
different from the camera coordinate system and which is useful especially when there
are multiple cameras in the scene - see Figure 2.4. The geometrical relationship between

Figure 2.4: World coordinate system

Xwrld the coordinate systems Xcam,i (with i being the index of the distinct camera)
is composed of a 3 × 3 rotation matrix Ri and a 3 × 1 translation vector T i. A point
given in world coordinates can hence be transferred into camera coordinates by applying
Equation 2.18:

X̃cam,i = Ri ·X̃wrld +T i (2.18)

Using homogeneous coordinates, this procedure can be expressed as matrix operation:

Xcam,i = H i ·Xwrld (2.19)

where H i denotes the 4×4 homography matrix describing the world coordinate system
with respect to the camera coordinate system. H i can be decomposed as follows:

H i =

⎡⎣Ri T i

0 1

⎤⎦ =

⎡⎣Ri −RiC i

0 1

⎤⎦ (2.20)

where C i is a 3×1 vector which encodes the position of the camera in world coordinates.
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2.2 Camera Geometry

Furthermore R can be decomposed into the angles ϕx, ϕy and ϕz. They represent the
rotation of the camera with respect to the WCS as a consecutive turn of the camera
around its own x-, y- and z-axis respectively. These angles are called Euler rotations.

2.2.1.4 Distortion Models

Every projection model has the limitation that it approximates real Commercial Off-
The-Shelf (COTS) cameras at its best due to manufacturing issues. Furthermore even
lenses of the same type differ in their imaging behaviour. These properties are denoted
as distortions. It is commonly distinguished between:

• Radial distortions: Especially wide-angle lenses of cheap production commonly
give rise to deviations of the projection result from the invoked model in radial
direction.

• Tangential distortions: Especially skew assembling of the lens and die in a
camera lead to tangential deviations of the projection result.

There are several approaches available to extend the camera models with a description of
these lens imperfections. See Section 2.2.2 and Section 2.2.4.

2.2.2 Pinhole Camera Model

Most conventional cameras which follow the perspective camera model use the pinhole
camera model as an approximation. Essentially it is a perspective projection of the
spatial coordinates Xcam given in the camera coordinate system denoted by

Xcam =

⎛⎜⎜⎜⎜⎜⎜⎝
xcam

ycam

zcam

1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.21)

into normalized sensor plane coordinates Xnorm

Xnorm =

⎛⎜⎜⎜⎝
xnorm

ynorm

1

⎞⎟⎟⎟⎠ =
1

zcam

⎛⎜⎜⎜⎝
f ·xcam

f ·ycam

zcam

⎞⎟⎟⎟⎠ =
1

zcam

⎡⎢⎢⎢⎣
f 0

f 0
1 0

⎤⎥⎥⎥⎦Xcam (2.22)
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2 Fundamentals of Computer Vision Geometry

Figure 2.5: Perspective camera model

whereby f forms the focal length of the camera and hence the distance between the
principal point and the sensor plane of the camera. In Figure 2.5 the camera model
presented so far is visualized.

Similarly a radially symmetric projection function Fp can describe the projection process
by combining Equation 2.8 with Equation 2.9:

X̃norm = Fp (Φ) = f tanθ

⎛⎝cosϕ

sinϕ

⎞⎠ =̂
(

f
xcam

zcam
,f

ycam

zcam

)T

(2.23)

2.2.2.1 Complete Forward Model

Perspective projection model
Integrating all the previous relations, a 3D point Xwrld can be directly transferred into
image coordinates by setting up a 3×4 camera projection matrix P :

X img = P ·Xwrld (2.24)

This matrix is composed of the intrinsic parameters K as well as extrinsic parameters R

and T :

P = K
[
R T

]
(2.25)

Altogether this model provides 11 Degrees of Freedom (DOF) for modelling a perspective
camera.
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2.2 Camera Geometry

In a mathematical sense, the matrix P is the projection of a four dimensional space (3D
homogeneous points) to a three dimensional space (2D homogeneous points). Amongst
other possibilities, P (with the 12 scalar elements p11 to p34) can be represented as

• a column vector of components p1R, p2R and p3R where each element is a 1 × 4
row vector.

• a row vector of components p1C, p2C, p3C and p4C where each element is a 3×1
column vector.

This relationship is highlighted in Equation 2.26.

P =

⎡⎢⎢⎢⎣
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p1R

p2R

p3R

⎤⎥⎥⎥⎦ =
[
p1C p2C p3C p4C

]
(2.26)

Decomposing P into row vectors means to represent it by a number of special planes:

• p1R is the plane orthogonal to the camera’s x-axis containing the principal point
and origin of the image coordinate system. It is visualized in Figure 2.6 as red
plane.

• p2R is the plane orthogonal to the camera’s y-axis containing the principal point
and origin of the image coordinate system. It is visualized in Figure 2.6 as green
plane.

• p3R is the principal plane. It is visualized in Figure 2.6 as blue plane.

Decomposing P into column vectors means to represent it by a number of special points:

• p1C, p2C and p3C are the projections of the x-, y- and z-axis directions of the world
frame.

• p4C is the projection of the origin of the world frame.

2.2.2.2 Back Projection

The operation of projecting a 3D point Xwrld to an image point X img (see Equation 2.24)
is not reversible since P is not invertible. In other words, a 2D image point cannot be
used to recover a 3D world point. Rather than this, it can be used to recover a ray of
points by employing the pseudo inverse of P , denoted by P +:

Xwrld (λ) = λ·P +X img +C with P + = P T
(
P P T

)−1
(2.27)

At this point λ represents an arbitrary scale factor and hence the uncertainty of the
world point recovery.
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2 Fundamentals of Computer Vision Geometry

Figure 2.6: Decomposition of P (row vectors)

2.2.3 Equiangular Camera Model

A further relevant projection principle is called equiangular camera model. It has the
inherent property that each pixel covers the same solid angle. The full projection process
Fe of this model can be obtained by combining Equation 2.11 with Equation 2.8:

X̃norm = Fe (Φ) = fθ

⎛⎝cosϕ

sinϕ

⎞⎠ (2.28)

Since the norm of the unit vector ur is linearly dependent on θ, the projection behaves
as if the sensor or image plane would have been bend spherically. See [110, 111] and
Figure 2.7.

This equiangular model overcomes the limitation of the perspective model in terms of
FOV. It is at least theoretically not limited anymore. Figure 2.8 shows an exemplary
image that approximates the projection of Equation 2.28.
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2.2 Camera Geometry

Figure 2.7: Equiangular camera model

In the remainder of the document each model that obeys or approximates the equiangular
projection model will also be denoted as omnidirectional camera model.

2.2.4 Generic Camera Models

An alternative approach compared to standard projection models as presented in Sec-
tion 2.2.2 and Section 2.2.3 is to employ a generic model. It has the advantage to be able
to imitate almost any other model generically. In recent years, two methods have turned
out to be most important: The approaches of Davide Scaramuzza and Juho Kannala.
Relevant publications have been summarized in Table 2.2.

Figure 2.8: Omnidirectional image
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2 Fundamentals of Computer Vision Geometry

Table 2.2: Generic projection models

Projection Model Properties and Application Publications

Kannala’s Camera Model Describes a variety of common as
well as omnidirectional camera
types. Claims to sufficiently ap-
proximate all types of Table 2.1.

[53, 55–57]

Scaramuzza’s Camera Model Describes a variety of common
as well as omnidirectional cam-
era types. It puts emphasis on
catadioptric imaging systems.

[102–104]

The model proposed by Juho Kannala shall be examined here in more detail, while
the method of Davide Scaramuzza has been mentioned as an alternative way. In [56]
Juho Kannala describes his method to comprise three components: a radially symmet-
ric projection model, an asymmetric distortion model and a transformation to image
coordinates.

Together these components describe the so called complete forward model to transfer a
3D point Xcam into an image point X img. The inverse way is called back projection - cf.
Section 2.2.1.1 and Section 2.2.1.2. In the following both are outlined briefly.

2.2.4.1 Complete Forward Model

Radial symmetric projection model

The radial symmetric model proposed by [56] describes the projection (Section 2.2.1) in
a general polynomial form

ρ(θ) = K(θ) = k1θ +k2θ3 +k3θ5 +k4θ7 +k4θ9 + . . . (2.29)

where the even powers are neglectable, as the projection is radially symmetric related to the
projection center. By parametrizing the polynomial appropriately, all common projection
types can be approximated sufficiently. According to [56] the first five coefficients are
sufficient. Exemplarily the Taylor series of the pinhole camera model with ρ(θ) = tanθ,
and hence its approximation can be parametrized as follows:

ρ(θ) = θ +
1
3

θ3 +
2
15

θ5 +
17
315

θ7 +
62

2835
θ9 +R(θ) (2.30)

with R(θ) being the residuum. For the perfect equiangular projection it reduces just to

ρ(θ) = θ (2.31)
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2.2 Camera Geometry

With Equation 2.8 and Equation 2.29 a generic projection function Fg can be established:

X̃norm = Fg (Φ) = K(θ)ur(ϕ) with ur(ϕ) =

⎛⎝cosϕ

sinϕ

⎞⎠ (2.32)

Asymmetric distortion model

Kannala proposed two terms Δr (θ,ϕ) and Δt (θ,ϕ) which extend Equation 2.29 in order
to model distortion effects:

X̃norm =ρ(θ)ur (ϕ)

+Δr (θ,ϕ)ur (ϕ)+Δt (θ,ϕ)uϕ (ϕ)
(2.33)

where ur (ϕ) is the unit vector in radial and uϕ (ϕ) is the unit vector in tangential
direction. Furthermore Δr (θ,ϕ) and Δt (θ,ϕ) are the radial and tangential distortion
components given by

Δr (θ,ϕ) =
(
l1θ + l2θ3 + l3θ5

)
· (i1 cosϕ+ i2 sinϕ+ i3 cos2ϕ+ i4 sin2ϕ)

(2.34)

and

Δt (θ,ϕ) =
(
m1θ +m2θ3 +m3θ5

)
· (j1 cosϕ+ j2 sinϕ+ j3 cos2ϕ+ j4 sin2ϕ)

(2.35)

where pa = (l1, . . . , l3,m1, . . . ,m3, i1, . . . , i4, j1, . . . , j4) are the 14 asymmetric distortion
parameters.

The following properties shall be mentioned:

• The distortion functions are separable in θ and ϕ, which makes the estimation
process much less complex.

• The left term denotes a Taylor series employing an odd polynomial.

• The right term denotes Fourier series that is periodic in 2π. Since every periodic
function f : [−π,+π] that converges in the L2-space (

∫ +π
−π f(x)dx < ∞) can be

represented by a Fourier series, in principle every kind of distortion can be modelled.

Hence Equation 2.8 can be extended by the afore-mentioned distortion terms, now
denoted as distortion component D:

X̃norm = (D ◦Fg)(Φ) (2.36)
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Transformation to image coordinates

To finally transfer normalized sensor coordinates into image coordinates, a further affine
transformation A is applied in accordance with Section 2.2.1.2:

X̃ img =

⎛⎝ximg

yimg

⎞⎠ = A
(
X̃norm

)
=

⎡⎣αx 0
0 αy

⎤⎦X̃norm +

⎛⎝cx

cy

⎞⎠ (2.37)

Complete forward model

Altogether the camera model defined above contains 23 camera parameters. Therefore
it is denoted by p23. Leaving out the asymmetric part it is reduced to p9. Using only
two instead of five parameters for the radial component we obtain p6. The resulting
parameter vectors are given by

p6 = (k1,k2,αx,αy, cx, cy)T

p9 = (k1,k2,αx,αy, cx, cy,k3,k4,k5)T

p23 = (k1,k2,αx,αy, cx, cy,k3,k4,k5, l1...l3, i1...i4, j1...j4)T

(2.38)

Summarizing all the operations, the whole forward camera model P (Φ) can be denoted
as:

X̃ img = P (Φ) = (A◦D ◦Fg)(Φ) (2.39)

2.2.4.2 Back Projection

Back projection is the process of recovering a ray Xcam parametrized by Φ (compare
with Equation 2.7 and Equation 2.8) from an image point X img.

Xcam =̂ Φ =
(
F−1

g ◦D−1 ◦A−1
)

X̃ img (2.40)

2.3 Camera Calibration Methods

Since each projection model that shall be applied needs to be parametrized appropriately,
in the following common methods for the process denoted as camera calibration will be
presented at a glance. Provided that, the physical projection can be roughly reproduced
by an ideal mathematical model as seen in Section 2.2, at this stage the estimation of all
parameters of the distinct model is within the focus.
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2.3 Camera Calibration Methods

Since there exist a vast range of approaches for calibration in literature for not less than
a multitude of camera models, this section can merely provide a brief overview of the
most important procedures for the pinhole camera model and the omnidirectional camera
model. A more detailed illustration can be found in [79].

2.3.1 Perspective Camera Calibration

The principles of calibrating a perspective camera have been investigated since the mid of
the last century. According to [128] known approaches can be categorized into three types,
namely direct nonlinear minimization, closed-form solution and two-step methods.

Table 2.3 provides a summary of publications that primarily contributed to the develop-
ment of calibration algorithms for perspective camera devices.

Table 2.3: Summary of common methods for perspective camera calibration

Year Author(s) Remark Publications

1966 D.C. Brown Direct Nonlinear Minimization [16]

1971 Y.I. Abdel-Aziz,
H.M. Karara

Closed-Form Solution
Direct Linear Transformation (DLT) [2]

1975 K.W. Wong Closed-Form Solution [129]
1984 S. Ganapathy Closed-Form Solution [29]

1987 R.Y. Tsai,
R.K. Lenz Two-Step Method [125], [64]

1987 O.D. Faugeras,
G. Toscani Closed-Form Solution [22]

1992 J. Weng Two-Step Method [128]
1994 T. Melen [83]
1996
1997
2000

J. Heikkila 3D, Circular Features [39], [38]

1998 Z. Zhang 2D, Chessboard Pattern [142]

2.3.2 Omnidirectional Camera Calibration

In order to calibrate an omnidirectional camera device (e.g. a fish-eye lens or a catadioptric
camera) in principle the pinhole camera model with an appropriate distortion model
can be applied. For example [15] undistorts lens distortions in that way but reports a
residuum error of multiple pixels. Furthermore those methods underlie the constraints
imposed by the pinhole model. For example the FOV has to be limited to a value much
smaller than 180 degrees.
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Better results can be expected from new procedures employing generic camera models
e.g. those published by J. Kannala and D. Scaramuzza as presented in Section 2.2.4.
Kannala reports residuum errors of much less than a tenth of a pixel, while being able to
cover FOVs wider than 180 degrees.

Table 2.4 provides a summary of publications that primarily contributed to the develop-
ment of calibration algorithms for omnidirectional camera devices.

Table 2.4: Summary of common methods for omnidirectional camera calibration

Year Author(s) Remark Publications

2001
C. Braeuer-
Burchardt,
K. Voss

Simple method for correction of fisheye
lens distortion based on pinhole camera
model

[15]

2001 F. Devernay,
O. Faugeras

‘Straight lines have to be straight":
based on pinhole camera model; opti-
mization of straight lines; may be ap-
plied for different calibration targets

[19]

2004-
2010 J. Kannala

Generic camera model: applicable for
omnidirectional as well as perspective
cameras

[55], [56], [57], [54]

2006-
2008 D. Scaramuzza Generic camera model: primarily for

catadioptric cameras [103], [104] [102]

2.4 Two-View Geometry

Imaging is a process that maps 3D world points to 2D image points going hand in hand
with an information loss because there exist infinitely many world points that could be
the reason for the same image point.

In order to recover a distinct 3D world point from image point information, two or multiple
views can be exploited. They can be either static (not moving, multiple isochronal images
at different places) or dynamic (moving, multiple successive images at different places).
Examples are:

• Static setup: Two-view or n-view stereo configuration.

• Dynamic setup: Structure from motion.

Both configurations obey the same principles, namely the epipolar geometry which is
extensively described in [37]. A survey of publications that discuss this subject can be
reviewed in Table 2.5.

60



2.4 Two-View Geometry

For simplification, further explanations with respect to epipolar geometry in Section 2.4.1
and Section 2.4.2 refer to the ideal pinhole camera model from Section 2.2.2. Subsequently
Section 2.4.3 generalizes certain aspects to omnidirectional imaging devices.

Table 2.5: Summary of publications that treat common two-view geometry

Year Author(s) Remark Publications

1987 H. C. Longuet-
Higgins

A computer algorithm for reconstruct-
ing a scene from two projections [72]

1993 Faugeras, Oliver
D.

Three dimensional computer vision: A
geometric viewpoint [21]

1996

Luong, Quan-
Tuan
and
Faugeras, Olivier
D

The fundamental matrix: Theory, algo-
rithms, and stability analysis [75]

1997

Gabriella Csurka
and Cyril Zeller
and Zhengyou
Zhang and
Olivier D.
Faugeras

Characterizing the Uncertainty of the
Fundamental Matrix [18]

1998 Zhang, Zhengyou Determining the epipolar geometry and
its uncertainty: A review [141]

1999
Gang Xu
and Zhengyou
Zhang

Epipolar Geometry in Stereo, Motion
and Object Recognition [131]

2000,
2003

Hartley, Richard
and Zisserman,
Andrew

Multiple view geometry in computer
vision [36,37]

2.4.1 Epipolar Geometry

We consider two views in arbitrary geometrical configuration as can be seen in Figure 2.9.
Both views are individually described by projection matrices P l (left) and P r (right).
However, their mutual geometrical relationship can be described by epipolar geometry.
While the structure of the observed scene itself does not influence this geometry, it
depends on the camera’s intrinsics and relative extrinsics. In Figure 2.9 a 3D world point
Xwrld projects to the image points X img,l and X img,r.

Important properties of this configuration are:
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• Baseline: The line that connects the camera centres C l and Cr is called baseline.
Figure 2.9 shows this as a red solid line.

• Epipoles: The points where the baseline intersects the image planes are called
epipoles el and er.

• Epipolar lines: The lines that connect the epipoles of the left and the right view
with an image point, denoted as X img,l and X img,r are called epipolar lines le,l and
le,r. One of these is indicated as a green solid line.

• Epipolar plane: The plane comprising the baseline and the world point, denoted
as Xwrld is called epipolar plane.

Figure 2.9: Epipolar geometry

In order to recover Xwrld, the image point X img,l can be re-projected by use of Equa-
tion 2.27. It results in a ray of 3D points, here exemplary represented by Xwrld, Xwrld,0,
Xwrld,1 and Xwrld,2. As can be seen in Figure 2.9 all the projections X img,r, X img,r0,
X img,r1 and X img,r2 reside on the epipolar line le,r (green solid line).

As a conclusion, it can be stated that a 3D reconstruction is possible when the corre-
sponding image points are identified. The search can be performed along the epipolar
line in order to speed up the process.
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2.4 Two-View Geometry

Figure 2.10: Parallel camera configuration

In Figure 2.10 it can be seen that as soon as the orientation of the camera pair and hence
their principle axes get parallel, the epipolar lines will be parallel as well. The latter are
indicated as red and green parallel lines in the image planes.

Obtaining a parallel camera configuration and hence parallel epipolar lines is very
beneficial for the search of image point correspondences as will be seen in Chapter 3.

2.4.2 The Fundamental Matrix

Assume the left camera P l to coincide with the world coordinate system and the right
one not. According to Equation 2.25, both cameras can be described as follows:

P l = K l
[
I 0

]
P r = Kr

[
R T

]
(2.41)

With both being pure pinhole cameras in homogeneous representation a so-called funda-
mental matrix F can be computed according to [33] as follows:

F = (K−1
r )T · [T ×] ·R·K l (2.42)

Hereby [T ×] is the skew-symmetric matrix that describes the translation vector T . See
Section A.1.
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As described in Section 2.4.1, a corresponding image point X img,r with respect to the
image point X img,l can be found on the epipolar line le,r. In other words, epipolar
geometry provides for every image point in the left view a corresponding line in the right
one - and vice versa. This mapping is performed by the fundamental matrix F and is
called epipolar constraint. A correspondence condition can be formulated as follows:

X img
T
,rF X img,l = 0 with le,r = F X img,l (2.43)

F is a 3x3 matrix that is not of full rank (rank (F ) = 2) since it maps points to lines.
The operation is not invertible. From corresponding views, F can be estimated with the
so-called 8-Point Algorithm as extensively described in [37].

2.4.3 Epipolar Curves

If we consider a pair of cameras employing the pinhole camera model with distortion
or as can be seen in Figure 2.11 applying a completely different camera model, the
epipolar constraint no longer produces straight lines. Furthermore it gives rise to epipolar
curves.

Figure 2.11: Parallel camera configuration
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According to [33] the mathematical relationships of Equation 2.42 and Equation 2.43
hence have to be generalized to:

dist

(
X img,l,P l

(
P −1

r [X img,r]\z = 0
))

= 0 and

dist

(
X img,r,P r

(
P −1

l [X img,l]\z = 0
))

= 0
(2.44)

Depending on the distinct camera model, the epipolar curves can be described mathemat-
ically. For example if the pinhole camera model is applied with a simple radial distortion
only described by one parameter, the resulting curves are cubic. See [139].

If the equiangular model is used as done in Figure 2.11, the resulting curves are so-called
great circles, which is the intersection curve of the sphere and a plane passing through
the cameras principle point. We will later come back to this fact.
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Chapter 3

Fundamentals of Stereo Vision

This chapter discusses fundamentals related to the estimation of depth information
from two images, so called stereo vision. It starts with a brief overview about the
whole computation chain for stereo processing in Section 3.1. Successively the distinct
steps for calculating a depth map are outlined consecutively in Section 3.2 (stereo
calibration), Section 3.3 (stereo rectification), Section 3.4 (stereo correspondence) and
finally Section 3.5 (triangulation). The latter also provides an insight into relevant error
estimation methods that go hand in hand with the principle of stereo vision.

Later on the content of Chapter 3 is used and enhanced in order to calculate depth values
for the novel omnidirectional stereo vision setup.

3.1 Introduction

The notion "stereo" has its origin in the Greek language: "stereos" can be translated
into "solid" and implies that two-dimensional vision is enhanced to the third dimension.
Objects can be perceived "as solid in three spacial dimensions - width, height and depth
[...]. It is the added perception of the depth dimension that makes stereo vision so rich
and special." [1].

3.1.1 The Concept Stereo Vision

Stereo vision is a natural concept to infer depth information from two or more views.
Modern machine vision configurations usually apply two imaging devices (e.g. industrial
cameras) with an attached computational part in order to copy the concept of human
vision. See Figure 3.1. Stereo vision based on two views is called binocular stereo vision.

67



3 Fundamentals of Stereo Vision

Figure 3.1: Human and machine based stereo vision [1]

Remark: 3D information can also be obtained from a single static camera assumed that
the camera is intrinsically calibrated and the geometry of the observed scene or object is
known.

3.1.2 Overview of a Stereo Vision Processing Chain

Processing steps that are part of a basic technical stereo vision system can be distinguished
into:

• Offline computation: The computations are performed once and are not part of
the runtime environment like camera- and stereo calibration.

• Online computation: The computations take place continuously during runtime
like stereo correspondence operations and the process of triangulation. Real-time
capability is a crucial issue.

Table 3.1 summarizes the processes that are part of the stereo computation principle.

[77] by Stefano Mattoccia (University of Bologna) gives a comprehensive introduction
into all important issues and the latest developments related to stereo vision.
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3.2 Stereo Calibration

Table 3.1: Overview of a stereo vision system

Process Illustration Remark

Camera- and
stereo calibration
offline

Intrinsic camera param-
eters and mutual extrin-
sic parameters are esti-
mated. See Section 3.2.

Rectification
offline and online

Input images are trans-
formed in order to rec-
tify the camera setup.
See Section 3.3.

Stereo
correspondence
online

Rectified images are cor-
related in order to find
correspondences and
to generate a disparity
map. See Section 3.4.

Triangulation
online

Based on the disparity
map the physical depth
can be determined. See
Section 3.5.

3.2 Stereo Calibration

Each pair of cameras that observes the same scene can be considered as a stereo camera
system. Each physical setup of that kind has to be calibrated initially.

While in Section 2.3 the procedure of calibration describes the estimation of intrinsic
parameters of a single camera, stereo calibration means finding the mutual extrinsic
relationship Ĥcalib between two cameras. A straight forward approach for stereo cal-
ibration is to estimate the orientation and location for each camera separately with
respect to a global reference (e.g. a single calibration target), hence estimating Ĥcam,l

and Ĥcam,r [33]:

Ĥcalib = Ĥcam,r ·Ĥ−1
cam,l (3.1)

This principle is presented in Figure 3.2. A calibration target represents N world points
Xwrld

n which can be projected to N point correspondences {Xnorm
n
l ,Xnorm

n
r } in both

views.
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Figure 3.2: The principle of stereo calibration

Hanning [33] states that this basic approach is not accurate enough for stereo vision
and must be enhanced by using multiple target positions. Commonly the new global
reference then coincides with the left camera coordinate system as already mentioned in
Equation 2.41.

According to Hanning [33] calibration approaches for stereo configurations can be catego-
rized as follows:

• Extrinsic stereo camera calibration with generalized epipolar constraints

• Extrinsic stereo camera calibration with respect to the projective error

• Extrinsic and intrinsic stereo camera calibration

Table 3.2 summarizes related work with regards to stereo calibration. In the following a
procedure based on minimizing the projective error is considered.

3.2.1 Extrinsic Stereo Calibration With Respect to the Projective Error

If we assume both cameras to be distortion-free (all intrinsic parameters are known), a
possible calibration process can be described as follows: A setup as seen in Figure 3.2 is
used to generate N point correspondences {Xnorm

mn
l ,Xnorm

mn
r } (left and right camera)

for each of M arbitrary positioned calibration targets. The key points of the target
represent the world points Xwrld.
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Table 3.2: Summary of publications that consider stereo calibration

Year Author(s) Remark Publications

1990 Juyang Weng
et al.

Two-step calibration method: (1) pa-
rameter estimation based on distortion-
free camera model. (2) Non-linear opti-
mization step.

[127]

1996 Fuxing Li
et al.

Computes the fundamental matrix with
an active moving stereo camera pair
with common elevation platform.

[65]

1996 Zhengyou Zhang Overview paper of different methods,
that compute the fundamental matrix. [138–140]

1999 Richard Hartley

Overview paper of different meth-
ods, that calibrate stereo vision sys-
tems. Compares strong, weak and non-
calibrated geometries.

[35]

2004,
2006,
2011

Tobias Hanning
et al.

Treatment of a generalized approach for
the epipolar connection between two im-
ages and derivation of a special calibra-
tion method.

[32–34]

2005
Niklas Pettersson
and
Lars Petersson

Suggests a method of online calibration
for moving camera pairs. [98]

2006 Chuan Zhou
et al.

A stereo calibration method specially
for wide-angled lenses is investigated. [143]

2007 Hyukseong Kwon
et al.

A closed-form solution for online cal-
ibration for moving (panning, tilting)
camera pairs.

[63]

The world points can be projected to both cameras. This can be modelled as follows:

Xnorm
mn
l = RlXwrld

mn +T l and Xnorm
mn
r = RrXwrld

mn +T r (3.2)

where Rl, and Rr are the unknown rotation matrices for the left and the right camera. T l,
and T r represent unknown translations for both views. Both equations of Equation 3.2 can
be combined in order to remove the world point Xwrld

mn and establish the relationship
between left and right view:

Xnorm
mn
r = RrR

T
l ·Xnorm

mn
l −RrR

T
l ·T l +T r (3.3)

Further simplification leads to:

Xnorm
mn
r = R·Xnorm

mn
l +T with R = RrR

T
l and T = −RrR

T
l ·T l +T r (3.4)
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3 Fundamentals of Stereo Vision

The average values of the computed parameters R and T represent the complete extrinsic
relationship Hcalib between both cameras. They can be further refined by a non-linear
optimization step and form the precondition for the process of stereo rectification.

3.3 Stereo Rectification

After calibrating each camera intrinsically (K l, Kr) as well as estimating the mutual
extrinsic relationship (Hcalib), the stereo system needs to be rectified. In Figure 3.3
the rectification process is illustrated. Two cameras in general position with the mutual
extrinsic relationship of Hcalib need to be rotated to fulfil two requirements:

1. x-axes are collinear and z-axes (optical axes) are parallel.

2. Intrinsic parameters are identical.

The positions of the cameras cannot be changed since they are connected rigidly. The
actual computation takes place offline as part of the stereo calibration process.

Figure 3.3: The principle of stereo rectification

Since one cannot rotate the cameras physically, a transformation has to be applied to
the images itself. This is done by appropriate image transformation mappings.
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Table 3.3: Summary of publications that consider stereo rectification

Year Author(s) Remark Publications

1999
Charles Loop
and
Zhengyou Zhang

A technical solution for rectification of
image pairs with known epipolar geom-
etry is proposed.

[73]

2000 Andrea Fusiello
et al.

A linear rectification method for gen-
eral, unconstrained stereo rigs is pre-
sented.

[28]

2004 Martin Matousek
et al.

A rectification procedure is proposed
that minimizes the loss of local image
neighbourhood discriminability in recti-
fied images.

[76]

2010 Pascal Monasse
et al.

A robust geometric stereo rectification
method by a three-step camera rotation
method is proposed.

[85]

2011
Huihuang Su
and
Bingwei He

A two-step method is presented: (1)
Setup of two-virtual cameras with paral-
lel optical axes. (2) Projection of the un-
rectified cameras into the virtual ones.

[120]

In Table 3.3 some major contributions to the range of available algorithmic approaches
are mentioned.

Rectified stereo vision setups are called standard or canonical stereo setups. Since the
epipolar lines are parallel (see Section 2.4), the search space for image point correspon-
dences is reduced from two to one dimension(s). From the computational point of view,
this leads to a tremendous speed-up. Now it becomes sufficient to search along a single
image row for finding pair of points instead of scanning the whole image.

As an example a rectification shall be performed by applying the algorithm of Andrea
Fusiello [28].

3.3.1 A Compact Algorithm for Rectification of Stereo Pairs

Andrea Fusiello [28] describes a compact algorithm that is easy to implement and powerful
at the same time.

The starting point is a calibrated camera pair described by P l and P r as seen in
Equation 2.41. The target are two new rectified camera matrices, denoted P rect

l and
P rect

r .
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Computation of the new Rotation Matrices

In order to obtain new rectified rotation matrices Rrect
l and Rrect

r , new camera frame
vectors xrect, yrect and zrect describing the coordinate system of the rectified cameras
are computed. They will compose the new matrices Rrect

l and Rrect
r .

The new x-axis xrect (see Figure 3.3) points from the origin of the left camera to the
origin of the right one:

xrect =
C l −Cr

‖C l −Cr‖ =
−Cr

‖−Cr‖ (3.5)

The new y-axis yrect is orthogonal to xrect and k.

yrect = xrect ×k (3.6)

where k is a unit vector that fixes the position of the new y-axis in the plane orthogonal
to xrect. k can be successively computed from both z-axes as follows:

k =
1
2

(zl +zr) (3.7)

The algorithm fails when the optical axis is parallel to the base line (e.g. when there is a
pure forward motion), but this is not relevant for stereo vision setups.

The new z-axis is orthogonal to both x- and y-axis:

zrect = xrect ×yrect (3.8)

The new rotation matrix Rrect that must be identical for both cameras in order to obtain
the same orientation for both views as can be seen in Figure 3.3 can be composed as
follows:

Rrect =

⎡⎢⎢⎢⎣
xrectT

yrectT

zrectT

⎤⎥⎥⎥⎦ (3.9)

Computation of the new Camera Calibration Matrix

In principle the new camera calibration matrix Krect can be chosen freely, but should
meet some requirements:

• The same matrix Krect must be assigned to both cameras.

• Krect should be adopted from the camera that provides the largest FOV.
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Computation Rectifying Transformations

The computation of the camera rectification establishes new camera matrices P rect
l and

P rect
r :

P rect
l = Krect

[
Rrect 0

]
P rect

r = Krect
[
Rrect T rect

]
(3.10)

Due to the rigid connection of stereo rigs all camera parameters P are fixed. Therefore all
intrinsic and extrinsic changes have to be done virtually. The computation of rectifying
transformations enables the generation of new rectified images from the non-rectified
images.

As a result of Section 2.2.2 the new camera matrices can be decomposed as:

P rect
l =

[
M rect

l P 4C,l

]
P rect

r =
[
M rect

r P 4C,r

]
(3.11)

[28] shows that the rectifying transformation for example T rect
l for the left image can be

computed as follows:

T rect
l = M rect

l ·M l
−1 (3.12)

with

X img
rect
,l = T rect

l ·X img,l (3.13)

The next chapter will discuss strategies to resolve non-integer pixel positions as appearing
in Equation 3.13 by interpolation.

Figure 3.4: Rectified images with exemplary epipolar lines

Figure 3.4 shows a sample rectified image pair with a number of epipolar lines. It can be
seen that those lines are collinear.
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3.4 Stereo Correspondence

In order to exploit two images for depth computation, the next step has to find pairs of
points that belong to identical scene details. This aspect is known as stereo correspondence
problem and describes the challenge to find for each pixel X img,l from the left image a
corresponding pixel X img,r in the right one.

3.4.1 Disparity Computation

After aligning the epipolar lines collinearly, the actual correspondence search for a
point X img,l in the left image can take place on the same row in the right image - cf.
Section 2.4.

Figure 3.5: The principle of disparity computation

Figure 3.5 illustrates the correspondence search for a point X img,l in the left image
(intersection of red and blue line). The search takes place in the right image on the red
line and leads to the corresponding point X img,r (intersection of red and magenta line)
and hence the disparity d:

d = ximg,l −ximg,r (3.14)

• The disparity d is the horizontal displacement of conjugate image points. [d] = px

A two-dimensional matrix D of disparity values d assigned to each pixel X img,l in the
left image is called a disparity map. A color coded example is outlined in Figure 3.6.

Black areas represent regions in the left image for which no corresponding points in the
right image could be found.
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Figure 3.6: Colour coded disparity map

3.4.2 The Correspondence Problem

Finding corresponding pixels is the crucial point for stereo vision and has recently attracted
considerable interest amongst many researchers. On the Middlebury website [108] modern
algorithms are evaluated and ranked competitively. For benchmarking they provide a
framework and an appropriate dataset as can be seen exemplary in Table 3.4.

Challenges for Stereo Correspondence Approaches

Algorithms that correlate two images have to face remaining image distortions and pixel
noise, reflecting, transparent and specular surfaces, perspective distortions due to different
camera positions, homogeneous and ambiguous regions as well as repetitive patterns.
Furthermore occlusions and discontinuities create problems for the stereo methods.

In contrast microcomputer architectures for possible target platforms of embedded
solutions limit the amount of available computational power.

A Taxonomy of Stereo Algorithms

Scharstein et al. [107] sketch a taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Generally, these approaches can be distinguished into:
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Table 3.4: Evaluation dataset of Middlebury website

Name Left Image Right Image Ground Truth
of Left Image Reference

Cones [106]

Teddy [40,105]

Aloe [40,105]

• Local algorithms: They perform a so-called Winner Takes it All (WTA) selection
strategy for image correspondences. Pixel value ambiguities are reduced by aggre-
gating matching costs over a support window (also known as kernel or correlation
window). This increases the Signal to Noise Ratio (SNR). [77].

• (Semi-) global algorithms: These algorithms search for disparity assignments
that minimize an energy function over the whole stereo pair using a pixel-based
matching cost (sometimes the matching cost is aggregated over a support). [77].

According to Scharstein et al. [107], common stereo algorithms consist of the following
steps: (1.) matching cost computation, (2.) cost aggregation, (3.) disparity computation
and optimization, (4.) disparity refinement.

One of the most commonly used algorithms are the local (kernel window based) methods.
Using the standard Sum of Squared Differences (SSD) algorithm, the following steps are
performed:

1. Matching cost computation: The matching cost is the squared difference of
intensity values at a given disparity.

2. Cost aggregation: Aggregation is done by summing matching cost over square
windows with constant disparity.
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3. Disparity computation and optimization: Disparities are computed by select-
ing the minimal (winning) aggregated value at each pixel.

4. Disparity refinement: A refinement can be performed e.g. by subpixel estimation.

Since stereo correspondence is not a focus of this thesis, it shall be considered from
now on as an abstract operation D that generates a disparity map D from the image
coordinates X img,l and X img,r respectively.

D = D (X img,l,X img,r) (3.15)

3.5 Triangulation

Applying the systems parameter of a stereo vision setup, a physical depth Z can be
computed from a disparity value d by similar triangles. This process of stereo triangulation
bases on camera geometry with parallel optical axes.

The range a stereo camera can measure and its accuracy is constrained by the physical
parameters of a stereo camera as well.

3.5.1 Depth Measurement

In Figure 3.7 a two view setup in canonical configuration is outlined.

Figure 3.7: Triangulation
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According to Chang et al. [17] a depth value Z can be estimated from Equation 3.16.

Z = b·
f

ad
(3.16)

where

• a is the physical pixel width and hence the image sampling interval. It is identical
with px (see Section 2.2.1.2). [a] = mm.

By using the intrinsic parameters of the camera calibration matrix K, the equation can
be re-expressed as follows:

Z = b·
αx

ximg,l −ximg,r
= b·

αx

d
(3.17)

Each depth value Z represents the z-component of a 3D point given in camera coordi-
nates.

3.5.2 Range Field of Measurement

According to Mattoccia [77] the range of operation [Zmax,Zmin], so-called horopter, is
constrained by the disparity range [dmin,dmax].

• dmin: The minimal measurable disparity is 0.5. This concludes that the maximum
distance that can be measured directly depends on the spacial resolution of the
working camera. [dmin] = px.

• dmax: The maximal measurable disparity depends on the parametrization. This
has to be balanced between a required closest area that should be measurable and
the desired observable horizontal field of view FOVh. The latter is directly reduced
by the maximum disparity. This effect can be observed in Figure 3.6 as a black
(blind) left margin. [dmax] = px.

3.5.3 Measurement Accuracy

Measurement accuracy arises from the limited image resolution given by a. The accuracy
of depth measurements of a stereo vision system is denoted as depth resolvability Z∗ and
can be calculated as follows:

Z∗ =
bf

a∗ , a∗ =
a

2
(3.18)

where

• Z∗ is the depth resolvability. [Z∗] = mm.
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Figure 3.8: Horopter

• a∗ is the image resolution with a∗ = a
2 . [a∗] = mm.

According to Chang [17] the depth resolvability "[...] represents the maximum depth
resolvable by the given stereo imaging system.".

If the disparities (to measure) are less than a∗, and hence Z > Z∗, the origin points have
to be considered as points with Z at infinity:

{a∗ → 0} ⇒ {Z∗ → ∞} (3.19)

3.5.4 Measurement Errors

Following Chang [17] the reasons of erroneous measurements in stereo vision are due to a
vast amount of factors:

• Angular errors: They result from the fact that the image plane is not exactly
perpendicular to the camera axis.

• Rotation error: There is a certain rotational offset between camera and image
coordinate system.

• Position error: The imager is not sufficiently flat.
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Additional errors are focal length error, quantization error and mismatching errors, to
name a few more. For further procedure it is assumed that a depth estimation error only
arises due to spacial quantization effects in the image plane. Following the explanations
of [27] and [4] an analysis of errors for stereo vision can be regarded as an geometrical issue,
an statistical issue as well as from the viewpoint of geometrical qualities. Section 3.5.4.1
and Section 3.5.2 review the error computation from the aspects of geometry and statistics
in more detail.

3.5.4.1 Quantization Error

A depth measurement error can be specified as absolute depth error δZ as well as
percentage depth error δZ/Z:

δZ = δZb + δZf + δZd =
f

d
δb+

b

d
δf − bf

d2 δd (3.20)

and

δZ

Z
=

δb

b
+

δf

f
− δad

ad
(3.21)

where

• δZb denotes the partial derivative of Z with respect to b. [δZb] = mm.

• δZf denotes the partial derivative of Z with respect to f . [δZf ] = mm.

• δZd denotes the partial derivative of Z with respect to d. [δZd] = mm.

As a consequence of Equation 3.20 and Equation 3.21, the major contributions to δZ

are drawn by the baseline inaccuracy δb, focal length error δf and disparity error δd.
According to Chang [17] the contributions δb and δf to the overall error value can
be neglected for accurate devices. Hence the afore-mentioned error quantities can be
simplified to:

δZ ≈ −Z2δd

bf
(3.22)

and

‖δZ‖
Z

≈ Z‖δd‖
bf

(3.23)
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Figure 3.9: Example quantization error

Figure 3.9 shows an exemplary quantization error plot for an artificial stereo vision setup
with the parameters f = 3.5mm, b = 10cm and px = 5μm.

From Equation 3.22 and Figure 3.9 it can be concluded that the depth error is quadratically
dependent on Z and proportional to δd. Furthermore from Equation 3.23 and Figure 3.9
it can be concluded that the percentage depth error depends linearly on Z.

A deviation of δZ can be reviewed in Section A.2.

3.5.4.2 Statistical Distribution of Quantization Errors

A further way to examine error occurrences is to describe a probability distribution of
the range error and the expected value of range error magnitude.

Following Chang [17] a probability density function p for the likelihood of δZ in a stereo
vision geometry can be stated as follows:

p(δZ) =

⎧⎪⎨⎪⎩
Z∗

2ZmaxZmin
− (Z∗)2(Zmin2+ZminZmax+Zmax2)

12(ZminZmax)3 · |δZ| if 0 ≤ |δZ| ≤ 2Zmin2

Z∗

1
Zmax−Zmin

[
2
3

√
Z∗

2|δZ| + (Z∗)2

12Zmax3 · |δZ|− Z∗
2Zmax

]
if 2Zmin2

Z∗ ≤ |δZ| ≤ 2Zmax2

Z∗

(3.24)
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A deviation of p(δZ) can be reviewed in Section A.3. There it can be studied that the
depth Z to measure can be considered as a random variable between a minimal depth
Zmin and a maximum depth Zmax.

The information of the probabilistic distribution p(δZ) can be further conditioned to get
a statement about the expected magnitude of the absolute depth error E(|δZ|) which is
defined as:

E(|δZ|) =
∫ +∞

−∞
f(Z)E(|δZ||Z)dZ (3.25)

Rodriguez et al. [100] derive the expected absolute depth error in magnitude for the case
of uniformly distributed depth over the interval [Zmin, Zmax] to be:

E(|δZ|) =
2

9Z∗
(
Zmax

2 +ZminZmax +Zmin
2
)

(3.26)

The complete derivation from Equation 3.25 to Equation 3.26 can be reviewed in [100].

For an exemplary stereo vision setup with f = 1.0mm, b = 10cm and px = 5μm the
graphic Figure 3.10 demonstrates the normalized probability density function pn (δZ)
and the expected absolute depth error E(|δZ|) at a target depth Z = 2.5m, with:

pn (δZ) =
p(δZ)

max(p(δZ))
(3.27)

Figure 3.11 presents a selection of the left cameras pixels re-projected to their appropriate
camera rays. The probability distribution of the measured depth Z has been illustrated
as color coded plot. It is visible that the measurement of euclidean distances of camera
points Xcam for a constant target depth Z is most accurate at the (perspective) cameras
center.
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3.5 Triangulation

Figure 3.10: Sample probability distribution of δZ at Z = 2.5m (2D)

Figure 3.11: Sample probability distribution of δZ at Z = 2.5m (3D)
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Chapter 4

Virtual Cameras

Chapter 2 presented a selection of available camera models, e.g. the perspective and the
omnidirectional projection method. Depending on the application it may be necessary
to transfer image data from one to another camera model. As these cameras are not
necessarily real cameras, they are called virtual cameras. Related scientific work on that
principle is summarized in Section 4.1.

The most prominent method of projection model transition is called Virtual Pan-Tilt-
Zoom (vPTZ) camera and describes the transfer from a physical omnidirectional projection
to a virtual perspective camera that can be configured freely in terms of rotation and
intrinsic parameters. The theory behind this principle is examined in Section 4.2,
whereby a new technique is presented in order to speed up this process. Section 4.3
investigates the mapping error that occurs while Section 4.4 proposes a novel method
for calculating appropriate pixel sizes for the virtual cameras. Section 4.5 outlines
performance measurements in order to compare the different vPTZ algorithms with
respect to their computational efficiency. Finally Section 4.6 concludes this chapter by
evaluating the practical relevance for the vPTZ technology with respect to machine vision
based people recognition.

Later on the content of Chapter 4 is revisited in Chapter 6 in order to parametrize the
omnidirectional stereo vision setup and in Chapter 8 where a vPTZ is employed in an
advanced system for human behaviour analysis.

The results of the investigations presented in Chapter 4 have been published by the
author in [25], [81] and [82].
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4.1 Introduction and Related Works

The generation of perspective views from an omnidirectional image has already been
picked up in previous scientific work.

Peri et al. [97] developed a software system which is able to generate multiple perspec-
tive and panoramic views from an omnidirectional image. As an input source of the
omnidirectional image serves a catadioptric camera system consisting of a conventional
camera and a parabolic mirror. Virtual cameras, placed and parametrized by the user,
generate the different views. The pixel intensity on the imaging surface of such a virtual
camera is determined by reprojection on the parabolic mirror. To process in real-time, a
geometric map is generated for each view only once. As long as the viewing parameters
of the virtual camera are not changed, the reprojection can be sped up by a Look-Up
Table (LUT). However, the omnidirectional projection of the catadioptric camera is only
estimated with a relatively simple parabolic equation.

Onoe et al. [93] improved the algorithm with the aim of a faster perspective image
generation. They divided the destination image into equal parts using a rectangular grid.
Each grid point is reprojected in the omnidirectional image, whereas four grid points
always form a quadrilateral. Each quadrilateral in the omnidirectional image is warped to
the corresponding position in the perspective image applying a bi-linear interpolation. In
this way the quality of the perspective image is reduced in favour of a faster calculation.
Similar to Peri et al., they used a catadioptric camera and model the image formation by
applying an equation for the hyperboloidal surface of the mirror.

Zhang et al. [136] used a camera with a fisheye lens. They modelled the lens with a
sphere on whose surface the omnidirectional image is projected. The computational
expensive rectification algorithm was implemented on a Field Programmable Gate Array
(FPGA) for the purpose of real-time processing.

The approaches presented above share a common disadvantage. They lack a precise and
generic camera model to describe various off-the-shelf cameras - cf. Section 2.2.4.

An mentionable application for the generation of a panoramic image from an omnidirec-
tional image was presented by Ardouin et al. [5]. There, a catadioptric camera system is
mounted on a helmet. A captured omnidirectional image is transformed into a panoramic
image. The result is displayed on an HMD. So a person wearing that helmet experiences
a 360◦ surround view.

Table 4.1 provides an overview of relevant scientific contributions to this topic.

The following sections detail the afore-mentioned technology.
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Table 4.1: Summary of scientific contributions to methods of camera model conversion

Year Author(s) Remark Publications

1997 Peri et al.
Generation of perspective and
panoramic views from a catadioptric
camera system

[97]

1998 Onoe et al.
Generation of perspective views from a
catadioptric camera system by applying
an LUT

[93]

2002 Peter Sturm

Analysis of relations between multiple
views of different camera types (para-
catadioptric, perspective or affine cam-
eras)

[119]

2003
Tarak Gandhi
and
Mohan M. Trivedi

Parametric ego-motion compensation
with an omnidirectional camera [30]

2003 Chiharu Ishii
et al.

Consideration of omni-directional vision
using an equidistant projection fish eye
lens; a partial domain of an original
image in fish eye image is selected, and
this is converted to a perspective image

[45]

2004,
2007,
2008

Sheng-Wen Jeng
and
Wen-Hsiang Tsai

Construction of perspective and
panoramic images from omnidirectional
images taken from hypercatadioptric
cameras

[47–49]

2007 Simon Thibault

Surveillance system featuring a
panoramic panomorph lens for event
detection, recognition and identification
over a 360-degree area with 100 percent
coverage

[124]

2008 Zhang et al.
Rectification of a fish-eye lens based
image by modelling the projection with
a sphere on a FPGA architecture

[136]

2012 Ardouin et al.
Generation of a panoramic image from
an omnidirectional image for a Head
Mounted Display (HMD)

[5]

2013 Michel Findeisen
et al.

A fast approach for omni- to perspective
image conversion and error analysis [25]
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4 Virtual Cameras

4.2 Omni to Perspective Vision

In order to transform an omnidirectional image into one or multiple perspective images,
several approaches are available as presented in Section 4.1.

The method introduced now treats the perspective images as the result of n virtu-
ally distributed perspective cameras Camper

0 , . . . ,Camper
i , . . . ,Camper

n that are completely
described by their extrinsic parameters Cper

i , Rper
i and intrinsic parameters Kper

i as
discussed in Section 2.2.

The omnidirectional camera is described by its extrinsic parameters Comni, Romni and
its intrinsic parameters Komni, which are fixed and provided by the physical mount and
construction of the fisheye camera. These parameters are determined during the camera
calibration procedure. Furthermore the projection behaviour of the omnidirectional
camera is described by its projection model as seen in Section 2.2.

For the virtual perspective views the extrinsic calibration of the omnidirectional camera
forms the world reference. Hence the parameters Cper

i and Rper
i refer to Comni and

Romni. Since the location of every Camper
i is identical with Comni, Cper

i = 0 (3 DOF are
fixed), while its rotation Rper

i can be chosen freely with reference to Romni (3 DOF are
variable). Furthermore, Kper

i can be chosen freely.

Figure 4.1 shows a sample setup comprising an omnidirectional camera (with the image
from Figure 2.8 mapped onto a sphere - cf. Section 2.2.3) and a single perspective camera
(with a plane sensor surface - cf. Section 2.2.2).

After having set up the omnidirectional camera as well as at least one virtual perspective
camera, perspective images can be generated using one of two possible mapping strategies:
Forward Mapping or Backward Mapping. Both strategies are explained in Section 4.2.1
and Section 4.2.2. For the latter an enhanced process is presented in Section 4.2.3 denoted
as Fast Backward Mapping.

4.2.1 Forward Mapping

The principle of forward mapping shapes the algorithm in a way that the computation
sequence starts at the omnidirectional image source and ends at the perspective image
target. The mapping algorithm can be summarized as outlined in Figure 4.2.

The remainder of this subsection treats each step in more detail.

Back-Projection (Source): The color information as seen in Figure 4.1 relates to a
grid of two-dimensional pixel coordinates Xomni

img . The full grid Xomni
img is back-projected

to their appropriate 3D rays, described as Cartesian expression Xomni
cam with respect to

the omnidirectional camera coordinate system.
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Figure 4.1: A virtual perspective camera

Pixel Grid Xomni
img

Back-
Projection
(Source)

Validation
Projection
(Target)

Inter-
polation

Pixel Grid Xper
img

Figure 4.2: Summary of the forward transformation algorithm
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Therefore Xomni
img is transferred to its normalized sensor coordinates Xomni

norm by employing
Equation 2.15 inversely:

Xomni
norm = K−1 ·Xomni

img (4.1)

In the successive stage, Xomni
norm is represented by appropriate polar coordinates - cf.

Equation 2.6 and Equation 2.7:

Xomni
norm =

⎛⎜⎜⎜⎝
xomni

norm

yomni
norm

1

⎞⎟⎟⎟⎠ =̂

⎛⎜⎜⎜⎝
ρomni

norm

ϕomni
norm

1

⎞⎟⎟⎟⎠ (4.2)

Using Equation 2.8 and Equation 2.29, hence employing generic back-projection, the
appropriate camera points can be set up by applying the following relationship:

Xomni
cam =

⎛⎜⎜⎜⎜⎜⎜⎝
xomni

cam

yomni
cam

zomni
cam

womni
cam

⎞⎟⎟⎟⎟⎟⎟⎠ =̂

⎛⎜⎜⎜⎝
θomni

cam

ϕomni
cam

ρomni
cam

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
K−1(ρomni

norm)
ϕomni

norm

1

⎞⎟⎟⎟⎠ (4.3)

where Xomni
cam is expressed as spherical coordinates (θomni

cam ,ϕomni
cam ,ρomni

cam )T with ρomni
cam being

the distance of the 3D point from the origin Comni. To overcome the uncertainty of
the distance between the point in camera coordinates and the camera center, choose
ρomni

cam =
∥∥∥Xomni

cam

∥∥∥ != 1 to normalize the points to a unity sphere.

Validation: The following stage treats the imaging process of Xomni
cam into the virtual

perspective camera Camper. An omnidirectional camera covers a considerably larger FOV
than a perspective one. Back-projected image points Xomni

cam might partially have negative
zper-components which, if projected, lead to non-valid image points. Those points have
to be neglected. Referring to Figure 2.6, valid 3D points have to reside rightwards of p3R

(principle plane). Hence those points comply with the following equation:

p3R ·Xomni
cam ≥ 0 (4.4)

Projection (Target): Now Xomni
cam can be projected into the perspective camera model

by applying Equation 2.24:

X̂
per
img = P ·Xomni

cam (4.5)

This can be done since Xomni
cam =̂ Xper

wrld. Performing Equation 4.5 leads to real-number
target image pixel positions X̂

per
img. To distinguish between integer and real-number

coordinates, the latter is indicated by X̂.
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4.2 Omni to Perspective Vision

Interpolation: In order to obtain pixel intensities Iper of the integer coordinates Xper
img =

(xper
img,yper

img,1)T from the real-number pixel positions X̂
per
img and its appropriate pixel

intensities Iomni a standard image interpolation procedure (e.g. bilinear or bi-cubic) is
employed.

The forward procedure has significant disadvantages. Regardless of the specification of the
virtual target camera, the complete set of source image coordinates is transformed despite
not all coordinates being within the visible range of the target image. Furthermore, if
applying an accurate generic camera model as presented in Section 2.2.4, the mathematical
relationship has to be solved inversely by finding the roots of Kannala’s polynomial. This
leads to a tremendous lack of performance. Another important aspect is the fact that the
use of low order interpolation filters, like bilinear or bi-cubic filter masks, can produce
gaps in the target images if the source pixel positions map onto the target pixel positions
in a sparse distribution.

An exemplary perspective result can be reviewed in Figure 4.3.

Figure 4.3: Result forward projection

4.2.2 Backward Mapping

An alternative approach can overcome the disadvantages mentioned in the previous
section while offering further possibilities to improve performance. Backward mapping
inverses the problem - from target to source. The mapping algorithm can be summarized
as outlined in Figure 4.4.

The remainder of this subsection treats each step in detail.
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Pixel Grid Xper
img

Back-
Projection
(Target)

Projection
(Source)

Inter-
polation

Pixel Grid Xomni
img

Figure 4.4: Summary of the backward transformation algorithm

Back-Projection (Target): Equivalently to Section 4.2.1, the target image mesh of
pixel positions Xper

img is set up and back-projected to its appropriate world points Xper
wrld

using Equation 2.24 inversely:

Xper
wrld (λ) = λ·P + ·Xper

img (4.6)

where P + forms the pseudo-inverse of P and λ is an arbitrary scale factor that expresses
the one dimensional space of points on the ray. To overcome the uncertainty of distance
from the camera center, choose ‖Xper

wrld‖ != 1. See Figure 4.5.

Projection (Source): Project all the normalized world points Xper
wrld into the omnidi-

rectional camera model using Equations 2.6, 2.15 and 2.29 to obtain real-number source
image pixel positions X̂

omni
img . See Figure 4.6.

Interpolation: In order to obtain pixel intensities Iper of the integer coordinates Xper
img =

(xper
img,yper

img,1)T from the real-number pixel positions X̂
omni
img and its appropriate pixel

intensities Iomni a standard image interpolation procedure (e.g. bilinear or bi-cubic) is
employed.

An exemplary perspective result can be reviewed in Figure 4.7.

Lookup-Table Operation: The nonlinear transformation between Xper
img and X̂

omni
img

can be performed using an LUT for faster video processing. Two LUTs mapx and mapy

describe the transformation for x-coordinates and y-coordinates from Xper
img to X̂

omni
img

separately. An exemplary LUT mapx for the mapping of x-coordinates in a target image
of 640×480 is shown in Figure 4.8.
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4.2 Omni to Perspective Vision

Figure 4.5: Reprojection of 2D target image coordinates to 3D camera coordinates onto unit sphere

Figure 4.6: Projection of 3D camera coordinates to 2D source image coordinates
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Figure 4.7: Result backward projection

4.2.3 Fast Backward Mapping

In order to accelerate the process of LUT computation, a change of the scale space can
be employed by using a Gaussian pyramid [46] and sub-sampling the space grid that
forms the LUT. The mapping algorithm can be summarized as outlined in Figure 4.9.

Since the LUT (as seen in Figure 4.8) predominantly comprises low order frequency
components, a compression should not lead to significant quality loss as will be seen
in Section 4.3. To obey the rules of the sampling theorem, it is not sufficient just to

Figure 4.8: Exemplary lookup-table for the backward mapping of target pixel x-coordinates
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Pixel Grid Xper
img

Down-
Sampling

Back-
Projection
(Target)

Projection
(Source)

Up-
Sampling

Inter-
polation

Pixel Grid Xomni
img

Figure 4.9: Summary of the fast backward transformation algorithm

select every nth coordinate of the grid. This would result in an aliased pattern and
unsatisfactory results respectively. That is why all structures that are sampled less than
four times per wavelength are suppressed by a smoothing filter. The remainder of this
subsection treats each step in detail.

Down-Sampling: Equivalently to Section 4.2.2, the target image mesh of pixel positions
Xper

img is set up. Xper
img is down-sampled by building up a Gaussian pyramid according

to [46]. The reduced mesh is denoted as Xper↓
img .

For instance, a target image of size 640×480 can be scaled down by 24 (in each direction)
leading to a mesh size of 40×30.

Back-Projection (Target): The algorithm for back-projection in Section 4.2.2 is used
in order to transfer Xper↓

img to Xper↓
wrld. See Figure 4.10.

Projection (Source): The algorithm for projection in Section 4.2.2 is used in order to
transfer Xper↓

wrld to X̂
omni↓
img . X̂

omni↓
img denotes the reduced real-number image coordinates

on the omnidirectional image. See Figure 4.11.

Up-Sampling: The reduced LUT X̂
omni↓
img is up-sampled according to the down-sampling

process in order to obtain the full real-number source image pixel mesh X̂
omni
img .

Since the up-sampling process introduces a large error in the margins of the LUT because
of zero-padding, it is appropriate to initially enlarge the original mesh Xper

img before
down-sampling. The necessary size of this initial padding depends on the used smoothing
filter as can be seen in Section 4.3.

Interpolation: Get the image intensity information at the positions X̂
omni
img from Xomni

img

by interpolation as done in Section 4.2.2.
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Figure 4.10: Reprojection of sub-sampled 2D target image coordinates to 3D camera coordinates onto
unit sphere

Figure 4.11: Projection of sub-sampled 3D camera coordinates to 2D source image coordinates
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Lookup-Table Operation: According to Figure 4.8 an exemplary reduced LUT mapxr

connecting the x-coordinates of Xper↓
img and X̂

omni↓
img can be seen in Figure 4.12.
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Figure 4.12: Exemplary reduced lookup-table for the fast backward mapping of target pixel x-coordinates

Having up-sampled the data again, an exemplary interpolated LUT connecting the
x-coordinates of Xper

img and X̂
omni
img can be called mapxi.

4.3 Error Analysis

Since the fast backward mapping approach leads to a loss of information, a trade-off in
accuracy has to be accepted to the benefit of a performance improvement. This section
considers the de facto arising error.

Let n be the power of reduction and p× q the target image size. In order to avoid large
errors at the target image borders as mentioned in Section 4.2, one has to initially pad
the original LUTs appropriately. So a convolution of mapx and mapy with the 5 × 5
Gaussian kernel

1
256

[
1 4 6 4 1

]T [
1 4 6 4 1

]
(4.7)

requires a necessary padding of 2n additional pixels on each side. This convolution is
done to smooth the LUTs. In this way we can avoid alias during up-sampling. An error
is introduced during the down- and up-sampling of the LUTs, caused by the dump of
frequency components. So it is increasing with the power of reduction n.
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This error can be expressed as a residuum ex and ey in terms of pixel displacements
using the following equations:

ex = mapx −mapxi (4.8)

ey = mapx −mapyi (4.9)

An example ex for reducing the LUT by the power of 4 can be seen in Figure 4.13.

Figure 4.13: Residuum error for the fast mapping of pixel x-coordinates

The total error exy can be calculated by Equation 4.10.

exy =
1
pq

∑
i,j

(
ex

2
i,j +ey

2
i,j

)
. (4.10)

Figure 4.14 shows the error exy depending on the elevation of the pinhole camera for
different powers of reduction.

Because of symmetrical reasons the error does not depend on the azimuth of the pinhole
camera.

As it can be seen, up to a reduction power of n = 4 no significant error can be measured due
to the dominating low order frequency components of the non-linear pixel transformation.
For further reduction (n > 4) a noticeable pixel displacement trade-off has to be accepted.
Further investigations can be performed in order to determine the distinct mathematical
relationship between a given acceptable pixel displacement error and the achievable
maximum reduction size.
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Figure 4.14: The total pixel error depending on elevation from equator to south pole for each power of
reduction

4.4 Accuracy Analysis

We have seen so far that a conversion from one to another projection model is feasible in
an efficient way. The question that shall be answered now is how one can parametrize
the resolution of the virtual target camera based on the physical source camera. In other
words: how accurate can the target camera be?

The basis for this accuracy discussion for virtual cameras is provided by the intrinsic
parameters of the source as well as the target camera. The parameters αx and αy (of
both cameras) define the physical pixel density (scaled by f) on the (physical and virtual)
imaging die in x-direction, and y-direction respectively - cf. Section 2.2.1.2. These values
define the physical pixel width px and py, while each pixel covers a certain solid angle -
depending on the underlying camera model. Every physical step px and py represents
a pixel step Δximg = 1 and Δyimg = 1 in the image. These parameters represent the
physical sampling interval of the image(er).
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4.4.1 Intrinsics of the Source Camera

Our test system consists of a Fujinon FE185C086HA-1 fisheye lens with a focal length
of f = 2.7mm and a field of view of 185◦ mounted to a Basler acA2040-25gc industrial
camera containing a 1-inch CMOSIS CMV4000 sensor with a (cropped) resolution of
1680×1680 pixels. This camera has been calibrated by using the generic camera model of
Kannala [56] which has been summarized in Section 2.2.4. Hereby the radial symmetric
model applies four polynomial coefficients as outlined in Equation 2.29.

The estimated intrinsic parameters can be found in Table 4.2, while successively computed
values are presented in Table 4.3.

Table 4.2: Results of the intrinsic generic camera models estimation

Camera k1 k2 αx αy cx cy k3 k4 k5

Camomni 2.40 -0.01 200.25 200.58 838.85 851.67 0.08 -0.05 0.01

Table 4.3: Physical pixel dimensions

Camera px py

Camomni 1.35×10−5 [m] 1.35×10−5 [m]

For further distinction of source and target parameters, the pixel densities and pixel
width values of the source camera are now declared as αomni

x and αomni
y as well as pomni

x

and pomni
y .

4.4.2 Intrinsics of the Target Camera

In theory, the intrinsic parameters of the virtual (perspective) camera Camper can be
chosen freely. A suitable starting point is to define an observable FOV in horizontal and
vertical direction: FOVh[rad] and FOVv[rad]. For a distortion-free perspective view this
is determined as follows:

FOVh = 2· arctan
(width

2·αx

)
= 2· arctan

(width·px

2·f

)
FOVv = 2· arctan

(
height
2·αy

)
= 2· arctan

(height·py

2·f

) (4.11)

From Equation 4.11 it becomes obvious that the FOV depends on a bunch of certain
intrinsic values:

• If the resolution of the image {width, height} doubles, the size of each virtual pixel
{px, py} has to be divided by two for the same FOV.
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• If the resolution of the image {width, height} doubles, the normalized focal length
{αx, αy} has to double as well for the same FOV.

One way to overcome this uncertainty is to manually define the resolution {width, height}
and successively calculate the normalized focal length {αx, αy}. The focal length f of the
virtual camera can be set to the value of the physical one, so the virtual pixel size can be
computed successively. The crucial issue is now: What is an appropriate resolution for
the target camera? It is quite natural to expect a larger resolution to be more useful.
Since Camper directly depends on the parameters of Camomni, there should be a certain
sensible limit.

For further distinction of source and target parameters, the pixel densities and pixel
dimensions of the target camera are now declared as αper

x and αper
y as well as pper

x and
pper

y . For further explanation, the following values are exemplarily set for the virtual
perspective camera:

Table 4.4: Exemplary FOV for the target camera

Camera FOVh[rad] FOVv[rad]

Camper π/2 π/2

In Figure 4.15 the sample area of the target image in the source image is illustrated.

Figure 4.15: Sample area of the target image in the source image
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4.4.3 Marginal Virtual Pixel Size

From Section 4.4.1 and Section 4.4.2 it becomes obvious that there must be a relationship
between the virtual and physical pixel size:

pper
x ←

(
pomni

x ,pomni
y

)
pper

y ←
(
pomni

x ,pomni
y

) (4.12)

When applying the backward mapping method for virtual image generation a certain
source image position X̂

omni
img = (xomni

img ,yomni
img ,1) is calculated from a given target image

position Xper
img = (xper

img,yper
img,1). The computed horizontal image position xomni

img and
vertical image position yomni

img individually depend on the dedicated target pixel position
xper

img and xper
img. The functions that establish this relationship are parametrized by the

pixel sizes pomni
x , pomni

y , pper
x and pper

y :

xomni
img = Fx

(
xper

img,yper
img;pomni

x ,pomni
y ,pper

x ,pper
y

)
yomni

img = Fy
(
xper

img,yper
img;pomni

x ,pomni
y ,pper

x ,pper
y

) (4.13)

with

• Fx is a function that transforms target pixel positions into a source pixel column.

• Fy is a function that transforms target pixel positions into a source pixel row.

Remark: Equation 4.13 is further parametrized by the complete set of intrinsic and
extrinsic parameters for the source as well as the target camera. Since they do not
contribute to the comprehension of the current problem, they are neglected in this
discussion. However, for the actual calculation they are involved.

In order to investigate how the target image samples the source image, the gradient of
both functions can be applied:

∇Fx =
δFx

δxper
img

·

⎛⎝Δxper
img

0

⎞⎠+
δFx

δyper
img

·

⎛⎝ 0
Δyper

img

⎞⎠
∇Fy =

δFy

δxper
img

·

⎛⎝Δxper
img

0

⎞⎠+
δFy

δyper
img

·

⎛⎝ 0
Δyper

img

⎞⎠ (4.14)

Since we are interested in the magnitude of sampling intervals (|Δxomni
img |, |Δyomni

img |) and
having in mind that the virtual image is sampled with unit steps (|Δxper

img| = 1, |Δyper
img| = 1)
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Equation 4.14 simplifies to:

|Δxomni
img |=̂|∇Fx| = ‖
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δFx

δxper
img

,
δFx

δyper
img

)
‖

|Δyomni
img |=̂|∇Fy| = ‖

(
δFy

δxper
img

,
δFy

δyper
img

)
‖

(4.15)

The relationships of Equation 4.15 still depend on the variables and parameters according
to Equation 4.13:

|Δxomni
img | = |∇Fx|

(
xper

img,yper
img;pomni

x ,pomni
y ,pper

x ,pper
y

)
|Δyomni

img | = |∇Fy|
(
xper

img,yper
img;pomni

x ,pomni
y ,pper

x ,pper
y

) (4.16)

The calculated values |Δxomni
img | can be assessed as follows:

• |Δxomni
img | < 1: The source image is oversampled in x-direction. The target image

with the configured pixel size pper
x and pper

y is not substantiated by an appropriate
bandwidth of the source image.

• |Δxomni
img | > 1: The source image is undersampled in x-direction. The target image

with the configured pixel size pper
x and pper

y does not represent the full bandwidth
of the source image.

• |Δxomni
img | = 1: The sampling interval of the target image is the same as the source

image in x-direction.

The statements hold true for the y-direction as well. Figure 4.16 demonstrates |Δxomni
img |

(left) and |Δyomni
img | (right) for an exemplary pixel size pper

x and pper
y with pper

x /pomni
x =

pper
y /pomni

y = 0.5.

Figure 4.16: Sample interval of the target image in the source image (left: x-direction, right: y-direction)
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It can be seen that this configuration causes both over-sampling as well as under-sampling.
Due to the highly non-linear relationship between the two camera models, a homogeneous
sampling cannot be applied. Hence for sampling the image there are two strategies
conceivable: under-sampling and over-sampling.

• under-sampling: To obtain a virtual pixel size that is supported with equal under-
lying accuracy both directions must comply to |Δxomni

img | ≥ 1 ∧|Δyomni
img | ≥ 1. In this

configuration physical resolution is wasted.

• over-sampling: To obtain a virtual pixel size that does not waste any physical
resolution both directions must comply to |Δxomni

img | ≤ 1∧|Δyomni
img | ≤ 1.

The pixel size pper
x and pper

y where |Δxomni
img | = 1 ∧ |Δyomni

img | = 1 shall be called marginal
virtual pixel size.

For under-sampling the marginal virtual pixel size is computed by evaluating the following
test function:

minimize(||∇Fx|−1.0|+ ||∇Fy|−1.0|) (4.17)

For over-sampling the marginal virtual pixel size is computed by evaluating the following
test function:

maximize(||∇Fx|−1.0|+ ||∇Fy|−1.0|) (4.18)

In order to solve this problem numerically a range of pixel size ratios pper
x /pomni

x and
pper

y /pomni
y has been investigated in order to feed Equation 4.17 and Equation 4.18. The

distinct value range originates from experimental trials and is outlined in Equation 4.19:

pper
x /pomni

x ∈ [0.25,2.50]

pper
y /pomni

y ∈ [0.25,2.50]
(4.19)

The pixel coordinates xper
img and yper

img, which are parameters for Equation 4.17 and
Equation 4.18 as well are calculated by Equation 4.11:

xper
img ∈ [0,width −1]

yper
img ∈ [0,height−1]

(4.20)

Figure 4.17 shows the overlapping contour plots of |Δxomni
img | and |Δyomni

img | for different
target pixel sizes and the under-sampling (left chart) as well as over-sampling (right
chart) strategy. The optimal parameter is marked with a red dot.

The ratios of pixel sizes have been calculated to pper
x /pomni

x = pper
y /pomni

y = 0.810 and
pper

x /pomni
x = pper

y /pomni
y = 0.417 respectively. One may ask why a source camera following

106



4.4 Accuracy Analysis

Figure 4.17: Overlapping contour plots of |Δxomni
img | and |Δyomni

img | for different ratios of pixel sizes
pper

x /pomni
x and pper

y /pomni
y , an generic projection model for the source camera, an under-

sampling strategy (left) as well as over-sampling strategy (right) for the perspective target
camera

the generic projection model causes pixel ratios that are below one. The reason for this
is as follows: The radial symmetric projection model as presented in Section 2.2.4.1
Equation 2.29 together with the parameter set outlined in Table 4.2 (especially k1)
indicate a high radial distortion. Correcting this distortion as the target model does
means "shrinking" the pixels of the source camera. The perspective characteristic of the
target camera however gives rise to a subsequent slight "growth" of the pixels.

Figure 4.18 demonstrates |Δxomni
img | (left) and |Δyomni

img | (right) for the afore-calculated
marginal pixel sizes. The upper images show the under-sampling and the lower ones the
over-sampling strategy.

Table 4.5 and Table 4.6 outline the computed optimal virtual intrinsic parameters and
pixel dimensions.

Table 4.5: Results of the intrinsic generic camera model calculation

Camera Strategy αx αy cx cy

Camper under-sampling 247.23 247.62 247.50 248.00
Camper over-sampling 480.23 480.99 480.50 481.00

Table 4.6: Virtual pixel dimensions

Camera Strategy px py

Camper under-sampling 1.09×10−5 [m] 1.09×10−5 [m]
Camper over-sampling 5.62×10−6 [m] 5.62×10−6 [m]
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4 Virtual Cameras

The values computed in the afore-presented example are only valid for this distinct
configuration. They are crucially dependent on the underlying camera models (intrinsics)
as well as their mutual extrinsic relationship, e.g. the rotation. The method can yet be
applied for all configurations and camera models.

Figure 4.18: Sample interval of the target image in the source image (left: x-direction, right: y-direction,
top: under-sampling, bottom: over-sampling)
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4.5 Performance Measurements

The previously described algorithm for virtual camera generation by (fast-) backward
mapping has been implemented in C++ as part of the professorships proprietary computer
vision framework. By employing the graphical interface of this framework, the user can
parameterize the underlying functionality. So it is possible to do a live parameterization
of each individual perspective view. An impression is provided by Figure 4.19.

Figure 4.19: Live virtual camera generation [80]

The processing time for the conversion method was evaluated by means of eight LUTs of
different sizes, described by the power of reduction n. The process, which was measured,
consists of both the step for LUT generation together with the actual mapping procedure
from the omnidirectional image to the perspective view. Two different resolutions of
the target image were tested: 640 × 480 and 1280 × 960. The results are shown in
Figure 4.20.

As it can be seen, the processing time declines rapidly with growing n. So the aimed
speed improvement in case of the optimized LUT calculation is confirmed. The fastest
calculation of the 640×480 sized target image is reached with n = 4 (processing time:
8ms). After that, the Gauss-filtering consumes more time than the calculation of the
LUT values. For the generation of a 1280 × 960 perspective image, this minimum is
located at n ≈ 5 (processing time: 33ms), because the initial LUT is 22 times larger than
the initial one for a resolution of 640×480. So the optimal power of reduction depends
on the desired size of the target image.

109



4 Virtual Cameras

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

Reduction Power

P
ro

ce
ss

in
g 

Ti
m

e 
[m

s]

640x480
1280x960

Figure 4.20: Measured processing times for the generation of perspective views with two different
resolutions versus power of reduction

4.6 Virtual Perspective Views for Real-Time People Detection

In order to evaluate the practical relevance of virtual perspective views for indoor
surveillance scenarios, the following test was performed: Omnidirectional images were
compared with perspective ones for their eligibility of recognizing people. Therefore a
system for automatic people detection and tracking was developed [82]. It comprises of
the following successive stages:

1. A background subtraction algorithm is performed in order to generate hypotheses
for walking persons on the omnidirectional input image.

2. A tracking algorithm is employed in order to smooth the trajectories of the moving
hypotheses.

3. A vPTZ is generated and aligned in the direction of the assumed person.

4. A people detection method finally confirms the track as a human on the perspective
image.

For the purpose of recognizing people the method presented by Dollar et al. [20] was
employed. Figure 4.21 demonstrates a perspective view that follows a walking person
automatically. For the announced evaluation an annotated data set of 256 frames of a
moving person was created. The people detection algorithm was applied to both the
omnidirectional input image and the generated virtual perspective view. Subsequently the
results were compared. In the vPTZ case 228 people were positively detected compared
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Figure 4.21: Automatic people tracking system employing an omnidirectional imaging device and a
vPTZ [82]

to only 62 in the omnidirectional images. This corresponds to average detection rates
of 0.89 and 0.24 respectively. More precisely Figure 4.22 shows the spatial distribution
of the detection rates in polar coordinates of the ground plane. The polar coordinate
system consists of 32 angular bins and 5 radial bins. The maximum radius is 8m. Green
areas show high detection rates whereas red areas indicate poor detection rates. White
spaces represent areas where no measurements were recorded.

Figure 4.22: Distribution of detection rates using an omnidirectional image directly (left) compared to
the use of virtual perspective views (right) [82]

Figure 4.22 visualizes that if a people detection algorithm is applied to the omnidirectional
image directly, detection rates are only high when the person is visible in an upright (or
upside down) position. By comparison the virtual perspective views produce consistently
high detection rates for all positions. More details can be reviewed in the publication of
Meinel et al. [82].
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Chapter 5

Omnidirectional Stereo Vision

This chapter presents and examines the idea of omnidirectional stereo vision which has
been motivated in Chapter 1. Therefore an extended overview about existing approaches
is presented in Section 5.1. Especially the categorization of such systems with respect to
the geometrical camera configuration will be taken into focus and major derivatives are
compared. As stated in Chapter 3 parallel epipolar lines are a major precondition for
stereo processing. Due to this, Section 5.2 outlines important rectification methods for
the afore-presented stereo configurations.

Based on the findings from Section 5.1 and Section 5.2, an idea for a novel omnidirectional
stereo vision setup is presented in Section 5.3.

5.1 Introduction and Related Works

The challenge of omnidirectional stereo vision has been discussed in several previous
scientific publications. A comprehensive overview about the vast amount of approaches
can be reviewed in the publication by Zhu [146].

A rough classification can be done by distinguishing strategies of image generation,
different geometrical configurations, the achievable field of view, target applications and a
few more as briefly explained in the following:

• Image generation: While special omnidirectional lens types can create a very
wide-angle image, multiple ordinary perspective cameras have to be employed in
order to achieve this. Besides this static approach, moving imaging devices can be
employed to widen the FOV.

• Geometrical configurations: The number of used sensors as well as their mutual
geometrical alignment differ. This has a high impact on properties like FOV, static
or dynamic behaviour and type of sensor for instance.
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• Field of view: The notion omnidirectional stereo is vague and does not explicitly
describe a certain quantity of coverage. For instance it can refer to a panoramic
projection, or to a spherical one respectively.

• Application: Heterogeneous fields of application drive the development of powerful
optical sensors, like robot navigation, visual surveillance or automotive.

• Miscellaneous: A lot of alternative properties can be chosen to distinguish between
different systems. While a stereo rig provides a fixed baseline between two cameras,
two moving robots can form a stereo system as well, but with a floating baseline.
So the baseline is one further property of classification amongst others.

It is obvious that those properties are merely mutual independent. In Figure 5.1 a
mind-map presents an overview about this complex issue of classification.

Table 5.1 refers to important publications that try to organize and investigate the vast
amount of possibilities in omnidirectional stereo imaging.

Table 5.1: Relevant publications that categorize omni-stereo vision approaches

Year Author(s) Remark Publications

1996 Southwell, D.
et. al

Catadioptrical are exploited for
panoramic stereo. [118]

1998
Sameer A. Nene
and
Shree K. Nayar

A single camera is used with multiple
(planar, ellipsoidal, hyperboloidal, and
paraboloidal) mirrors to create wide-
angle stereo.

[88]

2001 Zhigang Zhu

Classifies multiple state-of-the-art om-
nidirectional stereo vision setups, like
binocular, n-ocular, circular projection
and dynamic omni-stereo.

[146]

2006
El Mustapha
Mouaddib
et. a.

Investigates catadioptric omnidirec-
tional stereovision systems with hori-
zontal and vertical shifts of the mirrors
center positions.

[86]

2010 Tang Yi-ping
et. al

Reviews the existing panoramic imaging
technologies. Obtains 360o × 360o full
sphere panoramic image by integrating
to images recorded by two symmetrical
omnidirectional vision sensors.

[135]

2012 O. Schreer
et. al

Geometrical concepts of omnidirec-
tional and omni-stereoscopic multi-
camera systems are presented.

[109]

In the following the geometrical configurations shall be exploited for categorization.
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Figure 5.1: Overview of categorizations for omni-stereo vision approaches
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5.1.1 Geometrical Configuration

The number of applied sensors is the crucial property for the geometrical configuration.

By means of one single sensor one can obtain 3D measurements by moving somehow the
sensor itself. This can be achieved by an arbitrary motion, e.g. by a roboter, and is called
dynamic omni-stereo. If the dynamic action constrains to a rotation, this technique is
known as circular projection omni-stereo also denoted as omnivergent stereo.

The two view configuration is the most common variant not limited to applications that
claim omnidirectional views. It is called binocular omni-stereo. Enclosing more views
to the computation, one separates between trinocular omni-stereo (three views) and
n-ocular omni-stereo (more than three views).

It is worth mentioning that dynamic stereo techniques are not constrained to single sensor
systems. Rather, multiple moving sensors can form highly flexible 3D measurements
configurations, e.g. in cooperative robotic swarm environments.

The publication by Zhu [146] compares the afore-mentioned geometrical configurations
with respect to crucial parameters as can be seen in Table 5.2.

Table 5.2: Comparison of omni-stereo principles [146]

omni-stereo
configuration

view-
points

base-
lines vergence

epipolar
geom-
etry

depth
error
in
direc-
tions

depth
error
in dis-
tance

mutual
occlu-
sion

stereo
view-
ing

H-Binocular 2, fixed fixed
Largely
un-
uniform

sine
curve

non-
isotropic ∝ D2 yes okay

V-Binocular 2, fixed fixed
Similar to
perspec-
tive

vertical
lines isotropic ∝ D2 no no

N-ocular
N (a
few),
fixed

fixed
Select
from C2

N
pairs

sine
curve

roughly
isotropic ∝ D2 maybe

no okay

Dynamic 2, freely
movable

optimal
for
given
points

max for a
few points

sine
curve

optimal
for
given
points

∝ D1.5
mutual
aware-
ness

N/A

Viewer-centered
Circular Projec-
tion

many on
a small
circle

fixed max for all
points

horizontal
lines isotropic ∝ D2 no good

Object-centered
Circular projec-
tion

many on
a small
circle

fixed max for all
points

horizontal
lines isotropic ∝ D2 no good

Parallel-
Perspective
Projection

many on
a camera
path

optimal
for all
points

max for all
points

horizontal
lines

uniform
every-
where

uniform
or ∝ D

no good

The following subsections distinguish between different configurations and refer to relevant
publications that have been released in that area so far.
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5.1.1.1 H-Binocular Omni-Stereo with Panoramic Views

Most binocular setups employ panoramic images that are a 360-degree cylindrical pro-
jection from a single viewpoint where the projection in the vertical direction is perspec-
tive [146]. Figure 5.2 shows a horizontally-aligned omni-stereo vision configuration where
two views are arranged in a horizontal setup with a fixed baseline.

Figure 5.2: H-binocular omni-stereo with panoramic views

This approach guarantees a horizontal panoramic 3D measurement field while the ob-
servable FOV in vertical direction is constraint to common perspective projection charac-
teristics.

According to a common stereo configuration as described in Section 3.5 a physical depth
Z can be computed with respect to the left camera:

Z = b·
sinφr

sin(φl −φr)
= b·

sinφr

sin(φ)
(5.1)

where

• b is the physical baseline between both sensors (see Section 2.4.1). [b] = mm

• φl is the angle of the left incoming ray on the principle plane (blue plane in
Figure 5.2) with respect to the baseline (blue line in Figure 5.2) connecting the
centres of both imaging devices) . [φl] = rad

• φr is the angle of the right incoming ray on the principle plane (blue plane in
Figure 5.2) with respect to the baseline (blue line in Figure 5.2) connecting the
centres of both imaging devices) . [φr] = rad
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• φ is the physical disparity φl −φr of the world point projections between left and
right camera. [φ] = rad

According to Zhu [146] all epipolar curves are sinusoidal and a triangulation is not defined
for the singularity points when φl = φr = 0o. The obtained depth error is non-isotropic,
proportional to the square of Z and inversely proportional to b. The latter fact is
congruent with perspective stereo.

A mentionable representative of the principle of horizontally-aligned omni-stereo was
presented by Kang et al. [52]. In their publication they compose cylindrical images
from video sequences taken by vertically rotating cameras and recover 3-D point clouds
by structure from motion. For the computation of full 3D maps, they overcome the
blind-spot problem by means of three sensors. A schematic configuration as presented
in [52] can be seen in Figure 5.3.

Figure 5.3: Example for horizontally-aligned omni-stereo [52]

Based on the results it can be concluded that the afore-presented method is not appropriate
for fast real-time stereo matching since the epipolar curves are not parallel straight lines.
Rather they are sinusoidal. Standard methods for dense stereo computation cannot be
applied - it is more appropriate for approaches that triangulate sparse features. The
limited vertical FOV makes it not very reasonable for indoor surveillance applications.

An overview about further related works with respect to this technology can be reviewed
in Appendix B Table B.1.
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5.1.1.2 V-Binocular Omnistereo with Panoramic Views

Figure 5.4 shows a vertically-aligned stereo configuration where two cylindrical imaging
devices as published by Yamashita et al. [133] are arranged in a vertical setup with a
fixed baseline.

Figure 5.4: V-binocular omni-stereo with panoramic views

As stated by Zhu [146], the disparity computation for this configuration is equivalent to the
method used for ordinary perspective stereo computation - cf. Section 3.4 and Section 3.5.
Hence the depth Z computation in Equation 5.2 is equivalent to Equation 3.17.

Z = b·
αx

ximg,l −ximg,r
(5.2)

In contrast to the triangulation process for perspective stereo vision setups where the
depth value Z expresses the z-component of the 3D point (given in camera coordinates),
the current method represents the norm of the y-z-component for vertically aligned
omnidirectional systems.

The depth error computation δZ for this configuration is equivalent to the methods
presented in Section 3.5.

All epipolar curves are parallel (red solid lines in Figure 5.4) and a triangulation is
constrained as for perspective cameras since the imaging is perspective in x-direction for
cylindrical projections.

As an example Mokri et al. [84] apply vertically-aligned omni-stereo in order to establish
a navigation system for an autonomous robot. They equip the device with two vertically
stacked catadioptrical cameras and measure the depth in a 360-degree field of view by
computing two panoramic images, as can be seen in Figure 5.5.

Finally it can be concluded that the v-binocular approach is relevant with reference
to stereo correspondence computation. The epipolar constraint is formed by parallel
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Figure 5.5: Example for vertically-aligned omni-stereo [84]

lines, which enables the straight application of standard correspondence methods. The
images do not need to be rectified. Although the vertical field of view is omnidirectional,
the horizontal one is perspective and hence too constrained for reducing the amount of
employed sensors in visual indoor surveillance applications.

An overview about further related works with respect to this technology can be reviewed
in Appendix B Table B.2.

5.1.1.3 Binocular Omnistereo with Hemispherical Views

Figure 5.6 shows a binocular omni-stereo setup with hemispherical views.

From Section 2.4.3 it is known that the epipolar constraint for two hemispherical views that
naturally employ the equiangular projection model from Section 2.2.3 is not represented
as parallel lines. Rather these curves are so-called great circles and hence sinusoidal as
can be seen in Figure 5.7 (green solid lines).

A physical depth Z can be computed equivalently to Equation 5.1 with respect to the
left camera as published by Li [67]:

Z = b·
sinφr

sin(φl −φr)
= b·

sinφr

sin(φ)
(5.3)

Although providing a full 180o FOV horizontally as well as vertically, a triangulation is
not defined for the singularity points when φl = φr = 0o - cf. Section 5.1.1.1. This case is
also expressed in the mathematical relationship that computes a distance error δZ:

δZ =
[
b·

cos(φ−φl)
sinφ

−φ·
sin(φ−φl)cosφ

sinφ2

]
·δφ (5.4)

where
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Figure 5.6: Binocular omni-stereo with hemispherical views

Ximg,l

φl

Ximg,r
φr

Figure 5.7: Epipolar lines of binocular omni-stereo with hemispherical views
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• δφ is the accuracy a physical disparity can be determined with. [δφ] = rad

The closer φl gets to zero or π, and consequently the closer the point to triangulate
approaches the baseline (≡ the singularity points) - the more the measurement error
increases. The smallest error is reached, when φl = π/2. Figure 5.8 plots qualitatively
the circumstances of Equation 5.4. The graphic visualizes the ascending error beginning
at the most accurate value δZ up to 5·δZ. Beyond that value the error further heads
for infinity.

For applications that require a full hemispherical depth map, a two-view approach is not
sufficient. This notion will be picked up again in Chapter 8.

Figure 5.8: Relationship between azimuth angle φl and qualitative error measurement δZ

As an example Zhu [145] applied the principles of binocular omni-stereo with two fish-eye
sensors as can be seen in Figure 5.9. The physical projection process is approximated by a
Taylor model. To overcome the challenge of non-parallel epipolar lines in omnidirectional
views he employed a virtual perspective projection for rectification.

An overview about further related works with respect to this technology can be reviewed
in Appendix B Table B.3.

5.1.1.4 Trinocular Omnistereo

As stated in Section 5.1.1.1, Section 5.1.1.2 and Section 5.1.1.3, binocular solutions are
subject to the drawback that a disparity is not defined for the singularity point. Li [67]
overcomes this drawback by the application of a third camera. The configuration from
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Figure 5.9: Example for binocular omni-stereo with hemispherical views (top left: left image, top right:
right image, bottom left: left rectified image, bottom right: right rectified image) [145]

Section 5.1.1.3 can be enhanced to a trinocular omnidirectional stereo approach as can
be seen in Figure 5.10.

The mathematical relationships for depth-Z computation are equivalent to Equation 5.3
and Equation 5.4. Moreover this configuration comprises two stereo cameras where each
epipolar constraint is formed by great circles as can be seen in Figure 5.10 as green- and
magenta-coloured epipolar curves.

The illustration of Figure 5.10 is inspired by Li [67]. The author generates a hemispherical
depth map by means of three fish-eye cameras mounted in a right-angled configuration.
Obviously the problem of singularity points can be solved thereby.

To overcome the problem of sinusoidal epipolar curves for real-time stereo matching as
described by Zhu [146] a gnomonic projection i.e. a latitude-longitude sampling method
is used. The method is treated in Section 5.2. In fact the author rectifies the dedicated
images for both stereo cameras up to the epipols and correlates them separately. For
the obtained disparity maps he reports from severe distortions for the calculated depth
values close to the epipoles - cf. Figure 5.8. The generation of the final hemispherical
depth map is subsequently done by the merge of both maps. Therefore he averaged the
computed distances weighted by the calculated error to be expected. A quantitative error
assessment for that configuration is not provided.
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5 Omnidirectional Stereo Vision

Figure 5.10: Trinocular omnidirectional stereo vision with hemispherical views

Figure 5.11: Example for trinocular omnidirectional stereo vision with hemispherical views [67]
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5.1 Introduction and Related Works

An overview about further related works with respect to this technology can be reviewed
in Appendix B Table B.4.

5.1.1.5 Miscellaneous Configurations

In addition to the afore-mentioned geometrical configurations, the principles of omnidi-
rectional stereo have further been realized by means of alternative approaches. Although
those approaches are of less importance for this work, yet they shall be mentioned for
completeness:

• N-ocular omnidirectional stereo vision - More than two or three views (n-
ocular) are used extensively to improve the results of 3D measurements. For
instance Sogo et al. [116] use several catadioptical sensors for real-time human
tracking in order to tackle the correspondence problem amongst multiple targets
and thereby increase the measuring accuracy of target locations. An overview about
further related works with respect to this technology can be seen in Appendix B
Table B.5.

• Omnivergent stereo vision - Rotating single or multiple cameras around a
fixed axis realize so-called omnivergent stereo. Most approaches as published
by Peleg [94–96] use ordinary perspective cameras in order to create panoramic
projections and hence panoramic stereo vision. An overview about further related
works with respect to this technology can be found in Appendix B Table B.6.

• Dynamic omnidirectional stereo vision - Creating 3D information by one or
multiple moving camera(s) is an established method in robotics. For instance Zhu
et al. [147–149] generate dynamic panoramic stereo vision in a robot navigation
scenario in order to find and protect humans by a robot team in an emergency
circumstance. They call this approach Panoramic Virtual Stereo Vision (PVS). An
overview about further related works with respect to this technology can be viewed
in Appendix B Table B.7.

• Omnidirectional stereo vision with special optical solutions - Besides the
common imaging technologies based on perspective or omnidirectional (e.g. cata-
dioptric and fisheye) optics, there exist multiple uncommon technologies. An
overview about related works with respect to this technology can be reviewed in
Appendix B Table B.8.
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5 Omnidirectional Stereo Vision

5.2 Epipolar Rectification

All stereo vision imaging devices share a common aspect: In order to reduce the processing
load for stereo correspondence significantly an appropriate epipolar rectification approach
has to be introduced. For perspective views the need for rectification results only from
inaccurate stereo vision setups as described in Section 3.3. For divergent projection forms
as spherical cameras (cf. Section 2.2.3 and Section 2.2.4) even perfectly aligned camera
configurations give rise to non-parallel epipolar lines as can be observed in Figure 5.7.

According to Abraham et al. [3] an "epipolar image rectification can be defined as geometric
transformation of an image pair to an image pair which has the special property, that
every scene point" Xwrld "is projected in both images into the same row" yimg,l = yimg,r.
The vertical parallax disappears.

From Figure 5.12 it can be observed that the baseline results in a pencil of planes in the
three-dimensional space together with the epipolar lines of a binocular spherical stereo
vision system. The angle between these planes and the optical axes is denoted by β.

Figure 5.12: Epipolar planes in an binocular stereo vision system with hemispherical views

In order to project the same camera point in both images on the same row, the rows
have to be composed of the identical epipolar planes, hence have to correspond to the
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5.2 Epipolar Rectification

same angle β. In other words, each rectifying projection function has comply with the
following constraint:

ynorm = arctan
zcam

ycam
= β (5.5)

5.2.1 Cylindrical Rectification

According to Zhu [146], the cylindrical projection of an incoming light ray Xcam =
(xcam,ycam,zcam)T onto a virtual cylindrical plane with a distance of f to the projection
center can be modelled with the (non radially symmetric) projection function F rect,1:

X̃norm = F rect,1
(
X̃cam

)
=

(
f ·

xcam

d
,arctan

ycam

zcam

)T

=
(

f ·
xcam

d
,β

)T

(5.6)

where d =
√

ycam2 +zcam2 is the perpendicular distance from the camera point to the
image cylinder’s vertical axis xcam passing through the focal point, as can be seen in the
publication of Zhu [146].

According to Abraham et al. [3] cylindrical rectification minimizes distortion effects and
is hence a good choice for stereo correspondence methods. Since those methods only
work satisfactorily when the image parts to be compared do not differ too much.

Nevertheless, the horizontal FOV of a cylindrical view satisfies the standard perspective
projection constraint:

xnorm = f ·
xcam

d
(5.7)

A graphical representation of this cylindrically bended image plane is illustrated by
Figure 5.13.

Figure 5.13: Cylindrical rectification
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5 Omnidirectional Stereo Vision

A depth value Z for an appropriate stereo configuration can be calculated in dependence
of pixel disparity values according to Equation 3.17. Note that the depth values Z

represent the norm of the y-z-component of a 3D point given in camera coordinates.

5.2.2 Epipolar Equi-Distance Rectification

Following Abraham et al. [3], a modified epipolar equidistant model with parallel epipolar
lines can be described using the following projection function F rect,2:

X̃norm = F rect,2
(
X̃cam

)
=

(
arctan

xcam

d
,arctan

ycam

zcam

)T

= (ψ,β)T (5.8)

It is obvious that the component xnorm corresponds with equidistant steps on the
great circles from Figure 5.12 denoted as angle ψ. Hence this model can overcome the
perspective projection limitations while keeping the rectified rows of constant β. Li [67]
calls this projection method latitude-longitude sampling.

By the way, the angle ψ of Equation 5.8 is concurrent to the angle φl for the left image,
and φr of the right image respectively, of Equation 5.3.

A depth value Z for an appropriate stereo configuration can be derived from Equation 2.15,
Equation 5.3 and Equation 5.8 to the following relationship:

Z = b·
sinφr

sin(φl −φr)
= b·

sin
(

π
2 + ximg,r−cx

αx

)
sin d

αx

(5.9)

Note that the depth values Z represent the euclidean distance of a 3D point given in
camera coordinates.

5.2.3 Epipolar Stereographic Rectification

Finally Abraham et al. [3] present the epipolar stereographic rectification method as an
alternative for the epipolar equidistant model. It is appropriate for usage in real-time
applications if no trigonometric functions (cf. Equation 5.8) shall be used and no lookup
table operation is possible. The projection model can be described as follows:

X̃norm = F rect,3
(
X̃cam

)
=

(
xcam√

xcam2 +ycam2 +zcam2 +
√

ycam2 +zcam2
,

ycam√
ycam2 +zcam2 +zcam

)T (5.10)
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5.3 A Novel Spherical Stereo Vision Setup

5.2.4 Comparison of Rectification Methods

In Figure 5.14 the horizontal projection behaviour of the different rectification approaches
are outlined.
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Figure 5.14: Horizontal projection behaviour for different rectification methods

It can be recognized that the epipolar equidistant method projects isogonal (equal of angle)
as its mapping curve forms a straight line over the whole range of ψ. The stereographic
approach approximates the latter one quite well without the use of trigonometric functions.
Projecting onto a cylinder however only approximates equi-angular characteristics in the
center where ψ = π/2 but the closer we approach the epipoles the more the perspective
influence prevails.

5.3 A Novel Spherical Stereo Vision Setup

Based on the knowledge gained from Section 5.1 and Section 5.2 the trinocular camera
configuration shall be chosen for further investigation since this setup is described to
be the one with the smallest number of employed cameras for the generation of a full
hemispherical depth map [67]. Hence it is the right approach for obtaining a vast
observation field with one sensor (which comprises three cameras) in visual indoor
surveillance applications.
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5 Omnidirectional Stereo Vision

As disadvantageous for the algorithm described in Section 5.1.1.4 can be considered that
two full-hemispherical depth maps of approximately original image size are calculated
with both showing high inaccurate depth data near the epipoles:

• The rectification and subsequently the stereo processing of image data near the
epipols lead to multiple redundant operations. For example if the rectified image
comprises 1000 rows, the singularity pixel will be mapped to each of these lines
during epipolar equidistant rectification. After 1000 redundant stereo operations
the obtained depth information is discarded in the merge stage.

• The weighted average method applied involves the computation of the actual
depth error for each pixel under consideration. Since this procedure includes the
calculation of multiple trigonometric functions (cf. Equation 5.4), it may not be
appropriate for real-time processing.

• When a stereo sensor is designed, its error specification bases on the worst case
error. Whatever the merge procedure of Li achieves, the worst case error value
cannot be more accurate than the best value of the binocular stereo vision setup
with hemispherical views - cf. Section 5.1.1.3 Figure 5.8. This is because in his
setup four singularities are included in the merge process - each time with the
best value from the complementary stereo camera. The question is now, whether
another geometrical constellation and the employment of narrow-angled views
without complicated merge procedure may lead to the same result - at least nearly.

• If nothing else the right-angled trinocular stereo vision configuration as outlined
in Figure 5.11 is protected by at least U.S. patent claims1 which motivates to
investigate an alternative approach in addition.

As basis for the further investigations I propagate the following hypotheses:

1. It is possible to apply an alternative three-view camera configuration compared to
Li [67] in order to calculate a full-hemispherical depth map.

2. Using only narrow-angled views can avoid subsequent merging procedures of high-
computational effort.

3. The avoidance of calculating unreliable depth information near the epipoles (that
is skipped during the merging process anyway) reduces the number of necessary
stereo correspondence operations compared to Li [67].

The answers will be given in the following chapters. But let us start with a brief
introduction of the suggested configuration:

1 http://www.google.de/patents/USD445818
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5.3 A Novel Spherical Stereo Vision Setup

5.3.1 Physical Omnidirectional Camera Configuration

My proposed system comprises three omnidirectional fisheye cameras denoted as Camomni
0 ,

Camomni
1 and Camomni

2 . In the following, I refer to them as Camomni
i with i ∈ {1,2,3}.

The deployment of the cameras is organized as equilateral triangle as can be seen in
Figure 5.15.

Figure 5.15: System configuration with physical omnidirectional cameras

In contrast to Li [67] the presented setup generates three (instead of two) virtual stereo
cameras. This should lead to the benefit that each stereo camera has to cover merely
an azimuth angle of approximately 60o. The omnidirectional images do not need to be
sampled and correlated up to the singularity points as can be seen later.

5.3.2 Virtual Rectified Cameras

In the previous sections it has been shown that a rectification of the equiangular projections
has to be carried out. This can be performed by introducing virtual rectified cameras.

Figure 5.16 demonstrates how the images of the cameras Camomni
0 and Camomni

1 can be
rectified with respect to each other by means of two virtual cameras, denoted as Camrect

0a

and Camrect
1a . It is obvious that their rotation is different compared to the physical

cameras. Indeed they have a roll of ±π/6 around their z-axes zrect
0a and zrect

1a with respect
to zomni

0 and zomni
1 respectively. The virtual cameras themselves can be fully described by

their intrinsic parameters Krect and extrinsic parameters Crect and Rrect [25].
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5 Omnidirectional Stereo Vision

Camrect
0a and Camrect

1a form together a virtual stereo camera denoted as SCamrect
a ∈{

Camrect
0a ,Camrect

1a
}
.

Figure 5.16: System configuration with two virtual rectified cameras

In order to exploit the geometrical setup to the whole extent, it is equipped with six
virtual rectified cameras denoted as Camrect

0a , Camrect
0b , Camrect

1a , Camrect
1c , Camrect

2b and
Camrect

2c , or Camrect
j with j ∈ {0a,0b,1a,1c,2b,2c} respectively. Together these virtual

views generate three stereo cameras SCcamrect
a ,SCamrect

b ,SCamrect
c , or SCcamrect

k with
k ∈ {a,b,c} respectively. This is summarized in Equation 5.11.

SCamrect
a = {Camrect

0a ,Camrect
1a }

SCamrect
b = {Camrect

2b ,Camrect
0b }

SCamrect
c = {Camrect

1c ,Camrect
2c }

(5.11)

Figure 5.17 shows the complete configuration of three physical cameras (black) together
with six virtual rectified views organized in three pairs (red, green and blue).

In principle each method for rectification that has been presented in Section 5.2 could
possibly be used for this configuration, because a full rectification of the spherical images
is not necessary. Since the epipolar equidistant method has been successfully applied by
Li [67] and the cylindrical method is predestined for stereo correspondence processing as
stated by Abraham et al. [3], I will continue the feasibility study by comparing both. A
real-time implementation as can be done by means of epipolar stereographic rectification
is not yet the major concern of this investigation. Since the latter method shows almost
identical projection behaviour compared to the epipolar equidistant principle, its explicit
treatment is skipped for the time being.

In the following chapter the hereby presented configuration will be exploited in order to
generate a full hemispherical depth map.
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5.3 A Novel Spherical Stereo Vision Setup

Figure 5.17: System configuration with six virtual rectified cameras
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Chapter 6

A Novel Spherical Stereo Vision
Algorithm

The concept of a novel three-view camera setup as presented in Section 5.3 shall be used
in this chapter for the generation of a full hemispherical depth map.

It starts with introducing a MATLAB® simulation environment in Section 6.1. The
camera deployment as well as its intrinsic parametrization is explained in Section 6.2,
Section 6.3 and Section 6.4. Successively based on the simulation setup the depth map
computation is performed in Section 6.5. Finally an error estimation is presented in
Section 6.6.

The basic idea as presented in Chapter 6 has been published by the author in scientific
publications [23,24].

6.1 Matlab Simulation Environment

For the purpose of simulation and evaluation of the novel spherical stereo vision algorithm,
a reproducible data set shall be utilized. Therefore a MATLAB® test environment provides
virtual 3D data of an exemplary domestic environment.

A single artificial room of the size of 5m×5m×2.5m is presented in Figure 6.1. Mathe-
matically it forms a quantity of scattered world points Xwrld.

The physical omnidirectional imaging devices Camomni
0 , Camomni

1 and Camomni
2 are in-

dicated by their coordinate systems (red, green and blue). Since Camomni
0 represents

the reference camera in the stereo vision system with respect to the other cameras, it is
located at the ceiling in the middle of the virtual room.
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6 A Novel Spherical Stereo Vision Algorithm

To form the scenario realistic and comparable, different configurations of the omnidirec-
tional stereo setup will be simulated.

Figure 6.1: Virtual 3D test environment equipped with a spherical stereo vision sensor

6.2 Extrinsic Configuration

The general deployment of Camomni
i and Camrect

j has been introductorily outlined in Sec-
tion 5.3. Now the cameras shall be parametrized realistically. Therefore two configurations
with different baselengths will be investigated: b = 10cm and b = 15cm.

Initially Comni
0 is determined to be the origin of the world coordinate system, i.e. we

define Romni
0 = I and Comni

0 = 0. Since all physical cameras are to form an equilateral
triangle and shall have a mutual differential rotation of pi/2, one can calculate the camera
origins Comni

i , the rotation matrices Romni
i and consequently the translation vectors

T omni
i by following the mathematics of Section 2.2.1.3.

The virtual cameras Camrect
j have the identical origins Crect

j as their corresponding
physical equivalent. However, in order to achieve the configuration of Section 5.3.2 the
cameras Camrect

j are rotated by ±pi/6 around their z-axis. Subsequently, they obtain
new rotation matrices and Rrect

j and translation vectors T rect
j .
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6.3 Physical Camera Configuration

6.3 Physical Camera Configuration

While an ideal omnidirectional camera obeys the equiangular projection principle as
presented in Section 2.2.3, real devices can better be described using the generic model
of Section 2.2.4. In the following both variants shall be considered.

Further parameters will orientate towards the industry camera of Section 4.4.1 having a
resolution (height×width) of 1680×1680 with a focal length of f = 2.7mm. The intrinsic
parameters already presented in Table 4.2 and Table 4.3 shall be used for example.

The parameters of the equiangular model can be calculated as follows: It is intended to
observe a FOV of 180◦ in horizontal and vertical direction exploiting the full pixel range.
Hence the pixel densities can be computed as mx = width/(f ·π) = (2·cx)/(f ·π) and
my = height/(f ·π) = (2·cy)/(f ·π) where cx and cy are the horizontal and vertical
offset values of the principal point from the pixel frame - cf. Section 2.2.1.2. The obtained
intrinsic parameters can be seen in Table 6.1 and Table 6.2.

Table 6.1: Intrinsic parameters of the equiangular cameras Camomni
i

Camera Projection Model αx αy cx cy

Camomni
i Equiangular 534.76 534.76 840.50 840.50

Table 6.2: Physical pixel dimensions of the equiangular cameras Camomni
i

Camera Projection Model px py

Camomni
i Equiangular 5.05×10−6 [m] 5.05×10−6 [m]

Using the mathematical relation of Equation 2.16 described in Section 2.2.1.2 in com-
bination with the afore-computed intrinsic values, an intrinsic matrix Komni

i can be
established for each physical camera and each configuration.

6.4 Virtual Camera Configuration

In Section 5.3 the general deployment of the virtual cameras (extrinsic parameters) has
been discussed. The crucial issue is now to investigate what intrinsic parameters are
appropriate for covering the whole environment. As a result of Chapter 4 a sensible
resolution of a virtual target camera highly depends on the underlying physical resolution
of the source camera. Furthermore in Chapter 3 the impact of the (virtual) stereo cameras
resolution on the 3D measurement accuracy has been stated. A suggestion for deriving
virtual camera parameters is given in the following subsections.
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6.4.1 The Focal Length

The focal length f can be chosen freely and is determined to f = 2.7mm in analogy to
Section 6.3. Setting an identical focal length of source and target camera makes the
underlying pixel sizes directly comparable since they scale proportional to f .

6.4.2 Prediscussion of the Field of View

According to Section 5.3 each virtual stereo camera SCamrect
k has to cover a minimum

horizontal field of view FOVh of 60o and a vertical field of view FOVv of 180o for a
hemispherical scene coverage.

All rectification methods presented in Section 5.2 are characterized by an equiangular
behaviour in vertical direction. Equation 6.1 shows that FOVv for the equiangular model
can be calculated in dependence of the vertical resolution of the image and a given virtual
pixel height py. In other words: With a given field of view a predefined pixel height is
required in order to determine the vertical number of pixels (height).

FOVv =
2·cy −1

αy
=

height·py

f
(6.1)

The afore-presented rectification methods of Section 5.2 show different horizontal pro-
jection behaviour: While the cylindrical method rectifies perspectively, the epipolar
equidistance method performs this operation equiangular. The following equations
demonstrate the calculation of FOVh for both approaches - cylindrical (Equation 6.2)
and epipolar equidistance (Equation 6.3) rectification:

FOVh = 2· arctan
(2·cy −1

2·αx

)
= 2· arctan

(width·px

2·f

)
(6.2)

FOVh =
2·cx −1

αx
=

width·px

f
(6.3)

Both can be computed in dependence of the horizontal resolution of the image and a
given virtual pixel width px (cf. Equation 4.11). I.e. with a given FOV a predefined
pixel width is required to determine the horizontal number of pixels.

In addition Section 3.5.2 discussed that the horizontal field of view FOVh of the virtual
stereo cameras SCamrect

k cannot be identical to the FOVh of Camrect
j . A maximal

measurable disparity dmax (depending on a configurable minimal measurable depth
Zmin and the baseline b) together with the pixel length px reduce the actual observable
horizontal area.
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For the perspective view in accordance with Equation 3.16, dmax can be calculated as
follows:

dmax = b·
f

px ·Zmin
(6.4)

For the equiangular sampling method a maximum disparity dmax can be derived from
Equation 5.9:

dmax = arcsin
[

b

Zmin
· sin

(
π

2
+

ximg,l − cx

αx

)]
·αx (6.5)

In order to make the parametrizations for both rectification methods comparable, we claim
Zmin to hold true for the mid of the camera where ximg,l = cx. Here the euclidean distance
equals to the y-z-component of a 3D camera point under consideration. Equation 6.5
simplifies to:

dmax = arcsin
(

b

Zmin

)
·αx = arcsin

(
b

Zmin

)
·

f

px
(6.6)

Considering that dmax reduces the visible field of view, a reduced (symmetrical) field of
view, FOVhr, for SCamrect

k can be calculated for both approaches - cylindrical (Equa-
tion 6.7) and epipolar equidistance (Equation 6.8) rectification:

FOVhr = 2· arctan
[(width −2·dmax) ·px

2·f

]
(6.7)

FOVhr =
(width −2·dmax) ·px

f
(6.8)

Having predefined FOVhr to be 60o, the remaining parameters shall be fixed by starting
to observe appropriate virtual pixel sizes for different FOVh.

6.4.3 Marginal Virtual Pixel Sizes

In Section 4.4.3 the computation of marginal virtual pixel sizes has been discussed for
virtual perspective cameras. This principle is now adapted for virtual rectified views.
The relationship of Equation 4.13 changes to:

xomni
img = Fx

(
xrect

img ,yrect
img ;pomni

x ,pomni
y ,prect

x ,prect
y

)
yomni

img = Fy
(
xrect

img ,yrect
img ;pomni

x ,pomni
y ,prect

x ,prect
y

) (6.9)

The underlying projection models of the functions Fx and Fy are in compliance with
Section 6.3 either Fe (Section 2.2.3) or Fg (Section 2.2.4) for the source camera and
F rect,1 (Section 5.2.1) and F rect,2 (Section 5.2.2) for the target camera.
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Based on Section 4.4.3 we can determine the virtual pixel size according to the under-
sampling as well as over-sampling strategy. Since reliable depth measurements by stereo
computation base on virtual pixel information that is substantiated by underlying physical
pixels appropriately, only the under-sampling method shall be further considered. The
actual computation can now be performed by evaluating the following mathematical
expression:

minimize(||∇Fx|−1.0|+ ||∇Fy|−1.0|) (6.10)

This evaluation has been performed for all projection models under consideration inter-
changeably. A virtual camera which is fed by the physical one is simulated with its rotated
orientation (more precisely a roll of ±π/6 around its z-axis as shown in Section 5.3.2), a
FOVv of 180o and a varying FOVh between 60o and 90o:

• FOVh = 60o: This is the theoretical minimum in the presented approach which has
to be covered by each virtual stereo camera SCamrect

k and hence by each virtual
camera Camrect

j .

• FOVh = 90o: This is the theoretical minimum in the approach presented by Li [67]
which has to be covered by each of both stereo cameras.

In order to solve this problem numerically for each FOVh between 60o and 90o, a range
of pixel size ratios prect

x /pomni
x and prect

y /pomni
y has been investigated in order to feed

Equation 6.10. The distinct value range originates from results of Chapter 4 and is
outlined in Equation 6.11:

prect
x /pomni

x ∈ [0.25,2.50]

prect
y /pomni

y ∈ [0.25,2.50]
(6.11)

The pixel coordinates xrect
img and yrect

img , which are further parameters for Equation 6.10 are
calculated by Equation 6.1, Equation 6.2 and Equation 6.3:

xrect
img ∈ [0,width −1]

yrect
img ∈ [0,height−1]

(6.12)

In accordance with Figure 4.17 of Section 4.4.3 one can observe overlapping contour
plots of |Δxomni

img | and |Δyomni
img | for two exemplary configurations in Figure 6.2. It can be

observed that the optimal pixel ratios indicated by red dots differ for each configuration.
One can state that the more the horizontal field of view increases the more the obtained
resolution for the virtual (cylindrical) camera decreases in horizontal as well as vertical
direction. In other words: The size of the virtual pixels prect

x and prect
y grows with an

increasing horizontal field of view.
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Figure 6.2: Overlapping contour plots of |Δxomni
img | and |Δyomni

img | for different ratios of pixel sizes
prect

x /pomni
x and prect

y /pomni
y , an equiangular projection model for the source camera, a

cylindrical projection model for the target camera, an under-sampling strategy and FOVh =
60o (left) and FOVh = 90o (right)

Figure 6.3 demonstrates how the sampling interval of the source images x-direction
|Δxomni

img | (left plot) and the source images y-direction |Δyomni
img | (right plot) deploys over

the target image for the exemplary configuration of FOVh = 60o. The outer dark blue
coded areas specify the actual virtual pixel size since its sampling interval coincides with
the physical one. The red areas indicate high under-sampling.

Remark: Figure 6.3 visualizes the roll of +π/6 of the target camera in comparison to
the source camera. For the alternative roll of −π/6, Equation 6.10 shows symmetrical
behaviour.

In Figure 6.4 the optimal pixel ratios for each configuration can be observed depending
on the different FOVh. The optimal virtual pixel size becomes a function f of the physical
pixel size and the field of view:

prect
x = f

(
pomni

x ,FOVh
)

prect
y = f

(
pomni

y ,FOVh
) (6.13)

Equally to Section 4.4 one can see that a source camera following the generic projection
model (blue and cyan graphs) causes pixel ratios that are below one - in comparison
to the equiangular model (red and green graphs). It is interesting to discover that the
optimal pixel ratios prect

x /pomni
x in horizontal direction strongly grow for the cylindrical

model (red and blue graphs, left chart) with the increase of FOVh while prect
x /pomni

x only
slightly change for the epipolar equidistant projection principle. However, for the vertical
direction prect

y /pomni
y both rectification models behave identically.
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Figure 6.3: Colour coded sampling interval |Δxomni
img | (left) and |Δyomni

img | (right) for the optimal pixel
ratios pcyl

x /pomni
x and pcyl

y /pomni
y , an equiangular projection model for the source camera,

a cylindrical projection model for the target camera, an under-sampling strategy and
FOVh = 60o

6.4.4 Calculation of the Field of View

Combining Equation 6.3 and Equation 6.4 with Equation 6.13 the disparity range dmax

can be calculated for both target models depending on different FOVh and the underlying
physical pixel size pomni

x - parametrized by a predefined minimal measurable depth Zmin.
Assuming the sensor to be mounted 2.50m over ground and a person to be of 1.75m

height, a suitable exemplary Zmin shall be defined to be 0.75m. Equation 6.14 and
Equation 6.15 outline the calculation of dmax for cylindrical (Equation 6.14) and epipolar
equidistance (Equation 6.15) projection:

dmax = b·
f

prect
x ·Zmin

= b·
f

f (pomni
x ,FOVh) ·Zmin

(6.14)

dmax = arcsin
(

b

Zmin

)
·

f

prect
x

= arcsin
(

b

Zmin

)
·

f

f (pomni
x ,FOVh)

(6.15)

Figure 6.5 presents the simulation results for the afore-discussed configurations under
consideration.

Figure 6.5 demonstrates the impact of FOVh on dmax. For the cylindrical rectification
method the disparity range rapidly diminishes because the underlying pixel size increases
significantly - as shown in Figure 6.4. For the epipolar equidistant approach, dmax changes
only slightly.
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With a given maximum disparity range dmax and a given virtual pixel size prect
x , both

depending on FOVh, the reduced field of view FOVhr can be computed depending on
FOVh as well, according to Equation 6.5 and Equation 6.7. The results are presented in
Figure 6.6.

It has turned out that the computation of the reduced field of field FOVhr that already
includes the stereo disparity range pixel trade-off based on FOVh only depends on the
baselength b and the target rectification model. For a given minimum FOVhr = 60o the
minimum FOVh can be easily extracted from Figure 6.6 and is summarized in Table 6.3.

Table 6.3: Calculated fields of view FOVh for the virtual cameras Camrect
j according to the variety of

configurations

No. Camomni
i Camrect

j b [m] FOVhr [deg] Zmin [m] FOVh [deg]

1 equiangular cylindrical 0.10 60.0 0.75 70.90
2 equiangular cylindrical 0.15 60.0 0.75 75.80
3 kannala9 cylindrical 0.10 60.0 0.75 70.90
4 kannala9 cylindrical 0.15 60.0 0.75 75.80
5 equiangular epipolar equidistance 0.10 60.0 0.75 75.40
6 equiangular epipolar equidistance 0.15 60.0 0.75 83.20
7 kannala9 epipolar equidistance 0.10 60.0 0.75 75.40
8 kannala9 epipolar equidistance 0.15 60.0 0.75 83.20

6.4.5 Calculation of the Virtual Pixel Size Ratios

Having determined FOVh for each configuration, the appropriate virtual pixel size
ratios can be extracted from Figure 6.4. The virtual image sizes are calculated using
Equation 6.1, Equation 6.2 and Equation 6.3. Table 6.4 summarizes the results.

Table 6.4: Calculated virtual pixel size ratios and image sizes

No. FOVh [deg] prect
x /pomni

x prect
y /pomni

y height width dmax

1 70.90 1.5060 1.2195 1377 505 48
2 75.80 1.6120 1.2526 1341 516 67
3 70.90 0.6223 0.4908 1283 458 43
4 75.80 0.6632 0.5024 1254 470 61
5 75.40 1.0064 1.2498 1344 699 72
6 83.20 1.0176 1.3065 1285 763 106
7 75.40 0.4140 0.5022 1254 636 65
8 83.20 0.4140 0.5246 1201 702 98
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6.4.6 Results of the Virtual Camera Parameters

As shown in Section 2.2.1.2 the given information can now be employed to obtain the
intrinsic parameters by applying the fundamentals presented in Section 2.2.1. The results
are outlined in Table 6.5 and Table 6.6. Using the relations described in Section 2.2.1.2

Table 6.5: Intrinsic parameters of the virtual cameras Camrect
j

No. Camera αx αy cx cy

1 Camrect
j 355.09 438.51 253.00 689.00

2 Camrect
j 331.74 426.92 258.50 671.00

3 Camrect
j 321.80 408.67 229.50 642.00

4 Camrect
j 301.95 399.23 235.50 627.50

5 Camrect
j 531.36 427.88 350.00 672.50

6 Camrect
j 525.51 409.31 382.00 643.00

7 Camrect
j 483.71 399.39 318.50 627.50

8 Camrect
j 483.71 382.34 351.50 601.00

and the afore-computed intrinsic values, an intrinsic matrix Krect
j can be established for

each virtual camera and each configuration.

Table 6.6: Pixel dimensions of the virtual cameras Camrect
j

No. Camera px[m] py[m]

1 Camrect
j 7.60×10−6 6.16×10−6

2 Camrect
j 8.14×10−6 6.32×10−6

3 Camrect
j 8.39×10−6 6.61×10−6

4 Camrect
j 8.94×10−6 6.76×10−6

5 Camrect
j 5.08×10−6 6.31×10−6

6 Camrect
j 5.14×10−6 6.60×10−6

7 Camrect
j 5.58×10−6 6.76×10−6

8 Camrect
j 5.58×10−6 7.06×10−6

From Table 6.6 it becomes visible that the epipolar equidistant method produces higher
resolutive target images compared to a cylindrical projection, which allows more accurate
depth measurements. Since this approach clearly outperforms the cylindrical rectification
it will be the rectification method of choice for further investigations.
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6.4 Virtual Camera Configuration

Figure 6.4: Calculated optimal pixel ratios prect
x /pomni

x and prect
y /pomni

y of physical and virtual pixel
dimensions based on different horizontal fields of view FOVh
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Figure 6.5: Calculated disparity ranges based on different horizontal fields of view

Figure 6.6: Calculated reduced horizontal field of view based on different horizontal fields of view
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6.5 Spherical Depth Map Generation

6.5 Spherical Depth Map Generation

The experimental setup from Section 6.1 together with the parametrizations of Section 6.5
and Section 6.6 are now employed to generate a spherical depth map Zomni

0 that refers to
Camomni

0 . The precondition for this simulation is the consideration of the scene itself as
a quantity of scattered 3D world points Xwrld. The complete algorithm is summarized
in Figure 6.7.

Observed Scene Xwrld

Imaging
Camomni

1

Imaging
Camomni

0

Imaging
Camomni

2

Image Iomni
1Image Iomni

0 Image Iomni
2
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0b

Imaging
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Irect
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SCamrect
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Depth Map Merge
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Figure 6.7: Summary of the spherical depth map generation algorithm
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The steps to follow investigate each stage of the procedure illustrated in Figure 6.7. Since
the approach of equiangular projection together with epipolar equidistant rectification
(configuration no. 5 and no. 6, cf. Table 6.3, Table 6.4, Table 6.5 and Table 6.6) showed
the best performance in terms of resolution, it will be the primary algorithm of choice
for this explanation. For the accompanying plots, configuration no. 6 has been elected.
However, the algorithm works with all the afore-mentioned configurations.

6.5.1 Omnidirectional Imaging Process

In this step the physical imaging process of the omnidirectional camera devices is simulated.
Since the deployment of the scene points is not analytically described, the projection is
done by forward mapping - cf. Section 4.2.1. The observed environment is projected to
Camomni

0 , Camomni
1 and Camomni

2 using Fe or alternatively Fg.

Applying the equiangular camera model we can utilize the projection function Fe from
Section 2.2.3 for processing:

X̂
omni
img,i = Komni

i ·Fe
(
Romni

i ·X̃wrld +T omni
i

)
(6.16)

The result is real number image points X̂
omni
img,0, X̂

omni
img,1 and X̂

omni
img,2. In order to obtain

pixel intensities Iomni
0 , Iomni

1 and Iomni
2 of the integer coordinates Xomni

img,0, Xomni
img,1 and

Xomni
img,2, a standard image interpolation procedure (e.g. bilinear or bi-cubic) is employed.

The final omnidirectional images can be viewed in Figure 6.8.

Figure 6.8: Result of the equiangular imaging process (Camomni
0 , Camomni

1 and Camomni
2 )

6.5.2 Rectification Process

At this stage the virtual rectified images are generated. This is done by backward
mapping - cf. Section 4.2.2 and Section 4.2.3.
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Equivalently to Section 4.2.2, the target image mesh of pixel positions Xrect
img,j is set up

and back-projected to its appropriate world points Xrect
wrld,j with respect to its dedicated

omnidirectional camera using F rect,1 (or alternatively F rect,2) inversely:

X̃
rect
cam,j (λ) = λ·Rrect

j ·F−1
rect,1

(
Krect

j
−1 ·Xrect

img,j

)
(6.17)

In accordance to Section 4.2.2, the arbitrary scale factor λ expresses the one dimensional
space of points on the ray. To overcome the uncertainty of distance from the camera
center, we define

∥∥∥X̃
rect
wrld,j

∥∥∥
2

= 1.

In the following, those points are projected to their attached omnidirectional camera.
Applying the equiangular camera model we can utilize the projection function Fe:

X̂
omni
img,0a = Komni

0 ·Fe
(
Romni

0 ·X̃
rect
cam,0a

)
X̂

omni
img,0b = Komni

0 ·Fe
(
Romni

0 ·X̃
rect
cam,0b

)
X̂

omni
img,1a = Komni

1 ·Fe
(
Romni

1 ·X̃
rect
cam,1a

)
X̂

omni
img,1c = Komni

1 ·Fe
(
Romni

1 ·X̃
rect
cam,1c

)
X̂

omni
img,2b = Komni

2 ·Fe
(
Romni

2 ·X̃
rect
cam,2b

)
X̂

omni
img,2c = Komni

2 ·Fe
(
Romni

2 ·X̃
rect
cam,2c

)
(6.18)

The result is real-numbered image points X̂
omni
img,j. In order to obtain pixel intensities Irect

j ,
a standard image interpolation procedure (e.g. bilinear or bicubic) is used. The final
rectified images can be seen in Figure 6.9.

Figure 6.9: Result of the epipolar equidistant imaging process (Camrect
0a , Camrect

1a , Camrect
2b , Camrect

0b ,
Camrect

1c , Camrect
2c )

It can be seen that either of the two images are rectified with respect to each other
and therefore, since they have different positions Crect

j , form rectified stereo vision pairs
SCamrect

k . This shows the effect described in Section 5.3.
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6.5.3 Rectified Depth Map Generation

The computation of pixel disparities d as described in Section 3.4.1 can be done for each
SCamrect

k separately. Three disparity maps, denoted by Drect
0a , Drect

2b and Drect
1c , can be

calculated.

For processing the correspondence operation D (cf. Section 3.4.2), a Local Algorithm1

based on correlation windows is employed:

Drect
0a = D

(
Xrect

img,0a,Xrect
img,1a

)
Drect

2b = D
(
Xrect

img,2b,Xrect
img,0b

)
Drect

1c = D
(
Xrect

img,1c,X
rect
img,2c

) (6.19)

The result of the simulation can be seen in Figure 6.10. The presented maps show the
horizontal pixel offset.

Figure 6.10: Result of the stereo correspondence operation (Drect
0a , Drect

2b and Drect
1c ) for the epipolar-

equidistant rectified images

The actual depth maps called Zrect
0a , Zrect

2b and Zrect
1c can be computed by triangulation as

presented in Section 5.2.2 (epipolar equidistant rectification) and Section 3.5 (cylindrical
rectification).

For the epipolar equidistant maps, the mathematical relationship of Equation 5.9 changes
to:

Zrect
0a =

b· sinφl

sin Drect
0a ·prect

x
f

Zrect
1b =

b· sinφl

sin Drect
1b ·prect

x
f

Zrect
2c =

b· sinφl

sin Drect
2c ·prect

x
f

(6.20)

1 http://de.mathworks.com/help/vision/ref/disparity.html
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with φl being the two-dimensional matrix (according to the depth map size) of azimuth
angles ψ on the great circle with respect to the dedicated rectified image column ximg,l -
cf. Section 5.2. Note that the depth values Zrect

0a , Zrect
2b and Zrect

1c represent the euclidean
norm of a 3D point given in camera coordinates. Figure 6.11 presents the obtained
distance maps information for the current configuration.

Figure 6.11: Result of the triangulation operation (Zrect
0a , Zrect

2b and Zrect
1c ) for the epipolar equidistant

disparity maps

Alternatively the re-projection can be done for cylindrical disparity maps according to
Section 3.5, Equation 3.16:

Zrect
0a = b·

f

Drect
0a ·prect

x
Zrect

2b = b·
f

Drect
2b ·prect

x
Zrect

1c = b·
f

Drect
1c ·prect

x
(6.21)

Note that the depth values Zrect
0a , Zrect

2b and Zrect
1c for the latter case represent the norm of

the y-z-component of a 3D point given in camera coordinates.

6.5.4 Spherical Depth Map Generation

The overall goal is to obtain a hemispherical depth map Zomni
0 with respect to the image

Iomni
0 of Camomni

0 .

Equivalently to Section 6.5.2, the rectified image mesh of pixel positions Xrect
img,j is set up

and back-projected to its appropriate camera points Xrect
cam,j using F rect,1 (or alternatively

F rect,2) inversely as described by Equation 6.22.

Xrect
cam,j (λ) = λ·F−1

rect,1

(
Krect

j
−1 ·Xrect

img,j

)
(6.22)

Subsequently the computed camera rays are normalized according to its depth values.
For the epipolar equidistant depth maps this can be done as follows:

Xrect
cam,j =

[
xrect

cam,j
λ ·Zrect

j
yrect

cam,j
λ ·Zrect

j
zrect

cam,j
λ ·Zrect

j 1
]T

(6.23)
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Now the points are expressed with respect to the camera coordinate system of Camomni
0 :

Xomni
cam,j = Hrect

j
−1 ·Xrect

cam,j (6.24)

In the following those points are projected to Camomni
0 using Fe (or alternatively Fg):

X̂
omni
img,j = Komni

0 ·Fe
(
Xomni

cam,j

)
(6.25)

The result is real number image points X̂
omni
img,0a, X̂

omni
img,2b and X̂

omni
img,1c with pixel intensities

Î
omni
0a , Î

omni
2b and Î

omni
1c .

The appropriate depth maps Ẑ
omni
0a , Ẑ

omni
2b and Ẑ

omni
1c are determined by computing the

euclidean norm of X̃
omni
cam,0a, X̃

omni
cam,1c and X̃

omni
cam,0a respectively:

Ẑ
omni
j =

∣∣∣∣∣∣X̃omni
cam,j

∣∣∣∣∣∣ (6.26)

See Figure 6.12. Note that the depth values z represent the norm of the 3D points given
in camera coordinates.

Figure 6.12: Result of the projection process of rectified depth maps (Zomni
0a , Zomni

2b and Zomni
1c ).

Together they can be aggregated to form a dense depth map Zomni
0 with respect to

the integer pixel grid Xomni
img,0 and pixel values Iomni

0 respectively. This is achieved by
introducing a nearest neighbour or bilinear interpolation method I.

Zomni
0 = I

(
Ẑ

omni
0a ∪ Ẑ

omni
2b ∪ Ẑ

omni
1c

)
(6.27)

An investigation of certain merge methods has not been done at this point of time. The
finally obtained depth map Zomni

0 is visualized in Figure 6.13.
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Figure 6.13: Merged depth map Zomni
0

6.5.5 3D Reprojection

In order to check the calculated spherical depth map, the result shall be validated by
a 3D reprojection. The integer spherical image grid Xomni

img,0 is reprojected employing
Equation 2.15 and Equation 2.28 inversely:

Xomni
cam,0 (λ) = λ·F−1

e

(
Komni

0
−1 ·Xomni

img,0

)
(6.28)

The computed camera rays are subsequently scaled according to its depth values:

Xomni
cam,0 =

[
xomni

cam,0
λ ·Zomni

0
yomni

cam,0
λ ·Zomni

0
zomni

cam,0
λ ·Zomni

0 1
]T

(6.29)

Since Camomni
0 represents the reference camera, its coordinate system coincides with the

world frame. That means the computed camera points Xomni
cam,0 form the estimate X̂wrld

of the original world points Xwrld:

Xomni
cam,0=̂X̂wrld (6.30)

The illustration in Figure 6.14 depicts the pixel values Iomni
0 of the reference camera at

its estimated world positions X̂wrld.
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Figure 6.14: 3D re-projection of the omnidirectional depth map Zomni
0

6.6 Error Analysis

The accuracy and error effects that appear when stereo vision is processed have been
discussed in Section 3.5 for an ordinary perspective two-view configuration. Accuracy
preservation for virtual camera generation has been discussed in Section 4.4. At this
point the expectable measurement errors for the presented stereo vision configuration
shall be numerically evaluated and discussed.

In Chapter 3 it has been discussed that 3D measurement devices which rely on stereo vision
face a considerable amount of error sources. Primarily these are inaccurate intrinsically
and extrinsically calibrated setups or defective stereo correspondence results as a matter
of principle. However in this section the focus is on imperfect depth measurements due
to a limited accuracy of the underlying pixel information and errors that are introduced
due to the special characteristics of the present system.

Although the configuration works in principle with each and every afore-discussed
configuration (cf. Table 6.3, Table 6.4, Table 6.5 and Table 6.6) I will restrict this
investigation to epipolar equidistant rectification. It has shown the best achievable
resolution.
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As the plot in Figure 6.15 shows, a depth measurement error analysis is derived for a
distinct hemispherical distance around the sensor with an exemplary value of Z = 2.5m.

Figure 6.15: Hemispherical measurement space around the sensor with an exemplary distance of
Z = 2.5m

For the given environment (Figure 6.15) the rectified distance maps Zrect
j (representing

Zrect
0a , Zrect

2b and Zrect
1c ) are computed by following the algorithm of Section 6.5.3. For the

underlying image point meshes Xrect
img,j (representing Xrect

img,0a, Xrect
img,2b and Xrect

img,1c) the
appropriate camera points Xrect

cam,j are obtained by back-projection and normalization to
the afore-calculated distance maps as presented in Section 6.5.4 - cf. Equation 6.22 and
Equation 6.23. For the epipolar equidistant method it is achieved as follows:

Xrect
cam,j =

[
xrect

cam,j ·Zrect
j yrect

cam,j ·Zrect
j zrect

cam,j ·Zrect
j 1

]T
(6.31)

Generally, the triangulation process produces erroneous distance values. For the epipolar
equidistance method this has been initially discussed in Chapter 5. An expectable
magnitude for this value can be derived from Equation 5.4:

|δZ| =
[∣∣∣∣b·

cos(φ−φl)
sinφ

∣∣∣∣+ ∣∣∣∣b·
sin(φ−φl)cosφ

sinφ2

∣∣∣∣] · |δφ| (6.32)

The minimum measurable disparity angle δφ for this configuration is in accordance with
Section 3.5.4:

δφ = ± 1
2·αx

(6.33)
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As stated in Section A.3 the error value δZ can be considered as random variable
complying with a conditional probability function p(δZ|Z), which itself implies a certain
depth value Z. An approximation of p(δZ|Z) has been derived in Section A.4. According
to this calculation the first order approximation of p(δZ|Z) can be fully described by
±δZ (δφ).

Hence in order to simplify the overall error computation, two measurement points
parametrized by ±δZ are calculated instead of applying the whole probability density
function:

Xrect
cam,j+ =

⎡⎢⎢⎢⎢⎢⎢⎣
xrect

cam,j ·(Zrect
j + |δZ|)

yrect
cam,j ·(Zrect

j + |δZ|)
zrect

cam,j ·(Zrect
j + |δZ|)
1

⎤⎥⎥⎥⎥⎥⎥⎦ ; Xrect
cam,j− =

⎡⎢⎢⎢⎢⎢⎢⎣
xrect

cam,j ·(Zrect
j −|δZ|)

yrect
cam,j ·(Zrect

j −|δZ|)
zrect

cam,j ·(Zrect
j −|δZ|)
1

⎤⎥⎥⎥⎥⎥⎥⎦ (6.34)

Following Equation 6.24, Xrect
cam,j, Xrect

cam,j+ and Xrect
cam,j− are subsequently expressed with

respect to the reference camera Camomni
0 as Xomni

cam,j, Xomni
cam,j+ and Xomni

cam,j−. After re-
projection following Equation 6.25 we obtain X̂

omni
img,j, X̂

omni
img,j+ and X̂

omni
img,j−. It turns out

that we will observe a mapping error denoted as ΔX̂
omni
img,j for the image point X̂

omni
img,j:

ΔX̂
omni
img,j ≈ 1

2

∥∥∥X̂
omni
img,j+ −X̂

omni
img,j−

∥∥∥ (6.35)

The largest displacement to be expected on the target image can be calculated subse-
quently by the maximum value of the projected points from each of the rectified cameras:

ΔX̂
omni
img = max

(
ΔX̂

omni
img,0a,ΔX̂

omni
img,2b,ΔX̂

omni
img,1c

)
(6.36)

Figure 6.16 visualizes the deployment and the magnitude ΔX̂
omni
img on the reference camera

for an exemplary distance of Zomni
0 = 2.5m and configuration no. 6.

It becomes obvious that the mapping error is deployed quite inhomogeneously. This
is due to the different origins of the stereo measuring cameras and the subsequent re-
mapping to one of them. Naturally, the reference camera Camomni

0 does not introduce
any displacement as can be seen as dark blue area. The remaining areas show errors
ΔX̂

omni
img up to little more than one pixel. However, common stereo vision correspondence

operations like block matching diminish the achievable spacial resolution for depth
estimation anyway. This effect actually depends on the applied block size for image
correlation. Commonly one utilizes block sizes of not less than 11 × 11 pixels which
smooth surfaces and therefore should absorb the impact of the mapping error. More
detailed investigations for this error have not yet been done.
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Figure 6.16: Maximum mapping error ΔX̂
omni
img for an exemplary distance of Zomni

0 = 2.5m, an equian-
gular projection model for the source camera, an epipolar equidistant projection model for
the target camera, a FOVH = 83.20o and a baselength of b = 15cm

Actually ΔX̂
omni
img = 1 represents a certain observation angle which is numerically small.

For configuration no. 6 it can be calculated as follows:

ΔX̂
omni
img

αx
=

1
526

= 0.0019=̂0.1o (6.37)

Furthermore ΔX̂
omni
img varies according to multiple parameters:

• Stereo vision configuration: The larger the baselength b is, the higher the expected
maximum mapping error ΔX̂

omni
img becomes for a certain distance under observation

and for a distinct parametrized minimum measurable distance.

• Measurement distance: The mapping error decreases with increasing measurement
distance Z. At infinity the different locations of the three cameras will become
meaningless and hence ΔX̂

omni
img approaches zero.

• Virtual camera configuration: Currently the virtual views are sampled according
to the under-sampling strategy - cf. Chapter 4. In the center of each virtual image
its resolution coincides with the underlying omnidirectional image. In contrast, the
outer areas highly under-sample the source image. This leads to the effect that
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the mapping error increases especially in the outer areas, when erroneous distance
information from the virtual views is mapped to the omnidirectional reference
camera. Hence, a change to over-sampling would reduce ΔX̂

omni
img considerably.

Figure 6.17 outlines the calculated maximum mapping error for different configurations
and distances Z.

Figure 6.17: Maximum mapping error ΔX̂
omni
img for multiple measurement distances and camera config-

urations

The actual depth error
∣∣∣δZomni

j

∣∣∣ for X̂
omni
img,j can hence be estimated by orthogonal projection

of Xomni
cam,j+ and Xomni

cam,j− to Xomni
cam,j and subsequently subtracting the magnitudes as follows:

∣∣∣δZomni
j

∣∣∣ =
1

2
∥∥∥Xomni

cam,j

∥∥∥
(
Xomni

cam,j
T ·Xomni

cam,j+ −Xomni
cam,j

T ·Xomni
cam,j−

)
(6.38)

A maximum distance error
∣∣δZomni

max
∣∣ on the target image can be calculated subsequently:

∣∣∣δZomni
max

∣∣∣ = max
(∣∣∣δZomni

0a

∣∣∣ , ∣∣∣δZomni
2b

∣∣∣ , ∣∣∣δZomni
1c

∣∣∣) (6.39)

Figure 6.18 visualizes the deployment and the magnitude
∣∣δZomni

max
∣∣ on the reference camera

for an exemplary distance of Z = 2.5m and configuration no. 6. While the left plot shows
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the maximum error of my approach, the right one outlines the same for the system setup
of [67].

Figure 6.18: Maximum distance error
∣∣δZomni

max
∣∣ for an exemplary distance of Zomni

0 = 2.5m, an equian-
gular projection model for the source camera, an epipolar equidistant projection model for
the target camera and a baselength of b = 15cm; Left: our approach (FOVH = 83.20o),
Right: Approach of Li Shigang [67]

Reviewing the left plot of Figure 6.18 it is apparent that the maximum distance error
is deployed heterogeneously. Firstly the non-isotrope error distribution of the virtual
cameras, which has already been discussed in Chapter 5, causes each partial distance map
to be most accurate at the center. Secondly, the different location of each measurement
camera, with respect to the hemispherical measurement area (Z) around the sensors center,
causes each camera to measure varying distances at different directions. Subsequently,
the sensing is carried out with versatile accuracy.

Comparing both plots of Figure 6.18 it can be concluded: The expected minimum error
is identical for both approaches - given the same underlying virtual pixel configuration
and baselength. In the left plot the ratio between the smallest and the largest error is
determined to ≈ 0.70. This leads to the consequence that in the worst case a measurement
can be carried out with ≈ 70% of the best achievable accuracy without any depth averaging
method. Since Li [67] includes the epipoles in this process the worst case are a very
coarse accuracy in the near of the singularities up to zero accuracy at the singularities.

The final accuracy that will be achieved depends on different aspects:

• Merge strategy: Overlapping measurements can be used to average the error by
integration over multiple calculated depth values and obtain

∣∣∣δZomni
avg

∣∣∣. Since the
epipoles introduce very inaccurate depth data or "great shape distortion" [67] for
reconstruction Li [67] employs a weighted-averaging process in order to handle this
circumstance. By means of that method "the shape distortion [...] is apparently
improved." [67]. A quantitative assessment has not been presented.
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6 A Novel Spherical Stereo Vision Algorithm

• Reliable disparity information: An adequate depth information (with underlying
accuracy) can only be obtained when the calculation of the disparity maps works
properly. Since common correspondence algorithms fail near the epipoles, partially
sparse depth maps and unreliable depth information are the consequence. Especially
the latter issue may cause a weighted merge strategy to be annulled. However, a
more detailed treatment of this problem is beyond the scope of this work.

Figure 6.18 showed the deployment of the maximum error
∣∣δZomni

max
∣∣. Applying an arbitrary

merge strategy will result in an averaged error
∣∣∣δZomni

avg

∣∣∣ with

∣∣∣δZomni
max

∣∣∣ >
∣∣∣δZomni

avg

∣∣∣ >
∣∣∣δZomni

min

∣∣∣ (6.40)

where
∣∣δZomni

min
∣∣ is a lower theoretical error boundary. For roughly estimating

∣∣δZomni
min

∣∣ (at
least for a known distance Z) the joint probability density function pomni(δZ|Z) shall be
exploited which is calculated as follows:

pomni(δZ|Z) = pomni
0a (δZ|Z)·pomni

2b (δZ|Z)·pomni
1c (δZ|Z) (6.41)

where pomni
j (δZ|Z) represents the conditional probability of δZ implied a certain depth

value Z. The first order approximation of this function can be constituted according to
Appendix A, Section A.4 by employing the afore-calculated error

∣∣∣δZomni
j

∣∣∣. The error
δZ of pomni(δZ|Z) with an probability density of 0.5 is considered as lower boundary∣∣δZomni

min
∣∣.

Figure 6.19 outlines the obtained colour coded maps for
∣∣δZomni

min
∣∣ and the configuration

under current investigation.

Figure 6.19: Minimum distance error
∣∣δZomni

min
∣∣ for an exemplary distance of Zomni

0 = 2.5m, an equian-
gular projection model for the source camera, an epipolar equidistant projection model for
the target camera and a baselength of b = 15cm; Left: our approach (FOVH = 83.20o),
Right: Approach of Li Shigang [67]
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6.6 Error Analysis

Figure 6.19 demonstrates that both approaches perform quite similarly although the
largest

∣∣δZomni
min

∣∣ of Li is slightly smaller than ours.

Equivalently to the mapping error, the distance error depends on the distinct stereo vision
configuration, the actual measurement distance and the virtual camera configuration.
The following illustrations in Figure 6.20 and Figure 6.21 show the error behaviour for
different configurations and distances.

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Z [m]

dZ
 [m

]

dZmax, b = 10cm

dZmin, b = 10cm

dZmin, b = 10cm, (Li)

0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

Z [m]

dZ
 [m

]

dZmax, b = 15cm

dZmin, b = 15cm

dZmin, b = 15cm, (Li)

Figure 6.20: Largest minimal Error
∣∣δZomni

min
∣∣ and maximal Error

∣∣δZomni
max

∣∣ for multiple measurement
distances, an equiangular projection model for the source camera and two baselengths
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Figure 6.21: Largest minimal Error
∣∣δZomni

min
∣∣ and maximal Error

∣∣δZomni
max

∣∣ for multiple measurement
distances, an generic projection model for the source camera and two baselengths
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6 A Novel Spherical Stereo Vision Algorithm

The presented charts clarify that the author’s approach shows a similar behaviour on the
theoretical achievable accuracy

∣∣δZomni
min

∣∣ in comparison to Li’s method. The green and
red dashed lines hardly differ.

In contrast to Li [67] where the maximum expectable error
∣∣δZomni

max
∣∣ is at infinity (a

green solid line cannot be plotted), our maximum error outlined as a red solid line is not
far away from

∣∣δZomni
min

∣∣. Assuming a baselength b = 15cm, a distance Z = 2.5m and an
equiangular projection model for the source camera (configuration no. 6, Figure 6.20 on
the right) for instance, we obtain a minimum percentage depth error of:∣∣δZomni

min
∣∣

Z
=

0.17
5.0

= 0.034=̂3.4% (6.42)

and a maximum percentage depth error of:∣∣δZomni
max

∣∣
Z

=
0.22
5.0

= 0.084=̂4.4% (6.43)

The actual measurement error
∣∣∣δZomni

avg

∣∣∣ will appear somewhere in between depending
on the merge strategy. This aspect proofs that using narrow-angled virtual cameras for
composing the hemispherical depth map makes sophisticated merging methods obsolete.

Finally Figure 6.22 demonstrates how
∣∣δZomni

max
∣∣ changes over distance Z and the parameter

FOVH of the virtual cameras. One can conclude: When there is a possibility to further
reduce FOVH, an enhanced accuracy can be obtained.
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Figure 6.22: Maximum distance error
∣∣δZomni

max
∣∣ for an equiangular projection model for the source

camera, an epipolar equidistant projection model for the target camera and a baselength
of b = 15cm depending on different measurement distances Z and the parameter FOVH of
the virtual cameras
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Chapter 7

Stereo Vision Demonstrator

This chapter treats a real system that shall demonstrate the practical feasibility of the
afore-presented omnidirectional stereo method. In Section 7.1 the actual compiled camera
configuration is presented. Successively, the currently employed calibration strategy for
the system is explained in Section 7.2. In order to calculate a depth map, appropriate
rectified views have to be configured. This is done in Section 7.3.

Finally, the C++ implementation that currently runs the system as well as first experi-
mental results are outlined in Section 7.4 and Section 7.5.

7.1 Physical System Setup

The applied imaging system comprises three Allied GC940GC industry cameras (1-inch
CMOSIS CMV4000 sensor with a full resolution of 2048×2048 pixels), each equipped
with a FE185C086HA-1 fisheye lens that is characterized by a focal length of f = 2.7mm
and a field of view of 185◦. The captured images are cropped to an effective resolution of
1680×1680 pixels.

The stereo vision setup, as can be seen in Figure 7.1, is specified in order to provide an
approximate baselength of b ≈ 10cm for each rectified stereo camera.

For capturing images the cameras have been triggered in order to record isochronously.
The illustrations in Figure 7.2 show images that have been generated in the professorship’s
lab apartment.
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7 Stereo Vision Demonstrator

Figure 7.1: A spherical stereo vision demonstrator

Figure 7.2: Sample images from the professorships lab apartment

164



7.2 System Calibration Strategy

7.2 System Calibration Strategy

The stereo vision system has been initially calibrated, intrinsically as well as extrinsically,
in order to enable the systems 3D measurement capability.

7.2.1 Intrinsic Calibration of the Physical Cameras

Although the employed lenses project very similarly to the equiangular projection method
(cf. Section 2.2.3), they do not comply with this principle exactly. That is why the projec-
tion behaviour of each imaging device Camomni

0 , Camomni
1 and Camomni

2 is approximated
by means of the generic camera model by Juho Kannala - cf. Section 2.2.4. For the
generation of reference points the author employs a special three-dimensional calibration
target that comprises several planar calibration patterns at once, as pictured in Figure 7.3.
The results of this calibration step can be reviewed in Table 7.1.

Figure 7.3: Special three-dimensional calibration target

One can observe that the applied lenses represent a quite similar projection behaviour.
Furthermore, the distortion effects compared to the ideal equiangular projection model is
basically determined by the first coefficient k1 - cf. Section 2.2.4 Equation 2.29.
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7 Stereo Vision Demonstrator

Table 7.1: Results of the intrinsic generic camera models estimation

Camera k1 k2 αx αy cx cy k3 k4 k5

Camomni
0 2.43 0.08 198.07 198.04 830.37 844.53 -0.04 0.03 -0.01

Camomni
1 2.43 0.11 198.14 197.97 843.72 849.74 -0.11 0.07 -0.01

Camomni
2 2.44 0.09 198.00 198.12 857.28 846.02 -0.07 0.04 -0.01

7.2.2 Extrinsic Calibration of the Physical and the Virtual Cameras

In Chapter 2 and Chapter 4 it is explained that the extrinsic parameters of each
physical and virtual camera are fully described by the homography H (cf. Chapter 2
Equation 2.20), comprising the cameras origin C and its rotation matrix R (composed
of Euler Angles ϕx, ϕy and ϕz).

The applied calibration method utilizes two view geometry, as discussed in Section 2.4 -
without optimization amongst all three views. Therefore, six virtual perspective cameras,
denoted as Camper

j , are utilized. In combination, they compose three virtual perspective
stereo cameras, denoted as SCamper

k , for calibration. Their extrinsic parameters coincide
with those of Camrect

j , and SCamrect
k respectively. This relationship is presented in

Equation 7.1. An adequate illustration, comparable with Figure 5.17 of Section 5.3, can
be reviewed in Figure 7.4.

SCamper
a = {Camper

0a ,Camper
1a }

SCamper
b = {Camper

2b ,Camper
0b }

SCamper
c = {Camper

1c ,Camper
2c }

(7.1)

Figure 7.4: Geometrical configuration for extrinsic calibration of the physical and virtual cameras
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7.2 System Calibration Strategy

7.2.2.1 Extrinsic Initialization of the Physical Cameras

Initially, it is assumed that each omnidirectional camera Camomni
i is located at the worlds

origin Comni
i = 0. Furthermore, two cameras are characterized by an ideal mutual rotation

of 2
3π around their own z-axes: ϕz

omni
0 = 0, ϕz

omni
1 = +2

3π and ϕz
omni
2 = −2

3π. This can
be justified by reviewing Figure 5.15 in Chapter 5. Thereby, initial extrinsic parameters
are determined, denoted as Hiomni

0 , Hiomni
1 and Hiomni

2 .

7.2.2.2 Extrinsic Initialization of the Virtual Cameras

At the beginning the virtual cameras inherit the extrinsic configuration from the omnidi-
rectional cameras. To roughly pre-rectify each virtual stereo camera pair SCamper

k , each
left camera (Camper

0a , Camper
2b , Camper

1c ) of each pair is rotated around its z-axis towards
the associate right camera (Camper

1a , Camper
0b , Camper

2c ) by an angle of 1
3π, and vice versa.

In combination with the initial extrinsic parameters, determined in Section 7.2.2.1, the
initial homographies Hiper

j for the virtual perspective cameras can be calculated as
follows:

Hiper
0a = dHiper

+ ·Hiomni
0

Hiper
0b = dHiper

− ·Hiomni
0

Hiper
1a = dHiper

− ·Hiomni
1

Hiper
1c = dHiper

+ ·Hiomni
1

Hiper
2b = dHiper

+ ·Hiomni
2

Hiper
2c = dHiper

− ·Hiomni
2

(7.2)

where dHiper
+ and dHiper

− determine the homographies describing a differential rotation
around the z-axis in positive direction, and negative direction respectively. Hence Hiper

j ,
comprising Riper

j and Ciper
j , represent the initial extrinsic estimates of the virtual

perspective cameras which roughly complies with the mechanical system configuration.

7.2.2.3 Two-View Stereo Calibration and Rectification

The subsequent calibration procedure is accomplished for each stereo camera SCamper
k

independently. For instance, Figure 7.5 shows sample images that have been generated
for calibrating stereo camera SCamper

a .

This process is performed in accordance with the description in Section 3.2. Therefore,
the calibration toolbox by Bouguet [11] is applied for each stereo pair in order to obtain
calibration extrinsic estimates, denoted as Ĥc

per
1a , Ĥc

per
0b and Ĥc

per
2c , for each of the right
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7 Stereo Vision Demonstrator

Figure 7.5: Example calibration images for SCamper
a with original images from Camomni

0 (Hiomni
0 )

and Camomni
1 (Hiomni

1 ) as well as pre-rectified images from Camper
0a (Hiper

0a ) and Camper
1a

(Hiper
1a )

cameras (Camper
1a , Camper

0b and Camper
2c ) with respect to their associate left ones (Camper

0a ,
Camper

2b and Camper
1c ).

The utilization of a rectification procedure for the calibrated images, as explained in
Section 3.2 and described by Fusiello [28], results in new corrected homographies, denoted
as Ĥr

per
a , Ĥr

per
b and Ĥr

per
c , for each left and right perspective camera:

Ĥc
per
1a −→ Ĥr

per
a

Ĥc
per
0b −→ Ĥr

per
b

Ĥc
per
2c −→ Ĥr

per
c

(7.3)

7.2.2.4 Three-View Stereo Rectification

The results of Section 7.2.2.3 are now used to locate the omnidirectional cameras Camomni
i

extrinsically, as described by Equation 7.4. Three two-view calibrations for three concate-
nated stereo cameras form an overdetermined configuration. By now, no optimization
method has been performed. Hence, the determination of the extrinsic parameters for
the fisheye cameras, denoted as Ĥc

omni
0 , Ĥc

omni
1 and Ĥc

omni
2 , is performed on the basis
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7.2 System Calibration Strategy

of stereo calibration results Ĥc
per
1a and Ĥc

per
0b :

Ĥc
omni
0 = I (7.4)

Ĥc
omni
1 = (dHiper

− )−1 ·Ĥc
per
1a ·dHiper

+

Ĥc
omni
2 = (dHiper

+ )−1 ·(Ĥc
per
0b )−1 ·dHiper

−

Furthermore, final extrinsics of the virtual perspective cameras Camper
j are computed

with respect to Camomni
0 . See Equation 7.5 and Equation 7.6 for SCamper

a as an example:

dĤr
per
0a = Ĥr

per
a

dĤr
per
1a = Ĥr

per
a ·(Ĥc

per
1a )−1

(7.5)

Ĥr
per
0a = dĤr

per
0a ·dHiper

+ ·Ĥc
omni
0

Ĥr
per
1a = dĤr

per
1a ·dHiper

− ·Ĥc
omni
1

(7.6)

The variables dĤr
per
j are the correction homographies that have to be superimposed

on the initial pre-rotations dHiper
+ and dHiper

− with respect to the calibrated extrinsics
of the omnidirectional cameras Camomni

i . The calculation of the parameters for the
remaining cameras is identical.

The extrinsic results can directly be used for the rectified cameras:

Ĥr
rect
j ≡ Ĥr

per
j (7.7)

7.2.2.5 Extrinsic Calibration Results

For the purpose of calibration, perspective images of 1000 × 1000 pixels in size are
employed. Every stereo camera is calibrated individually. The results are outlined in
Table 7.2.

Table 7.2: Image calibration error

Stereo Camera Total Average Calibration Error

SCamper
a 0.1700px

SCamper
b 0.2323px

SCamper
c 0.1623px

The rectification of each camera is successively computed as described in Section 7.2.2.4.
The extrinsic results are summarized in Table 7.3. The extrinsic parameters reveal that
two virtual cameras always share the same position C (cx, cy, cz) and, furthermore, that
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Table 7.3: Rectification results

Camera cx[mm] cy[mm] cz[mm] ϕx[rad] ϕy[rad] ϕz[rad]

Camper
0a 0.00 0.00 0.00 0.0100 -0.0060 1.0573

Camper
1a 48.00 -88.82 -0.61 0.0100 -0.0060 1.0573

Camper
2b -52.90 -84.87 -0.20 -0.0023 0.0020 -1.0135

Camper
0b 0.00 0.00 0.00 -0.0023 0.0020 -1.0135

Camper
1c 48.00 -88.82 -0.61 0.0042 0.0020 -3.1058

Camper
2c -52.90 -84.87 -0.20 0.0046 0.0015 -3.1038

three pairs of cameras coincide in terms of orientation R (ϕx, ϕy, ϕz), as a consequence of
rectification. However, this does not completely hold true for the stereo camera SCamper

c ,
since the rotation parameters of the involved views slightly differ. This issue is indicated
by red color in Table 7.3.

However, Table 7.3 provides no information about the error in localizing Camomni
1 and

Camomni
2 with respect to Camomni

0 . In order to get an indication about that issue, a
cycle homography, denoted as Herr, is computed by incorporating all the calibration
information calculated. Initially, the actual cycle starts at Camomni

0 computing the
homography to Camomni

1 , based on this it computes the homography to Camomni
2 and

finally it closes the circle by computing the homography back to Camomni
0 . If the

calibration process had provided perfect results, the calculation as seen in Equation 7.8
should have led to the identity matrix.

Herr = (dHiper
− )−1 ·Ĥc

per
0b ·dHiper

+︸ ︷︷ ︸
Homography from Camomni

2 to Camomni
0

· (dHiper
− )−1 ·Ĥc

per
2c ·dHiper

+︸ ︷︷ ︸
Homography from Camomni

1 to Camomni
2

· (dHiper
− )−1 ·Ĥc

per
1a ·dHiper

+︸ ︷︷ ︸
Homography from Camomni

0 to Camomni
1

Herr =

⎡⎣Rerr T err

0 1

⎤⎦
(7.8)

The evaluation of this equation by employing the afore-computed numerical values leads
to Rerr ≈ I and |T err| > 5mm. This reveals that the utilized method, for calibration
of three cameras, is quite accurate in terms of rotation but not very satisfactory with
respect to translation. While one can now assume good results from the stereo matching
stage, the triangulation and the merge process of the depth maps leads us to expect
perceptible errors.
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7.3 Virtual Camera Setup

Since the results of the intrinsic generic camera model estimation stage (Table 7.1) are
quite similar to the generic parameters used for simulation (Table 4.2) and distinct
requirements are not claimed, configuration no. 7 is chosen for initial practical tests.
The calculated parameters can be reviewed in Table 7.4 to Table 7.7. In contrast to
configuration no. 7, the parameters for the vertical resolution are determined according to
the over-sampling strategy. This does not have any influence on the accuracy but causes
the final merged map to be more dense as can bee seen in Section 7.5. The variations
applied have been marked with blue color in the tables.

Table 7.4: Calculated fields of view FOVh for the virtual cameras Camrect
j according to the variety of

configurations

No. Camomni
i Camrect

j b [m] FOVhr [deg] Zmin [m] FOVh [deg]

7 kannala9 epipolar equidistance 0.10 60.0 0.75 75.40

As can be seen in Table 7.5, indicated by red color, the parameter dmax for the maximum
disparity has been slightly adapted in order to comply with available procedures for
stereo correspondence computation. Since for the stereo matching process the standard
algorithm from OpenCV StereoBM 1 is employed, which claims dmax to be a power of
two, it has been changed from 65 to 64.

Table 7.5: Calculated virtual pixel size ratios and image sizes

No. FOVh [deg] prect
x /pomni

x prect
y /pomni

y height width dmax

7 75.40 0.4140 0.4577 1680 636 64

Table 7.6: Intrinsic parameters of the virtual cameras Camrect
j

No. Camera αx αy cx cy

7 Camrect
j 483.71 534.76 318.50 839.5

Table 7.7: Pixel dimensions of the virtual cameras Camrect
j

No. Camera px[m] py[m]

7 Camrect
j 5.58×10−6 5.05×10−6

1 http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
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7.4 Software Realization

The previously described algorithm has been implemented in C++ as part of the profes-
sorship’s proprietary computer vision framework. A screenshot of the running application
can be reviewed in Figure 7.6.

Figure 7.6: Computer vision framework with running spherical stereo project

The whole processing chain has been realized self-dependent.

7.5 Experimental Results

For initial test measurements the stereo vision demonstrator, as outlined in Figure 7.1,
was installed at the ceiling of the professorships lab apartment. The objective was to
capture RGB-D data for nearly the whole living space.

7.5.1 Qualitative Assessment

Figure 7.7 outlines a calculated hemispherical depth map with respect to a reference
image. The underlying partial depth maps have been determined by means of the
afore-mentioned block matching procedure, using a block size of 15 × 15 pixels. The
subsequent merge has been done with an ordinary nearest neighbour method.

By assessing the depth map of Figure 7.7 closer, one can recognize small gaps in the
map where not at least two views overlap. That issue results from the under-sampling
strategy and the forward mapping process. For successive processing stages, e.g. for
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7.5 Experimental Results

Figure 7.7: Reference image with calculated hemispherical depth map

generating a dense point cloud, it might be sensible to close these gaps. A first endeavour
was made by Kaden [51], in order to investigate this issue. Up to now the application of
a post processing filter, more precisely a median filter, has shown the best improvement.
Figure 7.8 demonstrates the impact of a median filter stage, which is parametrized to a
kernel size of 5×5.

Figure 7.8: Hemispherical depth map without (left) and with (right) post processing median filter of
kernel size 5 × 5

Small gaps in the depth map can be considered as impulsive noise, also denoted as salt
and pepper noise. Thus, the median filter is appropriate for cancelling out these minor
areas with no depth information by replacing it with the median depth value of its vicinity.
However, pixels representing distance information are not impacted.
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Subsequently, the calculated hemispherical depth map can be utilized in order to re-
project the reference image of Figure 7.7 to a point cloud, as done in the simulation of
Section 6.5. An impression of how the whole hemispherical vicinity is observed can be
obtained by reviewing Figure 7.9.

Figure 7.9: Re-projection of reference image

A closer assessment with respect to certain details of the point cloud reveals remaining
challenges that have to be engaged: Figure 7.10 shows an example where a table-leg
is partially observed by two stereo cameras. In the merged point cloud both parts
do not appear at the same position. Their associate distance information, calculated
from different stereo cameras, differs with respect to the reference camera. As stated
in Section 7.2.2.5, an accumulative error of |T err| > 5mm has been calculated for the
afore-determined camera origins Comni

0 , Comni
1 and Comni

2 . Thus, this uncertainty results
in deficient baselengths for the underlying stereo cameras and, consequently, in erroneous
distance measurements. For this reason, a calibration procedure, that performs an
optimization amongst all three views, has to necessarily replace the currently applied
method.

7.5.2 Performance Measurements

The implementation of the concept for hemispherical depth map generation has not yet
been optimized for real-time processing. It can rather be considered as straight forward
implementation: Firstly, the re-projection of the partial disparity maps by means of
the epipolar equidistant method requires the calculation of trigonometric functions and
is hence time consuming. Secondly, the fusion process of each partial depth map is
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Figure 7.10: Example case for an erroneous fusion result

done by a forward mapping process. Further non-optimized parts include the nearest
neighbour interpolation stage as well as the post processing filter. Besides the need
for improvement with respect to practical implementations, Chapter 8 will introduce
optimization strategies that will accelerate the current algorithm significantly. Initial
performance measurements have been realized on an Intel(R) Core (TM) i7-3520M CPU
@ 2.90 GHz and are presented in Table 7.8. The actual timing values have been rounded
sensibly. The obtained speed in terms of Frames Per Second (FPS) can be considered as
near real-time.

Table 7.8: Performance measurements
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11×11 nearest neighbour no post processing 750 100 480 0 0.75

15×15 nearest neighbour no post processing 780 100 470 0 0.74

21×21 nearest neighbour no post processing 800 100 450 0 0.74

11×11 nearest neighbour median filter 5×5 750 100 480 150 0.67

15×15 nearest neighbour median filter 5×5 780 100 470 130 0.67

21×21 nearest neighbour median filter 5×5 800 100 450 120 0.68
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Chapter 8

Discussion and Outlook

The so far achieved results with respect to the novel concept for spherical stereo vision are
revisited in this final chapter. A discussion of the achievements is presented in Section 8.1.
Based on this assessment, further need for research is derived.

Furthermore, the idea of omnidirectional stereo vision, as investigated in this thesis,
is compared to the approach by Li [67], and moreover, to a solution employing two
hemispherical views in Section 8.2.

The end of this thesis is constituted by the presentation of a demo application that utilizes
spherical depth data in Section 8.3, and last but not least, by summarizing remarks in
Section 8.4.

8.1 Discussion of the Current Results and Further Need for
Research

The major objective of this thesis was to investigate a new principle in order generate a
full hemispherical depth map by means of stereo vision. Based on known methods, as
outlined in Chapter 5, an alternative approach to Li [67] has been presented that shall
fulfil the following requirements:

1. A full hemispherical depth map shall be generated without the need of applying a
merging procedure of high computational effort.

2. The proposed approach shall generate a full hemispherical depth map by employing
fewer correspondence operations.

In the following, the investigations that have been performed in order to achieve the
afore-mentioned goals shall be reflected and assessed. In addition, proposals for further
research activities and for algorithm optimization are presented.
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8.1.1 Assessment of the Geometrical Camera Configuration

The proposed geometrical camera configuration comprises a three-view stereo vision
setup of equilateral triangle configuration. This special characteristic leads to certain
effects that shall be discussed briefly.

Availability

According to a performed search, this special camera constellation is not protected by
any patent claims. Hence it can be employed without restriction.

Forward Mapping

The hemispherical depth information, calculated by means of this setup, is obtained by
mapping each of the partial depth maps to the reference camera. For Camrect

0a this can
be achieved by a LUT operation, since its origin coincides with Camomni

0 . For Camrect
1b

and Camrect
2c this operation is performed via forward mapping (cf. Chapter 4), which

causes the effect of gaps within the target map - cf. Section 7.5. Thus, a post processing
filter becomes reasonable.

Since each stereo camera is currently characterized by another origin, the author suggests
referring two stereo cameras (SCamrect

a and SCamrect
b ) to Camomni

0 in contrary to the
presented approach. Perspectively, just one partial depth map will have to be processed
using forward mapping. Furthermore, this improvement will reduce the employment of
the post processing filter stage to a minimum, i.e. to the depth information of SCamrect

c .

Mapping Error

As discussed in Chapter 6, the applied geometrical configuration and the method for depth
map fusion give rise to a mapping error ΔX̂

omni
img of maximal 1.1 pixels down to 0.9 pixels

for b = 10cm and 1.4 pixels down to 1.0 pixels for b = 15cm, assuming a measurement
range of 0.5m to 5.0m. This aspect indicates that the presented approach with the
underlying virtual camera configuration is most appropriate for small baselengths. The
more the baselength is increased, and thereby the cameras FOV, the more this error will
grow. As stated in Chapter 6, yet this uncertainty can be reduced significantly in case
the over-sampling strategy is applied.

However, a reduced spacial resolution of depth maps, due to image block based correla-
tion methods for stereo computation, diminishes or completely cancels out this effect.
Dedicated investigations are necessary in order to confirm this statement.
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Occlusion Effects

Due to the different locations of the 3D data generating devices, occlusions may occur.
This case is sketched in Figure 8.1. Imagine a measurement camera calculates a distance
with respect to a background object (red arrow on the left) that appears occluded by
another object, with respect to the viewpoint of the reference camera. In that case, the
forward mapping procedure might result in a wrong distance information with respect
to the reference camera (red arrow on the right). The correct information would be the
distance to the foreground object (green arrows).

Since the utilized baselength is small compared to the camera-object-distance, this
occurrence should be on the fringes. Anyway, stereo measurement devices correlate
images captured from different positions principally, which means that this issue belongs
to the basic characteristics of a stereo vision system. However, during the practical tests
performed so far, this effect has not been observed.

Figure 8.1: Occlusion case that might appear if a depth measurement information obtained by one
imaging device (measurement camera) is mapped to another device (reference camera)

8.1.2 Assessment of the Depth Map Computation

For generating a full hemispherical depth map three narrow-angled stereo cameras have
been parametrized as part of the chosen geometrical setup. The achievements of this
configuration as well as further suggestions for improvement shall be assessed now.
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Parametrization of the Narrow-Angled Views

The presumption was that each view ought to cover a horizontal field of view of 60o

approximately - cf. Chapter 5 Section 5.3.1. Appropriate investigations in Chapter 6
identified the necessity of a larger FOV for each rectified image, since the maximum
disparity value for guaranteeing a minimum measurable distance had to be included into
the calculations. The actual values for the current configuration have been determined to
75.80o (b = 10cm) and 83.20o (b = 15cm) provided an epipolar equidistance rectification
model. The cylindrical projection method has been declined since it turned out to
generate target images of lower resolution and hence less accuracy compared to the
alternative method. However, Abraham et al. [3] describe this projection principle to
be beneficial for stereo matching performance. Thus it could be beneficial to perform a
competitive evaluation for rectification methods with respect to their stereo matching
performance in future.

Considering a real-time implementation, the usability of a rectification method that does
not employ any trigonometric functions should be investigated. Thereby, the performance
for the triangulation process could be accelerated. As an example the stereographic
rectification method has been briefly introduced in Section 5.2.

Stereo Correspondence Reduction

For an estimation of the currently achieved savings in terms of stereo correspondence
operations the author assumes that Li [67] chooses the same sampling rate as presented
in Chapter 6. As mentioned in Chapter 5 he correlates two full images, while the
author performs this operation on three partial images. Table 8.1 outlines the current
achievements.

Table 8.1: Savings in terms of stereo correspondence operations

No. Camomni
i b [m] Zmin [m] FOVh [deg] height width savings [%]

5 equiangular 0.10 0.75 75.40 1344 699 30.0
6 equiangular 0.15 0.75 83.20 1285 763 23.0
7 kannala9 0.10 0.75 75.40 1254 636 37.2
8 kannala9 0.15 0.75 83.20 1201 702 30.6

It is important to realize that the achievements of Table 8.1 highly depend on the
parametrization, above all, of the baselength and of the minimum allowable measurement
distance.
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It can be concluded that the strategy of employing narrow-angled stereo cameras dimin-
ishes the number of necessary correspondence operations considerably. However, the high
redundancy in the center of the observed scene, where each distance is measured three
times, can be considered as disadvantageous. A perspective for further improvement is
developed in the following:

Further Optimization of the Rectified Views

By reviewing the strategy for hemispherical depth map computation in Section 6.5 the
following fact becomes obvious: While the rectified views seem to hardly cover any scene
point twice at the edges of the omnidirectional view, they see the observed vicinity three
times at the center. This issue is visualized in Figure 8.2. At this point the presented
method yet bears a high redundancy.

Area is covered by two views 

Area is covered by three 
views 

Area is covered by one view 

Maximum disparity reserve 
determines horizontal field of 
view and minimal distance 

Figure 8.2: Overlapping depth maps (red, green and blue) with highlighted area of maximal disparity

For a further optimization, two major strategies can be taken into consideration:

1. If we assume the sensor to be mounted at the center of a rooms ceiling, it is
presumable that the measuring device could be adjusted to guarantee a smaller
minimal measurement distance in the middle (φl = π/2) than at the edges (φl = 0
or φl = π). For example when the sensor is located 2.5m above the floor it should
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8 Discussion and Outlook

allow a minimal distance of 0.5m in order to recognize a person that stands beneath
and is 2m in height. At the edges the minimal distance could be parametrized
to 0.75m for example. The basic idea is to enlarge the disparity reserve in the
middle and decrease it at the edges. By that the presented concept could also work
properly in environments with reduced ceiling heights.

2. Since realistic requirements naturally demand the algorithm to process as fast as
possible, it makes sense to optimize the stereo processing itself with respect to the
partial rectified views: At the top of the rectified images (first image row) as well
as the bottom (last image row), the originally parametrized FOV for 3D calculation
should be preserved which means that the whole image line is considered by the
stereo correspondence algorithm. When approaching the center row of the image
from either direction, the FOV for stereo processing could be reduced. By means
of that, an almost non-recurring coverage of each scene point could be achieved.
Hence, the computational load for stereo processing as well as the forward mapping
procedure would further decrease considerably.

8.1.3 Assessment of the Depth Measurement Error

By employing narrow-angled views for stereo processing the variance of determined depth
measurement uncertainties, within the same partial depth map, is constrained at close
range. The example of Chapter 6, Figure 6.18 plotted the error values

∣∣δZomni
max

∣∣ for the
overlapping partial depth maps of configuration no. 6 measuring a distance of 2.5m. The
minimum error to be observed has been determined to ≈ 3.8cm, and the maximum error
to ≈ 5.5cm respectively. The observed differential of ≈ 30% leads the author to the
conclusion that a merge method of high computational effort as used by Li [67] has not
to be implemented. Because of the small range of the error values, a simple averaging
method is adequate. However, until now methods for merging depth maps have not been
investigated sufficiently.

Comparing the largest error value of
∣∣δZomni

min
∣∣ ≈ 4.3cm in the right plot of Chapter 6,

Figure 6.19 (approach Li [67]) with the largest error value
∣∣δZomni

max
∣∣ ≈ 5.5cm in the left

plot of Chapter 6, Figure 6.18 (authors approach), one can conclude the following:
Without applying any depth averaging method, the presented approach obtains for the
configuration in discussion at least approximately 80% of the accuracy achievable by
competitors. The measurement errors can hence be considered as comparable. This
statement holds true if the following assumption is made: The significant accuracy of a
3D sensor is specified by the worst case error value that occurs in its observation area
(for a certain distance).
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8.1.4 Assessment of the Spherical Stereo Vision Demonstrator

As part of the thesis a demo setup has been assembled and presented in Chapter 7.
The current status of this development and open points are briefly summarized in the
following:

Calibration Results

For the intrinsic calibration stage a state-of-the-art generic camera model has been
applied. The utilized extrinsic calibration method (based on standard two-view geometry)
turned out not to provide the required precision. While the mutual orientation of the
cameras could be determined quite well, the translational offset between them led to
a cumulative error of about 5mm. This gives rise to erroneous measurements due to
deficiently determined baselengths, as could be seen in Chapter 7. Any MATLAB®

simulation the author performed, did not reveal inaccuracies of that kind. Hence, for an
accurate alignment of the partial point clouds, a more sophisticated calibration method
will have to be applied in future necessarily. Advanced methods compute a trifocal tensor
that, equivalently to the fundamental matrix for two views, directly describe the inherent
relationship between three views. This issue represents a further field for research.

Results of the Depth Map Computation

As a result of Chapter 7, a full hemispherical depth map was presented, obtained
by realizing the author’s concept. The reprojection of this 3D data set generated a
considerable point cloud. However, since the calibration process has yet to be optimized
for accurate point cloud alignment, the validation of achieved measurements versus
computed error values could not be carried out so far.

Computational Performance

As stated in Chapter 7 the current performance, which has been determined to slightly
less than 1FPS on a standard office PC hardware, can be considered as near real-time.
Nevertheless, the current implementation has not yet been optimized, because the thesis
focuses on the principle investigation of the new method.

In comparison to Li [67], a real-time implementation of the author’s concept should be
fast due to the following facts:

• Currently the necessary stereo correspondence operations for obtaining a full
hemispherical depth map could be reduced to approximately 70%. A further
reduction is possible as already stated.
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• A computational costly merge process based on calculating multiple trigonometric
functions is not necessary.

However, the finally achievable performance will primarily depend on the underlying
hardware architecture.

8.2 Review of the Different Approaches for Hemispherical
Depth Map Generation

In the following, the most significant facts that distinguish both three-view configurations
in discussion are reflected. A subsequent comparison with a two-view approach highlights
their practical relevance.

8.2.1 Comparison of the Equilateral and the Right-Angled Three-View
Approach

As a matter of fact, both approaches are appropriate in order to generate a full hemi-
spherical depth map. Since it averages two full depth maps, the right-angled approach
generates more accurate results, with the drawback of a more complex data fusion process.
On the other hand, the equilateral approach produces error values that are slightly more
inaccurate. However, the latter concept has high potential for showing more perfor-
mance, provided that the afore-proposed optimizations have been realized. Considering a
realization on an embedded system of either concept, one can state additional notions:

• The right-angled camera configuration is protected by at least U.S. patent claims,
while the equilateral configuration is not - according to the current knowledge of
the author.

• An embedded sensor would be slightly more compact with a surface area of ≈ 1
2b2

using the equilateral approach compared to an area of ≈
√

3
4 b2 by means of the

right-angled concept.

• In contrast to the right-angled approach, the equilateral method is suitable for
small baselengths, since the mapping error increases along with it.

• The practical demonstrator as shown in Chapter 7 has been assembled by means
of high-performance fish-eye lenses, each providing support for up to 5 megapixel
camera resolution. It is yet ambiguous how both concepts perform, if fish-eye
lenses complying to the S-mount standard are employed. Related characteristics
of comparatively lower performance like maximal aperture, vignette, distortions,
chromatic aberration, digital noise (due to smaller dimensions of the lens and the
sensor), resolution etcetera may influence the result negatively.
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8.2.2 Review of the Three-View Approach in Comparison with the
Two-View Method

In Chapter 5 the two-view method employing hemispherical views turned out to cover a
huge FOV as well. In theory, this approach could provide a full hemispherical depth map,
if measurement uncertainties were not a concern. According to Chapter 5, Figure 5.8
such a configuration is characterized by a rising depth error along the baseline, but a
constantly low one orthogonal to it.

Figure 8.3 depicts two comparative plots for error estimation
∣∣δZomni

max
∣∣ of the authors

three-view approach, and a two-view method respectively. The value coding colors
have been scaled appropriately in order to cover a range starting from the minimum
error (

∣∣δZomni
max

∣∣ = 0.0562m) up to twice the maximum error (
∣∣δZomni

max
∣∣ = 2·0.0788m), as

observable in the left plot.

Figure 8.3: Maximum distance error
∣∣δZomni

max
∣∣ for an exemplary distance of Zomni

0 = 2.5m, an equiangular
projection model for the source camera, an epipolar equidistant projection model for the
target camera and a baselength of b = 10cm; Left: the author’s three-view approach
(FOVH = 75.40o), Right: two-view approach with restricted FOV that complies with an
error smaller than two times of the maximum error observable in the left plot

Subsequently, one can interpret the right plot as follows: If an omnidirectional, two-view
3D sensor is designed and specified to a maximum measurement uncertainty twice as high
compared to the author’s approach, its circular FOV is restricted to 132o for the current
configuration. The more coarse the sensor is admitted to measure in the worst case, the
more its FOV converges to a full hemispherical depth map. Furthermore, as soon as a
depth value averaging method for the three-view method is introduced in addition, the
divergence between both configurations will further increase - cf. Chapter 6.

However, the distinct variant of choice finally depends on certain requirements for
a distinct scenario of application. Nevertheless, for applications that require a full
hemispherical depth map, e.g. in order to observe a single room from floor to ceiling by
employing one single sensor, a two-view approach is not sufficient.
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Last but not least, a descriptive example shall be assessed: Figure 8.4 outlines the
reprojection of artificial 3D data, as presented in Chapter 6, that is captured by an
omnidirectional two-view camera configuration. Since the sensor is located at a height
of 2.5m above the floor, it is parametrized to allow a minimum measurable distance of
0.5m. Furthermore, the sensor is mounted in a diagonal orientation. Examining this plot,
the following characteristics can be extracted:

• The lower left corner as well as the upper right one of the artificial 3D environment
demonstrate the best accuracy since they are located orthogonal to the sensors
baseline.

• The lower right corner reveals distortions that become larger the more the epipole
is reached.

• In addition to distortions, the upper left corner is characterized by a blind spot.
This issue originates from the sensors parametrized minimal measurable distance,
and hence the adjusted maximal disparity value, which diminishes the observable
area. For this concrete scenario the omnidirectional region, that can be perceived
by the sensor, is restricted vertically to a range from 0m up to ≈ 1.75m above the
floor. For example, the head of a person with 2m in height would no longer be
visible in that blind spot area.

Figure 8.4: 3D reprojection of an artificial home environment observed by a two-view stereo vision
setup with hemispherical views (b = 10cm)
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8.3 A Sample Algorithm for Human Behaviour Analysis

For a convenient closure of this thesis, a detour to a practical application is made. In
Figure 8.5 a system is depicted that applies an omnidirectional 3D sensor for human
behaviour analysis. The algorithm as outlined has been published by the author in a
scientific paper [26].

Omnidirectional 
Stereo Camera

RGB Data

Depth Data World-Z Map

Pose Estimation

Camera Calibration

Virtual PTZ

Behavior Analysis

Object Detection

People Hypothesis 
Generation

Figure 8.5: Structure of the proposed algorithm

In the following each single step is briefly explained.

Omnidirectional RGB-D Data Generation

The omnidirectional stereo camera provides hemispherical RGB-D data. Since the depth
measuring device is extrinsically calibrated, with respect to a world coordinate system on
the floor of the observed scene, a world-z map can be calculated. Actually, this specifies
a map of distance values representing the height of each scene detail over ground.

People Hypothesis Generation

Position information about present persons in a room constitutes the precondition for a
successive analysis of their behaviour. Robust person detection algorithms that employ
3D data have recently been proposed [99]. In this study hypotheses about moving
foreground objects, e.g. persons, are generated by applying a Gaussian Mixture Model
(GMM) to the world-z map. In order to localize the potential persons with respect to
world coordinates, points belonging to these hypotheses are projected into a virtual
overhead view on which separate clusters are extracted. The detected persons are defined
by the center, the orientation and the expansions of each cluster (Figure 8.6). Details
can be reviewed in [99].
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Figure 8.6: People hypothesis generation for 3D localization

Virtual Perspective View

Subsequently, a vPTZ camera is employed in order to identify hypotheses as persons by
means of a people recognition algorithm, such as presented by Dollar et al. [20]. This
stage complies with the approach that has been presented in Chapter 4, Section 4.6.

Behaviour Analysis

In order to analyse a person’s behaviour, further processing steps are performed. The
person’s general pose, i. e. standing, sitting and lying, is determined on the basis of the
world points belonging to the person. Moreover, objects the person is interacting with
are detected on the perspective view of the vPTZ camera. Based on this generated data,
conclusions about a person’s behaviour, e. g. sleeping behaviour, can be drawn.
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8.4 Closing Remarks

8.4 Closing Remarks

During the elaboration of this thesis, a couple of aspects related to spherical stereo vision
have been investigated. First of all, the primary objective of verifying the feasibility of
the proposed concept could be achieved. A measurement system has been developed,
which has great potential for future application fields in industry, security in public spaces
as well as home environments. Furthermore, the amount of possible research topics,
which has been generated in the course of this work, is considerable and thus provides
a scientific prospect as well. Anyway, I hope the perusal of this thesis has been both
informative and interesting to the reader.
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Appendix A

Relevant Mathematics

This part outlines important mathematics and derivations.

A.1 Cross Product by Skew Symmetric Matrix

The cross product of two vectors a = (a1,a2,a3)T and b = (b1, b2, b3)T can be represented
as dot product:

a×b = [a]×b =
(
aT [b]×

)T
(A.1)

with

[a]× =

⎡⎢⎢⎢⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎥⎦ (A.2)

A.2 Derivation of the Quantization Error

A depth Z for stereo vision devices can be computed as follows:

Z = b·
f

ad
(A.3)

An depth measurement error can be specified as absolute depth error δZ:

δZ = δZb + δZf + δZd =
f

d
δb+

b

d
δf − bf

d2 δd (A.4)
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According to [17] this expression can be simplified to:

δZ ≈ δZd = −b·
f

ad2 δd =
(

b·
f

ad

)2
· − 1

bf
δd (A.5)

Finally the exrpession can be reduced to:

δZ ≈ −Z2

bf
δd (A.6)

A.3 Derivation of the Statistical Distribution of Quantization
Errors

From Equation 3.14 it is known that a disparity d can be computed as:

d = ximg,l −ximg,r (A.7)

According to [9, 17, 100] the variables ximg,l and ximg,r can be considered as mutual
independent random variables of uniform distribution in the interval

[−a
2 ,+a

2
]
.

Figure A.1: Random variables ximg,l and ximg,r of uniform distribution

The disparity error δd can hence be obtained from the quantization noise δximg,l and
δximg,r for each pixel in the left and right image:

δd = δximg,l − δximg,r (A.8)

The probability p(δd) is the convolution of the probabilities p(δximg,l) and p(δximg,r):

p(δd) = p(δximg,l)∗p(δximg,r) (A.9)

p(δd) =

⎧⎨⎩
a+δd

a2 if −a ≤ δd ≤ 0
a−δd

a2 if 0 ≤ δd ≤ +a
=

a−|δd|
a2 (A.10)
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A.3 Derivation of the Statistical Distribution of Quantization Errors

The probability p(δZ) can be computed as follows:

p(δZ) =
∫ +∞

−∞
p(δZ|Z)p(Z)dZ (A.11)

where p(δZ|Z) is the conditional probability of δZ implied a certain depth value Z that
can be measured with the probability p(Z).

It is known that the depth error δZ can be computed as:

δZ = −Z2

bf
(δximg,l − δximg,r) = −Z2

bf
δd (A.12)

which means that the disparity value δd is a monotone function of δZ:

δd = − bf

Z2 δZ = −a∗Z∗

Z2 δZ = −aZ∗

2Z2 δZ (A.13)

Since Equation A.13 is a monotone function, the probability p(δZ|Z) can be modelled as
follows:

p(δZ|Z) = p(δd)· | d(δd)
d(δZ)

| =
a−|δd|

a2 ·
aZ∗

2Z2

=
[
1− |δd|

a

]
·

Z∗

2Z2

(A.14)

Using Equation A.13 this expression can be simplified further:

p(δZ|Z) = p(δd)· | d(δd)
d(δZ)

| =
Z∗

2Z2 −
(

Z∗

2Z2

)2
|δZ| with 0 ≤ δZ ≤ Z∗

2Z2 (A.15)

Now Equation A.11 can be rewritten as follows:

p(δZ) =
∫ +∞

−∞

[
Z∗

2Z2 −
(

Z∗

2Z2

)2
|δZ|

]
p(Z)dZ (A.16)

According to [17], the measured depth Z can only be randomly distributed over a limited
range between Zmin and Zmax:

Zmin ≤ Z ≤ Zmax (A.17)

Furthermore from Equation A.15 it holds true that:

Z >=
√

1
2

Z∗ · |δZ| (A.18)

For Equation A.16 it follows that:

p(δZ) =
∫ Zmax

max
(

Zmin,
√

1
2 Z∗ · |δZ|

)[ Z∗

2Z2 −
(

Z∗

2Z2

)2
|δZ|

]
p(Z)dZ (A.19)
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From Equation A.19 it can be concluded that the distribution of the depth error can be
outlined if a certain depth measurement distribution is known or assumed, e.g. uniform
distribution.

Since the disparity d can be assumed to be distributed uniformly in the interval [−a,+a]
as mentioned above, the distribution of Z can be assumed to be distributed uniformly in
the interval [Zmin,Zmax]:

Zmin = Z − 1
2

Z2

bf
δZ

Zmax = Z +
1
2

Z2

bf
δZ

(A.20)

Finally Equation A.19 can be solved for the intervals of Z separately.

When 0 ≤ |δZ| ≤ 2Zmin2

Z∗ it can be written:

p(δZ) =
∫ Zmax

Zmin

[
Z∗

2Z2 −
(

Z∗

2Z2

)2
|δZ|

]
p(Z)dZ (A.21)

When 2Zmin2

Z∗ ≤ |δZ| ≤ 2Zmax2

Z∗ it can be written:

p(δZ) =
∫ Zmax√

1
2 Z∗ · |δZ|

[
Z∗

2Z2 −
(

Z∗

2Z2

)2
|δZ|

]
p(Z)dZ (A.22)

Solving both integrals, the final probability distribution p(δZ) can be stated as follows:

p(δZ) =

⎧⎪⎨⎪⎩
Z∗

2ZmaxZmin
− (Z∗)2(Zmin2+ZminZmax+Zmax2)

12(ZminZmax)3 · |δZ| if 0 ≤ |δZ| ≤ 2Zmin2

Z∗

1
Zmax−Zmin

[
2
3

√
Z∗

2|δZ| + (Z∗)2

12Zmax3 · |δZ|− Z∗
2Zmax

]
if 2Zmin2

Z∗ ≤ |δZ| ≤ 2Zmax2

Z∗

(A.23)

A.4 Approximation of the Quantization Error for Equiangular
Geometry

A distance Z for fish-eye stereo devices can be calculated with respect to the left camera
as follows:

Z = b·
sinφr

sin(φl −φr)
= b·

sinφr

sin(φ)
(A.24)
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A first order error δZ for a certain given Z (and hence φl as well as φ) can be estimated
by deviation:

δZ =
[
b·

cos(φ−φl)
sinφ

−φ·
sin(φ−φl)cosφ

sinφ2

]
·δφ (A.25)

The disparity error δφ results for the statistical treatment from an error of the measured
angles φl in the left image and φr in the right image respectively:

δZ =
[
b·

cos(φ−φl)
sinφ

−φ·
sin(φ−φl)cosφ

sinφ2

]
·

1
αx

(δximg,l − δximg,r) (A.26)

As stated in Section A.3 the variables ximg,l and ximg,r can be considered as mutual
independent random variables of uniform distribution in the interval

[−a
2 ,+a

2
]

[17].

A probability density function p(δZ|Z) for a given Z can hence be approximated by:

p(δZ|Z) =
[
b·

cos(φ−φl)
sinφ

−φ·
sin(φ−φl)cosφ

sinφ2

]
·

1
αx︸ ︷︷ ︸

| d(δφ)
d(δZ) |

·p(δφ) (A.27)

with

p(δφ) = p(δximg,l)∗p(δximg,r) (A.28)

Note that Equation A.27 represents a first order approximation of p(δZ|Z). If required,
higher order approximations can be generated corresponding to the Taylor series ap-
proximation. As an example the parametrization b = 1.0e−1m,f = 2.7e−3m,px =
5.0e−6m,Z = 2.5m,φl = π/2 shall be employed. Figure A.2 outlines approximated nor-
malized probability density functions pn of first and second order as well as a numerically
evaluated density function for comparison. The latter has been determined using a
MATLAB® kernel smoothing density function1 estimation command following Bowman
et al. [14].

Furthermore a first order error value ±‖δZ‖ is outlined in Figure A.2 as black dashed
lines based on the minimum measurable physical disparity angle δφ [17]:

δφ = ± 1
2·αx

(A.29)

It is recognizable that it coincides with a probability density value of exactly 0.5 for the
first order approximation of the probability density function p(δZ|Z).

1 http://de.mathworks.com/help/stats/ksdensity.html
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Further Relevant Publications

The following tables present further results of the search for literature related to omni-
stereo approaches.

B.1 H-Binocular Omnidirectional Stereo Vision with Panoramic
Views

Table B.1: Related works in h-binocular omnidirectional stereo vision with panoramic views

Year Author(s) Remark Publications

1990 Hiroshi Ishiguro
et. al

Investigation of omnidirectional views
to reconstruct a world model by an au-
tonomous mobile robot.

[42–44]

1996
Sing Bing Kang
and
Richard Szeliski

Multiple rotating cameras create om-
nidirectional views and are applied for
stereo processing.

[52]

2004
Yin Li
et. al

A large collection of images taken by
cameras that move in concentric circles
is assembled to multiple panoramic im-
ages. Successively they compute multi-
perspective stereo vision.

[70]
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Year Author(s) Remark Publications

2004
Wei Jiang
et. al

A large collection of images taken by
stereo cameras that move in concen-
tric circles is assembled to multiple
panoramic images. The two collections
of regular perspective images are resam-
pled into four multi-perspective panora-
mas. Afterwards depth information is
computed using three types of epipo-
lar constraints: horizontal, vertical and
combination of them.

[50]

B.2 V-Binocular Omnidirectional Stereo Vision with Panoramic
Views

Table B.2: Related works in v-binocular omnidirectional stereo vision with panoramic views

Year Author(s) Remark Publications

1995
Leonard McMil-
lan and
Gary Bishop

A plenoptic function is used for an
image-based rendering system. This
relies on sampling, reconstructing and
re-sampling the plenoptic function.

[78]

1996
1998

R.Benosman
et. al

A special sensor formed by a pair of
cameras is rotating about the vertical
axis and creates two panoramic images
for 3D scene reconstruction.

[7, 8]

1998
Joshua Gluckman
et. al

Real-time panoramic stereo is created
by means of two vertically aligned or-
thographic projecting sensors that use
parabolic reflecting surface.

[31]

2003
Shih-Schon Lin
and
Ruzena Bajcsy

A novel catadioptric sensor for omni-
directional stereo vision is presented.
This sensor bases on two regular per-
spective cameras, a beam splitter and
one reflective surface.

[71]
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Year Author(s) Remark Publications

2004
Wei Jiang
et. al

A large collection of images taken by
stereo cameras that move in concen-
tric circles is assembled to multiple
panoramic images. The two collections
of regular perspective images are resam-
pled into four multi-perspective panora-
mas. Afterwards depth information is
computed using three types of epipo-
lar constraints: horizontal, vertical and
combination of them.

[50]

2005
Yasamin Mokri
and
Mansour Jamzad

Two vertically aligned catadioptrical
sensors are applied on a mobile robot.
Omnidirectional stereo is computed by
means of neural networks.

[84]

2006
Sooyeong Yi
and
Narendra Ahuja

A new omnidirectional stereo imaging
system is described that uses a concave
lens and a convex mirror to produce a
panoramic stereo pair of images on the
sensor of a conventional camera.

[134]

2010
Tang Yi-ping
et. al

Review of the existing panoramic imag-
ing technologies. Obtains 360o × 360o

full sphere panoramic image by integrat-
ing to images that have been recorded
by two symmetrical omnidirectional vi-
sion sensors.

[135]

2011
Zhang Bo
et. al

Two vertically aligned catadioptric
sensors are employed for computing
panoramic stereo for surveying traffic
scenes.

[10]

199



Appendix B Further Relevant Publications

B.3 Binocular Omnidirectional Stereo Vision with
Hemispherical Views

Table B.3: Related works in binocular omnidirectional stereo vision with hemispherical views

Year Author(s) Remark Publications

2000
Toshiyuki
Yamashita et. al

Two Hyper-Omni-Vision-Sensors are
horizontally placed for reconstructing
a 3-D model of a real environment by
stereo vision. In order to make epipolar
lines straight, an ominidirectional input
image is projected onto a cylindrical
surface of which axis is on the base line
for stereo vision.

[133]

2005
Steffen Abraham
and Wolfgang Fo-
erstner

The paper discusses binocular stereo ap-
proaches with fish-eye cameras. It sur-
veys mathematical projection methods
and discusses epipolar rectification as
pre-requisite for stereo processing with
fish-eyes.

[3]

2005
Shigang Li and
Kiyotaka Fuku-
mori

Binocular spherical stereo is applied us-
ing catadioptric devices. Instead of rec-
tification, they consider the spherical
image pair as sum of multiple image
pairs and process them separately.

[69]

2006
2008

Shigang Li

A real-time binocular spherical stereo
setup is presented using two fish-eye
cameras. The rectification is carried out
using latitude-longitude representation.
See Section 5.2.

[66, 68]

2007
Takeshi Nishi-
moto and Junichi
Yamaguchi

Binocular spherical stereo with fish-eye
optics is employed for object detection.
The epipolar rectification is carried us-
ing virtual perspective views.

[92]
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B.4 Trinocular Omnidirectional Stereo Vision

Year Author(s) Remark Publications

2009 Paul Bourke

Optical requirements for stereoscopic
projection into hemispherical domes are
discussed. The creation of optimal
omni-directional stereoscopic fish-eye
pairs for view independent projections
is emphasised.

[13]

2010 Yun-fang Zhu

Binocular spherical stereo with fish-eye
optics and intrinsic calibration based on
the taylor model is investigated. The
epipolar rectification is carried using
virtual perspective views.

[145]

2011 Nobuyuki Kita

Dense 3D measurements are investi-
gated by using parallel stereo camera
system with fish-eye lenses. The mea-
surement space is almost spherical at
the distance of two or three times of
baseline length from the stereo camera
system.

[61]

B.4 Trinocular Omnidirectional Stereo Vision

Table B.4: Related works in trinocular omnidirectional stereo vision

Year Author(s) Remark Publications

1996
Sing Bing Kang
and
Richard Szeliski

Multiple rotating cameras create om-
nidirectional views and are applied for
stereo processing.

[52]

2001
Jane Mulligan et.
al

To achieve high speed and accuracy in
a stereo vision application, a trinoc-
ular stereo vision approach is ap-
plied. The employed optics base on
perspective vision and do not target
largeFOVsolutions.

[87]
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Year Author(s) Remark Publications

2006 Shigang Li

A trinocular spherical stereo vision ap-
proach based on fisheye optics and
latitude-longitude sampling is pre-
sented. Theoretically, a hemispherical
depth map can be generated.

[67]

B.5 Miscellaneous Configurations

Table B.5: N-ocular omnidirectional stereo vision

Year Author(s) Remark Publications

1999
2001
2002

Kim C. Nga et. al

Multiple deployed omnidirectional vi-
sion sensors are employed for 3D rang-
ing and generation of virtual scene
views.

[89–91]

2000
2001
2004

Hideki Tanahashi
et. al

A stereo omnidirectional imaging sys-
tem named SOS is presented. It consists
of multiple (e.g. 60) perspective cam-
eras arranged as stereo units each on
a face of a regular icosahedron. A full
spherical depth map can be obtained.

[112,122,123]

2000
2001

Takushi Sogo et.
al

Multiple deployed catadioptric vision
sensors form a n-ocular stereo system
for real-time human tracking.

[116,117]

2009
2013

Hansung Kim and
Adrian Hilton

For the purpose of 3D reconstruction
multiple spherical images are generated
by a bunch of rotating line cameras. A
3D mesh model for each pair of spher-
ical images is reconstructed by stereo
matching.

[59,60]

2010
Tomokazu Sato
and Naokazu
Yokoya

A method is presented for estimating
a depth map from a calibrated moving
omnidirectional multi-camera system.

[101]
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Table B.6: Omnivergent stereo vision

Year Author(s) Remark Publications

1990
1992

Hiroshi Ishiguro
et. al

Panoramic stereo is constructed by a
swivelling camera that is mounted on a
mobile robot. Three approaches for 3D
computation are discussed: (1) Cylin-
drical projection, (2) Epipolar curves
for stereo matching, (3) optical flow.

[42–44]

1996
Sing Bing Kang
and
Richard Szeliski

Multiple rotating cameras create om-
nidirectional views and are applied for
stereo processing.

[52]

1996
1998

R.Benosman
et. al

A special sensor formed by a pair of
cameras is rotating about the vertical
axis and creates two panoramic images
for 3D scene reconstruction.

[7, 8]

1998
Ho-Chao Huang
and Yi-Ping Hung

A panoramic stereo imaging (PSI) sys-
tem for virtual reality is presented.
A fixed baseline stereo rig is rotating
around the center of the left camera
and allows panoramic stereo recordings.
Misalignments in rectification are cor-
rected automatically.

[41]

1998
1999

Heung-Yeung
Shum et. al

Multiple approaches for omnivergent
stereo are investigated. Multi-
perspective panoramic, panoramic mo-
saics as well as spherical technics are
presented.

[113–115]

1999 -
2001

Shmuel Peleg et.
al

Panoramic stereo imaging approaches
are presented by use of a single cam-
era that rotates with an offset around
a center point. Furthermore a special
lens is presented that enables the easy
generation of omni-stereo panoramas.

[94–96]
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Year Author(s) Remark Publications

2004
Yin Li
et. al

A large collection of images taken by
cameras that move in concentric circles
is assembled to multiple panoramic im-
ages. Successively they compute multi-
perspective stereo vision.

[70]

2004
Wei Jiang
et. al

A large collection of images taken by
stereo cameras that move in concen-
tric circles is assembled to multiple
panoramic images. The two collections
of regular perspective images are resam-
pled into four multi-perspective panora-
mas. Afterwards depth information is
computed using three types of epipo-
lar constraints: horizontal, vertical and
combination of them.

[50]

2009
2013

Hansung Kim and
Adrian Hilton

For the purpose of 3D reconstruction
multiple spherical images are generated
by a bunch of rotating line cameras. A
3D mesh model for each pair of spher-
ical images is reconstructed by stereo
matching.

[59,60]

2010 Paul Bourke

By means of a single camera and a fish-
eye lens, the capture of omni-directional
stereoscopic spherical projections is pre-
sented. Furthermore the use of a single
camera is compared to the employment
of two rotating cameras.

[12]
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Table B.7: Dynamic stereo vision

Year Author(s) Remark Publications

1990
1992

Hiroshi Ishiguro
et. al

Panoramic stereo is constructed by a
swivelling camera that is mounted on a
mobile robot. Three approaches for 3D
computation are discussed: (1) Cylin-
drical projection, (2) Epipolar curves
for stereo matching, (3) optical flow.

[42–44]

1998
Ho-Chao Huang
and Yi-Ping Hung

A panoramic stereo imaging (PSI) sys-
tem for virtual reality is presented.
A fixed baseline stereo rig is rotating
around the center of the left camera
and allows panoramic stereo recordings.
Misalignments in rectification are cor-
rected automatically.

[41]

1999 -
2001

Zhigang Zhu et. al

A team of robots, each equipped with
a panoramic imaging device, forms a
multi-baseline cooperative panoramic
stereo sensing approach. The applica-
tion finds and protects humans by a
robot team in such emergent circum-
stances, for example, during a fire in an
office building.

[147–151]

2002
Tatsuya Yagishita
et. al

A new technology related to a single
dynamic 360-degree vision stereo cam-
era by using one hyperboloid mirror has
been developed. Specifically, the single
camera is continuously moved in the
vertical direction, the time (the number
of frames) to travel a fixed distance on
an image is measured, and the depth of
the space is extracted.

[132]

2005
Yasamin Mokri
and
Mansour Jamzad

Two vertically aligned catadioptrical
sensors are applied on a mobile robot.
Omnidirectional stereo is computed by
means of neural networks.

[84]

205



Appendix B Further Relevant Publications

Year Author(s) Remark Publications

2008
Ryosuke Kawan-
ishi et. al

A mobile robot equipped with a sin-
gle omnidirectional camera acquires se-
quences of images and computes the
3D surrounding with a structure from
motion approach.

[58]

Table B.8: Omnidirectional stereo vision with special optical solutions

Year Author(s) Remark Publications

1996
2000

David Southwell
et. al

Catadioptric cameras are equipped with
special double lobbed mirrors in order
to perform stereoscopic measurements
with one single camera.

[6, 118]

1999 -
2001

Shmuel Peleg et.
al

Panoramic stereo imaging approaches
are presented by use of a single cam-
era that rotates with an offset around
a center point. Furthermore a special
lens is presented that enables the easy
generation of omni-stereo panoramas.

[94–96]

2000
2001
2004

Hideki Tanahashi
et. al

A stereo omnidirectional imaging sys-
tem named SOS is presented. It consists
of multiple (e.g. 60) perspective cam-
eras arranged as stereo units each on
a face of a regular icosahedron. A full
spherical depth map can be obtained.

[112,122,123]

2003
Shih-Schon Lin
and
Ruzena Bajcsy

A novel catadioptric sensor for omni-
directional stereo vision is presented.
This sensor bases on two regular per-
spective cameras, a beam splitter and
one reflective surface.

[71]

2005
Yuichiro Kojima
et. al

Catadioptric sensors in combination
with special compound spherical mir-
rors are applied in order to generate an
omnidirectional 3D measurement sys-
tem. An application is seen for instance
in wearable security systems.

[62]
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Year Author(s) Remark Publications

2006
Sooyeong Yi
and
Narendra Ahuja

A new omnidirectional stereo imaging
system is described that uses a concave
lens and a convex mirror to produce a
panoramic stereo pair of images on the
sensor of a conventional camera.

[134]

2006
2007

Liancheng Su et.
al

A single catadioptric stereo vision sys-
tem equipped with a pair of mirrors is
used to establish a 3D obstacle infor-
mation system for autonomous robot
navigation purposes.

[74, 121,144]

2010
Tang Yi-ping
et. al

Review of the existing panoramic imag-
ing technologies. Obtains 360o × 360o

full sphere panoramic image by integrat-
ing to images that have been recorded
by two symmetrical omnidirectional vi-
sion sensors.

[135]

2012
Christian Weissig
et. al

A new approach on an omni-directional
omni-stereo multi-camera system is pre-
sented. It allows the recording of
panoramic 3D video with high resolu-
tion and quality and display in stereo
3D on a cylindrical screen.

[126]

2012 Z.-H. Xiong et. al

A depth-space partitioning algorithm
for performing object tracking using
single-camera omni-stereo imaging sys-
tem is presented. The proposed method
uses a catadioptric omnidirectional
stereo-imaging system to capture omni-
stereo image pairs.

[130]

2012 Chi Zhang et. al

A novel structured light based omnidi-
rectional 3D camera is presented, which
consists of a projector, a camera, and
two hyperbolic mirrors.

[137]
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Theses

1. The application of a trinocular camera configuration (three-view camera setup)
makes it possible to realize a three-dimensional space monitoring by means of one
sensor.

2. A full hemispherical depth map can be generated by using a trinocular camera
system in geometry of an equilateral triangle.

3. The creation of virtual images by converting the underlying projection model enables
the direct application of standard stereo processing methods for omnidirectional
sensors.

4. In contrast to the cylindrical projection principle, the utilization of an epipolar
equidistant imaging model for image rectification preserves considerably more
resolution of the omnidirectional source image.

5. The generation of virtual views can be significantly accelerated, as soon as the
number of transformed coordinates is reduced. The resulting error highly depends
on the actual level of reduction as well as the projection models utilized.

6. The composition of a hemispherical depth map by means of three partial depth
maps, rather than two full depth maps, reduces the number of required numer-
ical operations for the stereo correspondence process significantly. Furthermore,
this approach avoids a computationally intensive step for merging the distance
information.

7. The merge of multiple depth maps, generated by distributed stereo cameras, to a
single depth map is possible in principle. This implies that the mapping of each
distance information, characterized by a statistical measurement error, to the target
map results in a negligible uncertainty of less than 1 pixel.





Thesen

1. Die Verwendung einer trinokularen Kamerakonfiguration (Dreikamerasystem) er-
möglicht es, eine dreidimensionale Raumüberwachung mit lediglich einem Sensor
zu realisieren.

2. Die Erzeugung einer vollständigen hemisphärischen Tiefenkarte unter Verwendung
eines trinokularen Kamerasystems in Geometrie eines gleichseitigen Dreiecks ist
möglich.

3. Die Generierung virtueller Abbildungen durch Konvertierung des zugrundeliegenden
Projektionsmodells ermöglicht die direkte Anwendung von Standardalgorithmen
der Stereoberechnung in der omnidirektionalen optischen Überwachung.

4. Im Gegensatz zum zylindrischen Abbildungsmodell erhöht die Nutzung einer
epipolar-equidistanten Projektionsmethode die nutzbare Auflösung des omnidi-
rektionalen Quellbildes für das Stereoverfahren signifikant.

5. Die Erzeugung virtueller Abbildungen kann erheblich beschleunigt werden, wenn
die Anzahl der transformierten Koordinaten reduziert wird. Der dabei entstehende
Fehler ist stark abhängig vom tatsächlichen Grad der Reduktion sowie von den
eingesetzten Projektionsmodellen.

6. Die Berechnung einer hemisphärischen Tiefenkarte unter Verwendung dreier par-
tieller Tiefenkarten, anstatt zweier vollständiger Tiefenkarten, reduziert den Re-
chenaufwand für die Stereokorrespondenzberechnung signifikant. Des Weiteren
vermeidet dieses Vorgehen einen rechenintensiven Fusionsprozess von Entfernungs-
informationen.

7. Das Zusammenführen mehrerer Tiefenkarten verteilter Stereokameras zu einer einzi-
gen Tiefenkarte ist prinzipiell möglich. Voraussetzung dafür ist, dass die Zuordnung
jeder, durch einen statistischen Messfehler charakterisierten, Entfernungsinforma-
tion zur fusionierten Tiefenkarte lediglich eine kleine Unsicherheit (≤ 1 Pixel)
aufweist.
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