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TRANSLATIO
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Abstract

The epithelial lining of the airway forms the first barrier against
environmental insults, such as inhaled cigarette smoke, which is the
primary risk factor for the development of chronic obstructive
pulmonary disease (COPD). The barrier is formed by airway
epithelial junctions, which are interconnected structures that restrict
permeability to inhaled pathogens and environmental stressors.
Destruction of the epithelial barrier not only exposes subepithelial
layers to hazardous agents in the inspired air, but also alters the
normal function of epithelial cells, which may eventually contribute
to the development of COPD. Of note, disruption of epithelial
junctions may lead to modulation of signaling pathways involved in

differentiation, repair, and proinflammatory responses. Epithelial
barrier dysfunction may be particularly relevant in COPD, where
repeated injury by cigarette smoke exposure, pathogens,
inflammatory mediators, and impaired epithelial regeneration may
compromise the barrier function. In the current review, we discuss
recent advances in understanding the mechanisms of barrier
dysfunction in COPD, as well as the molecular mechanisms that
underlie the impaired repair response of the injured epithelium in
COPD and its inability to redifferentiate into a functionally intact
epithelium.

Keywords: COPD; cigarette smoke; epithelial barrier function;
epithelial junctions

Chronic obstructive pulmonary disease
(COPD) is a chronic lung disease with a high
social and economic burden and mortality.
COPD is characterized by an ongoing
inflammatory process in the lungs that drives
airway and lung tissue remodeling, including
(small) airway fibrosis and emphysematous
lung tissue destruction. The main risk factor for
COPD is the inhalation of noxious gases and
particles, including those present in cigarette
smoke. The mucosal surface of the respiratory
tract is in first contact with these hazardous
agents, and is part of the innate immune
defense against foreign substances. The
mucosal defense mechanism encompasses the
physical barrier activity of the airway
epithelium, the mucociliary clearance system,
production of antioxidants, protease inhibitors,
and antimicrobial peptides, as well as mediators

that attract and activate cells of the immune
response to prevent invasion of inhaled
pathogens (1). Epithelial barrier function is
maintained by tight junctions (T]s) and
adherens junctions (AJs) that restrict epithelial
permeability and movement of ions and
solutes between cells, as well as migration

of immune cells through the epithelial

layer (2).

One of the leading causes of COPD is
long-term direct or second-hand exposure
to cigarette smoke (3). Cigarette smoke
consists of gaseous and particulate phases
that contain more than 7,000 chemicals,
such as oxidative gases and heavy metals,
and at least 70 carcinogenic substances (4).
The detrimental effects of cigarette smoke
exposure contribute to the pathogenesis of
respiratory diseases, such as COPD and lung

cancer (5). Although cigarette smoking is
considered as the main predisposing factor
for COPD in large parts of the world, not
all smokers develop COPD, indicating that
other environmental factors and genetic
susceptibility also contribute (6). Cigarette
smoke is known to cause oxidative stress
in the airway epithelium (7). This may
eventually lead to sustained recruitment of
immune cells, squamous metaplasia, mucus
hypersecretion, and loss of ciliary beating
on the airway epithelial surface (5, 8, 9),
contributing to airflow limitation (10). In
addition, oxidative stress induced by
cigarette smoke disrupts the junctions
between adjacent epithelial cells (11, 12),
which may play a critical role in the
pathogenesis of COPD, as outlined
subsequently here.
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In this review, we discuss
recent insights into the molecular
mechanisms of cigarette smoke-induced
loss of airway epithelial barrier function
in COPD. Although various studies
have also explored effects of cigarette
smoke on alveolar epithelial cell barrier
function, this is outside the scope of the
present review.

Barrier Function in the
Normal Respiratory Tract
Epithelium

To better understand the role of

cigarette smoke—induced barrier
dysfunction in the pathogenesis of
COPD, it is vital to discuss the normal
architecture and function of airway
epithelium. The epithelium of the (small)
airways is lined with a cylindrical ciliated
pseudostratified carpet, which is
composed of four main types of cells

(i.e., ciliated cells, secretory goblet cells,
club cells, and basal cells [1]), of which the
latter two have stem cell properties, acting
as progenitor cells for ciliated cells and
goblet cells.

Mucociliary clearance by the epithelial
layer is provided by ciliated cells and goblet
cells, which are mostly found in larger
airways (13). Both goblet cells and
submucosal glands produce mucus (14),
which forms a gel layer on the epithelial
surface of the respiratory tract, trapping
pathogens and inhaled particles.

Trapped pathogens and particles are
removed by the concerted actions of
cilia and by cough.

Barrier function of the epithelial layer is
maintained by the formation of epithelial
junctions. Epithelial junctions act to
functionally segregate the basal from the
apical compartment to allow epithelial
polarization (15), and may thus be critical
for differentiation of basal epithelial cells
into mucociliary epithelium. In addition,
apical junctional complexes between airway
epithelial cells are an integral part of the
mucosal immune system, regulating the
protection against pathogens. Barrier
function restricts transepithelial crossing of
such inhaled pathogens, and barrier
dysfunction may contribute to the increase
in viral and bacterial infection in COPD.
This may have important implications, as
respiratory infections have been associated
with the majority of COPD exacerbations
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(16). The junctional complex consists of TJs
and AJs. TJs are located in the apical
part of the cell surface, limit permeability
of the epithelium (17), and are composed of
the transmembrane proteins, claudin
(CLDN) (18), occludin (OCLN) (19), and
junctional adhesion molecules (JAMs)
(20). In addition, a number of other
cytoplasmic molecules, such as zonula
occludens (ZO)-1, ZO-2, ZO-3, cingulin,
partitioning defective protein-3, Par-6, and
afadin 6, have been implicated in the
formation of TJs. Such molecules act as a
scaffold by binding to the transmembrane
proteins and linking them with actin
microfilament and other cytoplasmic
proteins that preserve the stability of TJs
(21) (Figure 1).

AJs reside at the basolateral side
of the more apically located TJs,
connecting neighboring cells and
initiating the formation of cell-cell contacts
through homotypic, calcium-dependent
adhesions by E-cadherin, a type I
cadherin transmembrane glycoprotein.
The cytoplasmic domain of E-cadherin
is stabilized in the membrane when
bound to the anchor proteins, p120
catenin, B-catenin, and a-catenin,
linking the complex to the
cytoskeleton (22).

It has been shown that a-catenin
alone does not have the ability to join
the E-cadherin/B-catenin complex to the
actin skeleton, and cooperates with
other proteins, such as epithelial protein
lost in the neoplasm (EPLIN) and
vinculin (23). Binding of the p120-catenin
to the transmembrane domain of E-
cadherin has been shown to be critical for
the stability of E-cadherin in AJs (22).
E-cadherin is thought to provide the
architecture required to form TJs,
because the lack of proper E-cadherin
expression in the epidermis results in
delocalization of TJ proteins, ZO-1, OCLN,
and CLDN (24). In addition, siRNA
knockdown of E-cadherin resulted in
decreased ZO-1 expression in association
with reduced epithelial resistance in
bronchial epithelial monolayers (25).
Various researchers proposed that
kinase families of epidermal growth
factor receptor (EGFR), Src, and
tyrosine phosphatases can be localized
on the surface of AJs and cause
interactions in the cytoplasmic domain of
cadherin, B-catenin, and p120-catenin
(26, 27).

Cigarette Smoke-induced
Dysfunction of Cellular
Junctions in COPD

Smoking has been reported to reduce known
apical junction genes in the airway
epithelium, of which the majority was
further reduced in lung tissue of patients
with COPD compared with smokers with a
normal lung function (28). We have
recently reported that T] protein expression
is disrupted in lung tissue of patients with
end-stage COPD as well as in air-liquid
interface differentiated epithelial cells from
these patients with COPD compared with
control subjects (17). This may have
important consequences for the
pathogenesis of COPD, as outlined
subsequently here. Therefore, it is of
interest to gain insight into the mechanisms
responsible for airway epithelial barrier
dysfunction and the impaired ability to
redifferentiate into intact epithelium upon
smoking in COPD.

Cigarette smoking induces changes in
the airway epithelial layer, leading to goblet
cell hyperplasia (12) and affecting cilia
length as well as cilia recycling by a selective
autophagy pathway, named ciliophagy (29).
In addition, cigarette smoking impacts on
epithelial barrier function (11). Already
decades ago, in vivo models showed that
cigarette smoke induces permeability of the
airway mucosa (30). We and others have
previously demonstrated that cigarette
smoke also transiently impairs epithelial
barrier function in vitro, disrupting OCLN
and ZO-1 junctional expression (11, 12,
31-33). Moreover, Milara and colleagues
(34) demonstrated that cigarette smoke
extract reduces expression of E-cadherin
and ZO-1 in vitro in primary epithelial cells
from patients with COPD, but not control
smokers, an effect that may be caused by
reactive oxygen species (ROS)-dependent
decrease in cAMP.

Mechanisms of Cigarette
Smoke-induced Disruption of
Cell-Cell Contacts

Several mechanisms have been implicated in
the cigarette smoke-induced barrier
dysfunction, which are summarized in
Figure 2. We found that cigarette smoke
exposure induces disruption of E-
cadherin-mediated barrier function in
airway epithelial cells in vitro by
downregulation of A-kinase anchoring
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Figure 1. Schematic illustration representing the structure of barriers in normal airway epithelium. In
normal airway epithelium, tight junctions (TJs) reside in the apical side and consist of the anchoring
proteins, occludin (OCLN), claudins, and junctional adhesion molecules (JAMSs). Zonula occludens
(Z0)-1, ZO-2, and ZO-3 act as a connector between JAMs and cytoskeleton. Adherens junctions
(AJs) are located more basally than TJs and function to connect the actin cytoskeleton to neighboring
cells through binding of the Ca®*-dependent E-cadherin-p120 complex to the cytoskeleton through
cytoplasmic B-catenin and a-catenin. At the basal side, desmosomes constitute the most basolateral
contact. AF6 = afadin 6; B-cat = B-catenin; BM = basement membrane; Cdc42 = cell division cycle 42; ERK =

extracellular signal-egulated kinase; PAR = partitioning defective protein.
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protein (AKAP)-9 expression (35). AKAP-9
regulates sublocalization of protein kinase
(PK) A, which was shown to be involved in
localization of E-cadherin to the basolateral
membrane (35). As PKA is a downstream
effector of cAMP, these findings may help
to explain why decreased cAMP levels lead
to disrupted expression of E-cadherin (34).
Of note, a decrease in E-cadherin protein
expression was observed in lung tissue of
patients with COPD compared with control
subjects matched for smoking history (35).
Activation of EGFR and downstream
extracellular signal-regulated kinase (ERK)
upon the generation of ROS has been
observed upon cigarette smoke exposure in
airway epithelial cells (31, 36). Cigarette
smoke exposure and subsequent ROS
production have also been shown to induce
EGFR phosphorylation at Tyr-845, leading
to Src kinase phosphorylation and
inhibiting EGFR degradation (37). In
addition, cigarette smoke has been shown
to induce EGFR activation through Ras-
related C3 botulinum toxin substrate (Rac)
1 and cell division cycle (Cdc) 42 and p120-
catenin—dependent mechanism (38, 39).
The cigarette smoke extract-induced
decrease in transepithelial resistance and
cleavage junctional delocalization of
scaffolding proteins ZO-1 and OCLN in
airway epithelial cells in vitro was shown to
be EFGR dependent (11). Cigarette smoke
extract-induced downregulation of
junctional-related genes and reduction of
transepithelial resistance in basal airway
epithelial cells has also been shown to be
mediated by EGFR activation (40, 41).

In a recent in vitro study, Mishra and
colleagues (42) uncovered another
mechanism for cigarette smoke-induced
airway epithelial barrier dysfunction, in
which human epidermal growth factor 2
(HER2)-dependent EGFR activation
followed by mitogen-activated protein
kinase-mediated IL-6 release decreases
transepithelial resistance through an
unknown IL-6-dependent mechanism.
Cigarette smoke has been demonstrated to
activate Rho kinase and phosphorylate ZO-
1-binding tyrosine residue in OCLN in
airway epithelial cells, thereby dissociating
these two proteins and consequently
disrupting epithelial integrity (43). Finally,
it has been shown that ROS present in
cigarette smoke induces fragmentation of
hyaluronan in airway epithelial cells

in vitro, impairing barrier integrity by
binding to its epithelial surface receptor
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Figure 2. Disruption of airway epithelial junctions in response to cigarette smoke exposure. After cigarette
smoke exposure, the airway epithelium and, in particular, intercellular contacts undergo significant changes.
Cigarette smoke can induce disruption of TJs upon phosphorylation of the ZO-1 binding tyrosine
residue (ZBR) in OCLN. In addition, it can decrease gene expression of ZO-1 and OCLN. Cigarette smoke
also increases the production of mitochondrial reactive oxygen species (ROS), which, in tumn, activate
epidermal growth factor receptor (EGFR) through Src-mediated phosphorylation of ERK signaling. Activated
ERK can induce TJ dissociation. In addition, cigarette smoke can induce disruption in cell-cell contacts
through EGFR-dependent mechanisms upon its activation by EGF and amphiregulin (AREG) ligands, as
well as by EGFR-independent mechanisms. Furthermore, ROS present in cigarette smoke can induce
hyaluronan fragmentation, which leads to Rho kinase (ROCK) phosphorylation via its surface receptor layilin.
ROCK activation can disrupt Ads through decrease in E-cadherin gene and protein expression. AKAP = A-
kinase anchoring protein; CDH1 = E-cadherin; CS = cigarette smoke; fHA = fragmented hyaluronic acid;
HA = hyaluronic acid; Ub-Cbl = E3 ubiquitin ligase.
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layilin and mediating RhoA/Rho
kinase-dependent decrease in E-cadherin
expression, both at the gene and protein
level (44). Importantly, it has previously
been shown that superoxide dismutase
(SOD) 3, a susceptibility gene for COPD
(45), abrogates hyalorunan fragmentation
(46). Increased fragmentation of hyalorunan
as a result of lower SOD3 expression in
COPD may thus induce disruption of
epithelial junctions and increase permeability
of the airway epithelium in smokers with
COPD. In line, higher levels of low-
molecular hyaluronan have been observed in
lung tissue of patients with severe COPD
(47). Furthermore, in smokers with COPD, a
polymorphism in the antioxidant genes,
SOD3 as well as glutathione S-tranferase
isoenzyme, was associated with reduced lung
function compared with asymptomatic
smokers (48, 49).

Epithelial to Mesenchymal Transition
The loss of epithelial barrier function with
downregulation of E-cadherin is an
important aspect of a process called
epithelial to mesenchymal transition
(EMT). EMT is a process involved in cell
migration, repair, and tissue remodeling,
with loss of epithelial markers and
junctional proteins and gain of
mesenchymal markers (50). During EMT,
E-cadherin-mediated disruption of cell-cell
contacts leads to liberation of B-catenin,
and its degradation can be prevented by
GSK-3pB inactivation upon activation of
transforming growth factor (TGF)-f or
wingless/integrase-1 (WNT) signaling.
Subsequently, B-catenin translocates to the
nucleus, where it activates transcription of
various genes, including such E-cadherin
repressors as Snaill, Slug, zinc finger
E-box binding homeobox (ZEB) 1, 2,

and mesenchymal markers, such as
vimentin, fibronectin, and remodeling
metalloproteinase (MMP)-2 and -9 (51).
The possible molecular mechanisms
responsible for EMT are discussed
subsequently here, but there are indications
that cigarette smoke-induced oxidative
stress can result in epithelial phenotype
shift and EMT (34, 52). Reduced
antioxidant responses may render
susceptible smokers more prone to undergo
ROS-induced epithelial barrier disruption
and/or have abnormal repair responses to
damaging insults, leading to EMT (48,
53-58). These epithelial changes may
subsequently contribute to (small) airway
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wall remodeling in COPD, inducing
abnormal proliferation and differentiation
of epithelial cells (59) and aberrant
expression of growth factors, MMPs, and
extracellular matrix, leading to subepithelial
fibrosis, an important hallmark of COPD
(34, 52, 60). EMT may lead to increased
production of collagen I and MMP-9

(34, 60), promoting thickening of the
subepithelial (small) airway wall and airway
remodeling. Indeed, the observed
fragmentation of the basement membrane
(52, 60) may support epithelial migration
into the subepithelial layer and EMT

in vivo, whereas features of EMT in the
airway epithelium positively correlated with
airway obstruction. Similarly, cigarette
smoke has been shown to induce EMT in
alveolar epithelial cells (61-63), which may
impair alveolar re-epithelization upon
damage (64, 65), thus also having
implications for the development of
emphysema. Cigarette smoke affects
WNT/B-catenin signaling and EMT in
alveolar epithelial cells (66, 67), although
these studies show an inhibition of
[-catenin signaling, which is not in line
with previous studies showing the
induction of EMT (68, 69).

Of interest, the phenotype switch of
airway epithelial cells to a more
mesenchymal-like profile by EMT has also
been implicated in the pathogenesis of lung
cancer (70). The molecular mechanisms
underlying EMT process include multiple
interconnected cascades with a multitude of
drivers that have been implicated in both
COPD and lung cancer (70-77), including
WNT/B-catenin, TGF-B, Hedgehog (Hh),
integrin-linked kinase, urokinase
plasminogen activator receptor (uPAR),
and Notch signaling pathways (78). TGF-3,
which is recognized as a key regulator of
tissue remodeling in COPD (79), is a well-
known inducer of the EMT process (e.g.,
through phosphorylation of Smad2/3/4
complex and non-Smad-associated kinases,
such as mitogen-activated protein kinase
and Akt) (11, 51, 80-82). Translocation of
phosphorylated Smad to the nucleus
triggers upregulation of EMT-inducing
transcription genes, 31-integrin and WNT.
Our group and others (71, 75, 83) observed
aberrant regulation of WNT ligands, WNT-4
and WNT-5B, in cigarette smoke
extract—exposed airway epithelial cells
from patients with COPD. Cigarette
smoke-induced WNT-5B augmented the
expression of mesenchymal markers

Translational Review

through TGF-B/Smad3 signaling (71). Hh
signaling overlaps with WNT and TGF-$
cascades to induce EMT through E-
cadherin suppression (84). Of interest, a
polymorphism in Hh-interacting protein
(HHIP) has been associated with both
COPD and lung cancer, and Hh signaling
has been implicated in cigarette
smoke-induced EMT (85). Altered
expression of several Hh and WNT ligands
has also been observed in lung cancer
tissues and cells, which was associated with
tumor invasion (86, 87). In addition,

in vitro and in vivo studies have shown that
hypoxia-inducible factor 1-a has been
implicated in cigarette smoke-mediated
EMT process in both COPD and lung
cancer (61). Studies by Wang and
colleagues (74, 88, 89) observed a
significant correlation between activation of
uPAR signaling and airway remodeling in
patients with COPD. Accordingly, cigarette
smoke extract-induced activation of uPAR
induced EMT through phosphatidylinositol
(PI) 3-Akt-dependent inhibition of GSK-
3@ in vitro in airway epithelial cells from
patients with COPD. In addition, increased
expression of uPA has been observed

in vitro in airway epithelium of patients
with COPD, which may contribute to the
emergence of mesenchymal hallmarks (88,
89). More recently, Chen and colleagues
found that high-mobility group box
(HMGB)-1, which has been found to be
increased in COPD (90), induces PI3
kinase/Akt-dependent accumulation of
nuclear B-catenin in human airway
epithelial cell in vitro, resulting in apical
junction impairment and EMT phenotype
(91, 92). In line, cigarette smoke extract was
shown to induce EMT through uPAR-
dependent PI3-Akt activation in vitro in
lung cancer epithelial cells (77) (Figure 3).
Hence, airway epithelial barrier dysfunction
may be the consequence of abnormal
activity of various pathways that have been
implicated in the pathogenesis of COPD,
leading to abnormal repair and EMT.

Link between Inflammatory
Mediators and Permeable
Mucosal Barrier

Structural and subsequent functional
disruption of apical junctions is a common
hallmark of chronic inflammation,
particularly in the respiratory and
gastrointestinal epithelium (93). Many

mediators of innate and adaptive immunity
that may be increased upon chronic
cigarette smoke exposure are known to
regulate the physical barrier function of the
airway epithelium, including cytokines,
chemokines, and lipophilic factors

(Figure 4). Among cytokines, especially T
helper (Th) 2 and 17 cytokines have been
proposed as key disruptive factors for
epithelial integrity (94, 95). The direct
exposure of airway epithelial cells to IL-4
and IL-13 in vitro was shown to induce
enhanced permeability of the epithelium
through the activation of Janus-associated
kinase (JAK) (95). Gene expression analysis
of the airway epithelium in COPD tissue
also suggested an impact of Th2 cytokines
on these cells in COPD (96). Results from
another gene expression analysis have
shown an elevation in IL-13 expression in
lung tissue of patients with severe COPD
compared with control subjects without
COPD (97), and Th2-like eosinophilic
inflammation has especially been associated
with virus-induced COPD exacerbations
(98). Furthermore, higher levels of the Th2
cytokines, IL-4 and IL-13, have been
observed in the airway epithelium of
smokers with chronic bronchitis versus
healthy smokers (99). Thus, especially in a
subset of patients, Th2 cytokines may
contribute to epithelial barrier dysfunction.
Nevertheless, to the best of our knowledge,
there is no evidence of association between
Th2 cytokine levels and increased
permeability in smoke-exposed airway
epithelium. Though higher IL-4 levels have
been reported in the bronchoalveolar fluids
of patients with COPD, reduced IL-4
expression has been observed in lung tissue
of patients with COPD compared with
control subjects without COPD, and this
was shown to be associated with the
severity of disease (100, 101). Th17 cells
express different isoforms of IL-17 (IL-17A,
IL-17B, IL-17C, IL-17D, IL-17E, and IL-
17F), and airway epithelial cells express
various of these isoforms, including IL-17A
and F (102, 103). The number of Th17 cells
has been reported to be elevated in blood
samples and airway tissue of patients with
COPD compared with control subjects
without COPD (104, 105). Furthermore,
increased expression of IL-17A and IL-17F
has been observed in the airway epithelium
of stable patients as well as patients with
severe COPD, which was accompanied by a
decline in lung function (106, 107). An

in vivo study has revealed that cigarette

161



TRANSLATIONAL REVIEW

Airway
epithelium

S "‘. B1-integrin
e |
OO

Vimenctin
Fibronectin|
1 MMP-2

MMP-9

SOOOSTK

Mesenchymal
cell

E-cadherin

Figure 3. Molecular mechanisms involved in cigarette smoke—-induced epithelial to mesenchymal
transition (EMT) in airway epithelium. Cigarette smoke—induced ROS can activate several signaling
pathways in airway epithelium, including urokinase plasminogen activator receptor (UPAR), Hedghog (Hh),
WNT, and transforming growth factor (TGF)-B, leading to dissociation of cellular contacts by suppression
of CDH1 expression, and subsequent gaining of mesenchymal characteristics. Activation of uPAR and
high-mohility group box (HMGB)-1 by smoke exposure can prevent 3-catenin degradation upon its release
from E-cadherin-mediated contacts through phosphatidylinositol (Pl) 3-Akt—-dependent inactivation of
GSK-3B, resulting in its translocation to the nucleus, where it induces mesenchymal genes, including
vimentin, fibronectin, metalloproteinase (MMP)-2 and MMP-9, and E-cadherin repressors, Snail, Slug, and
zinc finger E-box—binding homeobox (ZEB). In addition, TGF- can induce EMT through Smad-dependent
pathways. Nuclear translocation of the phosphorylated Smad2/3 complex can lead to activation of
EMT-inducing WNT and B1-integrin transcription genes. WNT-5B can also induce EMT through activation
of the TGF-B/Smad3 pathway. Non-Smad TGF-B pathway acts through mitogen-activated protein kinase
(MAPK)/Akt—dependent inactivation of GSK-38 and further translocation of liberated B-catenin, which

overlaps with UPAR and WNT signaling pathways.

smoke increases secretion of IL-17 from the
airway epithelium (102). Recently,
Ramezanpour and colleagues (94) found
that Th17 cytokines are the predominant

162

inducers of AJs disruption in a
rhinosinusitis animal model, whereas no
significant change was observed with either
Thl or Th2 cytokines. In contrast, earlier

findings indicate that IL-17 is not able to
induce epithelial barrier dysfunction in
primary cultures of human sinonasal
epithelial cells from patients with
rhinosinusitis, whereas IL-4 and IFN-vy
induced epithelial barrier disruption (108).
Higher levels of the Thl cytokine, IFN-y,
have been observed in the lung tissue, BAL
fluid, and sputum samples of patients with
COPD (109-112). Pretreatment with both
IFN-v and proinflammatory mediator,
TNF-a, has been described to induce
EGFR-mediated airway junctional
disintegration in epithelial cells in vitro
(113, 114). In addition, recent evidence
shows that TNF-a can induce loss of E-
cadherin expression in a Src-dependent
fashion in airway epithelial cells in vitro
(115, 116). Although earlier studies showed
increased levels of TNF-a both in sputum
and BAL fluid of patients with COPD (110,
117), lower levels of TNF-« have been
observed in sputum samples of patients
with COPD compared with the control
(112). Another proinflammatory cytokine
that may participate in airway junctional
dysfunction in COPD is IL-1B. Decades
ago, Rusznak and coworkers (118) observed
a marked elevation in IL-1p levels from
mainstream cigarette smoke-exposed
airway epithelial cells of smokers with
COPD and asymptomatic smokers
compared with nonsmokers. Recent
investigations have reported that, upon

in vitro exposure of airway epithelial cells to
exogenous IL-1B, HER2 is activated
through a disintegrin and metalloproteinase
(ADAM) 17-dependent release of
neuregulin (NRG)-1 ligand, which resulted
in dissociated intercellular 3-catenin-E-
cadherin adhesion complex and a reduction
in barrier function (119). As described
subsequently here, IL-6, as a cytokine
extensively described for its implication in
pathogenesis of COPD (120), has also been
demonstrated to disrupt airway epithelial
integrity upon HER?2 activation (42).
Together, several of the proinflammatory
mediators in COPD have been shown
capable of inducing airway epithelial barrier
function. Of these, TNF-a, IFN-vy, and IL-
1B are most likely to contribute to barrier
dysfunction in COPD, as overviewed in
Figure 4.

In turn, loss of barrier function may
lead to alterations in the production of
immune modulators by the airway
epithelium. Findings from our group
indicate that airway epithelial disruption
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Figure 4. Proinflammatory mediators regulating epithelial barrier function. The inflammatory responses mediated by various cytokines, including T-helper
cell type 1 (Th1), Th2, and Th17, and chemokines (IL-18 and TNF-«) can alter different intercellular signaling pathways, leading to barrier dysfunction.
Increased release of IL-6 upon human epidermal growth factor (HER) 2 activation leads to decline in barrier function. Moreover, HER2 activation mediated
by IL-1B can break B-catenin—-E-cadherin complex. TNF-a can activate Src kinase, which leads to AJ disruption by downregulation of E-cadherin.
Activation of Janus-associated kinase (JAK) upon Th2 cytokines, IL-4 and IL-13, leads to enhanced permeability of airway epithelium. On the other hand,
IFN-vy in combination with TNF-a can affect epithelial barrier function through EGFR-mediated TJ disruption. Increased IL-17A can also induce airway

epithelial barrier disruption through an unknown pathway.

induced by siRNA knockdown of E-
cadherin promotes the release of
proinflammatory cytokines by activation of
EGFR and downstream signaling pathways
(121). In line, Hackett and colleagues (122)
reported an increased proinflammatory
cytokine response in air-liquid
interface-differentiated airway epithelial
cultures upon epithelial damage. These
observations reinforce the importance of
airway barrier function in the regulation of
immune mediators.

There are also barrier-protective
mediators released by airway epithelial cells
that may alter in response to cigarette
smoke-induced barrier dysfunction (123).
Club cell secretory protein-10 (CC10) acts
as an essential barrier protective factor for
airway epithelium (124). Downregulation

Translational Review

of CC10 has been observed in lung tissue of
patients with COPD and cigarette
smoke—exposed animals, and may
indirectly contribute to the leaky
manifestation of airway epithelium
(124-127). Moreover, we reported an
association between the elevated expression
of RNase7, an epithelial antimicrobial
peptide, and EGFR-dependent airway
epithelial barrier disruption induced by
cigarette smoke, implying a protective role
for RNase7 upon disruption of the
epithelial barrier (32). Herr and colleagues
(128) reported that cigarette smoke reduces
bacteria-induced expression of the
antimicrobial peptide, hBD-2/DEFB4, and
we have recently extended these findings to
show that whole smoke derived from a
single cigarette not only caused a transient

decrease in epithelial barrier function, but
also impaired production of inducible
antimicrobial peptides, such as hBD-
2/DEFB4, S100A7, and lipocalin/LCN2
(129). Furthermore, we showed that
antibacterial activity and expression of
selected antimicrobial peptides were
decreased in differentiated cultures of
patients with moderate COPD
compared with smoking control subjects,
whereas no difference in epithelial
barrier activity was noted. This indicates
that both the chemical barrier function of
the airway epithelium provided by
antimicrobial peptides and physical barrier
are impaired by smoke exposure and
affected in COPD.

Cigarette smoking may also impact
directly on the microbiome. For instance, it
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has been reported that Haemophilus
influenzae, Moraxella catarrhalis,

and Streptococcus pneumoniae are
overrepresented in smokers compared with
nonsmokers (123). Furthermore, it has
been shown that upper airways from
smokers display higher microbial diversity
than nonsmokers (130), with an
overrepresentation of Eubacterium spp.,
Abiotrophia spp., Anaerovorax, Eggerthella,
Dorea, and Erysipelotrichaceae LS. in the
nasopharynx of smokers compared

with nonsmokers. In COPD, an
overrepresentation of the Proteobacteria
phylum (131, 132) and the Firmicutes
phylum (133-135) has been observed. As
far as we know, there are no studies
available assessing the effect of Firmicutes
on human airway epithelial barrier
function, whereas various studies have
shown adverse effects of respiratory
pathogens on cultured airway epithelial
cells. For instance, products of
Proteobacterium Pseudomonas aeruginosa
are cytotoxic to airway epithelial cells, and
will thus impact on airway epithelial barrier
integrity (136). Furthermore, in a previous
study, we have shown that S. pneumoniae
reduces transepithelial resistance in human
airway epithelial cells (137). Therefore,
smoking may affect epithelial barrier
function through direct and indirect effects
on the lung microbiome.

In addition to the effects on the airway
epithelium, cigarette smoke may affect the
respiratory host defense to microbes by
effects on additional innate, as well as
adaptive, immune cells (4). A number of
studies have shown that cigarette smoke
diminishes the phagocytic ability of alveolar
macrophages to engulf apoptotic cells, a
process known as efferocytosis (138-140),
which is also impaired in COPD (141). This
impaired efferocytosis may lead to necrotic
processes, which increase danger signals
and proinflammatory mediators (142), thus
promoting barrier disruption. In addition,
it has been shown that cigarette smoke
induces a decrease in alveolar macrophage
responses to double-stranded RNA by
downregulation of Toll-like receptor 3,
thereby making patients with COPD more
susceptible to undergoing viral
exacerbation (143). Cigarette smoke
increases Th17 responses by overexpression
of IL-17A in lung CD4" and v3 T
lymphocytes in vivo, which may affect
barrier function, as described previously
here (144).
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Recent Developments in
Therapeutic Approaches
Based on the Restoration of
Airway Epithelial Barrier
Activity in COPD

Remodeling of the airway wall is a
hallmark of COPD that mainly arises from
long-term detrimental smoking, leading to
persistent inflammation and tissue
damage. The repair response of airway
epithelial cells in COPD is thought to be
abnormal, with an inability to restore
epithelial integrity and normal function of
the intact, fully differentiated layer.
Therapeutic interventions specifically
targeting the restoration of epithelial
barrier function may be beneficial in COPD,
but are currently lacking. The current
therapies for COPD are aimed at
suppression of inflammation and
bronchodilation, including inhaled
corticosteroids and long-acting
bronchodilators. These drugs do not halt or
reverse disease progression, although they
may slow it down and provide temporary
relief of symptoms during exacerbation
(145). The GLUCOLD study showed an
improvement in lung function of patients
with COPD upon treatment with
corticosteroids (146). Pathway analysis with
gene set enrichment analysis on genome-
wide gene expression has shown that this
improvement in lung function is associated
with upregulation of genes that are
enriched for epithelial barrier function
(147). This indicates that corticosteroids
may affect epithelial barrier function, and
further supports the notion that loss of
barrier function is related to lung function
decline in COPD. In line with these
findings, we showed that the inhaled
corticosteroid budesonide protects against
cigarette smoke-induced airway epithelial
barrier disruption in vitro, which likely
involved modulation of EGFR-dependent
pathways (137). However, pretreatment of
airway epithelial cells with dexamethasone
was not sufficient to reverse TGF-
B-induced EMT (148). In addition to
corticosteroids, Milara and colleagues (34,
149, 150) showed that treatment with
cAMP-elevating compounds successfully
restores airway epithelial barrier
dysfunction induced by either cigarette
smoke extract or TGF-f in vitro. Therefore,
it will be of interest to study effects of PDE4
inhibitors on epithelial barrier dysfunction
in COPD.

Schamberger and colleagues (12)
showed that treatment with exogenous
TGEF-B1 restores the cigarette smoke
extract-induced damage to the airway
epithelial barrier by upregulation of
junctional proteins (ZO-1 and ZO-2)
in vitro. This is in contrast with the
previously defined role for TGF-$1 in tissue
remodeling in COPD (72). Pretreatment of
airway epithelial cells with EGF has also
been shown to protect epithelial TJs against
cigarette smoke extract-induced junctional
damage in vitro (33) and to promote airway
epithelial repair in vitro (151), which is
again in contrast to the role of EGFR in
smoke-induced barrier dysfunction.
Regardless of this, due to their pleiotropic
effects, TGF and EGF may not be suitable
therapeutic strategies to improve epithelial
barrier function.

Several studies have noted effectiveness
of pharmacological inhibition in restoration
of TJ activity. Rezaee and colleagues (152)
have provided new understanding
regarding the mechanism of airway barrier
disruption induced by respiratory syncytial
virus and showed that PKD inhibition
attenuates respiratory syncytial
virus-induced disruption of junctional
assembly in vitro. In line with this,
inhibition of PKD3 at baseline has been
shown to enhance electrical resistance of
airway epithelial cells in vitro, possibly via
upregulation of CLDN1 (153). Moreover, as
described previously here, the use of AKAP
inhibitor St-Ht31 peptides has been
demonstrated to counteract the cigarette
smoke extract-induced impairment of E-
cadherin mediated cell-cell contacts in
16HBE cells (35), and may thus have
therapeutic benefits.

Recently published in vitro studies
raise attention to the capability of
chemotherapy with various compounds to
block pathways involved in the disruption
of the airway epithelial barrier upon smoke
exposure (154, 155). Furthermore, a recent
study showed that treatment with vitamin
D may rescue cigarette smoke
extract-induced disruption in airway
epithelial E-cadherin in vitro through
downregulation of ERK pathway (156).
Finally, it has been shown that corilagin, a
polyphenolic compound, can restore the
integrity of lung epithelial cellular junctions
in cigarette smoke-induced disrupted TJ-
related protein connexin 40, possibly
through its antioxidant properties (157).
Among these compounds, PKD inhibitors
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Table 1. Potential Therapeutic Candidates Regulating Airway Epithelial Barrier Function

Therapeutic Molecular
compounds Targets
Budesonide EGFR
EGF

Exogenous TGF-B TGF-B receptor

PDE4 inhibitor cAMP

PKD inhibitor PKD3

AKAP inhibitor AKAP-cAMP
Vitamin D ERK
Corilagin NF-«B

Effects on Airway Epithelial
Barrier Function

Protection against cigarette smoke-induced
barrier disruption by increase in TEER and
Z0O-1 expression

Upregulation of ZO-1 and ZO-2 and inhibition of
TEER decrease in cigarette smoke-induced

barrier disruption
Inhibition of cigarette smoke-induced
E-cadherin and ZO-1 downregulation

Increase in TEER and CLDN1 expression upon

calcium depletion
Reversion of cigarette smoke—-induced
impairment of cell membrane E-cadherin
Rescue of E-cadherin and B-catenin protein

loss and maintenance of TEER upon cigarette

smoke extract exposure

Prevention of cigarette smoke-induced
decrease in TJ-related connexin 40 gene
expression and protein levels

Type of Study Reference

In vitro/16HBE cells 137

In vitro/differentiated 33
HBECs

In vitro/16HBE and HBECs 12

In vitro/differentiated 34, 149, 150
HBECs

In vitro/16HBE cells 153

In vitro/16HBE cells 35

In vitro/16HBE cells 156

In vitro/Calu-3 157

Definition of abbreviations: AKAP = A-kinase anchoring protein; cAMP = cyclic adenosine monophosphate; CLDN = claudin; EGF = epithelial growth
factor; EGFR = EGF receptor; ERK = extracellular signal-regulated kinase; HBECs = human bronchial epithelial cells; PDE4 = phosphdiesterase 4; PKD =
protein kinase D; TEER = transepithelial electrical resistance; TGF-B = transforming growth factor-g; TJ = tight junction; ZO-1/Z0-2 = zonula ocludens-1/2.

have exerted the most promising effect on
restoration of airway epithelial barrier
function by means of recovering both AJs
and TJs.

Concluding Remarks and
Future Directions

Together, evidence for loss of epithelial
junctions and dysregulated airway epithelial
barrier function in patients with COPD is
emerging. Both oxidative stress and
proinflammatory responses induced by
cigarette smoke may disrupt airway
epithelial barrier function. Subsequently,
EMT may contribute to abnormal repair of
the airway epithelium in COPD.
Polymorphisms in specific genes associated
with COPD may contribute to increased

susceptibility to cigarette smoke-induced
damage, as well as the abnormal repair
response. Insight in to the mechanisms of
loss of epithelial integrity in COPD has
been provided by in vitro and in vivo
studies, including ROS-induced EGFR
activation, but these cannot completely
mimic the chronic nature of the disease.
Thus, more insight may be provided by
junctional gene knockdown in animal
models. Table 1 summarizes the results of
in vitro studies on airway epithelial barrier
function. We suggest that restoration of
airway barrier function in COPD with drug
interventions that restore epithelial barrier
function, regulate EMT and epithelial
repair, and especially those that target
EGFR and its downstream signaling, may
be beneficial. Such strategies should be

addressed in future studies. In addition, it
will be of interest to assess the effects of
cigarette smoke on alveolar barrier function
as well as the impact of the altered
microbiome in COPD on lung epithelial
barrier function. There is also an increasing
interest in emerging smoke products, such
as flavored electronic cigarettes, and various
studies have evaluated their effects on
epithelial cell function. These studies show
that the toxicity of such products is less
compared with conventional tobacco
cigarettes, but do highlight a range of
possible adverse effects of electronic
cigarettes on epithelial function (158). The
importance of such findings for lung health
requires further investigation. ll

Author disclosures are available with the text
of this article at www.atsjournals.org.
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