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A B S T R A C T

Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum
disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to
receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner.
During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, dis-
turbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to ex-
aggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth
contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit devel-
opment will be described and related to some example risk gene mutations that are found in neuropsychiatric
disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic
plasticity will be described. Research focusing on the combined analyses of neural circuit development and
functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are
relevant across the neuropsychiatric spectrum.

1. Introduction

Neuropsychiatric disorders are currently being classified in non-
overlapping categories, which is based on conventional clustering of
qualitative symptoms. The neurobiological mechanisms of the in-
dividual symptoms of these disorders are not taken into account in this
classification. For the development of new treatments and to under-
stand these disorders better, gaining more knowledge on the underlying
neurobiology is a crucial step forward. Furthermore, considering the
occurrences of cross-diagnostic phenotypes, we may need to put em-
phasis on dimensions crossing the borders of current diagnostic cate-
gories rather than on diagnostic categories separately. For these reasons
a paradigm shift is necessary in research that allows for classification of
patients on the basis of quantitative biological parameters (Kas et al.,
2018 in this issue). US and European institutes for mental health re-
search funding have already taken the first steps to initiate this para-
digm shift in research by emphasizing this in new initiatives (Cuthbert
and Insel, 2013; Haro et al., 2014). This is especially important as the
burden of neuropsychiatric disorders increases every year and major
advances in treatment have lacked behind in the last decades. This is in
contrast with diseases like cancer, cardiovascular and infectious dis-
eases where death rates have fallen and new treatment strategies are
plentiful and effective (Cuthbert and Insel, 2013; Vigo et al., 2016;

Whiteford et al., 2013).
One example of a symptom that crosses the borders of several

neuropsychiatric disorders is sensory processing dysfunction (Danjou
et al. in this special issue). Sensory processing deficits are common in
multiple neuropsychiatric disorders, such as schizophrenia (SZ), at-
tention deficit hyperactivity disorder (ADHD), and autism spectrum
disorder (ASD) (Brown et al., 2002; Javitt and Freedman, 2015; Kas
et al., 2007; Miller et al., 2009). Furthermore, comorbidity between
these disorders is common. Multiple studies have found that adults with
neuropsychiatric disorders like SZ were also diagnosed with ASD or had
ASD symptoms during childhood (Mouridsen et al., 2008a,b; Unenge
Hallerbäck et al., 2012). Both genetic and environmental factors are
important in the early formation and fine-tuning of brain circuits ne-
cessary to receive, organize, and respond to sensory input in order to
behave in a meaningful and consistent manner (Fig. 1). Understanding
the neurobiological mechanisms underlying these sensory processing
deficits will be important to identify targets for novel intervention
strategies directed at neural circuit deficits. For those reasons, we will
provide a review of the biological basis for (abnormal) sensory cortex
development, multisensory integration, and behavioral responsivity.
First, the neurodevelopmental trajectory of the sensory circuitry will be
described and related to some risk gene mutations, in particular cell
adhesion molecules, that are found across the neuropsychiatric
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spectrum. Subsequently, the flow of sensory information through these
circuits and the relationship to synaptic plasticity will be described.
Finally, the current gap in knowledge to bridge our understanding of
sensory processing deficits as a core feature of neuropsychiatric dis-
orders will be addressed.

2. Somatosensory development

2.1. Cerebral cortex development

The development of the cerebral cortex starts after the closure of the
neural tube with the formation of the ventricular zone (VZ) out of the
first cells that migrate radially from the neuroepithelium (Angevine Jr.
et al., 1970; Bystron et al., 2008). These neuroepithelial cells (NECs)
undergo many symmetrically cell divisions to increase the surface area
and thickness of the VZ (Rakic, 1995). After these cell divisions, NECs
switch to asymmetrical cell division, which initiates the beginning of
the neurogenesis and the generation of apical radial glial cells (aRGCs)
(Huttner and Brand, 1997; Namba and Huttner, 2017). Just like NECs,
aRGCs are attached to both the ventricle and the basal lamina (Huttner
and Brand, 1997). A new layer arises above the VZ, called the sub-
ventricular zone (SVZ), that consists of intermediate progenitor cells
(IPCs) that are not attached to the ventricular surface (Angevine Jr.
et al., 1970). Many of the cells in the SVZ originate from asymmetrically
dividing aRGCs, including IPCs, and will end up as cortical neurons
(Noctor et al., 2004). IPCs divide symmetrically a couple of times to
expand the pool of IPCs before they divide asymmetrically for a last
time to produce two cortical neurons (Noctor et al., 2004).

These initial steps in the cortical development are orchestrated by
gradients of signaling molecules in the cortex (See review by Govindan
and Jabaudon, 2017). In absence of these so-called morphogens, such
as Pax6, Fgf10 and retinoic acid, cytodifferentiation is delayed or does
not occur at all (Sahara and O’Leary, 2009; Siegenthaler et al., 2009;
Tamai et al., 2007).

2.2. Neuronal migration and circuit development

The new postmitotic cortical neurons, which come from the IPCs
and aRGCs, will migrate from the SVZ to their final destination in the
cortical plate (CP) of the cortex (Angevine and Sidman, 1961; Sheppard
and Pearlman, 1997). Neurons migrate by first extending their leading
process, followed by the cell body and nucleus moving in line with the
extended process causing it to retract again. Lastly, the trailing process
retracts as well (Tsai and Gleeson, 2005).

Cajal-Retzius cells (CRs), originating from asymmetrically dividing
aRGCs, migrate before the production of postmitotic neurons via the
basal process of the RGCs to the marginal zone (MZ) (Meyer et al.,
1998). Postmitotic neurons first use multipolar migration to reach the
RGCs. Here they migrate via the basal process of the RGC, which is
called radial migration or locomotion (Nadarajah et al., 2001; Rakic,
1972). When the leading process reaches the MZ of the cortex, the
neuron migrates independent of the RGC to its final destination, a mi-
gration referred to as terminal or somal translocation (Nadarajah et al.,
2001; Sekine et al., 2014). CRs secrete the extracellular protein Reelin
that has multiple roles in the migration of neurons (Ogawa et al., 1995).
Reelin and its many downstream factors, such as disabled-1 protein
(Dab1) and cell adhesion molecules (CAMs), regulate the orientation of
neurons towards the pial surface, the change in migratory mode from
multipolar to radial, the terminal translocation, the termination of
neuronal migration, and the aggregation of neurons in the cortical plate
(Franco et al., 2011; Hiesberger et al., 1999; Howell et al., 1999; Jossin
and Cooper, 2011; see review by Santana and Marzolo, 2017). Mice
heterozygous for Reelin perform poorly in multiple behavioral tests
related to autistic and schizophrenic traits. These behavioral impair-
ments are a result of deficits in, among others, sensory processing.
These behavioral deficits can be rescued by Reelin supplementation
(Laviola et al., 2009; Rogers et al., 2013; Tueting et al., 1999). Mice
with no functional Dab1 gene show severe impairments in motor co-
ordination paradigms that are associated with changes in brain struc-
tures, such as the cerebellum, thalamus, basal ganglia, visual and limbic
networks (Jacquelin et al., 2013; Lalonde and Strazielle, 2011). Inter-
estingly, while the organization and lamination of the cortex is affected,

Fig. 1. Schematic model showing the relationship between the different factors influencing sensory processing and the neuropsychiatric disorders with sensory processing problems.
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loss of Reelin does not affect the somatotopic representation of the
sensory periphery in the barrel cortex (Guy et al., 2015). It could be that
tangential organization and circuit development between the thalamus
and cortex are not influenced by Reelin. In addition to extreme neu-
rodevelopmental conditions like lissencephaly, Reelin has been asso-
ciated with neuropsychiatric disorders like SZ, ASD, and bipolar dis-
order (BD) (Ishii et al., 2016). Multiple studies found reduced protein
and mRNA expression levels of Reelin in postmortem brain analyses in
SZ, ASD, BP, and major depressive disorder (MDD) compared to con-
trols (Fatemi et al., 2000; Impagnatiello et al., 1998; Torrey et al.,
2005). Furthermore, some single nucleotide polymorphisms (SNPs) in
the Reelin gene have been associated with SZ, ASD and ADHD. How-
ever, the contributions of these genetic variants to disease phenotype
seem to be dependent on ethnicity and gender (Chen et al., 2017; Ishii
et al., 2016).

In mammalian neuronal migration the oldest neurons are located
more closely to the ventricles than the younger neurons that migrate
over the older neurons to the pial surface of the cortex (Rakic, 1974).
Whereas in non-mammalian vertebrates the opposite happens (Goffinet
et al., 1986). This difference between mammalian and non-mammalian
vertebrates could be explained by the scarcity of CRs and Reelin in non-
mammalian vertebrates that drive the migration of mammalian neurons
over relatively large distances in mammals (Goffinet, 2017). In the end,
six layers have been formed in the CP of the cortex (Molnár et al.,
2006). The aforementioned morphogens play a big role in the layering
of the cortex. Different morphogens are situated in different layers and
even specific types of neurons (Lein et al., 2007; Magdaleno et al.,
2006; Molyneaux et al., 2007; Sugino et al., 2006). Many of these
morphogens have functionally been tested with knock-out mouse
models to see whether this specific expression pattern impacts layer and
cell differentiation in the cortex. Indeed, Tbr1 is specific for layer 6 in
the cortex and loss of Tbr1 hampers the differentiation of layer 6
(Bedogni et al., 2010). In Sox5 null mice the downregulation of Fefz2
and Bcl11b expression in layer 6 and subplate is disturbed. Conse-
quently, the maturation, migration, and differentiation of both layer 6
and subplate neurons is not complete (Kwan et al., 2008).

At the end of neurogenesis and migration, the circuitry between
neurons starts to develop, which is an ongoing process that continues
into adolescence. First, the neurites of the young neurons differentiate
into long-distance projecting axons or multiple short dendrites (Craig
and Banker, 1994). The fate of each neurite is determined by multiple
intra- and extracellular signals. The exact processes controlling neurite
fate is, however, still not completely understood (See review by Yogev
and Shen, 2017). During axonal growth, the tip of the axon contains a
growth cone that is guided into the proper direction by intrinsic me-
chanisms and signals from the surrounding tissues. These signals can
attract or repel the growth cones and can originate from nearby or
distant tissues (Tessier-Lavigne and Goodman, 1996). They can be
membrane bound or secreted and form a gradient to guide the axons to
the proper location. Some of the most prominent and well-studied axon
guidance proteins are ephrins, netrins, Slits, and semaphorins (See re-
view by Dickson, 2002). Ephrins help with the development of the to-
pographical map of retinal axons (Cheng et al., 1995; Drescher et al.,
1995). Netrins attract axons ventrally to the midline and deflect some
axons (Culotti and Merz, 1998). Slits act as a midline repellent for axons
(Brose et al., 1999). Next to this repellent role, slits also play a role in
sensory axon branching and elongation (Wang et al., 1999). Lastly,
semaphorins repel axons by acting as inhibitory cues at short distances
(Cheng et al., 2001). All these axon guidance proteins are well con-
served across vertebrates (Dickson, 2002). Next to these specific axon
guidance proteins, more general chemoattractants and chemorepellents
like Shh, Bmp and Wnt are also involved in the guidance of axons (See
review by Pfaff and Shaham, 2013).

When the axon reaches its target, which are immature dendritic
spines in the cortex, the growth cone changes its morphology and be-
comes a presynaptic axon terminal. In addition to this connection at the

leading end of the axon with dendrites, axons also make contact with
dendritic growth cones along the entire length of the axon (Vaughn,
1989; Ziv and Garner, 2004). Even before the mature synaptic struc-
tures are present, synaptic transmission is already present between
neurons in hippocampal primary cultures (Ahmari et al., 2000). During
synapse maturation, vesicles containing active zone molecules fuse with
the presynaptic membrane to build up the active zones in the mem-
brane (Maas et al., 2012; Tao-Cheng, 2007; Zhai et al., 2001). Sy-
naptogenesis is a very heterogeneous process. Synaptic connections are
built and broken down again, and various compartments within a sy-
napse will change over time (See review by Garner et al., 2002).
Whether a connection between an axon and a dendrite will survive
might depend on the match between recognition molecules on the
opposing membranes and the stabilization capacity between the
membranes. For example, presynaptic membranes only express nectin-
1, while postsynaptic membranes express nectin-3. These two have a
higher heterophilic binding affinity for each other than a homophilic
one for themselves. In this way they can promote axodendritic con-
nections and block axon-axon and dendrite-dendrite connections
(Togashi et al., 2006). Many other CAMs play a role in the formation
and maturation of synapses, such as cadherins, integrins, neurexins, and
synaptic CAM (See reviews by de Wit and Ghosh, 2016; Li and Sheng,
2003). The cadherin and neurexin CAM super families will be discussed
in more detail below.

The cadherin superfamily consists of type-1 transmembrane glyco-
proteins with several cadherin motifs in the extracellular region. These
cadherin repeats can make Ca2+ dependent heterophilic and homo-
philic interactions (Takeichi, 1988). In addition to the classical cad-
herins like N-cadherin and E-cadherin, the family consists of proto-
cadherins and cadherin-related neuronal receptors (Hulpiau and Van
Roy, 2009). N-Cadherin is a well-studied example that forms homo-
philic interactions at axodendritic connection sites (Huntley and
Benson, 1999). In the absence of N-cadherin synaptic differentiation
still occurs, but it is not complete (Togashi et al., 2002). When N-cad-
herin expression is inhibited, spine morphogenesis is abnormal, spines
are shorter, and the number of mature spines is decreased (Mysore,
2007; Togashi et al., 2002). Via their interaction with catenins, classical
cadherins mediate further synapse differentiation and maturation by
recruiting specific proteins and receptors, via signaling pathways like
Wnt, RHoA GTPase, and Hedgehog (Elia et al., 2006; Heuberger and
Birchmeier, 2010; Lien et al., 2006). The expression of cadherins in the
brain is very heterogeneous. Subtypes are only expressed in specific
brain areas and layers (Krishna et al., 2011; Vanhalst et al., 2005). On a
closer look, the expression in these regions is even more specified to
specific networks or even specific types of cells, and the expression
changes over time (Kim et al., 2007; Redies, 2000). One cell can express
multiple cadherins and next to homophilic interactions, heterophilic
interactions between different cadherins are observed (Hirano and
Takeichi, 2012). Based on these observations, the hypothesis at the
moment is that this cadherin code is different per neuron type and that
this code gives every cell a very specific adhesion code that directs the
synapse formation by attraction and avoidance between neurons and
neurites (Hirano and Takeichi, 2012; Yagi, 2012). As there are more
than 100 different cadherins, and they also have different isoforms, this
code can be very sensitive. One can imagine that when a certain cad-
herin is mostly expressed in areas involved in sensory processing that in
its absence, sensory circuit development and processing will be af-
fected. The expression of protocadherin 7 and 9 (Pcdh7 and 9) is high in
the primary somatosensory (S1) cortex and in the connecting thalamic
ventroposterior nucleus (VP) (Kim et al., 2007). De novo, inherited copy
number variations and a downregulation of transcription levels in
lymphoblasts of PCDH9 were found in ASD patients (Bucan et al., 2009;
Girirajan et al., 2013; Leblond et al., 2012; Luo et al., 2012; Marshall
et al., 2008). In addition, a SNP in the PCDH9 gene has been linked to
MDD in a meta-analysis of GWAS studies (Xiao et al., 2017). Loss of
Pcdh9 in mice leads to changes in the morphology and number of
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dendritic spines and reduces the thickness of the cortex area S1. In
addition, these mice show deficits in social recognition, sensorimotor
performance, and sensory gating (Bruining et al., 2015). Other cad-
herins have also been linked to several neuropsychiatric disorders. In-
deed, many have been linked to ASD, and several of these cadherins
have also been associated with BD and SZ, such as CDH7, CDH12,
CDH18 and PCDH12 (See review by Redies et al., 2012).

Another CAM family consists of three neurexin genes that each have
a short α and a long β isoform. Harkin et al. studied gene and protein
expression levels of neurexins in human embryonic tissue. They found
that gene expression levels of neurexin 1 (NRXN1) increases during
embryonic development, NRXN2 and NRXN3 stay somewhat stable
over time at, respectively, high and low expression levels (Harkin et al.,
2017). Neurexins have numerous alternative splice variants (Treutlein
et al., 2014). These splice variants show unique temporal and spatial
expression patterns in the brain (Jenkins et al., 2016; Schreiner et al.,
2014). However, the specific expression pattern of each splice variant in
the different cortical layers has not been studied yet. Neurexins are
mostly located in the presynaptic membrane and promote synaptic
differentiation by interactions with other CAMs, including neuroligins,
on the postsynaptic membrane (Dean et al., 2003; Graf et al., 2004; see
review by Krueger et al., 2012). In the absence of neurexins, axons still
seem to find their way to their targets (Budanova et al., 2007). Synaptic
transmission, however, is disrupted in neurexin knockout mouse
models and causes a high perinatal death rate (Missler et al., 2003).
Members of the neurexin family have also been associated with neu-
ropsychiatric disorders, such as ASD and SZ (See review by Reichelt
et al., 2012). Several studies have examined the social and sensory
characteristics in mice lacking the Nrxn1α gene. Unfortunately, the
results have been inconsistent making it challenging to relate specific
phenotypes to the Nrxn1α gene (Esclassan et al., 2015; Etherton et al.,
2009; Grayton et al., 2013). Related to this, the role of specific neurexin
isoforms or splice variants in specific aspects of sensory circuit devel-
opment and processing has yet to be examined.

2.3. Development of projections between cortex and thalamus

The thalamus plays a major role in sensory processing (see chapter
3.1 and Fig. 2). During development, the thalamocortical and corti-
cothalamic axons are guided through the internal capsule. Corridor
cells and other neurons in the internal capsule, the striatum, cortex, and
thalamus express or secrete morphogens to guide the axons (See for a
review Garel and López-Bendito, 2014). Below, some examples for

these axonal pathfinding mechanisms are provided.
Neurons in the VP express the Epha4 receptor in a gradient fashion;

medial neurons have a high expression and lateral neurons have a low
expression. Its counterpart, ligand Efna5, has a similar medial to lateral
gradient in the cortical region that will later form S1 (Vanderhaeghen
et al., 2000). When Epha4 and Efna5 are genetically deleted, many
neurons are scattered around the normal cluster in VP and S1. This is
especially the case for the medial neurons that have a high Epha4 ex-
pression (Dufour et al., 2003). The expression of Efna5 is particularly
high in layer 4, 5 and 6 of the S1 cortex (Vanderhaeghen et al., 2000)
(Fig. 3). Cortical axons are attracted by Sema3c that is released by cells
in the SVZ. However, they do not penetrate the intermediate zone and
the SVZ because the axons are repelled by Sema3a, which is secreted by
cells in the VZ (Bagnard et al., 1998) (Fig. 3).

Thalamocortical projections are guided by pioneer projections from
the cortex to the thalamus. Chen et al. showed that by preventing the
growth of these projections, thalamic axons were still able to cross the
internal capsule but when they reached the border of the cortex, the
pallial-subpallial boundary (PSBP), the thalamic axons diverted and did
not enter the PSBP. The cells in the lateral cortical stream of the PSBP
direct the thalamic axons away when the cortical axons are not present
(Chen et al., 2012). On the other hand, thalamic axons are necessary for
the pioneer axons from the cortex to grow into the internal capsule. If
the thalamic projections are absent, the corticothalamic axons will
follow the trajectory that corticosubcerebral axons normally take to the
cerebral peduncle (Deck et al., 2013). It seems that the cortical pro-
jections first reach the subpallidum and then wait there for one day
before the thalamic projections reach that area (Métin and Godement,
1996). This waiting period is probably regulated by a change in tran-
scription factors in the cortical axons destined for the cerebral peduncle
and the thalamus. Deck et al. found that the Plxnd1/Sema3e complex is
necessary to hold of the cortical axons to grow too early into the sub-
pallidum (Deck et al., 2013).

Synchronous spontaneous activity is another mechanism that plays
a role in the formation of the thalamus and cortex circuitries (Catalano
and Shatz, 1998; Tang et al., 2003). Electrical activity and neuro-
transmitter release between cells in the developing nervous system
contribute to the migration and connection between these cells (Yuste
et al., 1995). For example, so-called retinal waves cross the retina be-
fore eye opening occurs. These retinal Ca2+ waves cause patterned
neural activity in the visual cortex and other areas involved in the
propagation of visual stimuli (Ackman and Crair, 2014). Ca2+ waves
are also present in the thalamus before birth. These prenatal thalamic

Fig. 2. Projections between somatosensory cortex
and thalamus (Th) are shown in the adult murine and
human brain, ventroposterior nucleus (VP) is high-
lighted. Ascending pathway (light blue projections)
projects to the thalamic ventroposterior nucleus (VP)
and goes via the internal capsule and striatum (or-
ange) to cortex layer 4. There the information is
passed on and a feedback loop (dark blue projec-
tions) goes back to the thalamus. One of the feedback
axons first descends to the reticular nucleus (green)
and sends inhibitory signals to the VP (red projec-
tions). The excitatory projections go directly to the
VP. The bright orange line marks the pallial-sub-
pallial boundary. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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waves are transmitted from one sensory nuclei of the thalamus to an-
other and they even propagate up to the cortex. In this way, different
nuclei in the thalamus communicate with each other and disturbances
in the initiation and propagation of the waves cause changes in the size
of cortical areas. Ca2+ waves target factors that play a role in thala-
mocortical branching and are sensitive for changes in Ca2+ levels
(Moreno-Juan et al., 2017). In the cortex the Ca2+ waves are initiated
in the ventrolateral piriform cortex and then travel through the cortex
(Lischalk et al., 2009). It seems that higher levels of asynchronous ac-
tivity in this region together with gap junction functioning plays a role
in the initiation of Ca2+ waves (Barnett et al., 2014).

3. Sensory cortex processing

Neurodevelopmental processes do not stop at birth, but continue
until early adulthood (Marín, 2016). During this period the develop-
ment is influenced by stimuli from outside as well as the behavioral
state of the individual, and requires proper processing of external and
internal (proprioception) sensory stimuli. Even after the overall neu-
rodevelopment is complete the brain is still very plastic, allowing sen-
sory stimuli to further influence ongoing developmental processes
(Lövdén et al., 2013; Takesian and Hensch, 2013). There are many
indications that sensory processing is affected in different neu-
ropsychiatric disorders (e.g. Engel-Yeger et al., 2016). Until now, re-
search on the mechanisms and networks behind sensory processing
dysfunction has mostly focused on ASD and SZ (Javitt and Freedman,
2015; Thye et al., 2017). Other neuropsychiatric disorders, such as
Alzheimer’s Disease (AD) and MDD, have mostly been studied at the
level of memory, cognition, and social aspects and not specifically on
the basic mechanisms of sensory processing dysfunction. Below, we will
discuss sensory processing from different perspectives and describe
findings highlighting how sensory processing is disrupted in specific
neuropsychiatric disorders.

3.1. Processing incoming sensory stimuli

The processing of sensory input consists of two phases; namely, to
direct the person’s attention to the region of interest in the surrounding
environment, and then to decode this information to start the proces-
sing of that information (Gomez-Ramirez et al., 2016; Romo and

Salinas, 2001). Receptors at the sense organs are sensitive for specific
stimuli and are classified as chemoreceptors, mechanoreceptors, pho-
toreceptors, and thermoreceptors (Francis-West et al., 2002; Singer
et al., 2009). Each of these classes are divided in different subcategories
such as for example, motion, stretch or vibration (Johnson, 2001).
Somatosensory and auditory stimuli are first processed by relay neurons
in the brainstem where rough separation of signals takes place (Angeles
Fernández-Gil et al., 2010; Skoe and Kraus, 2010). Then the signals are
sent to the thalamic nuclei specific for visual (lateral geniculate nu-
cleus), auditory (medial geniculate nucleus), and somatosensory (ven-
troposterior nucleus, Fig. 2) stimuli (Sherman, 2016). In these thalamic
regions the stimuli are further decoded in, for example location, pitch,
intensity, or shape, and are subsequently relayed to cortex layer 4
(Friedman et al., 2004; Jones et al., 1982). In each area, cortical and
subcortical, the receptive topography of the periphery is maintained in
several modality maps. This means that the neighboring cells in the skin
project to neighboring groups of neurons in areas such as the thalamus
and cortex (Lenz et al., 2002; Simons and Woolsey, 1979). After the
primary sensory cortex, the signal is send to secondary, higher-order
areas. These secondary areas project to one of the major multimodal
association areas in the cortex that integrate the signals from the dif-
ferent senses. Multisensory integration will be discussed in more detail
in Section 3.3. Besides the layering of the cortex, it is also divided into
columns in a radial fashion throughout all layers. Neurons belonging to
one column most of the time have a similar function like orientation
preference or ocular dominance (Haueis, 2016; Mountcastle, 1997). At
each level in the system, the information becomes more specific and
more complex; each postsynaptic neuron gets an even more specific
task. In this way, the spatial organization and descriptive meaning of
the stimuli becomes increasingly more vague and more concerned with
the behavioral importance of these stimuli (See review by Bednar and
Wilson, 2016). Finally, the information is send to other areas in the
brain, for example, to store the information (hippocampus) or to induce
action (through the motor cortex). Serotonin is one of the neuro-
transmitters that plays a role in the patterning of the primary sensory
areas in the cortex as it alters and delays the sensory map maturation
(Miceli et al., 2013). Siemann et al. tested mice with a gain-of-function
variant of the serotonin transporter (SERT) gene in a multisensory
paradigm. In contrast to their wild-type littermates, the SERT mutant
mice did not perform better under multisensory conditions (Siemann

Fig. 3. Schematic representations of example mor-
phogens involved in the guidance of thalamocortical
and corticothalamic axons in the developing mouse
brain. Left figure: Semaphorin 3C (SEMA3C) is re-
leased by cells in the subventricular zone (SVZ) and
semaphorin 3A (SEMA3A) by cells in the ventricular
zone (VZ) around embryonal day 16.5 (E16.5). Right
figure: Around postnatal day 0 (P0) Ephrin receptor
A4 (EPHA4) is expressed in a gradient fashion from
medial (high expression) to lateral (low expression)
in the thalamic (Th) ventroposterior nucleus (VP).
Ligand ephrin A5 (EFNA5) is expressed in a gradient
fashion from medial (high expression) to lateral (low
expression) in layer IV, V, and VI of the primary
somatosensory cortex (S1).

B.E. Hornix et al. Neuroscience and Biobehavioral Reviews xxx (xxxx) xxx–xxx

5



et al., 2017). Related to these observations, aberrations in the ser-
otonergic system have been linked to several neuropsychiatric dis-
orders, including ASD and MDD (See reviews by Andrews et al., 2015;
Muller et al., 2016).

There are also tracts that project back to the thalamus from the
somatosensory cortex (Jones, 1975). For a long time the exact function
for this feedback loop was not clear and there is still much that needs to
be investigated. Most of the projections to the thalamus, even more
than those coming from the periphery, come from feedback neurons in
cortex layer 6 (Liu et al., 1995; Liu and Jones, 1999). These feedback
neurons have axons that terminate in the thalamus and also in other
layers of the cortex. They have an excitatory and inhibitory effect on
the relay neurons that channel the information from the sensory organs
to the cortex (Liu et al., 1995). The excitatory effect works via a direct
pathway but the inhibitory effect takes place by stimulating relay
neurons in the reticular nucleus of the thalamus and these reticular
relay neurons inhibit neurons in the VP (Jones, 1975) (Fig. 2). It seems
that this feedback loop has two main functions in sensory processing.
The first one is to refine the receptive fields and tune the thalamic
neurons. The second function is to improve the transmission of sensory
signals from the sense organs to the cortex (See review by Briggs and
Usrey, 2008).

Many studies show that ASD patients have low long-distance con-
nectivity and high local connectivity (Belmonte et al., 2004; Kana et al.,
2011; Wass, 2011). These disruptions are mostly found in late devel-
oping cortical regions. The severity of this dysconnectivity correlates
with the severity of ASD (Barttfeld et al., 2011; Keown et al., 2013;
Kikuchi et al., 2015). One discrepancy in the long-rang under-con-
nectivity is that several studies have reported an increase in thalamo-
cortical projections and cortical-subcortical connections (Wass, 2011).
Besides ASD, other neurodevelopmental disorders like ADHD and
Tourette Syndrome show similar connectivity abnormalities (Kern
et al., 2015). Dysconnectivity is also found in SZ (O’Donoghue et al.,
2017). The multimodal network in SZ patients is less efficiently wired
than in healthy subjects (Bassett et al., 2008). Ordóñez et al. reviewed
studies that compared children with onset of psychosis and SZ before
the age of 13 and their not affected siblings by fMRI analyses (Ordóñez
et al., 2016). They conclude that in these children with SZ the local
connectivity strength is disrupted. Brain network analyses in, for ex-
ample, MDD and social anxiety (SAD) have mostly found alterations in
the default mode network and limbic system (Brakowski et al., 2017;
Kim and Yoon, 2017; Wang et al., 2012). Overall, the data available on
brain connectivity in neuropsychiatric disorders is not conclusive and
not specifically directed at sensory processing. Systematic investiga-
tions into the connectivity between and within the sensory systems
correlated with sensory processing dysfunctions in neuropsychiatric
disorders are therefore necessary.

3.2. Sensory gating

The brain first processes all sensory stimuli subconsciously. This
pre-attentive filtering of incoming information is termed sensory gating
(Braff and Light, 2005). One way to measure this is by recording the
event-related potentials (ERPs) with electroencephalography (EEG) to
different stimuli. Subconscious ERP responses are believed to happen
40–80ms after a stimulus (Freedman et al., 1983). In the P50 sup-
pression paradigm, repeats of paired clicks with an interval of 500ms
between the two clicks are presented. Normally the response 50ms
(P50) after the second click is lower than the P50 after the first click
(Freedman et al., 1983; Light and Braff, 2003). Many studies have been
published on P50 suppression disturbances in SZ and BD patients (See
meta-analyses by Cheng et al., 2016; Patterson et al., 2008). Prepulse
inhibition (PPI), pre-attentive inhibition of the startle reflex by a pre-
ceding weak sensory stimulus, and mismatch negativity (MMN), pre-
attentive orientation to a deviant stimulus in a series of repeated stimuli
that are the same, are also paradigms to measure components of sensory

gating (Erickson et al., 2015; Light and Braff, 2003). Both are affected
in SZ and BD patients (Braff et al., 2001; Erickson et al., 2015). Inter-
estingly, it seems that BP patients that are not in a manic episode show
normal PPI (Barrett et al., 2005). This elicited the hypothesis that
sensory gating dysfunction is related to psychosis and the finding of
normal PPI in MDD corroborated this (Perry et al., 2004; Quednow
et al., 2006). However, it is becoming clear that sensory gating, in-
cluding PPI, is also impaired in several non-psychotic disorders, such as
AD, ASD, and obsessive compulsive disorder (OCD) (Ahmari et al.,
2012; Kohl et al., 2013; Sinclair et al., 2016; Thomas et al., 2010). Even
MDD patients seem to show impaired MMN processing (Mu et al.,
2016). Abnormalities in different neural networks can be the cause for
sensory gating dysfunction across the neuropsychiatric spectrum (Kohl
et al., 2013; Mayer et al., 2009). For example, the cortico-striato-tha-
lamo-cortical circuitry involved in PPI is also linked to the inhibitory
dysfunction in OCD (Ahmari et al., 2012; Geyer and Dulawa, 2003;
Kohl et al., 2013; Maia et al., 2008). Another example is the involve-
ment of the cholinergic system in sensory gating, and neuropsychiatric
disorders like SZ and AD (Adler et al., 1998; Court et al., 2001; Lucas-
Meunier et al., 2003; Thomas et al., 2010). Additional methodologies to
assess sensory processing deficits across diagnoses (e.g., SZ and AD),
will be addressed in another manuscript as part of this special issue
(Danjou et al., 2018 in this issue).

3.3. Multisensory integration & dysfunction

Multisensory integration may facilitate stimulus detection. When
two or more sensory modalities are presented at once, they will en-
hance or depress each other’s effect. Different neurons and different
cross-modal stimulus combinations to the same neuron changes the
extent of multisensory integration. Sensory information is always pro-
cessed with a comparison of background inputs in any circumstance,
also when the information is not useful for that circumstance (Stein and
Stanford, 2008). This makes the processing of multisensory information
even more difficult, and makes it even more intriguing that most of the
time we are unaware of this cross-modal integration of sensory in-
formation. Binding of sensory stimuli of different modalities takes place
when determinants like place and time correspond between these sti-
muli. Coinciding weak stimuli enhance the integrated response signal
significantly. While two coinciding strong stimuli are already easy to
focus on and therefore the integrated response signal is not further
strengthened. This phenomenon is called inverse effectiveness
(Meredith and Stein, 1986; Stanford and Stein, 2007). When the stimuli
do not concur and the opposing signal is strong enough it produces a
response depression. The time between the stimulus entry, sensory
encoding, and motor response is shorter when multiple overlapping
modalities are integrated (Calvert and Thesen, 2004; Nozawa et al.,
1994; Stein and Stanford, 2008).

Multisensory integration takes place within and between the sen-
sory regions in the cortex and in some subcortical areas. For example,
visuotactile integration happens between the primary visual and the
somatosensory cortices in the rostral lateral area (RL) (Olcese et al.,
2013). Olcese et al. mapped the RL area by multiunit recordings in
mice. They found that in this area neurons are present that respond to
unimodal stimuli and multimodal stimuli. The visual receptive field is
better represented in this area than the tactile field. Furthermore,
multisensory enhancement is more visible at the level of action po-
tentials (outputs) than at the level of post-synaptic potential (inputs).

For a long time the assumption was that stimuli are first processed
in cortical areas corresponding to the sense organ and afterwards re-
layed to multisensory regions. Lately, it is becoming more clear that
multisensory integration happens in parallel to unisensory processing
(Calvert and Thesen, 2004). The superior colliculus (SC) plays a central
role in multisensory integration, especially while guiding someone’s
attention or behavior to a certain location (Meredith and Stein, 1983;
Stein and Stanford, 2008). The visual modality seems to be at the center
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of this. By moving someone’s eyes to one point in space, both auditory
and tactile attention will also shift in that direction (Groh and Sparks,
1996; Jay and Sparks, 1984). Just like in the RL area, the sensory re-
ceptive fields are also projected in the SC (Kadunce et al., 2001). In the
posterior parietal cortex of primates, multisensory information is in-
tegrated to shift the gaze and direct limb movements (Cohen and
Andersen, 2002; Stein and Stanford, 2008; Stricanne et al., 1996). Not
much is known about other multisensory integrations besides spatial
and temporal integration.

The development of multisensory integration networks starts after
birth. While the multisensory neurons are already present in monkeys
at birth in the SC, they are not yet capable of integrating cross-modal
inputs (Wallace and Stein, 2001). Also humans are not able to integrate
multisensory cues at birth. This process starts to develop in the first year
of life (Neil et al., 2006). The importance of these first months for
multisensory development has been shown in individuals that were
born with binocular cataracts and had it corrected at least 5 months
after birth. This congenital visual deprivation impaired audio-visual
integration in these individuals, while unisensory visual performance is
not affected (Putzar et al., 2007).

In multiple mouse models related to ASD, multisensory integration
is impaired and this seems to be caused by impaired integration in the
insular cortex, a multifunctional center in the brain where sensory,
emotional and cognitive content is integrated. The insular cortex has a
delay in maturation in these mouse models, especially the inhibitory
circuitry seems to be affected. This delay in maturation can be com-
pensated for by administering a benzodiazepine agonist, diazepam,
during juvenile age (Gogolla et al., 2014). While typically developing
(TD) children benefit from multisensory inputs, like the combination of
a tone and a light-flash, children with ASD do not (Brandwein et al.,
2013). This has also been found in a SERT Ala56 knock-in autism mouse
model, that underwent a multisensory testing paradigm similar to that
used in humans (Siemann et al., 2017). The SERT Ala56 is a gene
variant of the human serotonin transporter that has been linked to ASD
and sensory processing dysfunction (Muller et al., 2016). Because of
multisensory integration, cross-modal illusions are also possible (Stein
and Stanford, 2008). One example is that when a single light-flash is
combined with two beeps, a person will perceive this as a double flash.
Another example is the rubber hand illusion. It has been shown that
ASD children are initially less susceptible to this illusion than TD
children (Cascio et al., 2012). The dysfunction in multisensory in-
tegration in ASD seems to fade away when they get to adolescence
(Foxe et al., 2015). Recently two studies were published, showing hy-
perintegration of temporally unmatched audio and visual cues in SZ
patients (Stevenson et al., 2017; Zvyagintsev et al., 2017). In contrast,
SZ patients are less susceptible to illusions compared to healthy controls
(Vanes et al., 2016; White et al., 2014). These results corroborate
findings in unisensory integration tasks that show that SZ patients are
hypersensitive in explicit tasks (e.g. temporal asynchrony) and less
susceptible for implicit tasks (e.g. illusions) (Lalanne et al., 2012).
While multisensory integration has been studied in ASD and SZ, these
kind of studies are difficult to find in other neuropsychiatric disorders
(De Gelder et al., 2005; Thye et al., 2017). One study reported that
patients with mild cognitive impairment and AD also show a delay in
audiovisual integration compared to normal aged controls (Wu et al.,
2012). Furthermore, Panagiotidi and colleagues found that adults with
high levels of ADHD-like traits have a shorter temporal audiovisual
integration window compared to those with low levels of ADHD-like
traits (Panagiotidi et al., 2017).

3.4. Social functioning

Social dysfunction is an apparent phenotype across the neu-
ropsychiatric spectrum. While many processes, such as motivation and
learning, contribute to the establishment of social behavior, the pro-
cessing of external cues related to the social context may be another

important factor to consider. All information provided by our sur-
roundings, including the people and objects in it, is combined to form a
wide range of sensory information entities that need to be processed.
Social cues, for example, need to be interpreted by integrating facial
expression, speech, body language etc. In this way, the absorption of
social cues require already a high level of multisensory integration to
prepare for an appropriate behavioral response. Both individuals with
ASD and SZ, and also other disorders where sensory processing is af-
fected, have difficulties in social settings. For example, this is generally
expressed as high levels of social withdrawal, an (early) common
symptom across the neuropsychiatric spectrum (Kas et al., 2018 in this
issue). The exact mechanism that explains the link between sensory
processing and social functioning in these disorders is not exactly
known.

One region in the brain that may provide a connection between
sensory processing and social cognition is the thalamus. As mentioned
above, the thalamus is the relay center between the sensory periphery
and the sensory cortex areas with a feedback loop back to the thalamus
(Fig. 2). The thalamus also has projections to several regions in the
limbic system like the anterior cingulate cortex (ACC) and the insula
(Thye et al., 2017). These areas are involved in emotion processing,
learning, memory, and interoceptive awareness. Furthermore, the size
of the right insula cortex and left isthmus are positively correlated with
poorer social behaviors in ASD (Doyle-Thomas et al., 2013; Nair et al.,
2013; Wass, 2011). In addition, abnormalities in the function of the
thalamus, insula and ACC are found in MDD and SAD patients while
listening to praise or criticism (Hamilton et al., 2015). Another region
in the brain that is involved in social cognition is the superior temporal
cortex (STC). It plays a role in, for example, emotional recognition,
understanding intention, and gaze detection (Narumoto et al., 2001;
Pelphrey et al., 2004a,b). Furthermore, STC is involved in general
multisensory integration (Loveland et al., 2008; Stevenson et al., 2011;
Thye et al., 2017). The STC seems to be functioning abnormally in ASD
patients and this has been linked to the STC functions like the ones
listed before, but also speech perception and affective touch processing
(Kaiser et al., 2016; Redcay, 2008). In addition, temporo-thalamic
overconnectivity was found in individuals with ASD using fMRI (Nair
et al., 2013). In SZ patients, differences in these areas are found as well.
SZ patients that undergo a test for humor processing, have more diffi-
culties with distinguishing and finishing humoristic sentences and this
is associated with decreased activity in the right posterior temporal
cortex, left dorsomedial frontal cortex, and the ACC (Adamczyk et al.,
2017). Mitelman et al. compared glucose metabolic rates in PET com-
bined with MRI scans of SZ and ASD patients. They found that both
showed similar changes in metabolic rates in brain areas that are as-
sociated with social cognition; the prefrontal cortex, visual cortices,
amygdala, hippocampus, thalamic nuclei (pulvinar and ventral pos-
teromedial) and basal ganglia structures (Mitelman et al., 2017). Also in
MDD and BP similar brain structures and networks related to social
cognition are impaired (Cusi et al., 2012).

That there is an association between sensory processing sensitivity
and social functioning is becoming more clear nowadays. Indeed, both
hyper- and hyposensitivity have been linked to higher levels of anxiety
and depressive symptoms in different populations (Ben-Sasson et al.,
2008 (ASD); Bitsika et al., 2016 (ASD); Engel-Yeger et al., 2016 (major
affective disorders); Engel-Yeger and Dunn, 2011 (healthy); Pfeiffer
et al., 2005 (Asperger’s disorder); Serafini et al., 2017 (MDD & BP)).
How these behavioral associations between sensory processing sensi-
tivity and social functioning can be explained by abnormalities in the
above mentioned neural networks in neuropsychiatric disorders has yet
to be explored.

3.5. Synapse plasticity

As mentioned in the previous paragraphs plasticity of individual
synapses, or more specifically the misregulation of this plasticity may
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critically contribute to the observed deficits, such as in sensory in-
formation processing, associated with neuropsychiatric disorders.
Human genetic screens have identified a series of genes that upon
misregulation of its expression negatively impact spine plasticity and
density. As mentioned earlier, morphological analyses of Pcdh9 lacking-
mice revealed an increase in spine density in the somatosensory cortex
(Bruining et al., 2015). Whereas a loss of Pcdh10 affected amygdala
functioning and increased spine density in this region. Spine-type spe-
cific analyses suggested that the latter was a result of an increased
number of filopodia in this region (Schoch et al., 2017). Haploinsuffi-
ciency of Shank3, a scaffolding protein, due to deletion or de novo
mutation has also been linked to autism spectrum disorders (Peça et al.,
2011). Mice lacking Shank2 and Shank3 exhibit impaired NMDAr-de-
pendent synaptic plasticity, and it is interesting to note that Pcdh10
mutant mice also have reduced levels of NMDAr subunits (Schoch et al.,
2017). Because NMDA receptors are tightly connected to filamentous
actin through actin-binding proteins, and the fact that loss of cadherin
or shank genes leads to abnormal structural plasticity (i.e.misregulation
of spine density) together these observations suggest that misregulation
actin dynamics may play a central role in at least a number of neu-
ropsychiatric disorders and indicate that the molecular machinery
modulating actin dynamics may be valuable candidates to prevent the
endophenotypes associated with ASD. Actin filaments continuously
grow and shrink and this process is highly orchestrated by a series of
positive regulators such as profilin and negative regulators including
ADF/cofilin (Bernstein and Bamburg, 2010). These regulators are tar-
geted by a larger series of signaling pathways including Rac1 and PKA
raising the interesting question whether the abnormal structural plas-
ticity could be prevented by targeting key downstream enzymes such as
cofilin (Sarmiere and Bamburg, 2004). Indeed, recent work has shown
that genetic inhibition of cofilin activity in hippocampal neurons is
sufficient to prevent memory impairments, synaptic plasticity deficits,
and spine loss associated with sleep deprivation and reverse the
memory and plasticity phenotypes in mice expressing a mutant form of
the BAF complexes (Havekes et al., 2016; Vogel Ciernia et al., 2017).
Because loss of Shank3, just like sleep deprivation, leads to increased
cofilin activity Duffney and colleagues assessed whether blocking co-
filin function or activating Rac1 prevented social deficits and NMDAr
hypofunction in these mutant mice (Duffney et al., 2015, 2013). Indeed,
treatment with cofilin inhibiting peptide and activation of Rac1 were

both sufficient to restore NMDAr function and prevent social deficits.
Intriguingly, inhibition of PAK or Rac1 function leads to social deficits
and NMDAr hypofunction in wild-type mice suggesting that mis-
regulation of structural plasticity at the level of cofilin signaling criti-
cally contributes to some of the phenotypes associated with neu-
ropsychiatric disorders. Moreover these findings further corroborate the
potential of peptide therapeutics in reversing phenotypes with neuro-
cognitive and neurodevelopmental disorders and raises the possibility
that similar strategies can also successfully be used to reverse the be-
havioral and morphological phenotypes in other mouse models of
neuropsychiatric disorders such as the cadherin mutant mice (Shaw and
Bamburg, 2017). The question remains whether altered synaptic plas-
ticity in the thalamus and/or cortex are contributing to the sensory
processing deficits that can be observed across the diagnostic bound-
aries of neuropsychiatric disorders.

4. Future directions

4.1. Gaps in knowledge

Fundamental neuroscience research has provided novel insights in
the way that neural circuits underlying sensory processing are being
developed. Furthermore, understanding of the intrinsic and external
factors that shape these circuits at particular stages of development is
growing. Nevertheless, several critical questions related to sensory
processing dysfunction in neuropsychiatric disorders remain. For ex-
ample, what are the exact circuitries that are altered in patients suf-
fering from sensory processing dysfunction, and are these deficits the
same across the neuropsychiatric spectrum? And are these dysfunctions
purely related to thalamocortical connections not being shaped prop-
erly during development, or are these, for example, dependent on dif-
ferent disease related pathologies? Assessment of a variety of sensory
processing paradigms across neuropsychiatric disorders are necessary
to address these questions. Once knowing the diversity of disease origin
underlying sensory processing dysfunction(s), further understanding of
the biological substrate will be important to develop etiology-directed
treatment strategies to tackle these dysfunctions. Finally, assuming that
the sensory deficits are core to the disease, what part of the behavioral
profile observed in neuropsychiatric patients will be reversed following
successful sensory processing interventions?

Fig. 4. Temporal profile of stages of brain development in relation to the age of onset of mental disorders. Early life perturbations (e.g., gene mutations, or environmental factors) can
impact neurodevelopmental processes, such as neural circuits involved in sensory information processing, and potentially lead to adverse mental health outcomes later in life (adapted
from (Borre et al., 2014)).
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4.2. Potential treatment directions: windows for treatment opportunity

For most vertebrates, the majority of organs develop during em-
bryogenesis and postnatal changes are mainly concerned with growth.
However, the brain is different in that a considerable amount of brain
structural changes also occur during the postnatal period (Fig. 4). For
example, recent studies on cortical development, including synaptic
remodeling, showed that this process continues well beyond adoles-
cence and stabilizes in adulthood (Petanjek et al., 2011). The neuronal
circuits that generate behavior are shaped by genes and the environ-
ment throughout life, but there are some stages at which brain devel-
opment is particularly sensitive to experience (Hensch, 2005), so-called
critical periods. Within these time-windows sensory experiences and
intrinsic neuronal activities jointly shape normal development and re-
fine neural circuits. Outside these windows, the brain is resistant to
changes to the same stimuli. These key periods of high brain plasticity
particularly during early life involve not only sensory systems, but also
motor systems and cognitive processes (Kuhl, 2010). After these ‘win-
dows in development’, the level of plasticity is reduced (Hensch, 2005,
2004). The question remains whether sensory processing dysfunction,
that is observed in a wide variety of neuropsychiatric disorders, has to
be reversed during these critical windows of development, or whether
interventions later in life may be capable of reversing sensory proces-
sing deficits. Furthermore, understanding the neurobiological me-
chanisms underlying these sensory processing deficits will be important
to identify targets for novel intervention strategies directed at these
neural circuit deficits. For example, lack or dysregulation of a neuro-
developmental risk gene expression may lead to early life exaggerated
brain plasticity processes (e.g., increased local protein synthesis and
spine density) within the sensory circuit and subsequent aberrant be-
havior. To test these hypotheses, reactivation of the CAMs during their
critical period of gene expression and targeted pharmacological inter-
vention during periods of, for example, exaggerated protein synthesis
should reverse sensory circuit dysfunction and prevent aberrant beha-
vioral development later in life. Signaling molecules within the mole-
cular pathway underlying exaggerated protein synthesis and that con-
tribute to synaptic remodeling may be potential targets for these
intervention studies.
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