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Abstract

Purpose of review To show the role of functional MRI in

patients treated for head and neck squamous cell

carcinoma.

Recent findings MRI is commonly used for treatment

evaluation in patients with head and neck tumors. How-

ever, anatomical MRI has its limits in differentiating

between post-treatment effects and tumor recurrence.

Recent studies showed promising results of functional MRI

for response evaluation.

Summary This review analyzes possibilities and limita-

tions of functional MRI sequences separately to obtain

insight in the post-therapy setting. Diffusion, perfusion and

spectroscopy show promise, especially when utilized

complimentary to each other. These functional MRI

sequences aid in the early detection which might improve

survival by increasing effectiveness of salvage therapy.

Future multicenter longitudinal prospective studies are

needed to provide standardized guidelines for the use of

functional MRI in daily clinical practice.

Keywords MRI � Treatment evaluation � Primary tumor �
Lymph nodes � Head/neck squamous cell carcinoma �
Review

Abbreviations

ADC Apparent diffusion coefficient

ASL Arterial spin labeling

DCE Dynamic contrast enhanced

DKI Diffusion kurtosis imaging

DSE Dynamic susceptibility enhanced

DWI Diffusion weighted imaging

HNSCC Head and neck squamous cell carcinoma

IVIM Intravoxel incoherent motion

Introduction

Head and neck cancer affects 550,000 new cases and

380,000 deaths worldwide annually [1–3]. Head and neck

squamous cell carcinomas comprise over 90% of the head

and neck carcinomas [4]. Patients frequently present with a

locally advanced stage for which the current therapy is

multimodal including surgery, radiation therapy and/or

chemotherapy [5–8]. Many patients demonstrate unfavor-

able treatment response, with locoregional recurrence seen

in about 30–60% [7]. This is in about 2/3 due to primary

tumor recurrence, 1/3 due to regional nodal metastasis and

in 1/3 due to both primary tumor recurrence as well as

regional nodal metastasis [9].

Conventional anatomical MRI techniques are commonly

used for treatment evaluation, but are often not able to have

reliable assess treatment response. Surgery as well as

chemoradiotherapy induce false positives on imaging as a
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result of inducing benign changes involving architectural

distortion, fibrosis and/or necrosis [10••, 11, 12, 13•, 14•].

These benign treatment-induced changes should be differ-

entiated from residual and/or recurrent tumor on imaging to

prevent unjustified alteration in treatment plan, e.g. salvage

therapy or (dis)continuation of therapy. Early detection of

local recurrence could lead to timely salvage therapy which

can lead to an increase in overall survival [15–17].

Post-treatment surveillance can consist of ultrasound,

PET-CT [18–21] and MRI [10••, 11, 12, 13•, 14•]. Several

recent studies have shown the potential usefulness of

functional MRI techniques for treatment evaluation in

patients with head and neck tumors [10••, 11, 12, 13•, 14•,

22••, 23–28, 29•, 30–33•]. Diffusion-weighted imaging is

used to image changes in cytoarchitecture and measure

cellular density. Perfusion-weighted MRI techniques can

identify tumor-induced neovascularization. Changes in

concentrations of metabolites are shown with magnetic

resonance spectroscopy (MRS).

This review will analyze the functional MR imaging

sequences with regards to their possibilities and limitations

in head and neck squamous cell carcinoma. Clinical

implications, applicability and possibilities of these

sequences for treatment evaluation will be addressed.

Role of Conventional Anatomical MRI in Head
and Neck SCC

Conventional anatomical MRI techniques are used for

treatment evaluation. MRI is superior to CT yielding higher

anatomical detail [11, 12, 13•, 14•, 34–37]. Anatomical

MRI to assess HNSCC should include a T1 without fat

suppression, T2 with and without fat suppression and T1

post-contrast with fat suppression. These sequences are

used to analyze certain characteristics of the primary tumor

and possible nodal involvement [11, 12, 13•, 14•, 34–37].

However, anatomical MRI techniques are often unable

to accurately identify treatment response showing a pooled

sensitivity and specificity for local treatment response

evaluation in HNSCC of 84 and 82%, respectively [22••].

This is due to benign treatment effects such as inflamma-

tion, fibrosis and necrosis as a result of surgery and

chemoradiotherapy. These post-therapy changes show

overlapping signal characteristics with tumor. Most prob-

lematic for the primary site is that inflammation and tumor

both show high T2 signal and enhancement after contrast

injection. Lymph node assessment is most hindered by

reactive lymph node that can be slightly enlarged similar to

nodal metastasis. Furthermore, normal sized nodes can still

contain tumor. See Table 1 for a detailed description of the

signal intensities on anatomical MRI post-treatment.

Higher diagnostic accuracy than 84% sensitivity and

82% specificity post-therapeutically is needed to differen-

tiate treatment effects from true malignancy for the local

tumor site and the regional lymph nodes to reliable either

initiate new therapy, adjust the current therapy or discon-

tinue unjustified therapy.

Technical Background of Functional MRI
Techniques

Diffusion Weighted Imaging

DWI measures cellular density and cytoarchitecture using

the measurement of water diffusivity. Random diffusion

results from the Brownian motion of water molecules.

Motion of water molecules is hindered, restricted, by

interactions with other molecules and cellular barriers such

as fibers, cell membranes and macromolecules. Diffusion

abnormalities of water molecules thus reflect changes of

tissue organization at a cellular level affecting the MR

signal of a DWI sequence as can be seen in a number of

processes including malignancy [10••, 11, 12, 13•, 14, 22••,

24••, 25••, 26–28, 29•, 30, 32, 33•].

DWI sequences are based on a T2-weighted sequence.

At least two b values are needed to analyze motion of

water. DWI is done at different b values (in s/mm2), which

represent the duration between the gradient pulses used.

Simplified, it is the time that water is allowed to diffuse

before the distance is measured. Most commonly, a b0 and

b800 or b1000 value are used for head and neck imaging.

Diffusion is quantified using ADC in mm2/s. Having

measured at least two different b values (e.g. b0 and b800),

the logarithm of relative signal intensity of a tissue is

plotted on the y axis against the b values on the x axis. The

slope of the line fitted through the plots describes the ADC.

This mono-exponential fitting represents a rough approxi-

mation of ADC and is most often used in clinical routine.

This parameter is independent of the magnetic field

strength. Lower values indicate more restricted diffusion.

However, mono-exponential fitted ADC values cannot

separate the pure molecular diffusion from the motion of

water molecules in the capillary network [32]. Low b val-

ues are most influenced by the capillary component which

influences the ADC values. Multi-exponential models

using several b values are more suitable for accurate

quantification of diffusion without perfusion contamination

[30, 32, 33•].

Acquiring multiple b values yields techniques such as

intravoxel incoherent motion (IVIM) and diffusion kurtosis

imaging (DKI). IVIM imaging can distinguish between

pure molecular diffusion and motion of water molecules in

the capillary network through a single DWI acquisition
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technique if both low b values (\ 200 s/mm2) and high

b values ([ 200 s/mm2) are used. The relationship between

signal intensities and multiple b values can be assessed.

Real diffusion of water molecules (D) can be distinguished

from the contribution of perfusion to the signal decay (D*)

and the contribution of perfusion to the diffusion signal (f).

Another, multiple b value method, DKI, represents the

extent to which the diffusion pattern of the water molecules

deviates from a perfect Gaussian curve that is assumed

calculating standard ADC values. Table 2 includes the

most commonly used parameters for the different diffusion

techniques.

MR Perfusion

Perfusion is defined as the steady-state delivery of blood to

tissue. Several perfusion techniques are available; dynamic

contrast-enhanced (DCE) perfusion, dynamic susceptibility

contrast (DSC) perfusion and arterial spin labeling (ASL)

all yielding different parameters (see Table 2).

DCE perfusion is most commonly used for the head and

neck area. DCE is based on the T1 relaxivity effects of

contrast agents. DCE perfusion has been reported as a

technique which is able to characterize perfusion and

vascularization of tissues [24••, 25••, 30–33•]. However,

this has not always been histologically confirmed [25••,

38, 39]. Ktrans is the most commonly derived quantitative

parameters representing capillary permeability and seems

to be to most consistent parameter [24••, 25••, 40].

DSC perfusion exploits the susceptibility-induced signal

loss after administration of contrast on T2-weighted

sequences, most commonly a quick T2* gradient echo

sequence. It is based on inhomogeneity of the magnetic

field during the passage of a short bolus of contrast through

a capillary bed [27]. As result on the T2* sequence, blood

products, calcifications and aerated structures result in

artificial signal loss. Mean transit time, blood flow and

blood volume can be calculated. However, in the head and

neck area a multitude of artifacts are present (e.g. volun-

tary/involuntary motion, breathing, air-to-tissue surface

artifacts) [10••, 11, 12, 13•, 14•], affecting the reliability of

the results acquired with DSC.

ASL is a perfusion technique without injection of con-

trast. Arterial blood is magnetized below the volume of

Table 1 Use of conventional anatomical MRI for treatment evaluation

Anatomical MRI

sequence

Primary tumor Lymph nodes

T1 without fat

suppression

Anatomical details

Tumor: ; compared to fat

Fat infiltration by tumor or

inflammation: similar ;/;;

Necrosis: ;; round, oval, well

circumscribed

Fibrosis: Linear commonly ;;, but can
be ;/= as well

Anatomical localization of node levels

Metastatic lymph nodes: Size :/:: (suggested cut-off[ 7–10 mm for level II

and[ 5–7 mm for all other levels). Round shape

Reactive lymph nodes: Size =/: (can be false-positive using above cut-off);

Oval with fatty hilum

Location of lymph node and level in relation to location primary tumor

T2 with and without

fat suppression

Fat suppression useful for the detection

of abnormalities

T2 without fat suppression for

anatomical details

Edema, fat infiltration by tumor or

inflammation: similar :/::

Necrosis: :: round, oval, well

circumscribed

Perineural spread: :

Fibrosis: Linear commonly ;;, but can
be ;/= as well.

Fat suppression needed to identify abnormal nodes

T2 without fat suppression for anatomical details

Metastatic lymph nodes: : slightly heterogeneous; more commonly an

irregular border; possible extra-nodal extension

Reactive lymph nodes: =

T1 post-contrast with

fat suppression

Fat infiltration by tumor or

inflammation: similar :/::

Edema or necrosis: no enhancement

Fibrosis: no enhancement after

6-12 months. Most commonly :/::

Perineural spread: ::

Fat suppression needed to identify abnormal lymph nodes

Metastatic lymph nodes: :/::, thick, irregular rim enhancement in case of

necrosis

Reactive lymph nodes: =/:

High signal intensity is indicated as :, low signal intensity is indicated as ; and intermediate signal as =
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interest. After a certain period, the magnetized blood flows

into the volume of interest and its derived signal is mea-

sured. Blood flow can be calculated, which could reflect

neovascularity and angiogenic activity of malignancy [32].

ASL also uses T1 relaxation, but is challenging as timing

of the signal read-out should be precise. Acquiring the

volume of interest too late, and the magnetized arterial

blood has already passed. However, ASL is feasible in

head and neck cancer using an Locker–Locker sequence

[41] or a pseudo-continuous sequence [42].

MR Spectroscopy

MRS is a technique that detects the presence of specific

metabolites. Different metabolites have small differences

in their intrinsic vibration frequency and thereby result in

small differences in signal of 1H protons. Spectroscopy is

Table 2 Use of functional MRI for treatment evaluation

Functional

MRI

sequence

Most used parameters During treatment primary

tumor and lymph nodes

After treatment

primary tumor

After treatment lymph

nodes

Diffusion DWI: ADC, ADC-ratio (= ADC2000/ADC1000

9 100%)

IVIM: D, D*, f

DKI: skewness of distribution

Locoregional control: %ADC

: tumor and lymph nodes

Locoregional failure: %ADC ;
tumor and lymph nodes. Cut-

off range 14–24% [32, 55, 65]

Tumor:

ADC;; and b800-

1000 ::

Peritumoral

inflammation:

ADC ;/= and

b800–1000 =/:

Necrosis/

apoptosis:

ADC :/:: and

b800–1000 :/::

Edema:

ADC =/: and

b800–1000 =/:

Fibrosis:

ADC = and

b800–1000 =

IVIM/DKI: ?

Metastatic lymph nodes:

ADC ;; and b800–1000

::. Suggested ADC

cut-off 1.1 9 10-3

mm2/s

Reactive lymph nodes:

ADC ;/= and

b800–1000 =/:

IVIM-derived D and f

contradicting literature

[35, 38]

DKI: ?

Perfusion DCE: AUC, Ktrans, rate constant,

extravascular volume and plasma space

volume or flow

DSC: blood volume, blood flow, mean transit

time, wash out

ASL: blood flow

Local control:

Ktrans =/: [42].

AUC =/: [42].

Plasma flow =/: [66].

Local failure:

Ktrans ;/= [42]

AUC ;/= [42]

Plasma flow ;/= [66]

Regional control (lymph

nodes): ?

Tumor:

Ktrans :, blood
volume :, blood
flow :, wash out

:

Peritumoral

inflammation: =/

:

Necrosis/

apoptosis: all ;

Edema: ;/=/: ?

Fibrosis: all ;

Metastatic lymph nodes:

blood flow :, blood
volume :, Ktrans ?

Reactive lymph nodes:

blood flow =/:, blood
volume =/:, Ktrans ?

Spectroscopy Concentration of lactate (1.3 ppm), N-acetyl-

aspartate (2.0 ppm), creatine (3.0 ppm) and

choline (3.2 ppm). Ratios can be calculated

Increased choline, decreased creatine and increase choline/creatine ratio in

primary tumor recurrence and nodal metastasis is suggested, although

insufficient data available to reliably provide insight [62–64]

See technique section of the paper for explanation of the most commonly used parameters. Suggested cut-off values are given if available. High

values are indicated as :, low values are indicated as ; and intermediate values are indicated as = . References are given if relevant with numbers

corresponding to the reference listed in the text

ADC apparent diffusion coefficient, ASL arterial spin labeling, AUC area under the curve, IVIM intravoxel incoherent motion, D diffusion of

water molecules, D* perfusion contribution to the signal decay, DCE dynamic contrast enhanced, DKI diffusion kurtosis imaging, DSC dynamic

susceptibility enhanced, f contribution of perfusion to the diffusion signal, Ktrans capillary permeability, ppm parts per million
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thus well-suited to detect changes in the components of

tissue due to tumor after suppression of the abundant water

signal [43]. Single voxel and multivoxel techniques are

able to characterize tissue including the measurements of

lactate, N-acetylaspartate, creatine and choline. Spec-

troscopy should be regarded as complimentary to the

already acknowledged functional MRI techniques in

assessing HNSCC.

Response Evaluation During Therapy

Diffusion Weighted Imaging

A rise in ADC is seen after the treatment in HNSCC

(Fig. 1) and can be seen already in the first few weeks

[24••, 29•]. This percentage increase in ADC has been

shown to be a predictor of treatment response [24••]. A

smaller mean ADC in the first 3 weeks after treatment start

was shown in patients with disease failure compared to

those with disease control [29•, 33•, 44]. Three other

studies found thresholds of\ 14–24% to be predictive for

regional failure in using clinical outcome data with at least

2 years follow-up [26, 45, 46]. However, it must be noted

that imaging is generally not performed within the first

couple of weeks in standard clinical practice.

It is of great importance to interpret ADC analysis in

conjunction with anatomical imaging. Areas of necrosis

may take longer to resolve than solid areas. In the interim,

the necrosis may become organized and show a fall in

ADC value [24••]. Therefore, it is critical to identify sites

of necrosis that need to be excluded from ADC analysis

[24••]. Furthermore, the development of mature scar tissue

may also decrease the ADC value [27]. The same holds for

compact fibrosis which can demonstrate lowered ADC

values and low to intermediate T2 signal.

MR Perfusion

Vascular HNSCCs are thought to have better treatment

response compared to less vascular HNSCCs because of

better delivery of chemotherapeutic agents and greater

radiosensitivity [24••]. On the other hand, vascular tumors

may have a poorer outcome because they are thought they

have greater metastatic potential [24••]. Reports suggest

that a fall in blood volume is associated with poor overall

survival. On the other hand, an increased area under the

curve is associated with local control [39]. The early rise in

volume transfer (Ktrans) is speculated to result from

damaged blood vessels causing them to temporarily

become leakier, which potentially could increase the

delivery of chemotherapeutic agents into the tumor.

Also plasma flow has shown to react in patients under-

going induction chemotherapy for the regional tumor [47].

The median baseline tumor plasma flow was 53 ml/100 ml/

min in 25 responders and 24 ml/100 ml/min in 12 non-

responders. In lymph nodes, differences were not signifi-

cantly different between non-responders and responders

[47]. After appropriate validation, this method may be

potentially used to guide treatment modification in patients.

MR Spectroscopy

To the best of our knowledge, only one in vitro study of

tumor specimens by has shown significantly elevated pre-

treatment choline-to-creatine ratios in a poor response

group, but these findings could not be confirmed in an

in vivo human study using choline/creatine ratios as well

choline/water ratios [48].

Imaging Primary Tumor Site Post-therapy

Diffusion Weighted Imaging

Anatomical MRI is mandatory for an accurate delineation

of anatomical details (see Table 1). However, anatomical

MRI is hindered by interpretation difficulties in the

detection of local primary tumor recurrence [10••,

11, 12, 13•, 14•]. A diffusion-derived b 800 or b1000 map

provides high lesion-to-background contrast, outperform-

ing conventional T2-weighted sequences in this aspect. The

accompanying ADC indicates whether the high signal on

the b value map is indeed due to tumor recurrence if low

signal is seen on the ADC map. If the high signal on the

b value map is accompanied by high signal on the ADC

map it is not due to tumor and represents T2-shine-through,

or increased diffusivity (see also Table 2 for interpretation

of functional MRI). Fibrosis also lacks diffusion restriction

(Fig. 2). A large meta-analysis showed a higher diagnostic

accuracy for ADC compared to anatomical MRI.

Anatomical MRI yielded a pooled sensitivity and speci-

ficity of 84 and 82%, respectively. ADC showed a pooled

sensitivity and specificity of 89 and 86%, respectively

[22••]. More recent studies demonstrate a similar diag-

nostic accuracy for ADC values [46]. Even higher b values

up to b2000 do not increase the diagnostic accuracy

[44, 49]. Using both a b1000 and b2000 and ADCratio

(= ADC2000/ADC1000 9 100%) can be calculated. The

ADCratio might increase the diagnostic accuracy although

results are variable with a sensitivity and specificity of 63

and 84%, respectively, for one study [44]. This is a small

study with 32 patients, thus should be further studied in a

large population.
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Diffusion restriction results from high cellularity as in

tumor, but can be also induced due to inflammation and

abscesses. Moreover, restricted diffusivity can be seen in

normal structures (e.g. Waldeyer’s ring or normal lymph

nodes) because these structures have an inherent high

cellularity [10••, 11, 12, 13•, 14•]. Apoptosis and tumor

necrosis can lead to decreased cellularity resulting in an

increased diffusivity [24••, 25••, 29•]. This should be kept

in mind when interpreting DWI.

MR Perfusion

A cross-sectional study demonstrated significant differ-

ences between DCE perfusion parameters comparing the

blood volume of scar tissue and tumor recurrence in

HNSCC [50]. Its potential use in treatment follow-up was

also shown in a small retrospective study [51]. Although

DSC is not the most used perfusion method in the head and

neck area, a higher wash-in on DSC has been related with

tumor recurrence instead of treatment changes in a

prospective study [33•]. However, diagnostic accuracy

studies to differentiate treatment changes from tumor

recurrence or residual with DCE or DSC perfusion are

lacking. Although, visual assessment is possible (see also

Table 2 for interpretation of functional MRI), further

quantification is currently hindered by standardization of

scan parameters and thresholds. In our experience, the area

under the curve (AUC) summing the enhancement in a

certain voxel, delineates abnormalities most easily with

high values for tumor. Relative enhancement provides

more insight in the magnitude of enhancement compared

with the pre-contrast values. Region of interest analyses

could demonstrate relative enhancements curves with the

internal carotid artery as reference. A rapid wash-in com-

parable with the carotid artery followed by a wash out or

plateau phase is indicative of tumor (Fig. 3), while slowly

progressive enhancements indicate benign treatment

changes (Fig. 4).

Fig. 1 Tumor response confirmed on diffusion. A 54-year-old patient

with a tumor at the retromolar trigonum showing high T2 signal,

enhancement and diffusion restriction before treatment. Follow-up

6 months after radiation therapy showed at least partial response on

anatomical MRI with some residual high T2 signal and enhancement.

Diffusion restriction aided in the differentiation between residual

tumor and post-therapy inflammation. Lack of diffusion restriction in

this patient was in keeping with post-therapy changes
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MR Spectroscopy

MRS is not routinely used for the treatment evaluation of

HNSCC. However, the presence of choline as indication of

proliferation and cell membrane turnover yield high

specificity of 100%, although false-negative are frequently

present, resulting in a very low sensitivity of 44% [52].

Imaging Lymph Nodes Post-therapy

Diffusion Weighted Imaging

Treatment evaluation of regional lymph node is less stud-

ied than the primary tumor site. A higher diagnostic

accuracy for ADC over anatomical MRI is suggested [22••,

53–55]. Anatomical MRI sensitivity and specificity ranged

between 67–90 and 33–97%, respectively [22••]. For ADC,

this was 78 and 88% in one study and 73 and 100% in

another study [45, 53]. However, the difference was sta-

tistically not significant. Benign lymph nodes demonstrate

higher ADC values compared to malignant lymph nodes

[54–56]. This is also demonstrated in lymph nodes between

5 and 10 mm [54–56]. However, mean ADC values for

benign lymph nodes range from to 1.1 to 1.6 9 10-3 mm2/

s, while HNSCC metastatic nodes range between to 0.78

and 1.1 9 10-3 mm2/s [24••, 25••]. A threshold of 1.1,

therefore, seems most appropriate to use, although overlap

could result in false-positive and false-negative results. The

diagnostic accuracy for post-treatment lymph nodes using

the IVIM or DKI methods might be better using multiple

b values. This remains speculative currently as diagnostic

accuracy studies are lacking post-therapy. The values of the

known decrease of kurtosis of lymph nodes during treat-

ment [57, 58] should be further established. The IVIM-

derived D values represent pure diffusion without perfusion

components. Significantly higher D values are demon-

strated in patients with regional failure in line with the

ADC results [29•, 33•]. However, another study showed no

significant rise in D values but a higher initial f value

(perfusion fraction) in locoregional failure compared to

locoregional control [53].

Fig. 2 Fibrosis on follow-up MRI confirmed with diffusion. A 67-year-old patient with a T3 vallecula tumor showed fibrosis after radiation

therapy with low signal on T1 and T2, no enhancement and no diffusion restriction
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Perfusion-Weighted Imaging

A few recent studies have demonstrated differences in

perfusion parameters between benign lymph nodes and

malignant lymph nodes [24••, 33•, 41, 42]. Perfusion of

nodal metastasis might be increased (Fig. 5). Metastatic

lymph nodes demonstrate higher blood flow and blood

volume compared to benign lymph nodes on CT perfusion

[41, 42], which thus would be expected to be similar for

DSC MRI perfusion. The capillary permeability (Ktrans)

correlates with the hypoxia-induced transcription factor in

the tissue, which is known to stimulate angiogenesis [59].

However, interpretation of MR perfusion in post-therapy

lymph nodes is difficult and it remains to be elucidated

whether differentiation of malignant and benign lymph

nodes can be done reliable (Fig. 6).

Fig. 3 Tumor recurrence differentiated using diffusion and perfu-

sion. A 57-year-old patient with a total resection of a pT2N0Mx

lateral tongue carcinoma. Because of small free resection margins, a

second resection was performed 1 month later with a submandibulec-

tomy and free radial forearm flap reconstruction. Anatomical MRI

showed changes during follow-up 6 months after resection with high

signal on T2 with and without fat suppression. There is enhancement

post gadolinium. Anatomical MRI was difficult to interpret as these

findings could be due to both tumor recurrence as well as inflamma-

tion. Functional MRI demonstrated findings in keeping with tumor

recurrence. Diffusion restriction was shown with high b1000 and low

ADC values. Perfusion demonstrated increased AUC. Relative

enhancement of the tumor (blue) showed a wash-in comparable to

the carotid artery (purple) with plateau phase indicative for tumor.

Tumor recurrence was pathologically confirmed (Color figure online)
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MR Spectroscopy

Acquiring MRS in lymph nodes is currently not clinically

applicable as the region of interest should be placed sep-

arately on each suspicious lymph node by a radiologist on

site. If the technically challenges are overcome, the

increased choline, decreased creatine and subsequently

increased choline/creatine ratio of metastatic nodes need to

be confirmed in larger studies [60–62].

Limitations

The limitations and potential pitfalls of the functional MRI

sequences should be kept in mind during the interpretation.

First, the lack of anatomical information at high b values in

DWI is a drawback because of suppressed signal in most of

the normal tissues. Therefore, DWI should not be inter-

preted alone, but in correlation with anatomical sequences.

This is also true for perfusion and spectroscopy which

means that all functional MRI sequences can never be used

without the use of anatomical sequences. Moreover, all

functional sequences are currently hindered by high vari-

ability of cut-offs and parameters used.

Second, it must be stressed that functional MRI remains

technically challenging to perform due to artifacts (i.e.

breathing, swallowing, involuntary motion and air-tissue

interfaces) [10••, 11, 12, 13•, 14•, 24••, 25••, 29•, 32, 33•].

Moreover, acquisition parameters have yet to be stan-

dardized. Examples of protocols for the functional MRI

sequences of the head and neck are described and could be

used as a guide when implementing these sequences [24••].

Diffusion-derived interpretation is mainly done using

mean ADC values. Diffusion showed good reproducibility

for baseline scans for the ADC value of the primary tumor

and nodal metastasis [63]. The reproducibility of the ADC

during treatment is also suggested to be good [64]. Mean

values of the tumor or metastatic lymph node are not

representative when they consist of both highly and poorly

cellular (necrotic) portions. Mean ADC values should be

measured in the areas with high cellularity only to over-

come this limitation [24••, 25••]. Even then, ADC inter-

pretation remains challenging. A recent study suggested a

reduced field of view (FOV) might increase accuracy [65].

Moreover, it has been suggested that multiple b values are

more accurate as this method is able to distinguish the

perfusion component resulting in a pure diffusion value.

This perfusion might influence the ADC value, although

Fig. 4 Benign perfusion profile post-therapy. A 45-year-old patient

with a T1 tongue carcinoma after resection. The primary site showed

some enhancement after gadolinium injection on the T1 with fat

suppression. A benign perfusion profile is seen with slowly progres-

sive relative enhancement (Color figure online)
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some consider the influence of perfusion below clinical

relevance [65]. As the clinical implication of multiple

b values is not yet firmly established, the acquisition of

multiple b values in clinical setting can be questioned.

However, multiple b values are clearly preferred in a

research setting.

With respect to DCE perfusion, an increased scan

duration with approximately 7–10 min is most hindering

clinical applicability next to the potential artifact as dis-

cussed above [24••]. DCE perfusion is least influenced by

artifacts and currently best suited to perform in patients

with HNSCC. Post-processing of perfusion is more com-

plex due to the nonspecific nature of vessel leakage

resulting in possible false-negatives and false-positive

results. Perfusion post-processing also has a greater range

of methods and functional parameters for analysis that are

available if compared to DWI [24••, 25••, 41]. This adds to

the complexity of perfusion imaging and its clinical

implementation.

Fig. 5 Nodal metastasis with positive diffusion and perfusion. Same

patient as in Fig. 4 showing a lymph node metastasis with necrotic

center with high T2 signal and no enhancement or increased perfusion

(arrow head). Peripheral enhancement corresponded with high AUC

(arrows) (Color figure online)
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Studies with regards to MRS suggest a higher choline-

to-creatine ratio in patients with poor prognosis, which

corresponds with expected high rates of proliferation and

membrane biosynthesis in aggressive tumors (increased

rate of metabolism) [48]. However, MRS is not commonly

used due to its technical challenges. The region of interest

should be placed by a radiologist to ensure correct place-

ment in the anatomically difficult head and neck area.

Furthermore, motion artifact from the carotid artery, long

scan durations and complex post-processing hinders clini-

cal applicability [52, 66].

Fig. 6 Normal lymph node and nodal metastasis with diffusion and

perfusion. A 66-year-old patient with a right sided pT1N1Mx floor of

the mouth SCC demonstrated recurrent lymph nodes after postoper-

ative radiation therapy. An enlarged metastasis lymph node was seen

on the right side with diffusion restriction and increased relative

enhancement and AUC (arrow). A contralateral lymph node was not

enlarged and demonstrated slightly restricted diffusion as is also seen

in normal lymphoid tissue. Perfusion showed a high AUC and relative

enhancement with a rapid wash-in with plateau phase for both lymph

nodes, although most pronounced in the metastatic lymph node.

Interpretation of the perfusion of lymph nodes remains difficult and

should be further investigated (Color figure online)
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Future Developments and Challenges

Differentiation between malignancy and benign post-treat-

ment effects such as fibrosis in HNSCC is of importance to

guide clinical decisions. The head and neck is an area sen-

sitive for artifacts and functional MR imaging requires

advanced MRI post-processing software to evaluate

HNSCC. Combined functional sequences are required to

fully appreciate HNSCC post-therapy, in addition to the

necessary anatomical sequences. This would result in long

scan durations, but new developments could overcome time

issues. A possible role of hybrid integrated PET/MR imag-

ing might be demonstrated offering the potential to acquired

anatomical and function data using different modalities.

However, future research is needed to evaluate PET/MRI

and its appropriate applications compared to existing tech-

niques [67] and whether PET/MRI is of greater clinical

value than PET/CT and retrospective image fusion tech-

niques [68]. HNSCC is common and local residual and/or

recurrence and nodal metastasis are seen in many patients.

Diffusion is already frequently used. However, diffusion

with multiple b values and perfusion required further con-

firmation of their added value in the post-therapy setting

before wide-spread implementation. This is even more the

case for spectroscopy. Future studies should focus on the

added value of the different functional MRI sequences

preferable by large prospective longitudinal multicenter

studies comparing all sequences in the same population.

These studies are needed to assess the diagnostic accuracy

of the functional MRI sequences separately and in combina-

tion. Another important aspect of these studies should be to

define the optimum time for assessment of metabolic and

physiological MRI parameters using functional techniques.

The functional parameters should be tested in relation to the

histopathological changes in HNSCC, treatment effects and

patient outcomes. These new trials must result in standardized

cut-off values and ratios for the anatomical and functional

MRI sequences to precisely define post-therapy changes from

tumor progression. The use of standardized cut-off values

might remain arbitrary because of the use of different MRI

systems. Nevertheless, it would be a valuable guideline for

the clinician in daily practice. Despite these possible limita-

tions, implications into clinical practice would be an impor-

tant step in making an accurate treatment decisions for

HNSCC patients.

Conclusions

In summary, this review analyzed the role of specific

functional MRI modalities in differentiating benign post-

treatment effects from recurrence and/or residual malig-

nancy and metastases in HNSCC.

Differentiation between malignant and benign post-

treatment effects in HNSCC is of importance to guide

clinical decisions. As anatomical MRI is not able to reli-

ably differentiate post-therapy effect from tumor, func-

tional techniques have been investigated and shown to be

promising. This review showed that DWI can increase the

diagnostic accuracy significantly for the primary tumor site

and might also increase the diagnostic accuracy for the

region lymph nodes after therapy. Diffusion is most easy to

implement and is recommended to perform routinely in a

clinical setting in HNSCC follow-up. Its use during treat-

ment to predict outcome is interesting, but evidence is too

low to implement.

Although perfusion parameters might be increased in

tumor residual or recurrence and nodal metastasis, its

diagnostic accuracy has yet to be established and is not

routinely used clinically. DCE is least hindered by artifact

and might be performed clinically if local experience is

present.

Spectroscopy research is promising, but evidence is too

sparse for clinical implementation in the near future. The

role of hybrid PET/MR imaging is to be established.
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